
Chapter 4

Linear Harmonic Oscillator

The linear harmonic oscillator is described by the Schrödinger equation

i ~ ∂t ψ(x, t) = Ĥ ψ(x, t) (4.1)

for the Hamiltonian

Ĥ = − ~
2

2m
∂2

∂x2
+

1
2
mω2x2 . (4.2)

It comprises one of the most important examples of elementary Quantum Mechanics. There are sev-
eral reasons for its pivotal role. The linear harmonic oscillator describes vibrations in molecules and
their counterparts in solids, the phonons. Many more physical systems can, at least approximately,
be described in terms of linear harmonic oscillator models. However, the most eminent role of this
oscillator is its linkage to the boson, one of the conceptual building blocks of microscopic physics.
For example, bosons describe the modes of the electromagnetic field, providing the basis for its
quantization. The linear harmonic oscillator, even though it may represent rather non-elementary
objects like a solid and a molecule, provides a window into the most elementary structure of the
physical world. The most likely reason for this connection with fundamental properties of matter
is that the harmonic oscillator Hamiltonian (4.2) is symmetric in momentum and position, both
operators appearing as quadratic terms.
We have encountered the harmonic oscillator already in Sect. 2 where we determined, in the context
of a path integral approach, its propagator, the motion of coherent states, and its stationary states.
In the present section we approach the harmonic oscillator in the framework of the Schrödinger
equation. The important role of the harmonic oscillator certainly justifies an approach from t-
wo perspectives, i.e., from the path integral (propagotor) perspective and from the Schrödinger
equation perspective. The path integral approach gave us a direct route to study time-dependent
properties, the Schrödinger equation approach is suited particularly for stationary state properties.
Both approaches, however, yield the same stationary states and the same propagator, as we will
demonstrate below.
The Schrödinger equation approach will allow us to emphasize the algebraic aspects of quantum
theory. This Section will be the first in which an algebraic formulation will assume center stage.
In this respect the material presented provides an important introduction to later Sections using
Lie algebra methods to describe more elementary physical systems. Due to the pedagodical nature
of this Section we will link carefully the algebraic treatment with the differential equation methods
used so far in studying the Schrödinger equation description of quantum systems.
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74 Linear Harmonic Oscillator

In the following we consider first the stationary states of the linear harmonic oscillator and later
consider the propagator which describes the time evolution of any initial state. The stationary states
of the harmonic oscillator have been considered already in Chapter 2 where the corresponding wave
functions (2.235) had been determined. In the framework of the Schrödinger equation the stationary
states are solutions of (4.1) of the form ψ(x, t) = exp(−iEt/~)φE(x, t) where

Ĥ φE(x) = E φE(x) . (4.3)

Due to the nature of the harmonic potential which does not allow a particle with finite energy to
move to arbitrary large distances, all stationary states of the harmonic oscillator must be bound
states and, therefore, the natural boundary conditions apply

lim
x→±∞

φE(x) = 0 . (4.4)

Equation (4.3) can be solved for any E ∈ R, however, only for a discrete set of E values can the
boundary conditions (4.4) be satisfied. In the following algebraic solution of (4.3) we restrict the
Hamiltonian Ĥ and the operators appearing in the Hamiltonian from the outset to the space of
functions

N1 = {f : R → R, f ∈ C∞, lim
x→±∞

f(x) = 0} (4.5)

where C∞ denotes the set of functions which together with all of their derivatives are continuous.
It is important to keep in mind this restriction of the space, in which the operators used below,
act. We will point out explicitly where assumptions are made which built on this restriction. If
this restriction would not apply and all functions f : R → R would be admitted, the spectrum of
Ĥ in (4.3) would be continuous and the eigenfunctions φE(x) would not be normalizable.

4.1 Creation and Annihilation Operators

The Hamiltonian operator (4.2) can be expressed in terms of the two operators

p̂ =
~

i

d

dx
, x̂ = x (4.6)

the first being a differential operator and the second a multiplicative operator. The operators act
on the space of functions N1 defined in (4.5). The Hamiltonian Ĥ can be expressed in terms of the
operators acting on the space (4.5)

Ĥ =
1

2m
p̂2 +

1
2
mω2 x̂2 (4.7)

which is why these operators are of interest to us.
The cardinal property exploited below, beside the representation (4.7) of the Hamiltonian, is the
commutation property

[p̂, x̂] =
~

i
11 (4.8)

which holds for any position and momentum operator. This property states that p̂ and x̂ obey an
algebra in which the two do not commute, however, the commutator has a simple form. In order



4.1: Creation and Annihilation Operators 75

to derive (4.8) we recall that all operators act on functions in N1 and, hence, the action of [p̂, x̂]
on such functions must be considered. One obtains

[p̂, x̂] f(x) =
~

i

d

dx
x f(x) − x

~

i

d

dx
f(x) =

~

i
f(x) =

~

i
11 f(x) . (4.9)

From this follows (4.8).
Our next step is an attempt to factorize the Hamiltonian (4.7) assuming that the factors are easier
to handle than the Hamiltonian in yielding spectrum and eigenstates. Being guided by the identity
for scalar numbers

(b− ic)(b+ ic) = b2 − i(cb− bc) + c2 = b2 + c2 (4.10)

we define

â+ =
√
mω

2~
x̂ − i√

2m~ω
p̂ , â− =

√
mω

2~
x̂ +

i√
2m~ω

p̂ . (4.11)

The reader may note that we have attempted, in fact, to factor Ĥ/~ω. Since â+ and â− are
operators and not scalars we cannot simply expect that the identy (4.10) holds for â+ and â− since
[â−, â+] = â−â+ − â+â− does not necessarily vanish. In fact, the commutator property (4.8)
implies

[â−, â+] = 11 . (4.12)

To prove this commutation property we determine using (4.11)

â−â+ =
mω

2~
x̂2 +

1
2m~ω

p̂2 +
i

2~
[p̂, x̂] . (4.13)

(4.7) and (4.8) yield

â−â+ =
1
~ω

Ĥ +
1
2

11 . (4.14)

Similarly one can show

â+â− =
1
~ω

Ĥ − 1
2

11 . (4.15)

(4.14) and (4.15) together lead to the commutation property (4.12).
Before we continue we like to write (4.14, 4.15) in a form which will be useful below

Ĥ = ~ω â−â+ − ~ω

2
11 (4.16)

Ĥ = ~ω â+â− +
~ω

2
11 . (4.17)

We also express â+ and â− directly in terms of the coordinate x and the differential operator d
dx

â+ =
√
mω

2~
x −

√
~

2mω
d

dx
, â− =

√
mω

2~
x̂ +

√
~

2mω
d

dx
. (4.18)

It is of interest to note that the operators â+ and â− are real differential operators.
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Relationship between a+ and a−

The operators â+ and â− are related to each other by the following property which holds for all
functions f, g ∈ N1 ∫ +∞

−∞
dx f(x) a+ g(x) =

∫ +∞

−∞
dx g(x) a− f(x) . (4.19)

This property states that the operators â+ and â− are the adjoints of each other. The property
follows directly from (??). Using (??) we like to state (4.19) in the form1

〈f |â+g〉Ω∞ = 〈g|â−f〉Ω∞ . (4.20)

In the following we will determine the spectrum of Ĥ and its eigenstates. The derivation will be
based solely on the properties (4.12, 4.16, 4.17, 4.19).

â+ and â− as Ladder Operators

The operators â+ and â− allow one to generate all stationary states of a harmonic oscillator once
one such state φE(x)

Ĥ φE(x) = E φE(x) (4.21)

is available. In fact, one obtains using (4.16, 4.17, 4.21)

Ĥ â− φE(x) = ( ~ω â−â+ − ~ω

2
11 ) â− φE(x)

= â− ( ~ω â+â− +
~ω

2
11 − ~ω 11 )φE(x)

= â− ( Ĥ − ~ω )φE(x)
= (E − ~ω ) â− φE(x) . (4.22)

Similarly one can show using again (4.16, 4.17, 4.21)

Ĥ â+ φE(x) = ( ~ω â+â− +
~ω

2
11 ) â+ φE(x)

= â+ ( ~ω â−â+ − ~ω

2
11 + ~ω 11 )φE(x)

= â+ ( Ĥ + ~ω )φE(x)
= (E + ~ω ) â+ φE(x) . (4.23)

Together, it holds that for a stationary state φE(x) of energy E defined through (4.21) â−φE(x) is
a stationary state of energy E − ~ω and â+φE(x) is a stationary state of energy E + ~ω.
The results (4.22, 4.23) can be generalized to m-fold application of the operators â+ and â−

Ĥ (â+)m φE(x) = (E + m ~ω )
(
â+
)m

φE(x)

Ĥ (â−)m φE(x) = (E − m ~ω )
(
â−
)m

φE(x) . (4.24)
1This property states that the operators in the function space N1 are the hermitian conjugate of each other. This

property of operators is investigated more systematically in Section 5.
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One can use these relationships to construct an infinite number of stationary states by stepping up
and down the spectrum in steps of ±~ω. For obvious reasons one refers to â+ and â− as ladder
operators. Another name is creation (â+) and annihilation (â−) operators since these operators
create and annihilate vibrational quanta ~ω. There arise, however, two difficulties: (i) one needs to
know at least one stationary state to start the construction; (ii) the construction appears to yield
energy eigenvalues without lower bounds when, in fact, one expects that E = 0 should be a lower
bound. It turns out that both difficulties can be resolved together. In fact, a state φ0(x) which
obeys the property

â− φ0(x) = 0 (4.25)

on one side would lead to termination of the sequence E0 + m, m ∈ Z when m is decreased, on
the other side such a state is itself an eigenstate of Ĥ as can be shown using (4.17)

Ĥ φ0(x) = ( ~ω â+â− +
~ω

2
11 )φ0(x) =

1
2
~ω φ0(x) . (4.26)

Of course, the solution φ0(x) of (4.25) needs to be normalizable in order to represent a bound state
of the harmonic oscillator, i.e., φ0(x) should be an element of the function space N1 defined in
(4.5).
The property (??) has an important consequence for the stationary states φE(x). Let φE(x) and
φE′(x) be two normalized stationary states corresponding to two different energies E,E′, E 6= E′.
For f(x) = φE(x) and g(x) = φE′(x) in (??) follows (Note that according to (??) the eigenvalue
E is real.)

0 = 〈φE |ĤφE′〉Ω∞ − 〈φE′ |ĤφE〉Ω∞ = (E′ − E ) 〈φE |φE′〉Ω∞ . (4.27)

Since E 6= E′ one can conclude
〈φE |φE′〉Ω∞ = 0 . (4.28)

4.2 Ground State of the Harmonic Oscillator

A suitable solution of (4.25) can, in fact, be found. Using (4.6, 4.11) one can rewrite (4.25)(
d

dy
+ y

)
φ0(y) = 0 (4.29)

where

y =
√
mω

~

x . (4.30)

Assuming that φ0(y) does not vanish anywhere in its domain ]−∞,+∞[ one can write (4.29)

1
φ0(y)

d

dy
φ0(y) = =

d

dy
lnφ0(y) = − y , (4.31)

the solution of which is
lnφ0(y) = −1

2
y2 + c0 (4.32)

for some constant c0 or

φ0(y) = c0 exp
(
−1

2
y2

)
. (4.33)
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This solution is obviously normalizable. The conventional normalization condition

〈φ0|φ0〉Ω∞ = 1 (4.34)

reads ∫ +∞

−∞
dx |φ0(x)|2 = |c0|2

∫ +∞

−∞
dx exp

(
−mωx

2

2~

)
= |c0|2

√
π~

mω
. (4.35)

The appropriate ground state is

φ0(x) =
[mω
π~

] 1
4 exp

(
−mωx

2

2~

)
. (4.36)

Since the first order differential equation (4.25) admits only one solution there is only one set of
states with energy E + m ~ω, m ∈ Z which properly terminate at some minimum value E +
m0 ~ω ≥ 0. We recall that according to (4.26) the energy value associated with this state is 1

2~ω.
This state of lowest energy is called the ground state of the oscillator. The set of allowed energies
of the oscillator according to (4.24) can then be written as follows

En = ~ω (n +
1
2

) , n = 0, 1, 2, . . . (4.37)

It is most remarkable that the energy 1
2~ω of the ground state is larger than the lowest classical-

ly allowed energy E = 0. The reason is that in the Hamiltonian (4.2) there are two competing
contributions to the energy, the potential energy contribution which for a state δ(x), i.e., a state
confined to the minimum corresponding to the classical state of lowest energy, would yield a van-
ishing contribution, and the kinetic energy contribution, which for a narrowly localized state yields
a large positive value. The ground state (4.36) assumes a functional form such that both terms
together assume a minimum value. We will consider this point more systematically in Section 5.

4.3 Excited States of the Harmonic Oscillator

Having obtained a suitable stationary state with lowest energy, we can now construct the stationary
states corresponding to energies (4.37) above the ground state energy, i.e., we construct the states
for n = 1, 2, . . ., the so-called excited states. For this purpose we apply the operator â+ to the
ground state (4.36) n times. Such states need to be suitably normalized for which purpose we
introduce a normalization constant c′n

φn(x) = c′n
(
â+
)n

φ0(x) , n = 0, 1, 2, . . . (4.38)

These states correspond to the energy eigenvalues (4.39), i.e., it holds

Ĥ φn(x) = ~ω (n +
1
2

)φn(x) , n = 0, 1, 2, . . . (4.39)

We notice that the ground state wave function φ0(x) as well as the operators (â+)n are real. We
can, therefore, choose the normalization constants c′n and the functions φn(x) real as well.
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We need to determine now the normalization constants c′n. To determine these constants we adopt
a recursion scheme. For n = 0 holds c′0 = 1. We consider then the situation that we have obtained
a properly normalized state φn(x). A properly normalized state φn+1(x) is then of the form

φn+1(x) = αn â
+ φn(x) (4.40)

for some real constant αn which is chosen to satisfy

〈φn+1|φn+1〉Ω∞ = α2
n 〈â+φn|â+φn〉Ω∞ = 1 . (4.41)

Employing the adjoint property (4.20) yields

α2
n 〈φn|â−â+φn〉Ω∞ = 1 . (4.42)

Using (4.14) together with Ĥ φn(x) = ~ω(n+ 1
2)φn(x) leads to the condition (note that we assumed

φn(x) to be normalized)

α2
n (n + 1 ) 〈φn|â−â+φn〉Ω∞ = α2

n (n + 1 ) = 1 (4.43)

From this follows αn = 1/
√
n+ 1 and, according to (4.40),

â+ φn(x) =
√
n+ 1φn+1(x) . (4.44)

One can conclude then that the stationary states of the oscillator are described by the functions

φn(x) =
1√
n!

(
â+
)n

φ0(x) , n = 0, 1, 2, . . . (4.45)

We like to note that these functions according to (4.28) and the construction (4.40–4.45) form an
orthonormal set, i.e., they obey

〈φn|φn′〉 = δnn′ , n, n′ = 0, 1, 2, . . . . (4.46)

According to (4.24) holds in analogy to (4.40)

φn−1(x) = βn â
− φn(x) (4.47)

for some suitable constants βn. Since â− is a real differential operator [see (4.18)] and since the
φn(x) are real functions, βn must be real as well. To determine βn we note using (4.20)

1 = 〈φn−1|φn−1〉Ω∞ = β2
n 〈â−φn|â−φn〉Ω∞ = β2

n 〈φn|â+â−φn〉Ω∞ . (4.48)

Equations (4.15 , 4.39) yield
1 = β2

n n 〈φn|φn〉Ω∞ = β2
n n . (4.49)

From this follows βn = 1/
√
n and, according to (4.47),

â− φn(x) =
√
nφn−1(x) . (4.50)

Repeated application of this relationship yields

φn−s(x) =

√
(n− s)!
n!

(
â−
)s
φn(x) . (4.51)
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Evaluating the Stationary States

We want to derive now an analytical expression for the stationary state wave functions φn(x)
defined through (4.39). For this purpose we start from expression (4.45), simplifying the calculation,
however, by introducing the variable y defined in (4.30) and employing the normalization∫ +∞

−∞
dy φ2

n(y) = 1 (4.52)

This normalization of the wave functions differs from that postulated in (4.35) by a constant,
n–independent factor, namely the square root of the Jacobian dx/dy, i.e., by√∣∣∣∣dxdy

∣∣∣∣ =
[mω
~

] 1
4
. (4.53)

We will later re-introduce this factor to account for the proper normalization (4.35) rather than
(4.52).
In terms of y the ground state wave function is

φ0(y) = π−
1
4 e−

y2

2 (4.54)

and â+ is

â+ =
1√
2

(
y − d

dy

)
. (4.55)

The eigenstates of the Hamiltonian are then given by

φn(y) =
1√

2n n!
√
π
e−

y2

2 e
y2

2

(
y − d

dy

)n
e−

y2

2 . (4.56)

Relationship to Hermite Polynomials

We want to demonstrate now that the expression (4.56) can be expressed in terms of Hermite
polynomials Hn(y) introduced in Sect. 2.7 and given, for example, by the Rodrigues formula (2.200).
We will demonstrate below the identity

Hn(y) = e
y2

2

(
y − d

dy

)n
e−

y2

2 (4.57)

such that one can write the stationary state wave functions of the harmonic oscillator

φn(y) =
1√

2n n!
√
π
e−

y2

2 Hn(y) . (4.58)

This result agrees with the expression (2.233) derived in Sect. 2.7. It should be noted that the
normalization (4.28) of the ground state and the definition (4.57) which includes the factor 1/

√
n!

according to Eqs. (4.40–4.46) yields a set of normalized states.
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To verify the realtionship between the definition (4.57) of the hermite polynomials and the definition
given by (2.200) we need to verify(

y − d

dy

)n
e−

y2

2 = (−1)n e
y2

2
dn

dyn
e−y

2
. (4.59)

which implies

Hn(y) = (−1)n ey
2 dn

dyn
e−y

2
(4.60)

and, hence, the Rodrigues formula (2.200).
We prove (4.59) by induction noting first that (4.59) holds for n = 0, 1, and showing then that the
property also holds for n+ 1 in case it holds for n, i.e.,

g(y) = (−1)n+1 e
y2

2
dn+1

dyn+1
e−y

2
=
(
y − d

dy

)n+1

e−
y2

2 . (4.61)

One can factor g(y) and employ (4.59) as follows

g(y) = −e
y2

2
d

dy
e−

y2

2 (−1)n e
y2

2
dn

dyn
e−y

2

= −e
y2

2
d

dy
e−

y2

2

(
y − d

dy

)n
e−

y2

2 . (4.62)

Denoting f(y) = (y − d/dy)exp(−y2/2) and employing

d

dy
e−

y2

2 f(y) = −y e−
y2

2 f(y) + e−
y2

2
d

dy
f(y) (4.63)

one obtains

g(y) =
(
y − d

dy

)
f(y) (4.64)

which implies that (4.61) and, therefore, (4.59) hold.

4.4 Propagator for the Harmonic Oscillator

We consider now the solution of the time-dependent Schrödinger equation of the harmonic oscillator
(4.1, 4.2) for an arbitrary initial wave function ψ(x0, t0). Our derivation will follow closely the
procedure adopted for the case of a ‘particle in a box’ [see Eqs. (3.106–3.114)]. For the sake of
notational simplicity we employ initially the coordinate y as defined in (4.30) and return later to
the coordinate x.
Starting point of our derivation is the assumption that the initial condition can be expanded in
terms of the eigenstates φn(y) (4.39)

ψ(y0, t0) =
∞∑
n=0

dn φn(y0) . (4.65)
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Such expansion is possible for any f(y0) = ψ(y0, t0) which is an element of N1 defined in (4.5),
a supposition which is not proven here2. Employing orthogonality condition (4.46) the expansion
coefficients dn are

dn =
∫ +∞

−∞
dy0 ψ(y0, t0)φn(y0) . (4.66)

One can extend expansion (4.65) to times t ≥ t0 through insertion of time-dependent coefficients
cn(t1)

ψ(y, t1) =
∞∑
n=0

dn φn(y) cn(t) (4.67)

for which according to (3.108–3.112) and (4.39) holds

cn(t1) = exp
(
−i ω (n +

1
2

) ( t1 − t0 )
)
. (4.68)

Altogether one can express then the solution

ψ(y, t1) =
∫ +∞

−∞
dy0 φ(y, t|y0, t0)ψ(y0, t) (4.69)

where

φ(y, t1|y0, t0) =
∞∑
n=0

φn(y)φn(y0) tn+ 1
2 , t = e−iω(t1−t0) (4.70)

is the propagator of the linear harmonic oscillator. We want to demonstrate now that this propaga-
tor is identical to the propagator (2.147) for the harmonic iscillator determined in Sect. sec:harm.
In order to prove the equivalence of (4.70) and (2.147) we employ the technique of generating
functions as in Sect. 2.7. For this purpose we start from the integral representation (2.225) which
allows one to derive a generating function for products of Hermite polynomials which can be applied
to the r.h.s. of (4.70). We consider for this purpose the following expression for |t| < 1

w(y, y0, t) =
∞∑
n=0

Hn(y)e−y
2/2Hn(y0)e−y

2
0/2

2n n!
√
π

tn . (4.71)

Applying (??) to express Hn(y) and Hn(y0) yields

w(y, y0, t) = π−3/2 exp
(
y2

2
+
y2

0

2

)∫ +∞

−∞
du

∫ +∞

−∞
dv

exp(−2tuv)︷ ︸︸ ︷
∞∑
n=0

1
n!

(−2tuv )n ×

× exp(−u2 − v2 + 2iyu + 2iy0v ) . (4.72)

2A demonstration of this property can be found in Special Functions and their Applications by N.N.Lebedev
(Prentice Hall, Inc., Englewood Cliffs, N.J., 1965) Sect. 4.15, pp. 68; this is an excellent textbook from which we
have borrowed heavily in this Section.
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Carrying out the sum on the r.h.s. one obtains

w(y, y0, t) = π−3/2 exp
(
y2

2
+
y2

0

2

) ∫ +∞

−∞
dv exp(−v2 + 2iy0v ) ×

×
∫ +∞

−∞
du exp(−u2 − 2u(tv − iy) )︸ ︷︷ ︸
√
πexp( t2v2− 2iytv− y2)

. (4.73)

The incomplete Gaussian integral∫ +∞

−∞
dx e−a

2x2− 2bx =
√
π

a
eb

2/a2
, Re a2 > 0 (4.74)

applied once results in

w(y, y0, t) = π−1 exp
(
−y

2

2
+
y2

0

2

) ∫ +∞

−∞
dv exp(−(1− t2) v2 − 2i (yt − y0) v) . (4.75)

Applying (4.74) a second time yields finally together with the definition (4.71) of w(y, y0, t)

1√
π(1−t2)

exp
[
−1

2(y2 + y2
0) 1 + t2

1− t2 + 2 y y0
t

1− t2

]
=
∑∞

n=0
Hn(y)e−y

2/2 Hn(y0)e−y
2
0/2

2n n!
√
π

tn . (4.76)

One can express this in terms of the stationary states (4.58) of the harmonic oscillator
∞∑
n=0

φn(y)φn(y0) tn =
1√

π(1− t2)
exp

[
−1

2
(y2 + y2

0)
1 + t2

1 − t2
+ 2 y y0

t

1 − t2

]
. (4.77)

The sum in (4.70) is, indeed, identical to the generating function (4.77), i.e., it holds

φ(y, t1|y0, t0) =
1√

2 i π F (t1, t0)
exp

[
i

2
(y2 + y2

0)G(t1, t0) − i y y0
1

F (t1, t0)

]
(4.78)

where

F (t1, t0) =
1 − e−2iω(t1−t0)

2 i e−iω(t1−t0)
= sinω(t1 − t0) (4.79)

and

G(t1, t0) = i
1 + e−2iω(t1−t0)

1 − e−2iω(t1−t0)
=

cosω(t1 − t0)
sinω(t1 − t0)

. (4.80)

We can finally express the propagator (4.78) in terms of the coordinates x and x0. This requires
that we employ (4.30) to replace y and y0 and that we multiply the propagator by

√
mω/~, i.e.,

by a factor 4
√
mω/~ for both φn(y) and φn(y0). The resulting propagator is

φ(x, t|x0, t0) =
[

mω

2iπ~ sinω(t1 − t0)

] 1
2

×

exp
{

imω

2~ sinω(t1 − t0)
[

(x2 + x2
0) cosω(t1 − t0) − 2xx0

]}
. (4.81)

This result agrees with the propagator (2.147) derived by means of the path integral description.
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4.5 Working with Ladder Operators

In the last section we have demonstrated the use of differential equation techniques, the use of
generating functions. We want to introduce now techniques based on the ladder operators â+ and
â−. For the present there is actually no pressing need to apply such techniques since the techniques
borrowed from the theory of differential equations serve us well in describing harmonic oscillator
type quantum systems. The reason for introducing the calculus of the operators â+ and â− is that
this calculus proves to be useful for the description of vibrations in crystals, i.e., phonons, and of
the modes of the quantized electromagnetic field; both quantum systems are endowed with a large
number of modes, each corresponding to a single harmonic oscillator of the type studied presently
by us. It is with quantum electrodynamics and solid state physics in mind that we cease the
opportunity of the single quantum mechanical harmonic oscillator to develop a working knowledge
for â+ and â− in the most simple setting.
To put the following material in the proper modest perspective we may phrase it as an approach
which rather than employing the coordinate y and the differential operator d/dy uses the operators

â+ =
1√
2

(
y − d

dy

)
, â− =

1√
2

(
y +

d

dy

)
. (4.82)

Obviously, one can express y =
√

2(â− + â+) and d/dy =
√

2(â− − â+) and, hence, the approaches
using y, d/dy and â+, â− must be equivalent.

Calculus of Creation and Annihilation Operators

We summarize first the key properties of the operators â+ and â−

[â−, â+] = 11
â− φ0(y) = 0
â+ φn(y) =

√
n+ 1φn+1(y)

â− φn(y) =
√
nφn−1(y)

〈â− f |g〉Ω∞ = 〈f |â+ g〉Ω∞ . (4.83)

We note that these properties imply

φn(y) = (â+)nφ0(y)/
√
n! . (4.84)

We will encounter below functions of â+ and â−, e.g., f(â+). Such functions are defined for
f : R → R in case that the Taylor expansion

f(y) =
∞∑
ν=0

f (ν)(0)
ν!

yν (4.85)

is convergent everywhere in R. Here f (ν)(y0) denotes the ν-th derivative of f(y) taken at y = y0.
In this case we define

f(â+) =
∞∑
ν=0

f (ν)(0)
ν!

(
â+
)ν (4.86)
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and similarly for f(â−). The following important property holds

â− f(â+) = f (1)(â+) + f(â+) â− . (4.87)

In particular,
â− f(â+)φ0(y) = f (1)(â+)φ0(y) (4.88)

which follows from â− φo(y) = 0. We note

â− f(â+) = [â−, f(â+)] + f(â+) â− (4.89)

which implies that in order to prove (4.87, 4.88) we need to show actually

[â−, f(â+)] = f (1)(â+) . (4.90)

To prove (4.90) we show that (4.90) holds for any function fn(â+) = (â+)n which is a power of
â+. The convergence of the Taylor expansion ascertains then that (4.90) holds for f(â+).
We proceed by induction noticing first that (4.90) holds for f0 and for f1. The first case is trivial,
the second case follows from

[â−, f1(â+)] = [â−, â+] = 11 = f
(1)
1 (â+) . (4.91)

Let us assume that (4.90) holds for fn. For fn+1 follows then

[â−, fn+1(â+)] = [â−, (â+)nâ+] = (â+)n [â−, â+] + [â−, (â+)n] â+

= (â+)n 11 + n (â+)n−1â+ = (n+ 1) (â+)n (4.92)

Since any function f(y) in the proper function space N1 can be expanded

f(y) =
∞∑
n=0

dn φn(y) =
∞∑
n=0

dn
(â+)n√
n!

φ0(y) (4.93)

one can reduce all operators acting on some proper state function by operators acting on the state
φ0(y). Hence, property (4.88) is a fundamental one and will be used in the following, i.e., we will
only assume operator functions acting on φ0(y). As long as the operators act on φ0(y) one can
state then that â− behaves like a differential operator with respect to functions f(â+). Note that
an immediate consequence of (4.88) is

(â−)n f(â+)φo(y) = f (n)(â+)φ0(y) . (4.94)

We like to state the following property of the functions f(â±)

〈f(â−)φ|ψ〉 = 〈φ|f(â+)ψ〉 . (4.95)

This identity follows from (4.83) and can be proven for all powers fn by induction and then inferred
for all proper functions f(â±).
An important operator function is the exponential function. An example is the so-called shift
operator exp(uâ−). It holds

euâ
−
f(â+)φ0(y) = f(â+ + u)φ0(y) . (4.96)
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To prove this property we expand exp(uâ−)

∞∑
ν=0

uν

ν!
(â−)ν f(â+)φ0(y) =

∞∑
ν=0

uν

ν!
f (ν)(â+)φ0(y) = f(â+ + u)φ0(y) . (4.97)

An example in which (4.96) is applied is

euâ
−
evâ

+
φ0(y) = ev (â+ +u) φ0(y) = euv evâ

+
φ0(y) . (4.98)

The related operators exp[vâ+ ± v∗â−] play also an important role. We assume in the following
derivation, without explicitly stating this, that the operators considered act on φ0(y). To express
these operators as products of operators exp(vâ+) and exp(v∗â−) we consider the operator Ĉ(u) =
exp(uzâ+) exp(uz∗â−) where u ∈ R, z ∈ C, zz∗ = 1 and determine its derivative

d
du Ĉ(u) = zâ+euzâ

+
euz
∗â− + euzâ

+
z∗â− euz

∗â− =(
zâ+ + z∗â−

)
euzâ

+
euz
∗â− −

[
z∗â−, euzâ

+
]
euz
∗â− (4.99)

Using (4.90) and zz∗ = 1 we can write this

d
du Ĉ(u) =

(
zâ+ + z∗â−

)
euzâ

+
euz
∗â− − u euzâ

+
euz
∗â− =(

zâ+ + z∗â− − u
)
Ĉ(u) . (4.100)

To solve this differential equation we define Ĉ(u) = D̂(u) exp(−u2/2) which leads to

d

du
D̂(u) =

(
zâ+ + z∗â−

)
D̂(u) (4.101)

Ĉ(u) obviously obeys Ĉ(0) = 11. This results in D̂(0) = 11 and, hence, the solution of (4.101)
is D̂(u) = exp(uzâ+ + uz∗â−). One can conclude then using the definition of Ĉ(u) and defining
v = uz

evâ
+ + v∗â−φ0(y) = e

1
2
vv∗ evâ

+
ev
∗â−φ0(y) . (4.102)

Similarly, one obtains
evâ

+− v∗â−φ0(y) = e−
1
2
vv∗ evâ

+
e− v

∗â−φ0(y) (4.103)

evâ
+ + v∗â−φ0(y) = e−

1
2
vv∗ ev

∗â− evâ
+
φ0(y) (4.104)

evâ
+− v∗â−φ0(y) = e

1
2
vv∗ e−v

∗â− e vâ
+
φ0(y) . (4.105)

Below we will use the operator identity which follows for the choice of v = α in (4.105)

eαâ
+−α∗â−φ0(y) = e

αα∗
2 e−α

∗â− eαâ
+
φ0(y) . (4.106)

Applying (4.98) for u = −α∗ and v = α yields

e−α
∗â− eαâ

+
φ0(y) = e−αα

∗
eαâ

+
φ0(y) . (4.107)

This together with (4.106) yields

eαâ
+−α∗â−φ0(y) = e−

αα∗
2 eαâ

+
φ0(y) . (4.108)
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Generating Function in Terms of â+

We want to demonstrate now that generating functions are as useful a tool in the calculus of the
ladder operators as they are in the calculus of differential operators. We will derive the equivalent
of a generating function and use it to rederive the values Hn(0) and the orthonormality properties
of φn(y).
We start from the generating function (??) and replace according to (4.58) the Hermite polynomials
Hn(y) by the eigenstates φn(y)

e2yt− t2 = π
1
4

∞∑
n=0

(
√

2t)n√
n!

ey
2/2 φn(y) (4.109)

Using (4.84) and defining
√

2t = u one can write then

π−
1
4 exp

(
−y

2

2
+
√

2u y − u2

2

)
=

∞∑
n=0

un

n!
(â+)n φ0(y) (4.110)

or

π−
1
4 exp

(
−y

2

2
+
√

2u y − u2

2

)
= euâ

+
φ0(y) . (4.111)

This expression, in the ladder operator calculus, is the equivalent of the generating function (??).
We want to derive now the values Hn(0). Setting y = 0 in (4.111) yields

π−
1
4 exp

(
− u

2

2

)
= euâ

+
φ0(0) . (4.112)

Expanding both sides of this equation and using (4.84, 4.58) one obtains

π−
1
4

∞∑
ν=0

(−1)νu2ν

2νν!
=

∞∑
ν=0

uν√
ν!
φν(0) =

∞∑
ν=0

uν√
2ν
√
π ν!

Hν(0) (4.113)

Comparision of all terms on the l.h.s. and on the r.h.s. provide the same values for Hn(0) as provided
in Eq. (??).
Similarly, we can reproduce by means of the generating function (4.111) the orthonormality prop-
erties of the wave functions φn(y). For this purpose we consider

〈euâ+
φ0|evâ

+
φ0〉 = 〈φ0|euâ

−
evâ

+
φ0〉 (4.114)

where we have employed (4.95). Using (4.98) and again (4.95) one obtains

〈euâ+
φ0|evâ

+
φ0〉 = 〈φ0|euv evâ

+
φ0〉 = euv 〈evâ− φ0|φ0〉 = euv (4.115)

where the latter step follows after expansion of evâ
−

and using â− φ0(y) = 0. Expanding r.h.s. and
l.h.s. of (4.115) and using (4.84) yields

∞∑
ν,µ=0

uµ vν√
µ!ν!
〈φµ|φν〉 =

∞∑
µ=0

uµ vµ

µ!
(4.116)

from which follows by comparision of each term on both sides 〈φµ|φν〉 = δµ ν , i.e., the expected
orthonormality property.
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4.6 Momentum Representation for the Harmonic Oscillator

The description of the harmonic oscillator provided so far allows one to determine the probability
density P (x) of finding an oscillator at position x. For example, for an oscillator in a stationary
state φn(x) as given by (2.235), the probability density is

P (x) = |φn(x)|2 . (4.117)

In this section we want to provide a representation for the harmonic oscillator which is most natural
if one wishes to determine for a stationary state of the system the probability density P̃ (p) of finding
the system at momentum p. For this purpose we employ the Schrödinger equation in the momentum
representation.
In the position representation the wave function is a function of x, i.e., is given by a function ψ(x);
the momentum and position operators are as stated in (4.6) and the Hamiltonian (4.7) is given by
(4.2). In the momentum representation the wave function is a function of p, i.e., is given by the
function ψ̃(p); the momentum and position operators are

p̂ = p , x̂ = i~
d

dp
, (4.118)

and the Hamiltonian (4.7) is

Ĥ =
1

2m
p2 − m~2ω2

2
d2

dp2
. (4.119)

Accordingly, the time-independent Schrödinger equation for the oscillator can be written(
−mω

2
~

2

2
d2

dp2
+

1
2m

p2

)
φ̃E(p) = E φ̃E(p) . (4.120)

Multiplying this equation by 1/m2ω2 yields(
− ~

2

2m
d2

dp2
+

1
2
mω̃2 p2

)
φ̃E(p) = Ẽ φ̃E(p) (4.121)

where
Ẽ = E /m2ω2 , ω̃ = 1 /m2ω . (4.122)

For a solution of the Schrödinger equation in the momentum representation, i.e., of (4.121), we
note that the posed eigenvalue problem is formally identical to the Schrödinger equation in the
position representation as given by (4.2, 4.3). The solutions can be stated readily exploiting the
earlier results. The eigenvalues, according to (4.37), are

Ẽn = ~ω̃ (n + 1
2

) , n = 0, 1, 2, . . . (4.123)

or, using (4.122),
En = ~ω (n + 1

2
)) , n = 0, 1, 2, . . . (4.124)

As to be expected, the eigenvalues are identical to those determined in the position representation.
The momentum representation eigenfunctions are, using (2.235),

φ̃n(p) =
(−i)n√

2n n!

[
mω̃

π~

] 1
4

exp
(
−mω̃p

2

2~

)
Hn(

√
mω̃

~

p) . (4.125)



4.6: Momentum Representation 89

or with (4.122)

φ̃n(p) =
(−i)n√

2n n!

[
1

πm~ω

] 1
4

exp
(
− p2

2m~ω

)
Hn(

√
1

m~ω
p) . (4.126)

Normalized eigenfunctions are, of course, defined only up to an arbitrary phase factor eiα, α ∈ R;
this allowed us to introduce in (4.125, 4.126) a phase factor (−i)n.
We can now state the probability density P̃n(p) for an oscillator with energy En to assume momen-
tum p. According to the theory of the momentum representation holds

P̃n(p) = |φ̃n(p)|2 (4.127)

or

P̃n(p) =
1

2n n!

[
1

πm~ω

] 1
2

exp
(
− p2

m~ω

)
H2
n(

√
1

m~ω
p) . (4.128)

We may also express the eigenstates (4.126) in terms of dimensionless units following the procedure
adopted for the position representation where we employed the substitution (4.30) to obtain (4.58).
Defining k =

√
mω̃/~ p or

k =

√
1

m~ω
p (4.129)

one obtains, instead of (4.126),

φn(k) =
(−i)n√
2n n!

√
π
e−

k2

2 Hn(k) . (4.130)

We want to finally apply the relationship

φ̃n(p) =
1√
2π

∫ +∞

−∞
dx exp(−ipx/~)φn(x) (4.131)

in the present case employing dimensionless units. From (4.30) and (4.129) follows

k y = p x / ~ (4.132)

and, hence,

φ̃n(k) =
1√
2π

∫ +∞

−∞
dy exp(−iky)φn(y) (4.133)

where we note that a change of the normalization of φn(y) [c.f. (4.30) and (2.235)] absorbs the
replacement dx → dy, i.e., the Jacobian. This implies the property of Hermite polynomials

(−i)n e−
k2

2 Hn(k) =
∫ +∞

−∞
dy exp(−iky) e−

y2

2 Hn(y) (4.134)

Exercise 4.6.1: Demonstrate the validity of (4.134), i.e., the correctness of the phase factors
(−i)n, through direct integration. Proceed as follows.
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(a) Prove first the property

f(k, z) =
1√
2π

∫ +∞

−∞
dy exp(−iky) g(z, y) (4.135)

where

f(k, z) = exp
(
−2ikz + z2 − k2/2

)
, g(k, z) = exp

(
2yz − z2 − y2/2

)
(4.136)

(b) Employ the generating function (2.194, 2.196) of Hermite polynomials and equate coefficients
of equal powers of z to prove (4.134).

4.7 Quasi-Classical States of the Harmonic Oscillator

A classical harmonic oscillator, for example, a pendulum swinging at small amplitudes, carries out
a periodic motion described by

y(t) = Re
(
y0 e

iωt
)

(4.137)

where y(t) describes the center of the particle and where the mass of the particle remains narrowly
distributed around y(t) for an arbitrary period of time. The question arises if similar states exist
also for the quantum oscillator. The answer is ‘yes’. Such states are referred to as quasi-classical
states, coherent states, or Glauber states of the harmonic oscillator and they play, for example, a
useful role in Quantum Electrodynamics since they allow to reproduce with a quantized field as
closely as possible the properties of a classical field3. We want to construct and characterize such
states.
The quasi-classical states can be obtained by generalizing the construction of the ground state of
the oscillator, namely through the eigenvalue problem for normalized states

â− φ(α)(y) = αφ(α)(y) , α ∈ R , 〈φ(α) |φ(α)〉 = 1 . (4.138)

We will show that a harmonic oscillator prepared in such a state will remain forever in such a
state, except that α changes periodically in time. We will find that α can be characterized as
a displacement form the minimum of the oscillator and that the state φ(α)(y) displays the same
spatial probability distribution as the ground state. The motion of the probability distribution of
such state is presented in Fig. 4.1 showing in its top row the attributes of such state just discussed.
We first construct the solution of (4.138). For this purpose we assume such state exists and expand

φ(α)(y) =
∞∑
n=0

d(α)
n φn(y) ,

∞∑
n=0

∣∣∣d(α)
n

∣∣∣2 = 1 (4.139)

where we have added the condition that the states be normalized. Inserting this expansion into
(4.138) yields using â− φn(y) =

√
nφn−1(y)

∞∑
n=0

(√
nd(α)

n φn−1(y) − αd(α)
n φn(y)

)
= 0 (4.140)

3An excellent textbook is Photons and Atoms: Introduction to Quantum Electrodynamics by C.Chen-Tannoudji,
J.Dupont-Roc, and G.Grynberg (John Wiley & Sons, Inc., New York, 1989) which discusses quasi-classical states of
the free electromagnetic field in Sect.— III.C.4, pp. 192
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or
∞∑
n=0

(√
n+ 1 d(α)

n+1 − αd(α)
n

)
φn(y) = 0 . (4.141)

Because of the linear independence of the states φn(y) all coefficients multiplying φn(y) must vanish
and on obtains the recursion relationship

d
(α)
n+1 =

α√
n+ 1

d(α)
n . (4.142)

The solution is
d(α)
n =

αn√
n!
c (4.143)

for a constant c which is determined through the normalization condition [see (4.139)]

1 =
∞∑
n=0

∣∣∣d(α)
n

∣∣∣2 = |c|2
∞∑
n=0

α2

n!
= |c|2 eα2

. (4.144)

Normalization requires c = exp(−α2/2) and, hence, the quasi-classical states are

φ(α)(y) = exp
(
− α

2

2

) ∞∑
n=0

αn√
n!
φn(y) , (4.145)

Using the generating function in the form (4.109), i.e.,

[π]−
1
4 e−

y2

2
+
√

2αy−α2
= exp

(
− α

2

2

) ∞∑
n=0

αn√
n!
φn(y) , (4.146)

one can write

φ(α)(y) = [π]−
1
4 exp

(
− 1

2
(y −

√
2α)2

)
(4.147)

which identifies this state as a ground state of the oscillator displaced by
√

2α. This interpretation
justifies the choice of α ∈ R in (4.138). However, we will see below that α ∈ C are also admissible
and will provide a corresponding interpretation.
One can also write (4.145) using (4.84)

φ(α)(y) = exp
(
− α

2

2

) ∞∑
n=0

(αâ+)n

n!
φ0(y) = e−

αα∗
2 eαâ

+
φ0(y) . (4.148)

The identity (4.108) allows one to write

φ(α)(y) = T+(α)φ0(y) = T+(α) [π]−
1
4 e−y

2/2 (4.149)

where
T+(α) = eαâ

+−α∗â− (4.150)

for α presently real. Comparing (4.149) with (4.147) allows one to interprete T (α) as an operator
which shifts the ground state by

√
2α.
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The shift operator as defined in (4.150) for complex α obeys the unitary property

T+(α)T (α) = 11 (4.151)

which follows from a generalization of (4.95) to linear combinations αâ+ + βâ− and reads then

〈f(αâ+ + βâ−)φ|ψ〉 = 〈φ|f(α∗â− + β∗â+)ψ〉 . (4.152)

Since the operator function on the r.h.s. is the adjoint of the operator function on the l.h.s. one
can write in case of T+(α)(

T+(α)
)+ = T (α) = eα

∗â−−αâ+
= e− (αâ+−α∗â−) . (4.153)

This is obviously the inverse of T+(α) as defined in (4.150) and one can conclude that T+(α) is a
so-called unitary operator with the property

T+(α)T (α) = T (α)T+(α) = 11 (4.154)

or applying this to a scalar product like (4.152)

〈T+(α) f |T+(α) g〉 = 〈f |T (α)T+(α) g〉 = 〈f |g〉 . (4.155)

In particular, it holds

〈T+(α)φ0 |T+(α)φ0〉 = 〈f |T (α)T+(α) g〉 = 〈φ0 |φ0〉 , α ∈ C (4.156)

, i.e., the shift operator leaves the ground state normalized.
Following the procedure adopted in determining the propagator of the harmonic oscillator [see
(4.67, 4.68)] one can write the time-dependent solution with (4.145) as the initial state

φ(α)(y, t1) = exp
(
− α

2

2

) ∞∑
n=0

exp
(
−i ω (n +

1
2

) ( t1 − t0 )
)
αn√
n!
φn(y) (4.157)

or

φ(α)(y, t1) = u
1
2 exp

(
− α

2

2

) ∞∑
n=0

(αu)n√
n!

φn(y) , u = e−iω(t1− t0) . (4.158)

Comparision of this expression with (4.145) shows that α in (4.145) is replaced by a complex number
αu which at times t1 = t0 + 2πn/ω, n = 0, 1, . . . becomes real. Relationship (4.109) serves again
to simplify this sum

φ(α)(y, t1) = π−
1
4 u

1
2 exp

−y2

2
+
√

2 y αu − α2 (u2 + 1)
2︸ ︷︷ ︸

E

 (4.159)

Noticing the identity which holds for |u|2 = 1

u2 + 1 = (Reu)2 − (Imu)2 + 1 + 2 iReu Imu = 2 (Reu)2 + 2 iReu Imu (4.160)
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the exponent E can be written

E = −y
2

2
+
√

2αyReu − α2 (Reu)2 + i
√

2αy Imu − i α2 Reu Imu

= −1
2

(
y −

√
2αReu

)2

︸ ︷︷ ︸
displaced Gaussian

+ i
√

2yα Imu︸ ︷︷ ︸
momentum

− i α2Reu Imu︸ ︷︷ ︸
phase term

(4.161)

and is found to describe a displaced Gaussian, a momentum factor and a phase factor. It is of
interest to note that the displacement y0 of the Gaussian as well as the momentum k0 and phase
φ0 associated with (4.161) are time-dependent

y0(t1) =
√

2α cosω(t1 − t0)
k0(t1) = −

√
2α sinω(t1 − t0)

φ0(t1) = − 1
2
α2sin2ω(t1 − t0) (4.162)

with a periodic change. The oscillations of the mean position y0(t1) and of the mean momentum
k0(t1) are out of phase by π

2 just as in the case of the classical oscillator. Our interpretation
explains also the meaning of a complex α in (4.138): a real α corresponds to a displacement such
that initially the oscillator is at rest, a complex α corresponds to a displaced oscillator which has
initially a non-vanishing velocity; obviously, this characterization corresponds closely to that of the
possible initial states of a classical oscillator. The time-dependent wave function (4.159) is then

φ(α)(y, t1) = π−
1
4 exp

(
−1

2
[y − y0(t1)]2 + iy k0(t1) − iφ0(t1) − i

2
ω(t1 − t0)

)
. (4.163)

This solution corresponds to the initial state given by (4.138, 4.147).
In Fig. 4.1 (top row) we present the probability distribution of the Glauber state for various
instances in time. The diagram illustrates that the wave function retains its Gaussian shape with
constant width for all times, moving solely its center of mass in an oscillator fashion around the
minimum of the harmonic potential. This shows clearly that the Glauber state is a close analogue
to the classical oscillator, except that it is not pointlike.
One can express (4.163) also through the shift operator. Comparing (4.148, 4.150) with (4.158)
allows one to write

φ(α)(y, t1) = u
1
2 T+(αu)φ0(y) (4.164)

where according to (4.150)

T+(αu) = exp
(
α ( e−iω(t1−t0)â+ − eiω(t1−t0)â− )

)
. (4.165)

This provides a very compact description of the quasi-classical state.

Arbitrary Gaussian Wave Packet Moving in a Harmonic Potential

We want to demonstrate now that any initial state described by a Gaussian shows a time dependence
very similar to that of the Glauber states in that such state remains Gaussian, being displaced
around the center with period 2π/ω and, in general, experiences a change of its width (relative to
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Figure 4.1: Time dependence of Gaussian wave packets in harmonic oscillator potential.

that of the Glauber states) with a period π/ω. This behaviour is illustrated in Fig. 4.1 (second and
third row). One can recognize the cyclic displacement of the wave packet and the cyclic change of
its width with a period of twice that of the oscillator.
To describe such state which satisfies the initial condition

φ(ao, σ|y, t0) = [πσ2]−
1
4 exp

(
− (y − ao)2

2σ2

)
(4.166)

we expand

φ(ao, σ|y, t0) =
∞∑
n=0

dn φn(y) . (4.167)

One can derive for the expansion coefficients

dn =
∫ +∞

−∞
dy φn(y)φ(ao, σ|y, t0)

=
1√

2nn!πσ

∫ +∞

−∞
dy exp

(
− (y − ao)2

2σ2
− y2

2

)
Hn(y)

=
e−aoq/2√
2nn!πσ

∫ +∞

−∞
dy e−p(y−q)

2
Hn(y) (4.168)

where

p =
1 + σ2

2σ2
, q =

a

1 + σ2
. (4.169)
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The solution of integral (4.168) is4

dn =
e−aq/2√
2nn!σ

(p− 1)n/2

p(n+1)/2
Hn(q

√
p

p− 1
) . (4.170)

In order to check the resulting coefficients we consider the limit σ → 1. In this limit the coefficients
dn should become identical to the coefficients (4.143) of the Glauber state, i.e., a ground state shifted
by ao =

√
2α. For this purpose we note that according to the explicit expresssion (??) for Hn(y)

the leading power of the Hermite polynomial is

Hn(y) = (2 y)n +
{
O(yn−2) for n ≥ 2

1 for n = 0, 1
(4.171)

and, therefore,

lim
σ→1

(
p− 1
p

)n
2

Hn(q
√

p

p− 1
) = lim

σ→1
(2q)n = an . (4.172)

One can then conclude

lim
σ→1

dn =
e−a

2/4

√
2nn!

an (4.173)

which is, in fact, in agreement with the expected result (4.143).
Following the strategy adopted previously one can express the time-dependent state corresponding
to the initial condition (4.166) in analogy to (4.157) as follows

φ(ao, σ|y, t1) = (4.174)

e−aq/2√
pσ

∑∞
n=0 e

−iω(n+ 1
2

)(t1−to) 1√
2nn!

(
p−1
p

)n/2
Hn(q

√
p
p−1)φn(y) .

This expansion can be written

φ(ao, σ|y, t1) = 1√
pσ
√
π

exp
(
−1

2
a2

1+σ2 + 1
2y

2
o − 1

2ω(t1 − to)
)
×

×
∑∞

n=0
tn

2nn! Hn(yo) e−y
2
o/2Hn(y) e−y

2/2 (4.175)

where

yo = q

√
p

p− 1
=

a√
1 − σ4

, t =

√
1 − σ2

1 + σ2
e−iω(t1−to) (4.176)

The generating function (4.76) permits us to write this

φ(ao, σ|y, t1) = 1√
pσ
√
π

1√
1− t2 × (4.177)

× exp
[
− 1

2(y2 + y2
o)

1+t2

1−t2 −
1
2

a2

1 +σ2 + 1
2 y

2
o + 2 y yo t

1− t2 −
1
2ω(t1 − to)

]
.

4This integral can be found in Integrals and Series, vol. 2 by A.P. Prudnikov, Yu. Brychkov, and O.I. Marichev
(Wiley, New York, 1990); this 3 volume integral table is likely the most complete today, a worthy successor of the
famous Gradshteyn, unfortunately very expensive, namely $750
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