
Chapter 12

Symmetries in Physics: Isospin and
the Eightfold Way

by Melih Sener and Klaus Schulten

Symmetries and their consequences are central to physics. In this chapter we will discuss a particular
set of symmetries that have played a seminal role in the development of elementary particle and
nuclear physics. These are the isospin symmetry of nuclear interactions and its natural extension,
the so-called Eightfold Way.
The organization of this chapter is as follows: In the next section we will discuss the relation
between symmetries of a quantum mechanical system and the degeneracies between its energy
levels. We will particularly use the example of spherically symmetric potentials. In the following
section we will introduce the concept of isospin as an approximate SU(2) symmetry, which identifies
the proton and the neutron as different states of the same particle. We will also introduce the quark
model as a natural framework to represent the observed symmetries. We will apply these concepts
to an analysis of nucleon-nucleon and nucleon-meson scattering. In the final section, we will discuss
the SU(3) symmetry of three quark flavors. The algebraic structure and the representations of
SU(3) will be discussed in parallel to SU(2) and particle families will be identified in terms of
representations of the underlying symmetry group.

12.1 Symmetry and Degeneracies

The degeneracies of energy levels of a quantum mechanical system are related to its symmetries.
Let us assume a continuous symmetry obeyed by a quantum mechanical system. The action of the
symmetry operations on quantum mechanical states are given by elements of a corresponding Lie
group, i.e.,

O = exp
(∑

k

αkSk

)
. (12.1)

Then the generators, Sk, will commute with the Hamiltonian of the system,

[H,Sk] = 0. (12.2)
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374 Isospin and the Eightfold Way

The action of any symmetry generator, Sk, on an energy eigenstate, ψE,λ1,...,λn , leaves the energy
of the state invariant

H exp(iαkSk) ψE,λ1,...,λn = E exp(iαkSk) ψE,λ1,...,λn . (12.3)

If the newly obtained state is linearly independent of the original one, this implies a degeneracy in
the spectrum. We will investigate this shortly in more detail in the case of systems with spherical
symmetry, where the symmetry generators, Sk, can be identified with the angular momentum
operators, Jk, as studied in chapter 7.
Lie groups play an essential role in the discussion of mass degeneracies in particle physics. In order
to illustrate this, we first consider a particular example of the implications of symmetry, namely
motion in a spherically symmetric potential described by the group SO(3) (or its double covering
SU(2) as discussed in section 5.12).
In chapter 7 the dynamics of a particle moving in three dimensions under the influence of a spher-
ically symmetric potential, V (r), has been discussed. The spherical symmetry implies the commu-
tation of the Hamiltonian with angular momentum operators (7.8)

[Ĥ, Jk] = 0 , k = 1, 2, 3 . (12.4)

The stationary Schrödinger equation, (7.18), can then be reduced to a one-dimensional radial
equation, (7.24), which yields a set of eigenstates of the form

ψE,�,m(�r) = vE,�,m(r)Y�m(θ, φ), (12.5)

with m = −l, . · · · , l and the corresponding energy levels are independent of m. Therefore, each
energy level is (2l + 1)-fold degenerate. This degeneracy follows from the fact that any rotation,
as represented by an element of SO(3), (7.39), generates a state which has the same energy as the
original one.

Presence of additional symmetries may further increase the degeneracy of the system. As an
example of this we will consider the Coulomb problem with the Hamiltonian

H =
�p2

2m
− k

r
. (12.6)

From elementary quantum mechanics we know the spectrum of the hydrogen atom. The energy
levels are

En = − mk2

2~2n2
, (12.7)

where the orbital angular momentum, l, is allowed to take values in 0, . . . , n− 1. The energy levels
are totally independent of l. For example, the states 3s, 3p and 3d all have the same energy. We
want to understand this extra degeneracy in terms of the extra symmetry of the hydrogen atom
given by an additional set of symmetry generators introduced below.
Classically, the additional symmetry generators of the Coulomb problem are the three components
of the so-called eccentricity vector discovered by Hamilton

�ε =
1
m
�p× �J − k�r

r
. (12.8)
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The vector �ε points along the symmetry axis of the elliptical orbit and its length equals the eccen-
tricity of the orbit. The vector in (12.8) is not a hermitian operator. The corresponding quantum
mechanical hermitian operator can be defined by

ε1 =
1
2m
(p2J3 − p3J2 + J3p2 − J2p3)− kx1

r
, (12.9)

ε1 =
1
2m
(J3p2 − J2p3 + i~p1)− kx1

r
, (12.10)

ε2 =
1
2m
(J1p3 − J3p1 + i~p2)− kx2

r
, (12.11)

ε3 =
1
2m
(J2p1 − J1p2 + i~p3)− kx3

r
, (12.12)

(12.13)

It can be verified explicitly that its components commute with the Hamiltonian.
In order to understand the aforementioned extra degeneracy, we will compute the hydrogen spec-
trum using the additional symmetry. For this purpose we first note that

�J · �ε = 0. (12.14)

This follows from �a · (�a×�b) = (�a×�b) · �a = 0, which is valid even when �a and �b do not commute.
We will also need the following identity [4]

�ε2 =
2H
m

(
�J2 + ~

2
)
+ k2, (12.15)

which can be proved after very considerable algebra.
In the following we consider the bound states, which have a negative energy E. Therefore, in the
subspace of the Hilbert space corresponding to a certain energy we can replace H by E. Now we
scale the eccentricity vector as follows

�K =
√

− m

2E
�ε. (12.16)

Through some algebra [4] the following commutation relations can be verified

[Ki, Jj ] = i~εijkKk, (12.17)
[Ki,Kj ] = i~εijkJk, (12.18)

which complement the familiar angular momentum algebra of section 5.3.
We introduce the following new operators

�A =
1
2
( �J + �K), (12.19)

�B =
1
2
( �J − �K), (12.20)

which can be shown to satisfy

[Ai, Aj ] = i~εijkAk, (12.21)



376 Isospin and the Eightfold Way

[Bi, Bj ] = i~εijkBk, (12.22)
[Ai, Bj ] = 0, (12.23)[
�A,H

]
= 0, (12.24)[

�B,H
]
= 0. (12.25)

So far we have shown that the symmetry generators form an algebra, which is identical to the the
direct sum of the Lie algebra of of two SO(3) (or SU(2)) algebras. By comparing to the rotation
algebra introduced in chapter 5, we can read off the eigenvalues of �A2 and �B2 from (12.21) and
(12.22):

�A2 = a(a+ 1)~2 , a = 0,
1
2
, 1, . . . , (12.26)

�B2 = b(b+ 1)~2 , b = 0,
1
2
, 1, . . . . (12.27)

Following (12.14) we note that
�A2 − �B2 = �J · �ε = 0. (12.28)

This implies that a = b. In order to arrive at the spectrum a final bit algebra is needed

�A2 + �B2 = �J2 + �K2 (12.29)

= �J2 − m

2E
�ε2 (12.30)

= −mk
2

4E
− 1
2
~

2, (12.31)

where we have used (12.15). Using this equation the energy eigenvalues can be written in terms
of the eigenvalues of �A2 and �B2 operators. Noticing that �A2 and �B2 have the same eigenvalues
because of (12.28), the energy eigenvalues are found to be

E = − mk2

2~2(2a+ 1)2
, a = 0,

1
2
, 1, . . . . (12.32)

A comparison with (12.7) tells us that (2a+1) = n. Furthermore the bound on the orbital angular
momentum, l, can be seen to follow from the triangle inequality as applied to �J = �A+ �B, namely
that ∣∣∣ �J∣∣∣ >

∣∣∣ �A∣∣∣− ∣∣∣ �B∣∣∣ = 0 (12.33)∣∣∣ �J∣∣∣ <
∣∣∣ �A∣∣∣+ ∣∣∣ �B∣∣∣ = 2 ∣∣∣ �A∣∣∣ (12.34)

It follows that l has to have values in {0 = |a− b|, 1, . . . , a+ b = n− 1}. This illustrates the effect
of additional symmetries to the degeneracy structure of a quantum mechanical system.

In contrast to the discussion above about extra symmetries, a lack of symmetry implies a lack of
degeneracy in the energy levels of a quantum mechanical system. The most extreme case of this is
the quantum analogue of a classically chaotic system. Chaos is described classically as exponential
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sensitivity to initial conditions, in the sense that nearby trajectories in the phase space diverge from
each other over time. However, another manifestation of chaos is the lack of independent operators
commuting with the Hamiltonian.
A typical example of this so called quantum chaos is the quantum billiard problem, which is a
particle in box problem in two dimensions with a boundary which can be chosen arbitrarily. If the
chosen boundary is ‘irregular’ in a suitably defined sense, the classical trajectories will diverge from
each other after successive bounces from the boundary. For a more detailed discussion of quantum
chaos in billiard systems we refer the reader to [7] and the references therein.
In the case of billiards and other examples of quantum chaos one common observation is the almost
nonexistence of degeneracies and the fact that the energy levels are more evenly spaced. This is
known as level repulsion.

In the next section we will proceed with the discussion of a symmetry, which was discovered by
observing degeneracies in the particle spectrum.

12.2 Isospin and the SU(2) flavor symmetry

The concept of isospin goes back to Heisenberg, who, after the discovery of the neutron in 1932,
suggested that the proton and the neutron can be regarded as two states of a single particle. This
was motivated by the observation that their masses are approximately equal: mp = 938.28MeV/c2,
mp = 939.57MeV/c2. Following the mass-energy equivalence of special relativity

E = mc2, (12.35)

this mass equivalence can be viewed as an energy degeneracy of the underlying interactions.
This (approximate) degeneracy led into the idea of the existence of an (approximate) symmetry
obeyed by the underlying nuclear interactions, namely, that the proton and the neutron behave
identically under the so-called strong interactions and that their difference is solely in their charge
content. (Strong interactions bind the atomic nucleus together.)
If the proton and the neutron are to be viewed as two linearly independent states of the same
particle, it is natural to represent them in terms of a two component vector, analogous to the
spin-up and spin-down states of a spin-12 system

p =
(
1
0

)
, n =

(
0
1

)
. (12.36)

In analogy to the concept of spin regarding the rotations in 3-space as discussed in chapter 5, the
isospin symmetry is also governed by an SU(2) group ‘rotating’ components in (12.36) into each
other in abstract isospin space. This enables us to utilize what we already know about the SU(2)
symmetry group from the study of angular momentum. For example, we will be able to use the
familiar Clebsch-Gordan coefficients to combine the isospin of two particles the same way we added
spin in chapter 6.
It is important to place the isospin concept in its proper historical context. Originally it was
believed that isospin was an exact symmetry of strong interactions and that it was violated by
electromagnetic and weak interactions. (Weak interactions are responsible, for example, for the
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beta decay). The mass difference between the neutron and the proton could then be attributed to
the charge content of the latter. If the mass difference (or the energy difference) were to be to be
purely electrostatic in nature, the proton had to be heavier. However, the proton is the lighter of
the two. If it were otherwise the proton would be unstable by decaying into the neutron, spelling
disaster for the stability of matter.
Isospin symmetry is not an exact symmetry of strong interactions, albeit it is a good approximate
one. Therefore it remains a useful concept. Further than that, as we shall see below, it can be seen
as part of a larger (and more approximate) symmetry which is of great utility to classify observed
particle families.

We can describe isospin multiplets the same way we have described the angular momentum and spin
multiplets. Denoting the total isospin, I, and its third component, I3, as good quantum numbers,
we can re-write (12.36) as a multiplet with I = 1

2

p =
∣∣∣∣I = 12 , I3 = 12

〉
, n =

∣∣∣∣I = 12 , I3 = −1
2

〉
. (12.37)

As an example of a multiplet with I = 1 we have the three pions or π-mesons

π+ = |1, 1〉 , π0 = |1, 0〉 , π− = |1,−1〉 , (12.38)

which have all nearly identical masses. (mπ± = 139.6MeV/c2, mπ0 = 135.0MeV/c2). Shortly we
will see how to describe both the pion and nucleon states as composites of more fundamental I = 1

2
states.
In the framework of the quark of model, the fundamental representation of the isospin symmetry
corresponds to the doublet that contains the so-called up and down quarks

u =
∣∣∣∣12 , 12

〉
, d =

∣∣∣∣12 ,−12
〉
. (12.39)

All other isomultiplets, including the proton and the neutron, are made up of these two quarks.
They can be constructed with the same rules that have been used for angular momentum addition
in chapter 6. For example, the three pions in (12.38) are ud̄, uū and dū states, respectively. They
form an isotriplet:

π+ = |1, 1〉 =
∣∣∣∣12 , 12

〉
1

∣∣∣∣12 , 12
〉

2

, (12.40)

π0 = |1, 0〉 = 1√
2

(∣∣∣∣12 , 12
〉

1

∣∣∣∣12 ,−12
〉

2

+
∣∣∣∣12 , 12

〉
1

∣∣∣∣12 ,−12
〉

2

)
, (12.41)

π− = |1,−1〉 =
∣∣∣∣12 ,−12

〉
1

∣∣∣∣12 ,−12
〉

2

. (12.42)

(12.43)

Similarly, the proton and the neutron can be written as totally symmetric uud and udd states. For
a precise description of the two nucleons as composite states, including the spin and color quantum
numbers of their constituent quarks, we refer the reader to [1], sec. 2.11.
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The mass of the up and down quarks are not identical but they are both of the order of a few
MeV/c2’s which is minuscule compared to the typical energy scale of hadrons (i.e. strongly inter-
acting particles) which is about a GeV/c2. This is why isospin is such a good symmetry and why
isomultiplets have nearly identical masses.
As it later turned out, the up and down quarks are not the only quark ‘species’ - or flavors as
they are commonly called. In the late 1940’s and early 1950’s, a number strange particles have
been found which presumably contained a third quark species: the strange quark. It shall be noted
here that the quark model was not invented until 1960’s, but at the time the empirical concepts
like isospin and strangeness quantum numbers were in use. The value of the strangeness quantum
number is taken, by accidental convention, to be −1 for the strange quark. The up and down
quarks have strangeness zero. All other composite states have their strangeness given by the sum
of the strangeness content of their constituents.
Before proceeding further, we shall setup some terminology: baryons are qqq states, such as proton
and the neutron, whereas mesons are qq̄ states, the pions being examples thereof. By convention
baryons have baryon number 1, and quarks have baryon number 1

3 . All antiparticles have their
quantum numbers reversed. Naturally, mesons have baryon number 0. The names, baryon and
meson, originally refer to the relative weight of particles, baryons generally are heavy, mesons have
intermediate mass ranges, where leptons (electron, muon, the neutrinos etc.) are light. If taken
literally, this remains only an inaccurate naming convention today, as some mesons discovered later
are heavier than some baryons and so on.
The relation between electric charge and isospin are given by the Gell-Mann–Nishijima relation
which was first derived empirically

Q = I3 +
1
2
(B + S), (12.44)

where B is the baryon number and S is the strangeness. In the next section we will be able to
view the Gell-Mann–Nishijima relation in the light of the representation theory for the flavor SU(3)
symmetry.

Now let us consider another example of combining the isospins of two particles. The reader may
know that the deuteron, a hydrogen isotope, consists of a proton and a neutron. Therefore it has
to have isospin, I3 = 0. We will now try to describe its wave function in terms of its constituent
nucleons. Following (12.37) and in analogy to (12.43), this will be mathematically identical to
adding two spins. The possibilities are that of an isosinglet

|0, 0〉 = 1√
2
(|p > |n > −|n > |p >) (12.45)

and that of an isotriplet

|1, 1〉 = |p > |p >, (12.46)

|1, 0〉 = 1√
2
(|p > |n > +|n > |p >), (12.47)

|1,−1〉 = |n > |n > . (12.48)

Is the deuteron an isosinglet state or an isotriplet? If it were an isotriplet (|1, 0〉) we should have
seen nn and pp bound states of comparable energy in nature (because of isospin symmetry), but
such states do not exist. Therefore the deuteron has to be an isosinglet state (|0, 0〉).
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As an exercise on the implications of isospin symmetry we will consider nucleon-nucleon scattering.
We will eventually be able to compute ratios of scattering cross-sections between different processes.
For example, consider

(I) p+ p→ d+ π+

(II) p+ n→ d+ π0 (12.49)

The only assumption that we put in will be that the interaction is of the form V = α I(1) · I(2). The
dot product here refers to the abstract isospin space. The cross-section, σ, is proportional to |M|2,
whereM is the scattering amplitude given by

M = 〈 final | α I(1) · I(2) | initial 〉 . (12.50)

The initial and final states can be denoted in more detail as

| initial 〉 =
∣∣∣ I(i), I

(i)
3 , γ

(i)
〉
, (12.51)

| final 〉 =
∣∣∣ I(f), I

(f)
3 , γ(f)

〉
, (12.52)

where γ(i) and γ(f) denote degrees of freedom other than isospin, such as the spatial dependence
of the wave function and spin.

Exercise. Consider the generalization of tensor operators discussed in section 6.7 to the case of
isospin. Show that I(1)·I(2) is an ‘isotensor’ of rank zero. Refer to exercise 6.7.5 for the spin-analogue
of the same problem.

Exercise. Show that the expectation of I(1) · I(2) is 1
4 in an isotriplet state and −3

4 in an isosinglet
state.

Using (12.38) and the fact that the deuteron is an isosinglet we know that the isospins of the final
states in (I) and (II) are |1, 1〉 and |1, 0〉, respectively. According to (12.45) and (12.48) the initial
states in (I) and (II) have isospin values |1, 1〉 and (1/√2)(|1, 0〉+ |0, 0〉). We will now employ the
(isospin analogue) of the Wigner-Eckart theorem (6.259) discussed in detail in sections 6.7 and 6.8
to compute the ratio of the scattering amplitudesMI and MII. For completeness let us start by
restating the Wigner-Eckart theorem (6.259) in the present context:

〈I(f)I
(f)
3 , γ(f)|T00|I(i)I

(i)
3 , γ

(i)〉 = (12.53)

(I(f)I
(f)
3 |00I(i)I

(i)
3 ) (−1)I

(f)−I(i) 1√
2I(i)+1

〈I(f), γ(f)||T0||I(i), γ(i)〉. (12.54)

Here T00 ≡ V = α I(1) · I(2), which is an isoscalar, as discussed in the exercise above.
(I(f)I

(f)
3 |00I(i)I

(i)
3 ) is a Clebsch-Gordon coefficient and 〈I(f), γ(f)||T0||I(i), γ(i)〉 is a reduced ma-

trix element defined in the same sense as in section 6.8.
Now let us re-write more carefully the scattering amplitudes for the two processes in the light of
what we have just learned

MI =
〈
I(f) = 1, I(f)

3 = 1, γ(f)
∣∣∣T00

∣∣∣ I(i) = 1, I(i)
3 = 1, γ

(i)
〉

(12.55)
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= (11|0011) 1√
3
〈I(f) = 1, γ(f) ||T00|| I(i) = 1, γ(i)〉 (12.56)

MII =
1√
2

〈
I(f) = 1, I(f)

3 = 0, γ(f)
∣∣∣T00

∣∣∣ I(i) = 1, I(i)
3 = 0, γ

(i)
〉

(12.57)

+
1√
2

〈
I(f) = 1, I(f)

3 = 0, γ(f)
∣∣∣T00

∣∣∣ I(i) = 0, I(i)
3 = 0, γ

(i)
〉

(12.58)

= (10|0010) 1√
3
〈I(f) = 1, γ(f) ||T00|| I(i) = 1, γ(i)〉 (12.59)

+0. (12.60)
(12.61)

Note that the second term inMII vanishes due to the isospin conservation, which is also manifested
by a vanishing Clebsch-Gordon prefactor. The relevant Clebsch-Gordon coefficients are easily
evaluated:

(11|0011) = (10|0010) = 1. (12.62)

We can now write the ratio of the scattering amplitudes:

MI

MII
=

1
(1/

√
2)
, (12.63)

where common dynamical factors (which would not be as easy to compute) have dropped out
thanks to the Wigner-Eckart theorem. It follows

σI

σII
= 2, (12.64)

which is in approximate agreement with the observed ratio. [2]

As a further example, we will consider pion-nucleon scattering. We want to compute the ratio of
total cross-sections assuming a similar interaction as in the previous example

σ(π+ + p → anything )
σ(π− + p → anything )

.

The possibilities are

(a) π+ + p → π+ + p ,
(b) π− + p → π− + p ,
(c) π− + p → π0 + n .

(12.65)

There are more exotic possibilities, involving, for example, particles with strangeness, but these are
not dominant at relatively low energies.
Once again we need the isospins for the initial and final states, which are obtained by a standard
Clebsch-Gordan expansion

π+ + p : |1, 1〉 ∣∣12 , 1
2

〉
=
∣∣3
2 ,

3
2

〉
,

π− + p : |1,−1〉 ∣∣12 , 1
2

〉
= 1√

3

∣∣3
2 ,−1

2

〉−√2
3

∣∣1
2 ,−1

2

〉
,

π0 + n : |1, 0〉 ∣∣12 ,−1
2

〉
=
√

2
3

∣∣3
2 ,−1

2

〉
+ 1√

3

∣∣1
2 ,−1

2

〉
.

(12.66)
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As in the example of nucleon-meson scattering we define the relevant matrix elements

M 3
2
=
〈

3
2 ,m

∣∣ V ∣∣ 3
2 ,m

〉
,

M 1
2
=
〈

1
2 ,m

∣∣ V ∣∣ 1
2 ,m

〉
,

(12.67)

which are independent of m. A computation similar to the previous example of nucleon-nucleon
scattering yields (apart from common prefactors) the following amplitudes for the reactions in
(12.65)

Ma =M 3
2

Mb = 1
3M 3

2
+ 2

3M 1
2

Mc =
√

2
3 M 3

2
−

√
2

3 M 1
2

(12.68)

Guided by empirical data we will further assume thatM 3
2
>> M 1

2
, which leads to the following

ratios for the cross-sections

σa : σb : σc = 9 : 1 : 2. (12.69)

As the total cross-section is the sum of individual processes we obtain

σ(π+ + p )
σ(π− + p )

=
σa

σb + σc
= 3 (12.70)

again in approximate agreement with the observed value. [2]

12.3 The Eightfold Way and the flavor SU(3) symmetry

The discovery of the concept of strangeness, mentioned in the previous section, was motivated
by the existence of particles that are produced strongly but decay only weakly. For instance,
K+, which can be produced by π− + p → K+ + Σ−, has a lifetime which is comparable to that
of π+ albeit being more than three times heavier. Hence Gell-Mann and independently Nishijima
postulated the existence of a separate quantum number, S, called strangeness, such that S(K+) = 1,
S(Σ−) = −1 and S(π) = S(N) = 0, etc. It was assumed that strong interactions conserved S (at
least approximately), while weak interactions did not. Hence the strangeness changing strong
decays of K+ (or Σ−) were forbidden, giving it a higher than usual lifetime.
The classification of the newly found particles as members of some higher multiplet structure
was less obvious then the case of isospin, however. Strange partners of the familiar nucleons, for
example, are up to 40% heavier, making an identification of the underlying symmetry and the
multiplet structure less straightforward.
In the light of the quark model, it appears an obvious generalization to add another component for
an extra quark to the isospin vector space

u =


 10
0


 , d =


 01
0


 , s =


 00
1


 . (12.71)
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In this case the transformations that ‘rotate’ the components of (12.71) into each other, while
preserving the norm, have to be elements of the group SU(3) (which we will investigate closely
very soon). However, history followed the reverse of this path. First particle multiplets were
identified as representations of the SU(3) group, the same way nucleons and pions were identified
as representations of the isospin SU(2) symmetry. Then came the question of what the fundamental
representation, as in (12.71), should correspond to, giving rise to the quark model. As quarks were
never directly observed, for a period they were considered as useful bookkeeping devices without
physical content.
In this perspective the flavor SU(3) symmetry may appear to be mainly of historical interest.
However SU(3) symmetry appears in another and much more fundamental context in strong in-
teraction physics. The quarks posses another quantum number, called color, which again form
representations of an SU(3) group. This is believed to be an exact symmetry of strong interac-
tions, in fact modern theory of strong interactions is a ‘gauge theory’ of this color group, called
quantum chromodynamics. (The reader is referred to section 8.3 for a brief discussion of gauge
transformations). Flavor SU(Nf ) symmetry on the other hand, where Nf is the number quark
flavors, becomes increasingly inaccurate for Nf > 3. The reason is that the other known quarks,
namely charm, bottom (beauty) and top (truth) are significantly heavier than the hadronic energy
scale. (The ‘bare’ mass of the charm quark is already heavier than the two nucleons, which set the
hadronic energy scale. The bottom and top are even heavier. [2] )

Before discussing the significance and the physical implications of the quark model, we will establish
some mathematical preliminaries about the group SU(3). In many respects it will resemble the
more familiar group SU(2) discussed in some detail in chapter 5, but there are a number of subtle
differences. The reader shall note that most of what is being said trivially generalizes to other
unitary groups, SU(N), but we will stick to N = 3 in the following. The reader is also invited to
revisit section 5.1 whenever necessary, in reference to Lie groups, Lie algebras and related concepts.

Given a complex vector, ak, of three dimensions, we want to find those transformations

ak → Uklal (12.72)

that preserve the norm,
∑

k a
∗
kak, of a. It is seen that such a matrix U has to satisfy the following

unitary relation

U † = U−1. (12.73)

To verify that all such matrices form a group, we observe that

(UV )† = V †U † = V −1U−1 = (UV )−1, (12.74)

for any two unitary matrices U and V . This group of 3 × 3 unitary matrices is denoted by U(3).
The unitarity relation imposes 9 constraints on the total of 18 real degrees of freedom of a 3 × 3
complex matrix. Hence the group U(3) has 9 dimensions. Multiplying U by a phase, eiφ, still leaves
the norm invariant. Therefore U(3) can be decomposed into a direct product U(1)× SU(3) where
SU(3) consists of 3× 3 unitary matrices of unit determinant. Because of this additional constraint
SU(3) has 8 dimensions. Since arbitrary phase factors are of no physical interest, it is the group
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SU(3) and not U(3) that is of main interest. The reader is invited to compare the structure of
SU(3) to that of SU(2) discussed in section 5.7.

As discussed in section 5.1, any unitary matrix, U , can be written in the form

U = eiH (12.75)

where H is a hermitian matrix. Therefore we will express elements of SU(3) as

U = ei
P

k αkλk (12.76)

where λk are 8 linearly independent matrices forming the basis of the Lie algebra of SU(3). (We
shall at times refer to the Lie algebra with the name of the group, the meaning being apparent from
the context.) The unit determinant condition requires that all λk are traceless, since det(eA) = etrA.
An explicit basis is constructed in analogy to the Pauli algebra of spin operators

λ1 =


 0 1 01 0 0
0 0 0


 , λ2 =


 0 −i 0
i 0 0
0 0 0


 , λ3 =


 1 0 0
0 −1 0
0 0 0


 ,

λ4 =


 0 0 10 0 0
1 0 0


 , λ5 =


 0 0 −i
0 0 0
i 0 0


 ,

λ6 =


 0 0 00 0 1
0 1 0


 , λ7 =


 0 0 0
0 0 −i
0 i 0


 ,

λ8 = 1√
3


 1 0 0
0 1 0
0 0 −2


 .

(12.77)

The generators, λk, obey the following relation

tr(λjλk) = 2δjk, (12.78)

which can be verified explicitly as matrix identities.
The Lie algebra structure is given by the commutators of λk

[λj , λk] = 2ifjklλl, (12.79)

where fjkl are the antisymmetric structure constants similar to the εjkl of SU(2) given in (5.32).
We can also introduce the constants, δjkl, via the anticommutator relation

[λj, λk]+ =
4
3
δjk + 2δjklλl, (12.80)

This is the fundamental or defining representation of SU(3). As in the case of SU(2) higher
dimensional representations obeying the same structure can be found. The fundamental relation
to be preserved is (12.79), regardless of the dimension of the representation.
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As it turns out the set of generators in (12.77) is not the most useful basis in the study of SU(3).
In the case of SU(2) the identification of ‘ladder’ operators {J+, J−} proved useful, which satisfied
an ‘eigenvalue equation’

[J0, J±] = ±~J±. (12.81)

In chapter 5, these relations have been used to construct the angular momentum spectrum as well
as the function space representation of the rotation algebra, namely spherical harmonics. The
generators of SU(3) can be arranged into a very similar form to that of SU(2). We first introduce
the F-spin operators

Fi =
1
2
λi. (12.82)

With another change of basis we arrive at the ‘standard’ form of the generators of the Lie algebra
of SU(3)

T± = F1 ± iF2, (12.83)
T0 = F3, (12.84)
V± = F4 ± iF5, (12.85)
U± = F6 ± iF7, (12.86)

Y =
2√
3
F8. (12.87)

Exercise. Using the convention in (12.71) show that T0 is the isospin operator, I3.

Exercise. Derive the Gell-Mann–Nishijima relation (12.44), starting with the observation that
Y = B+S. (Recall that the strange quark has S = −1 by convention). Y is called the hypercharge.

In the basis (12.87) the commutation relations between the generators can be expressed in a succinct
manner. First, we have

[Y, T0] = 0, (12.88)

which defines (not uniquely) a maximal set of mutually commuting operators {Y, T0} and

[Y, T±] = 0, (12.89)
[Y, U±] = ±U±, (12.90)
[Y, V±] = ±V±, (12.91)

[T0, T±] = ±T±, (12.92)

[T0, U±] = ∓1
2
U±, (12.93)

[T0, V±] = ±1
2
V±, (12.94)



386 Isospin and the Eightfold Way

which relate the remaining generators {T±, V±, U±} to this maximal set by ‘eigenvalue equations’
and

[T+, T−] = 2T0, (12.95)

[U+, U−] =
3
2
Y − T0 = 2U0, (12.96)

[V+, V−] =
3
2
Y + T0 = 2V0, (12.97)

which relate commutators of generators with opposite eigenvalues to the maximal set {Y, T0}. Note
that, U0 and V0 are linear combinations of T0 and Y . Finally, we have

[T+, V−] = −U−, (12.98)
[T+, U+] = V+, (12.99)
[U+, V−] = T−, (12.100)
[T+, V+] = 0, (12.101)
[T+, U−] = 0, (12.102)
[U+, V+] = 0. (12.103)

Any remaining commutators follow from hermiticity.
The same way the angular momentum ladder operators have been used to construct the represen-
tations of SU(2), we will use these commutation relations to construct representations of SU(3).
In the case of SU(2) the representations lay on a line on the J0 axis. However, since there are two
mutually commuting generators in SU(3) as given in (12.88), the representations will now lie in a
T0 − Y -plane. The maximum number of mutually commuting generators of a Lie algebra is called
its rank. Thus, SU(2) has rank 1, while SU(3) has rank 2.
When the basis of a Lie algebra is expressed in such a way to satisfy the form of the eigenvalue
relations as given above, it is said to be in Cartan-Weyl form. This form is essential for easy labeling
of the representations of the group, as the relation between the states in a given representation
can be conveniently expressed in terms of ladder operators. A formal definition and a detailed
discussion of the Cartan-Weyl form is beyond the scope of this chapter. The interested reader is
instead referred to a very readable account given in chapter 12 of [4].

Another important property of SU(2) is the existence of an operator (namely the total angular
momentum, J2) which commutes with all of the generators. An operator which commutes with all
generators of a Lie group is called a Casimir operator. As in the case of J2 and SU(2), Casimir
operators can be used to label irreducible representations of the Lie algebra, similar to the way it
was done in section 5.5. We can construct two such independent Casimir operators for the group
SU(3).

C1 =
∑

k

λ2
k = −2i

3

∑
jkl

fjklλjλkλl, (12.104)

C2 =
∑
jkl

djklλjλkλl (12.105)

In general the number of independent Casimir operators of a Lie group is equal to its rank.



12.3: The Eightfold Way 387

The utility of Casimir operators arises from the fact that all states in a given representation assume
the same value for a Casimir operator. This is because the states in a given representation are
connected by the action of the generators of the Lie algebra and such generators commute with
the Casimir operators. This property can be used to label representations in terms of the values
of the Casimir operators. For example, it was shown in section 5.5 how to label the irreducible
representations of the angular momentum algebra SU(2) in terms of the value of the total angular
momentum.

Now we will construct explicit representations of SU(3). Because of (12.88) we can label states by
the eigenvalues of T0 and Y operators, |t3, y〉:

T0 |t3, y〉 = t3 |t3, y〉 , (12.106)
Y |t3, y〉 = y |t3, y〉 . (12.107)

From the commutation relations we have presented above (the Cartan-Weyl form) we can write
down the effect of various generators on the state |t3, y〉. For example, we have

U0 |t3, y〉 = (
3
4
y − 1
2
t3) |t3, y〉 , (12.108)

V0 |t3, y〉 = (
3
4
y +
1
2
t3) |t3, y〉 . (12.109)

The same way that J± |m〉 is proportional to |m± 1〉 in the case of the angular momentum algebra,
we have

T± |t3, y〉 = α

∣∣∣∣t3 ± 12 , y
〉
, (12.110)

U± |t3, y〉 = β

∣∣∣∣t3 ± 12 , y ± 1
〉
, (12.111)

V± |t3, y〉 = γ

∣∣∣∣t3 ∓ 12 , y ± 1
〉
. (12.112)

The effect of these operators to the states in the y − t3 plane have been outlined in Fig. (12.1).
The representations of SU(3) are constructed analogous to those of SU(2) by identifying the ‘bound-
ary’ states annihilated by raising (or lowering) operators. All other states of the representation
are then constructed by successive application of ladder operators T±, U±, V±. The representations
for hexagons with sides of length p and q in the T0 − Y -plane. Such a representation is labeled as
D(p, q) and it has a dimensionality of 1

2(p + 1)(q + 1)(p + q + 2). Figure (12.2) shows the repre-
sentation D(2, 1) as an example. The details of this procedure is beyond the scope of this chapter.
The interested reader is referred to [4], especially chapters 7 and 8.
As another example for the representations of SU(3), the pion family forms part of an octet corre-
sponding to the D(1, 1) representation. The representations D(1, 0) and D(0, 1) correspond to the
triplets of quarks and antiquarks, respectively. (See Fig. (12.3).) All other representations can be
constructed by combining these two conjugate representations. For example the pion octet (or any
other meson octet) is therefore realized as states of a quark - antiquark pair. A notation suggestive
of the dimensionality of the representation can be used to identify representations. For example,
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t3

y

T+T-

V+

V-

U+

U-

Figure 12.1: The effect of SU(3) ladder operators on the y − t3 plane.

t3

y

1-1

1/3

4/3

-2/3

-5/3

D(2,1)

Figure 12.2: D(2, 1) representation of SU(3). The states in the inner triangle are doubly degenerate.
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D(1, 0) and D(0, 1) are denoted by [3] and [3̄], respectively. The octet D(1, 1) is written as [8] etc.
This way the quark-antiquark states can be represented as follows

[3]⊗ [3̄] = [8]⊕ [1] (12.113)

The additional singlet state corresponds to the η′ meson. This expansion can be compared, for
example, to the case of adding two spin triplet states, in the case of SU(2), where we would write

[3]⊗ [3] = [1]⊕ [3]⊕ [5]. (12.114)

t3

y

-1/3

- ½ ½

-1/3

ud

s

Figure 12.3: D(1, 0) or the fundamental representation of flavor SU(3) symmetry.

The three quarks in the fundamental representation can now be written as

u =
∣∣∣∣12 , 13

〉
, (12.115)

d =
∣∣∣∣−12 , 13

〉
, (12.116)

s =
∣∣∣∣0,−23

〉
. (12.117)

The Gell-Mann–Nishijima relation can then be succinctly expressed as

Q =
1
2
y + t3, (12.118)
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from which the quark charges follow

Qu =
2
3
, (12.119)

Qd = −1
3
, (12.120)

Qs = −1
3
. (12.121)
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Figure 12.4: The baryon octet as a D(1, 1) representation of SU(3).
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