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Preface i

Preface

The following notes introduce Quantum Mechanics at an advanced level addressing students of Physics,
Mathematics, Chemistry and Electrical Engineering. The aim is to put mathematical concepts and tech-
niques like the path integral, algebraic techniques, Lie algebras and representation theory at the readers
disposal. For this purpose we attempt to motivate the various physical and mathematical concepts as well
as provide detailed derivations and complete sample calculations. We have made every effort to include in
the derivations all assumptions and all mathematical steps implied, avoiding omission of supposedly ‘trivial’
information. Much of the author’s writing effort went into a web of cross references accompanying the mathe-
matical derivations such that the intelligent and diligent reader should be able to follow the text with relative
ease, in particular, also when mathematically difficult material is presented. In fact, the author’s driving
force has been his desire to pave the reader’s way into territories unchartered previously in most introduc-
tory textbooks, since few practitioners feel obliged to ease access to their field. Also the author embraced
enthusiastically the potential of the TEX typesetting language to enhance the presentation of equations as
to make the logical pattern behind the mathematics as transparent as possible. Any suggestion to improve
the text in the respects mentioned are most welcome. It is obvious, that even though these notes attempt
to serve the reader as much as was possible for the author, the main effort to follow the text and to master
the material is left to the reader.
The notes start out in Section 1 with a brief review of Classical Mechanics in the Lagrange formulation and
build on this to introduce in Section 2 Quantum Mechanics in the closely related path integral formulation. In
Section 3 the Schrödinger equation is derived and used as an alternative description of continuous quantum
systems. Section 4 is devoted to a detailed presentation of the harmonic oscillator, introducing algebraic
techniques and comparing their use with more conventional mathematical procedures. In Section 5 we
introduce the presentation theory of the 3-dimensional rotation group and the group SU(2) presenting Lie
algebra and Lie group techniques and applying the methods to the theory of angular momentum, of the spin
of single particles and of angular momenta and spins of composite systems. In Section 6 we present the theory
of many–boson and many–fermion systems in a formulation exploiting the algebra of the associated creation
and annihilation operators. Section 7 provides an introduction to Relativistic Quantum Mechanics which
builds on the representation theory of the Lorentz group and its complex relative Sl(2,C). This section makes
a strong effort to introduce Lorentz–invariant field equations systematically, rather than relying mainly on
a heuristic amalgam of Classical Special Relativity and Quantum Mechanics.
The notes are in a stage of continuing development, various sections, e.g., on the semiclassical approximation,
on the Hilbert space structure of Quantum Mechanics, on scattering theory, on perturbation theory, on
Stochastic Quantum Mechanics, and on the group theory of elementary particles will be added as well as
the existing sections expanded. However, at the present stage the notes, for the topics covered, should be
complete enough to serve the reader.
The author would like to thank Markus van Almsick and Heichi Chan for help with these notes. The
author is also indebted to his department and to his University; their motivated students and their inspiring
atmosphere made teaching a worthwhile effort and a great pleasure.
These notes were produced entirely on a Macintosh II computer using the TEX typesetting system, Textures,
Mathematica and Adobe Illustrator.

Klaus Schulten
University of Illinois at Urbana–Champaign

August 1991
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Chapter 1

Lagrangian Mechanics

Our introduction to Quantum Mechanics will be based on its correspondence to Classical Mechanics.
For this purpose we will review the relevant concepts of Classical Mechanics. An important concept
is that the equations of motion of Classical Mechanics can be based on a variational principle,
namely, that along a path describing classical motion the action integral assumes a minimal value
(Hamiltonian Principle of Least Action).

1.1 Basics of Variational Calculus

The derivation of the Principle of Least Action requires the tools of the calculus of variation which
we will provide now.
Definition: A functional S[ ] is a map

S[ ] : F → R ; F = {~q(t); ~q : [t0, t1] ⊂ R → R
M ; ~q(t) differentiable} (1.1)

from a space F of vector-valued functions ~q(t) onto the real numbers. ~q(t) is called the trajec-
tory of a system of M degrees of freedom described by the configurational coordinates ~q(t) =
(q1(t), q2(t), . . . qM (t)).
In case of N classical particles holds M = 3N , i.e., there are 3N configurational coordinates,
namely, the position coordinates of the particles in any kind of coordianate system, often in the
Cartesian coordinate system. It is important to note at the outset that for the description of a
classical system it will be necessary to provide information ~q(t) as well as d

dt~q(t). The latter is the
velocity vector of the system.
Definition: A functional S[ ] is differentiable, if for any ~q(t) ∈ F and δ~q(t) ∈ Fε where

Fε = {δ~q(t); δ~q(t) ∈ F , |δ~q(t)| < ε, | d
dt
δ~q(t)| < ε,∀t, t ∈ [t0, t1] ⊂ R} (1.2)

a functional δS[ · , · ] exists with the properties

(i) S[~q(t) + δ~q(t)] = S[~q(t)] + δS[~q(t), δ~q(t)] + O(ε2)
(ii) δS[~q(t), δ~q(t)] is linear in δ~q(t). (1.3)

δS[ · , · ] is called the differential of S[ ]. The linearity property above implies

δS[~q(t), α1 δ~q1(t) + α2 δ~q2(t)] = α1 δS[~q(t), δ~q1(t)] + α2 δS[~q(t), δ~q2(t)] . (1.4)

1



2 Lagrangian Mechanics

Note: δ~q(t) describes small variations around the trajectory ~q(t), i.e. ~q(t) + δ~q(t) is a ‘slightly’
different trajectory than ~q(t). We will later often assume that only variations of a trajectory ~q(t)
are permitted for which δ~q(t0) = 0 and δ~q(t1) = 0 holds, i.e., at the ends of the time interval of
the trajectories the variations vanish.
It is also important to appreciate that δS[ · , · ] in conventional differential calculus does not corre-
spond to a differentiated function, but rather to a differential of the function which is simply the
differentiated function multiplied by the differential increment of the variable, e.g., df = df

dxdx or,
in case of a function of M variables, df =

∑M
j=1

∂f
∂xj

dxj .
We will now consider a particular class of functionals S[ ] which are expressed through an integral
over the the interval [t0, t1] where the integrand is a function L(~q(t), ddt~q(t), t) of the configuration
vector ~q(t), the velocity vector d

dt~q(t) and time t. We focus on such functionals because they play
a central role in the so-called action integrals of Classical Mechanics.
In the following we will often use the notation for velocities and other time derivatives d

dt~q(t) = ~̇q(t)
and dxj

dt = ẋj .
Theorem: Let

S[~q(t)] =
∫ t1

t0

dtL(~q(t), ~̇q(t), t) (1.5)

where L( · , · , · ) is a function differentiable in its three arguments. It holds

δS[~q(t), δ~q(t)] =
∫ t1

t0

dt


M∑
j=1

[
∂L

∂qj
− d

dt

(
∂L

∂q̇j

)]
δqj(t)

 +
M∑
j=1

∂L

∂q̇j
δqj(t)

∣∣∣∣∣∣
t1

t0

. (1.6)

For a proof we can use conventional differential calculus since the functional (1.6) is expressed in
terms of ‘normal’ functions. We attempt to evaluate

S[~q(t) + δ~q(t)] =
∫ t1

t0

dtL(~q(t) + δ~q(t), ~̇q(t) + δ~̇q(t), t) (1.7)

through Taylor expansion and identification of terms linear in δqj(t), equating these terms with
δS[~q(t), δ~q(t)]. For this purpose we consider

L(~q(t) + δ~q(t), ~̇q(t) + δ~̇q(t), t) = L(~q(t), ~̇q(t), t) +
M∑
j=1

(
∂L

∂qj
δqj +

∂L

∂q̇j
δq̇j

)
+ O(ε2) (1.8)

We note then using d
dtf(t)g(t) = ḟ(t)g(t) + f(t)ġ(t)

∂L

∂q̇j
δq̇j =

d

dt

(
∂L

∂q̇j
δqj

)
−
(
d

dt

∂L

∂q̇j

)
δqj . (1.9)

This yields for S[~q(t) + δ~q(t)]

S[~q(t)] +
∫ t1

t0

dt

M∑
j=1

[
∂L

∂qj
− d

dt

(
∂L

∂q̇j

)]
δqj +

∫ t1

t0

dt

M∑
j=1

d

dt

(
∂L

∂q̇j
δqj

)
+ O(ε2) (1.10)

From this follows (1.6) immediately.
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We now consider the question for which functions the functionals of the type (1.5) assume extreme
values. For this purpose we define
Definition: An extremal of a differentiable functional S[ ] is a function qe(t) with the property

δS[~qe(t), δ~q(t)] = 0 for all δ~q(t) ∈ Fε. (1.11)

The extremals ~qe(t) can be identified through a condition which provides a suitable differential
equation for this purpose. This condition is stated in the following theorem.
Theorem: Euler–Lagrange Condition
For the functional defined through (1.5), it holds in case δ~q(t0) = δ~q(t1) = 0 that ~qe(t) is an
extremal, if and only if it satisfies the conditions (j = 1, 2, . . . ,M)

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 (1.12)

The proof of this theorem is based on the property
Lemma: If for a continuous function f(t)

f : [t0, t1] ⊂ R → R (1.13)

holds ∫ t1

t0

dt f(t)h(t) = 0 (1.14)

for any continuous function h(t) ∈ Fε with h(t0) = h(t1) = 0, then

f(t) ≡ 0 on [t0, t1]. (1.15)

We will not provide a proof for this Lemma.
The proof of the above theorem starts from (1.6) which reads in the present case

δS[~q(t), δ~q(t)] =
∫ t1

t0

dt


M∑
j=1

[
∂L

∂qj
− d

dt

(
∂L

∂q̇j

)]
δqj(t)

 . (1.16)

This property holds for any δqj with δ~q(t) ∈ Fε. According to the Lemma above follows then (1.12)
for j = 1, 2, . . .M . On the other side, from (1.12) for j = 1, 2, . . .M and δqj(t0) = δqj(t1) = 0
follows according to (1.16) the property δS[~qe(t), · ] ≡ 0 and, hence, the above theorem.

An Example

As an application of the above rules of the variational calculus we like to prove the well-known result
that a straight line in R2 is the shortest connection (geodesics) between two points (x1, y1) and
(x2, y2). Let us assume that the two points are connected by the path y(x), y(x1) = y1, y(x2) = y2.
The length of such path can be determined starting from the fact that the incremental length ds
in going from point (x, y(x)) to (x+ dx, y(x+ dx)) is

ds =

√
(dx)2 + (

dy

dx
dx)2 = dx

√
1 + (

dy

dx
)2 . (1.17)
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The total path length is then given by the integral

s =
∫ x1

x0

dx

√
1 + (

dy

dx
)2 . (1.18)

s is a functional of y(x) of the type (1.5) with L(y(x), dydx) =
√

1 + (dy/dx)2. The shortest path
is an extremal of s[y(x)] which must, according to the theorems above, obey the Euler–Lagrange
condition. Using y′ = dy

dx the condition reads

d

dx

(
∂L

∂y′

)
=

d

dx

(
y′√

1 + (y′)2

)
= 0 . (1.19)

From this follows y′/
√

1 + (y′)2 = const and, hence, y′ = const. This in turn yields y(x) =
ax + b. The constants a and b are readily identified through the conditons y(x1) = y1 and
y(x2) = y2. One obtains

y(x) =
y1 − y2

x1 − x2
(x − x2) + y2 . (1.20)

Exercise 1.1.1: Show that the shortest path between two points on a sphere are great circles, i.e.,
circles whose centers lie at the center of the sphere.

1.2 Lagrangian Mechanics

The results of variational calculus derived above allow us now to formulate the Hamiltonian Prin-
ciple of Least Action of Classical Mechanics and study its equivalence to the Newtonian equations
of motion.
Threorem: Hamiltonian Principle of Least Action
The trajectories ~q(t) of systems of particles described through the Newtonian equations of motion

d

dt
(mj q̇j) +

∂U

∂qj
= 0 ; j = 1, 2, . . .M (1.21)

are extremals of the functional, the so-called action integral,

S[~q(t)] =
∫ t1

t0

dtL(~q(t), ~̇q(t), t) (1.22)

where L(~q(t), ~̇q(t), t) is the so-called Lagrangian

L(~q(t), ~̇q(t), t) =
M∑
j=1

1
2
mj q̇

2
j − U(q1, q2, . . . , qM ) . (1.23)

Presently we consider only velocity–independent potentials. Velocity–dependent potentials which
describe particles moving in electromagnetic fields will be considered below.
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For a proof of the Hamiltonian Principle of Least Action we inspect the Euler–Lagrange conditions
associated with the action integral defined through (1.22, 1.23). These conditions read in the
present case

∂L

∂qj
− d

dt

(
∂L

∂q̇j

)
= 0 → −∂U

∂qj
− d

dt
(mj q̇j) = 0 (1.24)

which are obviously equivalent to the Newtonian equations of motion.

Particle Moving in an Electromagnetic Field

We will now consider the Newtonian equations of motion for a single particle of charge q with
a trajectory ~r(t) = (x1(t), x2(t), x3(t)) moving in an electromagnetic field described through the
electrical and magnetic field components ~E(~r, t) and ~B(~r, t), respectively. The equations of motion
for such a particle are

d

dt
(m~̇r) = ~F (~r, t) ; ~F (~r, t) = q ~E(~r, t) +

q

c
~v × ~B(~r, t) (1.25)

where d~r
dt = ~v and where ~F (~r, t) is the Lorentz force.

The fields ~E(~r, t) and ~B(~r, t) obey the Maxwell equations

∇× ~E + 1
c
∂
∂t
~B = 0 (1.26)

∇ · ~B = 0 (1.27)

∇× ~B − 1
c
∂
∂t
~E =

4π ~J
c

(1.28)

∇ · ~E = 4πρ (1.29)

where ρ(~r, t) describes the charge density present in the field and ~J(~r, t) describes the charge current
density. Equations (1.27) and (1.28) can be satisfied implicitly if one represents the fields through
a scalar potential V (~r, t) and a vector potential ~A(~r, t) as follows

~B = ∇× ~A (1.30)

~E = −∇V − 1
c

∂ ~A

∂t
. (1.31)

Gauge Symmetry of the Electromagnetic Field

It is well known that the relationship between fields and potentials (1.30, 1.31) allows one to
transform the potentials without affecting the fields and without affecting the equations of motion
(1.25) of a particle moving in the field. The transformation which leaves the fields invariant is

~A′(~r, t) = ~A(~r, t) + ∇K(~r, t) (1.32)

V ′(~r, t) = V (~r, t) − 1
c

∂

∂t
K(~r, t) (1.33)



6 Lagrangian Mechanics

Lagrangian of Particle Moving in Electromagnetic Field

We want to show now that the equation of motion (1.25) follows from the Hamiltonian Principle
of Least Action, if one assumes for a particle the Lagrangian

L(~r, ~̇r, t) =
1
2
m~v2 − q V (~r, t) +

q

c
~A(~r, t) · ~v . (1.34)

For this purpose we consider only one component of the equation of motion (1.25), namely,

d

dt
(mv1) = F1 = −q ∂V

∂x1
+

q

c
[~v × ~B]1 . (1.35)

We notice using (1.30), e.g., B3 = ∂A2
∂x1
− ∂A1

∂x2

[~v × ~B]1 = ẋ2B3 − ẋ3B2 = ẋ2

(
∂A2

∂x1
− ∂A1

∂x2

)
− ẋ3

(
∂A1

∂x3
− ∂A3

∂x1

)
. (1.36)

This expression allows us to show that (1.35) is equivalent to the Euler–Lagrange condition

d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= 0 . (1.37)

The second term in (1.37) is

∂L

∂x1
= −q ∂V

∂x1
+

q

c

(
∂A1

∂x1
ẋ1 +

∂A2

∂x1
ẋ2 +

∂A3

∂x1
ẋ3

)
. (1.38)

The first term in (1.37) is

d

dt

(
∂L

∂ẋ1

)
=

d

dt
(mẋ1) +

q

c

dA1

dt
=

d

dt
(mẋ1) +

q

c

(
∂A1

∂x1
ẋ1 +

∂A1

∂x2
ẋ2 +

∂A1

∂x3
ẋ3

)
. (1.39)

The results (1.38, 1.39) together yield

d

dt
(mẋ1) = −q ∂V

∂x1
+

q

c
O (1.40)

where

O =
∂A1

∂x1
ẋ1 +

∂A2

∂x1
ẋ2 +

∂A3

∂x1
ẋ3 −

∂A1

∂x1
ẋ1 −

∂A1

∂x2
ẋ2 −

∂A1

∂x3
ẋ3

= ẋ2

(
∂A2

∂x1
− ∂A1

∂x2

)
− ẋ3

(
∂A1

∂x3
− ∂A3

∂x1

)
(1.41)

which is identical to the term (1.36) in the Newtonian equation of motion. Comparing then (1.40,
1.41) with (1.35) shows that the Newtonian equations of motion and the Euler–Lagrange conditions
are, in fact, equivalent.
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1.3 Symmetry Properties in Lagrangian Mechanics

Symmetry properties play an eminent role in Quantum Mechanics since they reflect the properties
of the elementary constituents of physical systems, and since these properties allow one often to
simplify mathematical descriptions.
We will consider in the following two symmetries, gauge symmetry and symmetries with respect to
spatial transformations.
The gauge symmetry, encountered above in connection with the transformations (1.32, 1.33) of elec-
tromagnetic potentials, appear in a different, surprisingly simple fashion in Lagrangian Mechanics.
They are the subject of the following theorem.
Theorem: Gauge Transformation of Lagrangian
The equation of motion (Euler–Lagrange conditions) of a classical mechanical system are unaffected
by the following transformation of its Lagrangian

L′(~q, ~̇q, t) = L(~q, ~̇q, t) +
d

dt

q

c
K(~q, t) (1.42)

This transformation is termed gauge transformation. The factor q
c has been introduced to make this

transformation equivalent to the gauge transformation (1.32, 1.33) of electyromagnetic potentials.
Note that one adds the total time derivative of a function K(~r, t) the Lagrangian. This term is

d

dt
K(~r, t) =

∂K

∂x1
ẋ1 +

∂K

∂x2
ẋ2 +

∂K

∂x3
ẋ3 +

∂K

∂t
= (∇K) · ~v +

∂K

∂t
. (1.43)

To prove this theorem we determine the action integral corresponding to the transformed La-
grangian

S′[~q(t)] =
∫ t1

t0

dtL′(~q, ~̇q, t) =
∫ t1

t0

dtL(~q, ~̇q, t) +
q

c
K(~q, t)

∣∣∣t1
t0

= S[~q(t)] +
q

c
K(~q, t)

∣∣∣t1
t0

(1.44)

Since the condition δ~q(t0) = δ~q(t1) = 0 holds for the variational functions of Lagrangian Me-
chanics, Eq. (1.44) implies that the gauge transformation amounts to adding a constant term to
the action integral, i.e., a term not affected by the variations allowed. One can conclude then
immediately that any extremal of S′[~q(t)] is also an extremal of S[~q(t)].
We want to demonstrate now that the transformation (1.42) is, in fact, equivalent to the gauge
transformation (1.32, 1.33) of electromagnetic potentials. For this purpose we consider the trans-
formation of the single particle Lagrangian (1.34)

L′(~r, ~̇r, t) =
1
2
m~v2 − q V (~r, t) +

q

c
~A(~r, t) · ~v +

q

c

d

dt
K(~r, t) . (1.45)

Inserting (1.43) into (1.45) and reordering terms yields using (1.32, 1.33)

L′(~r, ~̇r, t) =
1
2
m~v2 − q

(
V (~r, t) − 1

c

∂K

∂t

)
+

q

c

(
~A(~r, t) + ∇K

)
· ~v

=
1
2
m~v2 − q V ′(~r, t) +

q

c
~A′(~r, t) · ~v . (1.46)
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Obviously, the transformation (1.42) corresponds to replacing in the Lagrangian potentials V (~r, t), ~A(~r, t)
by gauge transformed potentials V ′(~r, t), ~A′(~r, t). We have proven, therefore, the equivalence of
(1.42) and (1.32, 1.33).
We consider now invariance properties connected with coordinate transformations. Such invariance
properties are very familiar, for example, in the case of central force fields which are invariant with
respect to rotations of coordinates around the center.
The following description of spatial symmetry is important in two respects, for the connection
between invariance properties and constants of motion, which has an important analogy in Quantum
Mechanics, and for the introduction of infinitesimal transformations which will provide a crucial
method for the study of symmetry in Quantum Mechanics. The transformations we consider are
the most simple kind, the reason being that our interest lies in achieving familiarity with the
principles (just mentioned above ) of symmetry properties rather than in providing a general tool
in the context of Classical Mechanics. The transformations considered are specified in the following
definition.
Definition: Infinitesimal One-Parameter Coordinate Transformations
A one-parameter coordinate transformation is decribed through

~r′ = ~r′(~r, ε) , ~r, ~r′ ∈ R3 , ε ∈ R (1.47)

where the origin of ε is chosen such that

~r′(~r, 0) = ~r . (1.48)

The corresponding infinitesimal transformation is defined for small ε through

~r′(~r, ε) = ~r + ε ~R(~r) + O(ε2) ; ~R(~r) =
∂~r′

∂ε

∣∣∣∣
ε=0

(1.49)

In the following we will denote unit vectors as â, i.e., for such vectors holds â · â = 1.

Examples of Infinitesimal Transformations

The beauty of infinitesimal transformations is that they can be stated in a very simple manner. In
case of a translation transformation in the direction ê nothing new is gained. However, we like to
provide the transformation here anyway for later reference

~r′ = ~r + ε ê . (1.50)

A non-trivial example is furnished by the infinitesimal rotation around axis ê

~r′ = ~r + ε ê× ~r . (1.51)

We would like to derive this transformation in a somewhat complicated, but nevertheless instructive
way considering rotations around the x3–axis. In this case the transformation can be written in
matrix form  x′1

x′2
x′3

 =

 cosε −sinε 0
sinε cosε 0

0 0 1

 x1

x2

x3

 (1.52)



1.3: Symmetry Properties 9

In case of small ε this transformation can be written neglecting terms O(ε2) using cosε = 1 +O(ε2),
sinε = ε + O(ε2)  x′1

x′2
x′3

 =

 x1

x2

x3

 +

 0 −ε 0
ε 0 0
0 0 0

 x1

x2

x3

 + O(ε2) . (1.53)

One can readily verify that in case ê = ê3 (êj denoting the unit vector in the direction of the
xj–axis) (1.51) reads

~r′ = ~r − x2 ê1 + x1 ê2 (1.54)

which is equivalent to (1.53).
Anytime, a classical mechanical system is invariant with respect to a coordinate transformation
a constant of motion exists, i.e., a quantity C(~r, ~̇r) which is constant along the classical path of
the system. We have used here the notation corresponding to single particle motion, however, the
property holds for any system.
The property has been shown to hold in a more general context, namely for fields rather than only
for particle motion, by Noether. We consider here only the ‘particle version’ of the theorem. Before
the embark on this theorem we will comment on what is meant by the statement that a classical
mechanical system is invariant under a coordinate transformation. In the context of Lagrangian
Mechanics this implies that such transformation leaves the Lagrangian of the system unchanged.
Theorem: Noether’s Theorem
If L(~q, ~̇q, t) is invariant with respect to an infinitesimal transformation ~q′ = ~q + ε ~Q(~q), then∑M

j=1Qj
∂L
∂ẋj

is a constant of motion.
We have generalized in this theorem the definition of infinitesimal coordinate transformation to
M–dimensional vectors ~q.
In order to prove Noether’s theorem we note

q′j = qj + εQj(~q) (1.55)

q̇′j = q̇j + ε

M∑
k=1

∂Qj
∂qk

q̇k . (1.56)

Inserting these infinitesimal changes of qj and q̇j into the Lagrangian L(~q, ~̇q, t) yields after Taylor
expansion, neglecting terms of order O(ε2),

L′(~q, ~̇q, t) = L(~q, ~̇q, t) + ε

M∑
j=1

∂L

∂qj
Qj + ε

M∑
j,k=1

∂L

∂q̇j

∂Qj
∂qk

q̇k (1.57)

where we used d
dtQj =

∑M
k=1( ∂

∂qk
Qj)q̇k. Invariance implies L′ = L, i.e., the second and third term

in (1.57) must cancel each other or both vanish. Using the fact, that along the classical path holds
the Euler-Lagrange condition ∂L

∂qj
= d

dt(
∂L
∂q̇j

) one can rewrite the sum of the second and third term
in (1.57)

M∑
j=1

(
Qj

d

dt

(
∂L

∂q̇j

)
+

∂L

∂q̇j

d

dt
Qj

)
=

d

dt

 M∑
j=1

Qj
∂L

∂q̇j

 = 0 (1.58)

From this follows the statement of the theorem.
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Application of Noether’s Theorem

We consider briefly two examples of invariances with respect to coordinate transformations for the
Lagrangian L(~r,~v) = 1

2m~v
2 − U(~r).

We first determine the constant of motion in case of invariance with respect to translations as
defined in (1.50). In this case we have Qj = êj · ê, j = 1, 2, 3 and, hence, Noether’s theorem yields
the constant of motion (qj = xj , j = 1, 2, 3)

3∑
j=1

Qj
∂L

∂ẋj
= ê ·

3∑
j=1

êjmẋj = ê · m~v . (1.59)

We obtain the well known result that in this case the momentum in the direction, for which
translational invariance holds, is conserved.
We will now investigate the consequence of rotational invariance as described according to the
infinitesimal transformation (1.51). In this case we will use the same notation as in (1.59), except
using now Qj = êj · (ê × ~r). A calculation similar to that in (1.59) yields the constant of motion
(ê×~r) ·m~v. Using the cyclic property (~a×~b) ·~c = (~b×~c) ·~a = (~c×~a) ·~b allows one to rewrite the
constant of motion ê · (~r×m~v) which can be identified as the component of the angular momentum
m~r × ~v in the ê direction. It was, of course, to be expected that this is the constant of motion.
The important result to be remembered for later considerations of symmetry transformations in
the context of Quantum Mechanics is that it is sufficient to know the consequences of infinitesimal
transformations to predict the symmetry properties of Classical Mechanics. It is not necessary to
investigate the consequences of global. i.e, not infinitesimal transformations.



Chapter 2

Quantum Mechanical Path Integral

2.1 The Double Slit Experiment

Will be supplied at later date

2.2 Axioms for Quantum Mechanical Description of Single Parti-
cle

Let us consider a particle which is described by a Lagrangian L(~r, ~̇r, t). We provide now a set of
formal rules which state how the probability to observe such a particle at some space–time point
~r, t is described in Quantum Mechanics.

1. The particle is described by a wave function ψ(~r, t)

ψ : R3 ⊗ R → C. (2.1)

2. The probability that the particle is detected at space–time point ~r, t is

|ψ(~r, t)|2 = ψ(~r, t)ψ(~r, t) (2.2)

where z is the conjugate complex of z.

3. The probability to detect the particle with a detector of sensitivity f(~r) is∫
Ω
d3r f(~r) |ψ(~r, t)|2 (2.3)

where Ω is the space volume in which the particle can exist. At present one may think of
f(~r) as a sum over δ–functions which represent a multi–slit screen, placed into the space at
some particular time and with a detector behind each slit.

4. The wave function ψ(~r, t) is normalized∫
Ω
d3r |ψ(~r, t)|2 = 1 ∀t, t ∈ [t0, t1] , (2.4)

a condition which enforces that the probability of finding the particle somewhere in Ω at any
particular time t in an interval [t0, t1] in which the particle is known to exist, is unity.

11
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5. The time evolution of ψ(~r, t) is described by a linear map of the type

ψ(~r, t) =
∫

Ω
d3r′ φ(~r, t|~r′, t′)ψ(~r′, t′) t > t′, t, t′ ∈ [t0, t1] (2.5)

6. Since (2.4) holds for all times, the propagator is unitary, i.e., (t > t′, t, t′ ∈ [t0, t1])∫
Ω d

3r |ψ(~r, t)|2 =∫
Ω d

3r
∫

Ω d
3r′
∫

Ω d
3r′′ φ(~r, t|~r′, t′) φ(~r, t|~r′′, t′) ψ(~r′, t′) ψ(~r′′, t′)
=
∫

Ω d
3r |ψ(~r, t′)|2 = 1 . (2.6)

This must hold for any ψ(~r′, t′) which requires∫
Ω
d3r′ φ(~r, t|~r′, t′)φ(~r, t|~r′′, t′) = δ(~r′ − ~r′′) (2.7)

7. The following so-called completeness relationship holds for the propagator (t > t′ t, t′ ∈
[t0, t1]) ∫

Ω
d3r φ(~r, t|~r′, t′) φ(~r′, t′|~r0, t0) = φ(~r, t|~r0, t0) (2.8)

This relationship has the following interpretation: Assume that at time t0 a particle is gen-
erated by a source at one point ~r0 in space, i.e., ψ(~r0, t0) = δ(~r − ~r0). The state of a system
at time t, described by ψ(~r, t), requires then according to (2.8) a knowledge of the state at all
space points ~r′ ∈ Ω at some intermediate time t′. This is different from the classical situation
where the particle follows a discrete path and, hence, at any intermediate time the particle
needs only be known at one space point, namely the point on the classical path at time t′.

8. The generalization of the completeness property to N − 1 intermediate points t > tN−1 >
tN−2 > . . . > t1 > t0 is

φ(~r, t|~r0, t0) =
∫

Ω d
3rN−1

∫
Ω d

3rN−2 · · ·
∫

Ω d
3r1

φ(~r,t|~rN−1, tN−1) φ(~rN−1, tN−1|~rN−2, tN−2) · · ·φ(~r1, t1|~r0, t0) . (2.9)

Employing a continuum of intermediate times t′ ∈ [t0, t1] yields an expression of the form

φ(~r, t|~r0, t0) =
∫∫ ~r(tN )=~rN

~r(t0)=~r0

d[~r(t)] Φ[~r(t)] . (2.10)

We have introduced here a new symbol, the path integral∫∫ ~r(tN )=~rN

~r(t0)=~r0

d[~r(t)] · · · (2.11)

which denotes an integral over all paths ~r(t) with end points ~r(t0) = ~r0 and ~r(tN ) = ~rN .
This symbol will be defined further below. The definition will actually assume an infinite
number of intermediate times and express the path integral through integrals of the type
(2.9) for N → ∞.



2.2: Axioms 13

9. The functional Φ[~r(t)] in (2.11) is

Φ[~r(t)] = exp
{
i

~

S[~r(t)]
}

(2.12)

where S[~r(t)] is the classical action integral

S[~r(t)] =
∫ tN

t0

dtL(~r, ~̇r, t) (2.13)

and

~ = 1.0545 · 10−27 erg s . (2.14)

In (2.13) L(~r, ~̇r, t) is the Lagrangian of the classical particle. However, in complete distinction
from Classical Mechanics, expressions (2.12, 2.13) are built on action integrals for all possible
paths, not only for the classical path. Situations which are well described classically will be
distinguished through the property that the classical path gives the dominant, actually often
essentially exclusive, contribution to the path integral (2.12, 2.13). However, for microscopic
particles like the electron this is by no means the case, i.e., for the electron many paths
contribute and the action integrals for non-classical paths need to be known.

The constant ~ given in (2.14) has the same dimension as the action integral S[~r(t)]. Its value
is extremely small in comparision with typical values for action integrals of macroscopic particles.
However, it is comparable to action integrals as they arise for microscopic particles under typical
circumstances. To show this we consider the value of the action integral for a particle of mass
m = 1 g moving over a distance of 1 cm/s in a time period of 1 s. The value of S[~r(t)] is then

Scl =
1
2
mv2 t =

1
2

erg s . (2.15)

The exponent of (2.12) is then Scl/~ ≈ 0.5 · 1027, i.e., a very large number. Since this number is
multiplied by ‘i’, the exponent is a very large imaginary number. Any variations of Scl would then
lead to strong oscillations of the contributions exp( i

~
S) to the path integral and one can expect

destructive interference betwen these contributions. Only for paths close to the classical path is
such interference ruled out, namely due to the property of the classical path to be an extremal of
the action integral. This implies that small variations of the path near the classical path alter the
value of the action integral by very little, such that destructive interference of the contributions of
such paths does not occur.
The situation is very different for microscopic particles. In case of a proton with mass m =
1.6725 · 10−24 g moving over a distance of 1 Å in a time period of 10−14 s the value of S[~r(t)] is
Scl ≈ 10−26 erg s and, accordingly, Scl/~ ≈ 8. This number is much smaller than the one for the
macroscopic particle considered above and one expects that variations of the exponent of Φ[~r(t)]
are of the order of unity for protons. One would still expect significant descructive interference
between contributions of different paths since the value calculated is comparable to 2π. However,
interferences should be much less dramatic than in case of the macroscopic particle.
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2.3 How to Evaluate the Path Integral

In this section we will provide an explicit algorithm which defines the path integral (2.12, 2.13)
and, at the same time, provides an avenue to evaluate path integrals. For the sake of simplicity we
will consider the case of particles moving in one dimension labelled by the position coordinate x.
The particles have associated with them a Lagrangian

L(x, ẋ, t) =
1
2
mẋ2 − U(x) . (2.16)

In order to define the path integral we assume, as in (2.9), a series of times tN > tN−1 > tN−2 >
. . . > t1 > t0 letting N go to infinity later. The spacings between the times tj+1 and tj will all be
identical, namely

tj+1 − tj = (tN − t0)/N = εN . (2.17)

The discretization in time leads to a discretization of the paths x(t) which will be represented
through the series of space–time points

{(x0, t0), (x1, t1), . . . (xN−1, tN−1), (xN , tN )} . (2.18)

The time instances are fixed, however, the xj values are not. They can be anywhere in the allowed
volume which we will choose to be the interval ]−∞,∞[. In passing from one space–time instance
(xj , tj) to the next (xj+1, tj+1) we assume that kinetic energy and potential energy are constant,
namely 1

2m(xj+1 − xj)2/ε2N and U(xj), respectively. These assumptions lead then to the following
Riemann form for the action integral

S[x(t)] = lim
N→∞

εN

N−1∑
j=0

(
1
2
m

(xj+1 − xj)2

ε2N
− U(xj)

)
. (2.19)

The main idea is that one can replace the path integral now by a multiple integral over x1, x2, etc.
This allows us to write the evolution operator using (2.10) and (2.12)

φ(xN , tN |x0, t0) = limN→∞CN
∫ +∞
−∞ dx1

∫ +∞
−∞ dx2 . . .

∫ +∞
−∞ dxN−1

exp
{

i
~
εN
∑N−1

j=0

[
1
2m

(xj+1−xj)2

ε2N
− U(xj)

]}
. (2.20)

Here, CN is a constant which depends on N (actually also on other constant in the exponent) which
needs to be chosen to ascertain that the limit in (2.20) can be properly taken. Its value is

CN =
[

m

2πi~εN

]N
2

(2.21)

2.4 Propagator for a Free Particle

As a first example we will evaluate the path integral for a free particle following the algorithm
introduced above.
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Rather then using the integration variables xj , it is more suitable to define new integration variables
yj , the origin of which coincides with the classical path of the particle. To see the benifit of such
approach we define a path y(t) as follows

x(t) = xcl(t) + y(t) (2.22)

where xcl(t) is the classical path which connects the space–time points (x0, t0) and (xN , tN ), namely,

xcl(t) = x0 +
xN − x0

tN − t0
( t − t0) . (2.23)

It is essential for the following to note that, since x(t0) = xcl(t0) = x0 and x(tN ) = xcl(tN ) = xN ,
it holds

y(t0) = y(tN ) = 0 . (2.24)

Also we use the fact that the velocity of the classical path ẋcl = (xN−x0)/(tn−t0) is constant. The
action integral1 S[x(t)|x(t0) = x0, x(tN ) = xN ] for any path x(t) can then be expressed through
an action integral over the path y(t) relative to the classical path. One obtains

S[x(t)|x(t0) = x0, x(tN ) = xN ] =
∫ tN
t0
dt1

2m(ẋ2
cl + 2ẋclẏ + ẏ2) =∫ tN

t0
dt1

2mẋ
2
cl + mẋcl

∫ tN
t0
dtẏ +

∫ tN
t0
dt1

2mẏ
2 . (2.25)

The condition (2.24) implies for the second term on the r.h.s.∫ tN

t0

dt ẏ = y(tN ) − y(t0) = 0 . (2.26)

The first term on the r.h.s. of (2.25) is, using (2.23),∫ tN

t0

dt
1
2
m ẋ2

cl =
1
2
m

(xN − x0)2

tN − t0
. (2.27)

The third term can be written in the notation introduced∫ tN

t0

dt
1
2
mẏ2 = S[x(t)|x(t0) = 0, x(tN ) = 0] , (2.28)

i.e., due to (2.24), can be expressed through a path integral with endpoints x(t0) = 0, x(tN ) = 0.
The resulting expression for S[x(t)|x(t0) = x0, x(tN ) = xN ] is

S[x(t)|x(t0) = x0, x(tN ) = xN ] =
1
2
m

(xN − x0)2

tN − t0
+ 0 + (2.29)

+ S[x(t)|x(t0) = 0, x(tN ) = 0] .

This expression corresponds to the action integral in (2.13). Inserting the result into (2.10, 2.12)
yields

φ(xN , tN |x0, t0) = exp
[
im

2~
(xN − x0)2

tN − t0

] ∫∫ x(tN )=0

x(t0)=0
d[x(t)] exp

{
i

~

S[x(t)]
}

(2.30)

a result, which can also be written

φ(xN , tN |x0, t0) = exp
[
im

2~
(xN − x0)2

tN − t0

]
φ(0, tN |0, t0) (2.31)

1We have denoted explicitly that the action integral for a path connecting the space–time points (x0, t0) and
(xN , tN ) is to be evaluated.
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Evaluation of the necessary path integral

To determine the propagator (2.31) for a free particle one needs to evaluate the following path
integral

φ(0, tN |0, t0) = limN→∞

[
m

2πi~εN

]N
2 ×

×
∫ +∞
−∞ dy1 · · ·

∫ +∞
−∞ dyN−1 exp

[
i
~
εN
∑N−1

j=0
1
2m

(yj+1− yj)2

ε2N

]
(2.32)

The exponent E can be written, noting y0 = yN = 0, as the quadratic form

E =
im

2~εN
( 2y2

1 − y1y2 − y2y1 + 2y2
2 − y2y3 − y3y2

+ 2y2
3 − · · · − yN−2yN−1 − yN−1yN−2 + 2y2

N−1 )

= i
N−1∑
j,k=1

yj ajk yk (2.33)

where ajk are the elements of the following symmetric (N − 1)× (N − 1) matrix

(
ajk

)
=

m

2~εN



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 −1 2


(2.34)

The following integral

∫ +∞

−∞
dy1 · · ·

∫ +∞

−∞
dyN−1 exp

i N−1∑
j,k=1

yjajkyk

 (2.35)

must be determined. In the appendix we prove

∫ +∞

−∞
dy1 · · ·

∫ +∞

−∞
dyN−1 exp

i d∑
j,k=1

yjbjkyk

 =
[

(iπ)d

det(bjk)

] 1
2

. (2.36)

which holds for a d-dimensional, real, symmetric matrix (bjk) and det(bjk) 6= 0.
In order to complete the evaluation of (2.32) we split off the factor m

2~εN
in the definition (2.34) of

(ajk) defining a new matrix (Ajk) through

ajk =
m

2~εN
Ajk . (2.37)

Using

det(ajk) =
[
m

2~εN

]N−1

det(Ajk) , (2.38)
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a property which follows from det(cB) = cndetB for any n× n matrix B, we obtain

φ(0, tN |0, t0) = limN→∞

[
m

2πi~εN

]N
2
[

2πi~εN
m

]N−1
2 1√

det(Ajk)
. (2.39)

In order to determine det(Ajk) we consider the dimension n of (Ajk), presently N − 1, variable, let
say n, n = 1, 2, . . .. We seek then to evaluate the determinant of the n× n matrix

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 −1 2



∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.40)

For this purpose we expand (2.40) in terms of subdeterminants along the last column. One can
readily verify that this procedure leads to the following recursion equation for the determinants

Dn = 2Dn−1 − Dn−2 . (2.41)

To solve this three term recursion relationship one needs two starting values. Using

D1 = |(2)| = 2 ; D2 =
∣∣∣∣( 2 −1
−1 2

)∣∣∣∣ = 3 (2.42)

one can readily verify
Dn = n+ 1 . (2.43)

We like to note here for further use below that one might as well employ the ‘artificial’ starting
values D0 = 1, D1 = 2 and obtain from (2.41) the same result for D2, D3, . . ..
Our derivation has provided us with the value det(Ajk) = N . Inserting this into (2.39) yields

φ(0, tN |0, t0) = limN→∞

[
m

2πi~εNN

] 1
2

(2.44)

and with εNN = tN − t0 , which follows from (2.18) we obtain

φ(0, tN |0, t0) =
[

m

2πi~(tN − t0)

] 1
2

. (2.45)

Expressions for Free Particle Propagator

We have now collected all pieces for the final expression of the propagator (2.31) and obtain, defining
t = tN , x = xN

φ(x, t|x0, t0) =
[

m

2πi~(t− t0)

] 1
2

exp
[
im

2~
(x− x0)2

t− t0

]
. (2.46)
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This propagator, according to (2.5) allows us to predict the time evolution of any state function
ψ(x, t) of a free particle. Below we will apply this to a particle at rest and a particle forming a
so-called wave packet.
The result (2.46) can be generalized to three dimensions in a rather obvious way. One obtains then
for the propagator (2.10)

φ(~r, t|~r0, t0) =
[

m

2πi~(t− t0)

] 3
2

exp
[
im

2~
(~r − ~r0)2

t− t0

]
. (2.47)

One-Dimensional Free Particle Described by Wave Packet

We assume a particle at time t = to = 0 is described by the wave function

ψ(x0, t0) =
[

1
πδ2

] 1
4

exp
(
− x2

0

2δ2
+ i

po
~

x

)
(2.48)

Obviously, the associated probability distribution

|ψ(x0, t0)|2 =
[

1
πδ2

] 1
2

exp
(
−x

2
0

δ2

)
(2.49)

is Gaussian of width δ, centered around x0 = 0, and describes a single particle since[
1
πδ2

] 1
2
∫ +∞

−∞
dx0 exp

(
−x

2
0

δ2

)
= 1 . (2.50)

One refers to such states as wave packets. We want to apply axiom (2.5) to (2.48) as the initial
state using the propagator (2.46).
We will obtain, thereby, the wave function of the particle at later times. We need to evaluate for
this purpose the integral

ψ(x, t) =
[

1
πδ2

] 1
4 [ m

2πi~t

] 1
2

∫ +∞

−∞
dx0 exp

[
im

2~
(x− x0)2

t
− x2

0

2δ2
+ i

po
~

xo

]
︸ ︷︷ ︸

Eo(xo, x) + E(x)

(2.51)

For this evaluation we adopt the strategy of combining in the exponential the terms quadratic
(∼ x2

0) and linear (∼ x0) in the integration variable to a complete square

ax2
0 + 2bx0 = a

(
x0 +

b

a

)2

− b2

a
(2.52)

and applying (2.247).
We devide the contributions to the exponent Eo(xo, x) + E(x) in (2.51) as follows

Eo(xo, x) =
im

2~t

[
x2
o

(
1 + i

~t

mδ2

)
− 2xo

(
x − po

m
t
)

+ f(x)
]

(2.53)
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E(x) =
im

2~t
[
x2 − f(x)

]
. (2.54)

One chooses then f(x) to complete, according to (2.52), the square in (2.53)

f(x) =

 x− po
m t√

1 + i ~t
mδ2

2

. (2.55)

This yields

Eo(xo, x) =
im

2~t

xo

√
1 + i

~t

mδ2
−

x − po
m t√

1 + i ~t
mδ2

2

. (2.56)

One can write then (2.51)

ψ(x, t) =
[

1
πδ2

] 1
4 [ m

2πi~t

] 1
2
eE(x)

∫ +∞

−∞
dx0 e

Eo(xo,x) (2.57)

and needs to determine the integral

I =
∫ +∞

−∞
dx0 e

Eo(xo,x)

=
∫ +∞

−∞
dx0 exp

 im

2~t

xo

√
1 + i

~t

mδ2
−

x − po
m t√

1 + i ~t
mδ2

2 
=

∫ +∞

−∞
dx0 exp

 im

2~t

(
1 + i

~t

mδ2

)(
xo −

x − po
m t

1 + i ~t
mδ2

)2
 . (2.58)

The integrand is an analytical function everywhere in the complex plane and we can alter the inte-
gration path, making certain, however, that the new path does not lead to additional contributions
to the integral.
We proceed as follows. We consider a transformation to a new integration variable ρ defined through√

i

(
1 − i

~t

mδ2

)
ρ = x0 −

x − po
m t

1 + i ~t
mδ2

. (2.59)

An integration path in the complex x0–plane along the direction√
i

(
1 − i

~t

mδ2

)
(2.60)

is then represented by real ρ values. The beginning and the end of such path are the points

z′1 = −∞ ×

√
i

(
1 − i

~t

mδ2

)
, z′2 = +∞ ×

√
i

(
1 − i

~t

mδ2

)
(2.61)
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whereas the original path in (2.58) has the end points

z1 = −∞ , z2 = +∞ . (2.62)

If one can show that an integration of (2.58) along the path z1 → z′1 and along the path z2 → z′2
gives only vanishing contributions one can replace (2.58) by

I =

√
i

(
1 − i

~t

mδ2

) ∫ +∞

−∞
dρ exp

[
− m

2~t

(
1 +

(
~t

mδ2

)2
)
ρ2

]
(2.63)

which can be readily evaluated. In fact, one can show that z′1 lies at −∞ − i × ∞ and z′2 at
+∞ + i×∞. Hence, the paths between z1 → z′1 and z2 → z′2 have a real part of x0 of ±∞. Since
the exponent in (2.58) has a leading contribution in x0 of −x2

0/δ
2 the integrand of (2.58) vanishes

for Rex0 → ±∞. We can conclude then that (2.63) holds and, accordingly,

I =

√
2πi~t

m(1 + i ~t
mδ2 )

. (2.64)

Equation (2.57) reads then

ψ(x, t) =
[

1
πδ2

] 1
4

[
1

1 + i ~t
mδ2

] 1
2

exp [E(x) ] . (2.65)

Seperating the phase factor [
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4

, (2.66)

yields

ψ(x, t) =

[
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4
[

1
πδ2 (1 + ~2t2

m2δ4 )

] 1
4

exp [E(x) ] . (2.67)

We need to determine finally (2.54) using (2.55). One obtains

E(x) = − x2

2δ2(1 + i ~t
mδ2 )

+
ipo
~
x

1 + i ~t
mδ2

−
i
~

p2
o

2m t

1 + i ~t
mδ2

(2.68)

and, using
a

1 + b
= a − a b

1 + b
, (2.69)

finally

E(x) = −
(x − po

m t)2

2δ2(1 + i ~t
mδ2 )

+ i
po
~

x − i

~

p2
o

2m
t (2.70)
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which inserted in (2.67) provides the complete expression of the wave function at all times t

ψ(x, t) =

[
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4
[

1
πδ2 (1 + ~2t2

m2δ4 )

] 1
4

× (2.71)

× exp

[
−

(x − po
m t)2

2δ2(1 + ~2t2

m2δ4 )
(1 − i

~t

mδ2
) + i

po
~

x − i

~

p2
o

2m
t

]
.

The corresponding probability distribution is

|ψ(x, t)|2 =

[
1

πδ2 (1 + ~2t2

m2δ4 )

] 1
2

exp

[
−

(x − po
m t)2

δ2(1 + ~2t2

m2δ4 )

]
. (2.72)

Comparision of Moving Wave Packet with Classical Motion

It is revealing to compare the probability distributions (2.49), (2.72) for the initial state (2.48) and
for the final state (2.71), respectively. The center of the distribution (2.72) moves in the direction
of the positive x-axis with velocity vo = po/m which identifies po as the momentum of the particle.
The width of the distribution (2.72)

δ

√
1 +

~
2t2

m2δ4
(2.73)

increases with time, coinciding at t = 0 with the width of the initial distribution (2.49). This
‘spreading’ of the wave function is a genuine quantum phenomenon. Another interesting observation
is that the wave function (2.71) conserves the phase factor exp[i(po/~)x] of the original wave function
(2.48) and that the respective phase factor is related with the velocity of the classical particle and
of the center of the distribution (2.72). The conservation of this factor is particularly striking for
the (unnormalized) initial wave function

ψ(x0, t0) = exp
(
i
po
m
xo

)
, (2.74)

which corresponds to (2.48) for δ → ∞. In this case holds

ψ(x, t) = exp
(
i
po
m
x − i

~

p2
o

2m
t

)
. (2.75)

i.e., the spatial dependence of the initial state (2.74) remains invariant in time. However, a time-
dependent phase factor exp[− i

~
(p2
o/2m) t] arises which is related to the energy ε = p2

o/2m of a
particle with momentum po. We had assumed above [c.f. (2.48)] to = 0. the case of arbitrary to is
recovered iby replacing t → to in (2.71, 2.72). This yields, instead of (2.75)

ψ(x, t) = exp
(
i
po
m
x − i

~

p2
o

2m
(t − to)

)
. (2.76)

From this we conclude that an initial wave function

ψ(xo, t0) = exp
(
i
po
m
xo −

i

~

p2
o

2m
to

)
. (2.77)
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becomes at t > to

ψ(x, t) = exp
(
i
po
m
x − i

~

p2
o

2m
t

)
, (2.78)

i.e., the spatial as well as the temporal dependence of the wave function remains invariant in this
case. One refers to the respective states as stationary states. Such states play a cardinal role in
quantum mechanics.

2.5 Propagator for a Quadratic Lagrangian

We will now determine the propagator (2.10, 2.12, 2.13)

φ(xN , tN |x0, t0) =
∫∫ x(tN )=xN

x(t0)=x0

d[x(t)] exp
{
i

~

S[x(t)]
}

(2.79)

for a quadratic Lagrangian

L(x, ẋ, t) =
1
2
mẋ2 − 1

2
c(t)x2 − e(t)x . (2.80)

For this purpose we need to determine the action integral

S[x(t)] =
∫ tN

t0

dt′ L(x, ẋ, t) (2.81)

for an arbitrary path x(t) with end points x(t0) = x0 and x(tN ) = xN . In order to simplify this
task we define again a new path y(t)

x(t) = xcl(t) + y(t) (2.82)

which describes the deviation from the classical path xcl(t) with end points xcl(t0) = x0 and
xcl(tN ) = xN . Obviously, the end points of y(t) are

y(t0) = 0 ; y(tN ) = 0 . (2.83)

Inserting (2.80) into (2.82) one obtains

L(xcl + y, ẋcl + ẏ(t), t) = L(xcl, ẋcl, t) + L′(y, ẏ(t), t) + δL (2.84)

where

L(xcl, ẋcl, t) =
1
2
mẋ2

cl −
1
2
c(t)x2

cl − e(t)xcl

L′(y, ẏ(t), t) =
1
2
mẏ2 − 1

2
c(t)y2

δL = mẋclẏ(t) − c(t)xcly − e(t)y . (2.85)

We want to show now that the contribution of δL to the action integral (2.81) vanishes2. For this
purpose we use

ẋclẏ =
d

dt
(ẋcl y) − ẍcl y (2.86)

2The reader may want to verify that the contribution of δL to the action integral is actually equal to the differential
δS[xcl, y(t)] which vanishes according to the Hamiltonian principle as discussed in Sect. 1.
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and obtain ∫ tN

t0

dt δL = m [ẋcl y]|t
N

t0
−
∫ tN

t0

dt [mẍcl(t) + c(t)xcl(t) + e(t) ] y(t) . (2.87)

According to (2.83) the first term on the r.h.s. vanishes. Applying the Euler–Lagrange conditions
(1.24) to the Lagrangian (2.80) yields for the classical path

mẍcl + c(t)xcl + e(t) = 0 (2.88)

and, hence, also the second contribution on the r.h.s. of (2.88) vanishes. One can then express the
propagator (2.79)

φ(xN , tN |x0, t0) = exp
{
i

~

S[xcl(t)]
}
φ̃(0, tN |0, t0) (2.89)

where

φ̃(0, tN |0, t0) =
∫∫ y(tN )=0

y(t0)=0
d[y(t)] exp

{
i

~

∫ tN

t0

dtL′(y, ẏ, t)
}
. (2.90)

Evaluation of the Necessary Path Integral

We have achieved for the quadratic Lagrangian a separation in terms of a classical action integral
and a propagator connecting the end points y(t0) = 0 and y(tN ) = 0 which is analogue to the
result (2.31) for the free particle propagator. For the evaluation of φ̃(0, tN |0, t0) we will adopt
a strategy which is similar to that used for the evaluation of (2.32). The discretization scheme
adopted above yields in the present case

φ̃(0, tN |0, t0) = limN→∞

[
m

2πi~εN

]N
2 × (2.91)

×
∫ +∞
−∞ dy1 · · ·

∫ +∞
−∞ dyN−1 exp

[
i
~
εN
∑N−1

j=0

(
1
2m

(yj+1− yj)2

ε2N
− 1

2 cj y
2
j

)]
where cj = c(tj), tj = t0 + εN j. One can express the exponent E in (2.91) through the quadratic
form

E = i

N−1∑
j,k=1

yj ajk yk (2.92)

where ajk are the elements of the following (N − 1)× (N − 1) matrix

(
ajk

)
=

m

2~εN



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 −1 2



− εN
2~



c1 0 0 . . . 0 0
0 c2 0 . . . 0 0
0 0 c3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . cN−2 0
0 0 0 0 cN−1


(2.93)
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In case det(ajk) 6= 0 one can express the multiple integral in (2.91) according to (2.36) as follows

φ̃(0, tN |0, t0) = limN→∞

[
m

2πi~εN

]N
2
[

(iπ)N−1

det(a)

] 1
2

= limN→∞

 m

2πi~
1

εN

(
2~εN
m

)N−1
det(a)


1
2

. (2.94)

In order to determine φ̃(0, tN |0, t0) we need to evaluate the function

f(t0, tN ) = limN→∞

[
εN

(
2~εN
m

)N−1

det(a)

]
. (2.95)

According to (2.93) holds

DN−1
def=

[
2~εN
m

]N−1
det(a) (2.96)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



2− ε2N
m c1 −1 0 . . . 0 0

−1 2− ε2N
m c2 −1 . . . 0 0

0 −1 2− ε2N
m c3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 2− ε2N
m cN−2 −1

0 0 0 −1 2− ε2N
m cN−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In the following we will asume that the dimension n = N − 1 of the matrix in (2.97) is variable.
One can derive then for Dn the recursion relationship

Dn =
(

2 −
ε2N
m
cn

)
Dn−1 − Dn−2 (2.97)

using the well-known method of expanding a determinant in terms of the determinants of lower
dimensional submatrices. Using the starting values [c.f. the comment below Eq. (2.43)]

D0 = 1 ; D1 = 2 −
ε2N
m

c1 (2.98)

this recursion relationship can be employed to determine DN−1. One can express (2.97) through
the 2nd order difference equation

Dn+1 − 2Dn + Dn−1

ε2N
= − cn+1Dn

m
. (2.99)

Since we are interested in the solution of this equation in the limit of vanishing εN we may interpret
(2.99) as a 2nd order differential equation in the continuous variable t = nεN + t0

d2f(t0, t)
dt2

= − c(t)
m

f(t0, t) . (2.100)
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The boundary conditions at t = t0, according to (2.98), are

f(t0, t0) = εN D0 = 0 ;

df(t0,t)
dt

∣∣∣
t=t0

= εN
D1 −D0

εN
= 2 −

ε2N
m

c1 − 1 = 1 . (2.101)

We have then finally for the propagator (2.79)

φ(x, t|x0, t0) =
[

m

2πi~f(to, t)

] 1
2

exp
{
i

~

S[xcl(t)]
}

(2.102)

where f(t0, t) is the solution of (2.100, 2.101) and where S[xcl(t)] is determined by solving first the
Euler–Lagrange equations for the Lagrangian (2.80) to obtain the classical path xcl(t) with end
points xcl(t0) = x0 and xcl(tN ) = xN and then evaluating (2.81) for this path. Note that the
required solution xcl(t) involves a solution of the Euler–Lagrange equations for boundary conditions
which are different from those conventionally encountered in Classical Mechanics where usually a
solution for initial conditions xcl(t0) = x0 and ẋcl(t0) = v0 are determined.

2.6 Wave Packet Moving in Homogeneous Force Field

We want to consider now the motion of a quantum mechanical particle, decribed at time t = to
by a wave packet (2.48), in the presence of a homogeneous force due to a potential V (x) = − f x.
As we have learnt from the study of the time-development of (2.48) in case of free particles the
wave packet (2.48) corresponds to a classical particle with momentum po and position xo = 0.
We expect then that the classical particle assumes the following position and momentum at times
t > to

y(t) =
po
m

(t − to) +
1
2
f

m
(t − to)2 (2.103)

p(t) = po + f (t − to) (2.104)

The Lagrangian for the present case is

L(x, ẋ, t) =
1
2
mẋ2 + f x . (2.105)

This corresponds to the Lagrangian in (2.80) for c(t) ≡ 0, e(t) ≡ −f . Accordingly, we can employ
the expression (2.89, 2.90) for the propagator where, in the present case, holds L′(y, ẏ, t) = 1

2mẏ
2

such that φ̃(0, tN |0, t0) is the free particle propagator (2.45). One can write then the propagator
for a particle moving subject to a homogeneous force

φ(x, t|x0, t0) =
[

m

2πi~(t− t0)

] 1
2

exp
[
i

~

S[xcl(τ)]
]
. (2.106)

Here S[xcl(τ)] is the action integral over the classical path with end points

xcl(to) = xo , xcl(t) = x . (2.107)
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The classical path obeys
mẍcl = f . (2.108)

The solution of (2.107, 2.108) is

xcl(τ) = xo +
(
x − xo
t − to

− 1
2
f

m
(t − to)

)
τ +

1
2
f

m
τ2 (2.109)

as can be readily verified. The velocity along this path is

ẋcl(τ) =
x − xo
t − to

− 1
2
f

m
(t − to) +

f

m
τ (2.110)

and the Lagrangian along the path, considered as a function of τ , is

g(τ) =
1
2
mẋ2

cl (τ) + f xcl (τ)

=
1
2
m

(
x − xo
t − to

− 1
2
f

m
(t − to)

)2

+ f

(
x − xo
t − to

− 1
2
f

m
(t − to)

)
τ

+
1
2
f2

m
τ2 + f xo + f

(
x − xo
t − to

− 1
2
f

m
(t − to)

)
τ +

1
2
f2

m
τ2

=
1
2
m

(
x − xo
t − to

− 1
2
f

m
(t − to)

)2

+ 2f
(
x − xo
t − to

− 1
2
f

m
(t − to)

)
τ

+
f2

m
τ2 + f xo (2.111)

One obtains for the action integral along the classical path

S[xcl (τ)] =
∫ t

to

dτ g(τ)

=
1
2
m

(
x − xo
t − to

− 1
2
f

m
(t − to)

)2

(t − to)

+ f

(
x − xo
t − to

− 1
2
f

m
(t − to)

)
(t − to)2

+
1
3
f2

m
(t − to)3 + xo f (t − to)

=
1
2
m

(x − xo)2

t − to
+

1
2

(x + xo) f (t − to) −
1
24

f2

m
(t − to)3

(2.112)

and, finally, for the propagator

φ(x, t|xo, to) =
[

m

2πi~(t− to)

] 1
2

× (2.113)

× exp
[
im

2~
(x − xo)2

t − to
+

i

2~
(x + xo) f (t − to) −

i

24
f2

~m
(t − to)3

]
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The propagator (2.113) allows one to determine the time-evolution of the initial state (2.48) using
(2.5). Since the propagator depends only on the time-difference t− to we can assume, withoult loss
of generality, to = 0 and are lead to the integral

ψ(x, t) =
[

1
πδ2

] 1
4 [ m

2πi~t

] 1
2

∫ +∞

−∞
dx0 (2.114)

exp
[
im

2~
(x− x0)2

t
− x2

0

2δ2
+ i

po
~

xo +
i

2~
(x + xo) f t −

i

24
f2

m~
t3
]

︸ ︷︷ ︸
Eo(xo, x) + E(x)

To evaluate the integral we adopt the same computational strategy as used for (2.51) and divide
the exponent in (2.114) as follows [c.f. (2.54)]

Eo(xo, x) =
im

2~t

[
x2
o

(
1 + i

~t

mδ2

)
− 2xo

(
x − po

m
t − f t2

2m

)
+ f(x)

]
(2.115)

E(x) =
im

2~t

[
x2 +

f t2

m
x − f(x)

]
− 1

24
f2t3

~m
. (2.116)

One chooses then f(x) to complete, according to (2.52), the square in (2.115)

f(x) =

 x− po
m t −

f t2

2m√
1 + i ~t

mδ2

2

. (2.117)

This yields

Eo(xo, x) =
im

2~t

xo

√
1 + i

~t

mδ2
−

x − po
m t − f t2

2m√
1 + i ~t

mδ2

2

. (2.118)

Following in the footsteps of the calculation on page 18 ff. one can state again

ψ(x, t) =

[
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4
[

1
πδ2 (1 + ~2t2

m2δ4 )

] 1
4

exp [E(x) ] (2.119)

and is lead to the exponential (2.116)

E(x) = − 1
24

f2t3

~m
+

im

2~t(1 + i ~t
mδ2 )

S(x) (2.120)

where

S(x) = x2

(
1 + i

~t

mδ2

)
+ x

ft2

m

(
1 + i

~t

mδ2

)
−
(
x − po

m
t − ft2

2m

)2

=
(
x − po

m
t − ft2

2m

)2(
1 + i

~t

mδ2

)
−
(
x − po

m
t − ft2

2m

)2

+

[
x
ft2

m
+ 2x

(
po
m
t +

ft2

2m

)
−
(
po
m
t +

ft2

2m

)2
](

1 + i
~t

mδ2

)
(2.121)
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Inserting this into (2.120) yields

E(x) = −

(
x − po

m t − ft2

2m

)2

2δ2
(
1 + i ~t

mδ2

) (2.122)

+
i

~

(po + f t)x − i

2m~

(
pot + poft

2 +
f2t3

4
+
f2t3

12

)
The last term can be written

− i

2m~

(
pot + poft

2 +
f2t3

3

)
= − i

2m~

∫ t

0
dτ (po + fτ)2 . (2.123)

Altogether, (2.119, 2.122, 2.123) provide the state of the particle at time t > 0

ψ(x, t) =

[
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4
[

1
πδ2 (1 + ~2t2

m2δ4 )

] 1
4

×

× exp

−
(
x − po

m t − ft2

2m

)2

2δ2
(

1 + ~2t2

m2δ4

) (
1 − i

~t

mδ2

) ×
× exp

[
i

~

(po + f t)x − i

~

∫ t

0
dτ

(po + fτ)2

2m

]
. (2.124)

The corresponding probablity distribution is

|ψ(x, t)|2 =

[
1

πδ2 (1 + ~2t2

m2δ4 )

] 1
2

exp

−
(
x − po

m t − ft2

2m

)2

δ2
(

1 + ~2t2

m2δ4

)
 . (2.125)

Comparision of Moving Wave Packet with Classical Motion

It is again [c.f. (2.4)] revealing to compare the probability distributions for the initial state (2.48)
and for the states at time t, i.e., (2.125). Both distributions are Gaussians. Distribution (2.125)
moves along the x-axis with distribution centers positioned at y(t) given by (2.103), i.e., as expected
for a classical particle. The states (2.124), in analogy to the states (2.71) for free particles, exhibit a
phase factor exp[ip(t)x/~], for which p(t) agrees with the classical momentum (2.104). While these
properties show a close correspondence between classical and quantum mechanical behaviour, the
distribution shows also a pure quantum effect, in that it increases its width . This increase, for
the homogeneous force case, is identical to the increase (2.73) determined for a free particle. Such
increase of the width of a distribution is not a necessity in quantum mechanics. In fact, in case of so-
called bound states, i.e., states in which the classical and quantum mechanical motion is confined to
a finite spatial volume, states can exist which do not alter their spatial distribution in time. Such
states are called stationary states. In case of a harmonic potential there exists furthermore the
possibility that the center of a wave packet follows the classical behaviour and the width remains
constant in time. Such states are referred to as coherent states, or Glauber states, and will be
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studied below. It should be pointed out that in case of vanishing, linear and quadratic potentials
quantum mechanical wave packets exhibit a particularly simple evolution; in case of other type of
potential functions and, in particular, in case of higher-dimensional motion, the quantum behaviour
can show features which are much more distinctive from classical behaviour, e.g., tunneling and
interference effects.

Propagator of a Harmonic Oscillator

In order to illustrate the evaluation of (2.102) we consider the case of a harmonic oscillator. In
this case holds for the coefficents in the Lagrangian (2.80) c(t) = mω2 and e(t) = 0, i.e., the
Lagrangian is

L(x, ẋ) =
1
2
mẋ2 − 1

2
mω2x2 . (2.126)

.We determine first f(t0, t). In the present case holds

f̈ = −ω2f ; f(t0, t0) = 0 ; ḟ(to, to) = 1 . (2.127)

The solution which obeys the stated boundary conditions is

f(t0, t) =
sinω(t − t0)

ω
. (2.128)

We determine now S[xcl(τ)]. For this purpose we seek first the path xcl(τ) which obeys xcl(t0) = x0

and xcl(t) = x and satisfies the Euler–Lagrange equation for the harmonic oscillator

mẍcl + mω2 xcl = 0 . (2.129)

This equation can be written
ẍcl = −ω2 xcl . (2.130)

the general solution of which is

xcl(τ ′) = A sinω(τ − t0) + B cosω(τ − t0) . (2.131)

The boundary conditions xcl(t0) = x0 and xcl(t) = x are satisfied for

B = x0 ; A =
x − x0 cosω(t− to)

sinω(t − t0)
, (2.132)

and the desired path is

xcl(τ) =
x − x0 c

s
sinω(τ − t0) + x0 cosω(τ − t0) (2.133)

where we introduced
c = cosω(t− to) , s = sinω(t− to) (2.134)

We want to determine now the action integral associated with the path (2.133, 2.134)

S[xcl(τ)] =
∫ t

t0

dτ

(
1
2
mẋ2

cl(τ) − 1
2
mω2x2

cl(τ)
)

(2.135)
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For this purpose we assume presently to = 0. From (2.133) follows for the velocity along the
classical path

ẋcl(τ) = ω
x − x0 c

s
cosωτ − ω x0 sinωτ (2.136)

and for the kinetic energy

1
2
mẋ2

cl(τ) =
1
2
mω2 (x − x0 c)2

s2
cos2ωτ

−mω2xo
x − x0 c

s
cosωτ sinωτ

+
1
2
mω2 x2

o sin2ωτ (2.137)

Similarly, one obtains from (2.133) for the potential energy

1
2
mω2x2

cl(τ) =
1
2
mω2 (x − x0 c)2

s2
sin2ωτ

+mω2xo
x − x0 c

s
cosωτ sinωτ

+
1
2
mω2 x2

o cos2ωτ (2.138)

Using

cos2ωτ =
1
2

+
1
2

cos2ωτ (2.139)

sin2ωτ =
1
2
− 1

2
cos2ωτ (2.140)

cosωτ sinωτ =
1
2

sin2ωτ (2.141)

the Lagrangian, considered as a function of τ , reads

g(τ) =
1
2
mẋ2

cl(τ) − 1
2
mω2x2

cl(τ) =
1
2
mω2 (x − x0 c)2

s2
cos2ωτ

−mω2xo
x − x0 c

s
sin2ωτ

−1
2
mω2 x2

o cos2ωτ (2.142)

Evaluation of the action integral (2.135), i.e., of S[xcl(τ)] =
∫ t

0dτg(τ) requires the integrals∫ t

0
dτcos2ωτ =

1
2ω

sin2ωt =
1
ω
s c (2.143)∫ t

0
dτsin2ωτ =

1
2ω

[ 1 − cos2ωt ] =
1
ω
s2 (2.144)

where we employed the definition (2.134) Hence, (2.135) is, using s2 + c2 = 1,

S[xcl(τ)] =
1
2
mω

(x − x0 c)2

s2
s c − mωxo

x − x0 c

s
s2 − 1

2
mω2 x2

o s c

=
mω

2s
[

(x2 − 2xxoc+ x2
oc

2) c − 2xoxs2 + 2x2
ocs

2 − x2
os

2c
]

=
mω

2s
[

(x2 + x2
o) c − 2xox

]
(2.145)
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and, with the definitions (2.134),

S[xcl(τ)] =
mω

2sinω(t − t0)
[
(x2

0 + x2) cosω(t − t0) − 2x0x
]
. (2.146)

For the propagator of the harmonic oscillator holds then

φ(x, t|x0, t0) =
[

mω
2πi~ sinω(t− t0)

] 1
2 ×

× exp
{

imω
2~ sinω(t− t0)

[
(x2

0 + x2) cosω(t − t0) − 2x0x
] }

. (2.147)

Quantum Pendulum or Coherent States

As a demonstration of the application of the propagator (2.147) we use it to describe the time
development of the wave function for a particle in an initial state

ψ(x0, t0) =
[mω
π~

] 1
4 exp

(
− mω(x0 − bo)2

2~
+

i

~

po xo

)
. (2.148)

The initial state is decribed by a Gaussian wave packet centered around the position x = bo and
corresponds to a particle with initial momentum po. The latter property follows from the role of
such factor for the initial state (2.48) when applied to the case of a free particle [c.f. (2.71)] or to
the case of a particle moving in a homogeneous force [c.f. (2.124, 2.125)] and will be borne out of
the following analysis; at present one may regard it as an assumption.
If one identifies the center of the wave packet with a classical particle, the following holds for the
time development of the position (displacement), momentum, and energy of the particle

b(t) = bo cosω(t− to) +
po
mω

sinω(t− to) displacement

p(t) = −mωbo sinω(t− to) + po cosω(t− to) momentum

εo =
p2
o

2m
+ 1

2mω
2b2o energy

(2.149)

We want to explore, using (2.5), how the probability distribution |ψ(x, t)|2 of the quantum particle
propagates in time.
The wave function at times t > t0 is

ψ(x, t) =
∫ ∞
−∞

dx0 φ(x, t|x0, t0)ψ(x0, t0) . (2.150)

Expressing the exponent in (2.148)

imω

2~sinω(t− to)

[
i (xo − bo)2 sinω(t− to) +

2po
mω

xo sinω(t− to)
]

(2.151)

(2.147, 2.150, 2.151) can be written

ψ(x, t) =
[mω
π~

] 1
4

[
m

2πiω~sinω(t − t0)

] 1
2
∫ ∞
−∞

dx0 exp [E0 + E ] (2.152)
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where

E0(xo, x) =
imω

2~s

[
x2
oc − 2xox + isx2

o − 2isxobo +
2po
mω

xos + f(x)
]

(2.153)

E(x) =
imω

2~s
[
x2c + isb2o − f(x)

]
. (2.154)

c = cosω(t − to) , s = sinω(t − to) . (2.155)

Here f(x) is a function which is introduced to complete the square in (2.153) for simplification of
the Gaussian integral in x0. Since E(x) is independent of xo (2.152) becomes

ψ(x, t) =
[mω
π~

] 1
4

[
m

2πiω~sinω(t − t0)

] 1
2

eE(x)

∫ ∞
−∞

dx0 exp [E0(xo, x)] (2.156)

We want to determine now Eo(xo, x) as given in (2.153). It holds

Eo =
imω

2~s

[
x2
o e

iω(t−to) − 2xo(x+ isbo −
po
mω

s) + f(x)
]

(2.157)

For f(x) to complete the square we choose

f(x) = (x + isbo −
po
mω

s)2 e−iω(t−to) . (2.158)

One obtains for (2.157)

E0(xo, x) =
imω

2~s
exp [iω(t− t0)]

[
x0 − (x+ isbo −

po
mω

s) exp (−iω(t− t0)
]2

. (2.159)

To determine the integral in (2.156) we employ the integration formula (2.247) and obtain∫ +∞

−∞
dx0 e

E0(x0) =
[

2πi~ sinω(t− t0)
mω exp[iω(t− t0)]

] 1
2

(2.160)

Inserting this into (2.156) yields

ψ(x, t) =
[mω
π~

] 1
4
eE(x) (2.161)

For E(x) as defined in (2.154) one obtains, using exp[±iω(t− to)] = c ± is,

E(x) = imω
2~s

[
x2c + isb2o − x2c + isx2 − 2isxboc − 2s2xbo

+ s2b2oc − is3b2o + 2 po
mω xsc + 2i po

mω bos
2c

− 2i po
mω xs

2 + 2 po
mω bos

3 − p2
o

m2ω2 s
2c + i p2

o
m2ω2 s

3
]

= − mω
2~

[
x2 + c2b2o − 2xboc + 2ixsbo − ib2osc

−2 po
mω xs + 2 po

mω bosc + p2
o

m2ω2 s
2 − 2i po

mω xc

−2i po
mω bos

2 + i p2
o

m2ω2 sc
]

= − mω
2~ (x − cbo − po

mω s)
2 +

i

~

(−mωbos + poc)x

− i

~

( p2
o

2mω −
1
2mωb

2
o)sc +

i

~

pobos
2 (2.162)
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We note the following identities∫ t

to

dτ
p2(τ)
2m

=
1
2
εo(t− to) +

1
2

(
p2
o

2mω
− mωb2o

2

)
sc − 1

2
bopos

2 (2.163)∫ t

to

dτ
mω2b2(τ)

2

=
1
2
εo(t− to) −

1
2

(
p2
o

2mω
− mωb2o

2

)
sc +

1
2
bopos

2 (2.164)

where we employed b(τ) and p(τ) as defined in (2.149). From this follows, using p(τ) = mḃ(τ) and
the Lagrangian (2.126),∫ t

to

dτ L[b(τ), ḃ(τ)] =
(

p2
o

2mω
− mωb2o

2

)
sc − bopos (2.165)

such that E(x) in (2.162) can be written, using again (2.149)),

E(x) = − mω
2~

[x− b(t)]2 +
i

~

p(t)x − i
1
2
ω (t− to) −

i

~

∫ t

to

dτ L[b(τ), ḃ(τ)] (2.166)

Inserting this into (2.161) yields,

ψ(x, t) =
[mω
π~

] 1
4 × exp

{
− mω

2~
[x− b(t)]2

}
× (2.167)

× exp
{
i

~

p(t)x − i
1
2
ω (t− to) −

i

~

∫ t

to

dτ L[b(τ), ḃ(τ)]
}

where b(t), p(t), and εo are the classical displacement, momentum and energy, respectively, defined
in (2.149).

Comparision of Moving Wave Packet with Classical Motion

The probability distribution associated with (2.167)

|ψ(x, t)|2 =
[mω
π~

] 1
2 exp

{
−mω
~

[x − b(t)]2
}

(2.168)

is a Gaussian of time-independent width, the center of which moves as described by b(t) given in
(2.148) , i.e., the center follows the motion of a classical oscillator (pendulum) with initial position
bo and initial momentum po. It is of interest to recall that propagating wave packets in the case of
vanishing [c.f. (2.72)] or linear [c.f. (2.125)] potentials exhibit an increase of their width in time; in
case of the quantum oscillator for the particular width chosen for the initial state (2.148) the width,
actually, is conserved. One can explain this behaviour as arising from constructive interference due
to the restoring forces of the harmonic oscillator. We will show in Chapter 4 [c.f. (4.166, 4.178) and
Fig. 4.1] that an initial state of arbitrary width propagates as a Gaussian with oscillating width.
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In case of the free particle wave packet (2.48, 2.71) the factor exp(ipox) gives rise to the transla-
tional motion of the wave packet described by pot/m, i.e., po also corresponds to initial classical
momentum. In case of a homogeneous force field the phase factor exp(ipox) for the initial state
(2.48) gives rise to a motion of the center of the propagating wave packet [c.f. (2.125)] described by
(po/m)t + 1

2ft
2 such that again po corresponds to the classical momentum. Similarly, one observes

for all three cases (free particle, linear and quadratic potential) a phase factor exp[ip(t)x/~] for the
propagating wave packet where fp(t) corresponds to the initial classical momentum at time t. One
can, hence, summarize that for the three cases studied (free particle, linear and quadratic potential)
propagating wave packets show remarkably close analogies to classical motion.
We like to consider finally the propagation of an initial state as in (2.148), but with bo = 0 and
po = 0. Such state is given by the wave function

ψ(x0, t0) =
[mω
π~

] 1
4 exp

(
− mωx

2
0

2~
− iω

2
to

)
. (2.169)

where we added a phase factor exp(−iωto/2). According to (2.167) the state (2.169) reproduces
itself at later times t and the probablity distribution remains at all times equal to[mω

π~

] 1
2 exp

(
− mωx

2
0

~

)
, (2.170)

i.e., the state (2.169) is a stationary state of the system. The question arises if the quantum
oscillator posesses further stationary states. In fact, there exist an infinite number of such states
which will be determined now.

2.7 Stationary States of the Harmonic Oscillator

In order to find the stationary states of the quantum oscillator we consider the function

W (x, t) = exp
(

2
√
mω

~

x e−iωt − e−2iωt − mω

2~
x2 − iωt

2

)
. (2.171)

We want to demonstrate that w(x, t) is invariant in time, i.e., for the propagator (2.147) of the
harmonic oscillator holds

W (x, t) =
∫ +∞

−∞
dxo φ(x, t|xo, to)W (xo, to) . (2.172)

We will demonstrate further below that (2.172) provides us in a nutshell with all the stationary
states of the harmonic oscillator, i.e., with all the states with time-independent probability distri-
bution.
In order to prove (2.172) we express the propagator, using (2.147) and the notation T = t− to

φ(x, t|xo, to) = e−
1
2
iωT

[
mω

π~(1− e−2iωT )

] 1
2

×

× exp
[
−mω

2~
(x2
o + x2)

1 + e−2iωT

1 − e−2iωT
− mω

~ω

2xxoe−iωT

1 − e−2iωT

]
(2.173)
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One can write then the r.h.s. of (2.172)

I = e−
1
2
iωt

[
mω

π~(1− e−2iωT )

] 1
2
∫ +∞

−∞
dxo exp[Eo(xo, x) + E(x) ] (2.174)

where

Eo(xo, x) = − mω
2~

[
x2
o

(
1 + e−2iωT

1− e−2iωT
+ 1
)

(2.175)

+ 2xo

(
2xe−iωT

1− e−2iωT
+ 2

√
~

mω
e−iωto

)
+ f(x)

]

E(x) = − mω
2~

[
x2 1 + e−2iωT

1− e−2iωT
+

2~
mω

e−2iωto − f(x)
]

(2.176)

Following the by now familiar strategy one choses f(x) to complete the square in (2.175), namely,

f(x) =
1
2

(1 − e−2iωT )

(
2xe−iωT

1− e−2iωT
+ 2

√
~

mω
e−iωto

)2

. (2.177)

This choice of f(x) results in

Eo(xo, x) = − mω
2~

[
xo

√
2

1− e−2iωT

+

√
1− e−2iωT

2

(
2xe−iωT

1− e−2iωT
+ 2

√
~

mω
e−iωto

)]2

= i
mω

i~(e−2iωT − 1)
(xo + zo)2 (2.178)

for some constant zo ∈ C. Using (2.247) one obtains∫ +∞

−∞
dxo e

Eo(xo,x) =
[
π~(1 − e−2iωT

mω

] 1
2

(2.179)

and, therefore, one obtains for (2.174)

I = e−
1
2
iωt eE(x) . (2.180)

For E(x), as given in (2.176, 2.177), holds

E(x) = − mω
2~

[
x2 1 + e−2iωT

1− e−2iωT
+

2~
mω

e−2iωto − 2x2e−2iωT

1− e−2iωT

−4

√
~

mω
xe−iωT − 2 (1− e−2iωT )

~

mω
e−2iωto

]

= − mω
2~

[
x2 − 4

√
~

mω
xe−iωt +

2~
mω

e−2iωt

]

= − mω
2~

x2 + 2
√
mω

~

x e−iωt − e−2iωt (2.181)
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Altogether, one obtains for the r.h.s. of (2.172)

I = exp
(

2
√
mω

~

x e−iωt − e−2iωt − mω

2~
x2 − 1

2
iωt

)
. (2.182)

Comparision with (2.171) concludes the proof of (2.172).
We want to inspect the consequences of the invariance property (2.171, 2.172). We note that the
factor exp(2

√
mω/~ xe−iωt − e−2iωt) in (2.171) can be expanded in terms of e−inωt, n = 1, 2, . . ..

Accoordingly, one can expand (2.171)

W (x, t) =
∞∑
n=0

1
n!

exp[− iω(n+ 1
2
) t ] φ̃n(x) (2.183)

where the expansion coefficients are functions of x, but not of t. Noting that the propagator (2.147)
in (2.172) is a function of t − to and defining accordingly

Φ(x, xo; t− to) = φ(x, t|xo, to) (2.184)

we express (2.172) in the form

∞∑
n=0

1
n!

exp[−iω(n+ 1
2
) t] φ̃n(x)

=
∞∑
m=0

∫ +∞

−∞
dxo Φ(x, xo; t− to)

1
m!

exp[−iω(m+ 1
2
) to] φ̃m(xo) (2.185)

Replacing t → t+ to yields

∞∑
n=0

1
n!

exp[−iω(n+ 1
2
) (t+ to)] φ̃n(x)

=
∞∑
m=0

∫ +∞

−∞
dxo Φ(x, xo; t)

1
m!

exp[−iω(m+ 1
2
) to] φ̃m(xo) (2.186)

Fourier transform, i.e.,
∫ +∞
−∞ dto exp[iω(n+ 1

2
) to] · · · , results in

1
n!

exp[−iω(n+ 1
2
) t] φ̃n(x)

=
∫ +∞

−∞
dxo Φ(x, xo; t− to)

1
n!
φ̃n(xo) (2.187)

or

exp[−iω(n+ 1
2
) t] φ̃n(x)

=
∫ +∞

−∞
dxo φ(x, t|xo, to) exp[−iω(n+ 1

2
) to] φ̃n(xo) . (2.188)

Equation (2.188) identifies the functions ψ̃n(x, t) = exp[−iω(n+ 1
2
) t] φ̃n(x) as invariants under the

action of the propagator φ(x, t|xo, to). In contrast to W (x, t), which also exhibits such invariance,
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the functions ψ̃n(x, t) are associated with a time-independent probablity density |ψ̃n(x, t)|2 =
|φ̃n(x)|2. Actually, we have identified then, through the expansion coefficients φ̃n(x) in (2.183),
stationary wave functions ψn(x, t) of the quantum mechanical harmonic oscillator

ψn(x, t) = exp[−iω(n+ 1
2) t] Nn φ̃n(x) , n = 0, 1, 2, . . . (2.189)

Here Nn are constants which normalize ψn(x, t) such that∫ +∞

−∞
dx |ψ(x, t)|2 = N2

n

∫ +∞

−∞
dx φ̃2

n(x) = 1 (2.190)

is obeyed. In the following we will characterize the functions φ̃n(x) and determine the normalization
constants Nn. We will also argue that the functions ψn(x, t) provide all stationary states of the
quantum mechanical harmonic oscillator.

The Hermite Polynomials

The function (2.171), through expansion (2.183), characterizes the wave functions φ̃n(x). To obtain
closed expressions for φ̃n(x) we simplify the expansion (2.183). For this purpose we introduce first
the new variables

y =
√
mω

~

x (2.191)

z = e−iωt (2.192)

and write (2.171)
W (x, t) = z

1
2 e−y

2/2w(y, z) (2.193)

where
w(y, z) = exp(2yz − z2) . (2.194)

Expansion (2.183) reads then

w(y, z) z
1
2 e−y

2/2 = z
1
2

∞∑
n=0

zn

n!
φ̃n(y) (2.195)

or

w(y, z) =
∞∑
n=0

zn

n!
Hn(y) (2.196)

where
Hn(y) = ey

2/2 φ̃n(y) . (2.197)

The expansion coefficients Hn(y) in (2.197) are called Hermite polynomials which are polynomials
of degree n which will be evaluated below. Expression (2.194) plays a central role for the Hermite
polynomials since it contains, according to (2.194), in a ‘nutshell’ all information on the Hermite
polynomials. This follows from

∂n

∂zn
w(y, z)

∣∣∣∣
z=0

= Hn(y) (2.198)
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which is a direct consequence of (2.196). One calls w(y, z) the generating function for the Hermite
polynomials. As will become evident in the present case generating functions provide an extremely
elegant access to the special functions of Mathematical Physics3. We will employ (2.194, 2.196) to
derive, among other properties, closed expressions for Hn(y), normalization factors for φ̃(y), and
recursion equations for the efficient evaluation of Hn(y).
The identity (2.198) for the Hermite polynomials can be expressed in a more convenient form
employing definition (2.196)

∂n

∂zn
w(y, z)

∣∣∣∣
z=0

=
∂n

∂zn
e2 y z− z2

∣∣∣∣
z=0

ey
2 ∂n

∂zn
e−(y−z)2

∣∣∣∣
z=0

= (−1)n ey
2 ∂n

∂yn
e−(y−z)2

∣∣∣∣
z=0

= (−1)n ey
2 ∂n

∂yn
e−y

2
(2.199)

Comparision with (2.196) results in the so-called Rodrigues formula for the Hermite polynomials

Hn(y) = (−1)n ey
2 ∂n

∂yn
e−y

2
. (2.200)

One can deduce from this expression the polynomial character of Hn(y), i.e., that Hn(y) is a
polynomial of degree n. (2.200) yields for the first Hermite polynomials

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2, H3(y) = 8y3 − 12y, . . . (2.201)

µ

ν� ν+µ�

ν−µ�
µ

ν�
ν+µ�

ν−µ�

Figure 2.1: Schematic representation of change of summation variables ν and µ to n = ν + µ and
m = ν−µ. The diagrams illustrate that a summation over all points in a ν, µ lattice (left diagram)
corresponds to a summation over only every other point in an n, m lattice (right diagram). The
diagrams also identify the areas over which the summation is to be carried out.

We want to derive now explicit expressions for the Hermite polynomials. For this purpose we expand
the generating function (2.194) in a Taylor series in terms of yp zq and identify the corresponding
coefficient cpq with the coefficient of the p–th power of y in Hq(y). We start from

e2yz− z2
=

∞∑
ν=0

ν∑
µ=0

1
ν!

(
ν
µ

)
z2µ(−1)µ(2y)ν−µzν−µ

=
∞∑
ν=0

ν∑
µ=0

1
ν

(
ν
µ

)
(−1)µ(2y)ν−µzν+µ (2.202)

3generatingfunctionology by H.S.Wilf (Academic Press, Inc., Boston, 1990) is a useful introduction to this tool as
is a chapter in the eminently useful Concrete Mathematics by R.L.Graham, D.E.Knuth, and O.Patashnik (Addison-
Wesley, Reading, Massachusetts, 1989).
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and introduce now new summation variables

n = ν + µ , m = ν − µ 0 ≤ n < ∞ , 0 ≤ m ≤ n . (2.203)

The old summation variables ν, µ expressend in terms of n, m are

ν =
n + m

2
, µ =

n − m

2
. (2.204)

Since ν, µ are integers the summation over n,m must be restricted such that either both n and m
are even or both n and m are odd. The lattices representing the summation terms are shown in
Fig. 2.1. With this restriction in mind one can express (2.202)

e2yz− z2
=

∞∑
n=0

zn

n!

≤n∑
m≥0

n! (−1)
n−m

2(
n−m

2

)
!m!

(2y)m . (2.205)

Since (n−m)/2 is an integer we can introduce now the summation variable k = (n−m)/2 , 0 ≤
k ≤ [n/2] where [x] denotes the largest integer p, p ≤ x. One can write then using m = n− 2k

e2yz− z2
=

∞∑
n=0

zn

n!

[n/2]∑
k=0

n! (−1)k

k! (n− 2k)!
(2y)n−2k

︸ ︷︷ ︸
=Hn(y)

. (2.206)

From this expansion we can identify Hn(y)

Hn(y) =
[n/2]∑
k=0

(−1)k n!
k! (n− 2k)!

(2y)n−2k . (2.207)

This expression yields for the first four Hermite polynomials

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2, H3(y) = 8y3 − 12y, . . . (2.208)

which agrees with the expressions in (2.201).
From (2.207) one can deduce that Hn(y), in fact, is a polynomial of degree n. In case of even n , the
sum in (2.207) contains only even powers, otherwise, i.e., for odd n, it contains only odd powers.
Hence, it holds

Hn(−y) = (−1)nHn(y) . (2.209)

This property follows also from the generating function. According to (2.194) holds w(−y, z) =
w(y,−z) and, hence, according to 2.197)

∞∑
n=0

zn

n!
Hn(−y) =

∞∑
n=0

(−z)n

n!
Hn(y) =

∞∑
n=0

zn

n!
(−1)nHn(y) (2.210)

from which one can conclude the property (2.209).
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The generating function allows one to determine the values of Hn(y) at y = 0. For this purpose one
considers w(0, z) = exp(−z2) and carries out the Taylor expansion on both sides of this expression
resulting in

∞∑
m=0

(−1)m z2m

m!
=

∞∑
n=0

Hn(0)
zn

n!
. (2.211)

Comparing terms on both sides of the equation yields

H2n(0) = (−1)n
(2n)!
n!

, H2n+1(0) = 0 , n = 0, 1, 2, . . . (2.212)

This implies that stationary states of the harmonic oscillator φ2n+1(x), as defined through (2.188,
2.197) above and given by (2.233) below, have a node at y = 0, a property which is consistent
with (2.209) since odd functions have a node at the origin.

Recursion Relationships

A useful set of properties for special functions are the so-called recursion relationships. For Hermite
polynomials holds, for example,

Hn+1(y) − 2y Hn(y) + 2nHn−1(y) = 0 , n = 1, 2, . . . (2.213)

which allow one to evaluate Hn(y) from H0(y) and H1(y) given by (2.208). Another relationship is

d

dy
Hn(y) = 2nHn−1(y), n = 1, 2, . . . (2.214)

We want to derive (??) using the generating function. Starting point of the derivation is the
property of w(y, z)

∂

∂z
w(y, z) − (2y − 2z)w(y, z) = 0 (2.215)

which can be readily verified using (2.194). Substituting expansion (2.196) into the differential
equation (2.215) yields

∞∑
n=1

zn−1

(n− 1)!
Hn(y) − 2y

∞∑
n=0

zn

n!
Hn(y) + 2

∞∑
n=0

zn+1

n!
Hn(y) = 0 . (2.216)

Combining the sums and collecting terms with identical powers of z
∞∑
n=1

zn

n!

[
Hn+1(y) − 2y Hn(y) + 2nHn−1(y)

]
+ H1(y) − 2yH0(y) = 0 (2.217)

gives

H1(y) − 2y H0(y) = 0, Hn+1(y) − 2y Hn(y) + 2nHn−1(y) = 0, n = 1, 2, . . . (2.218)

The reader should recognize the connection between the pattern of the differential equation (??)
and the pattern of the recursion equation (??): a differential operator d/dz increases the order n
of Hn by one, a factor z reduces the order of Hn by one and introduces also a factor n. One can
then readily state which differential equation of w(y, z) should be equivalent to the relationship
(??), namely, dw/dy − 2zw = 0. The reader may verify that w(y, z), as given in (2.194), indeed
satisfies the latter relationship.
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Integral Representation of Hermite Polynomials

An integral representation of the Hermite polynomials can be derived starting from the integral

I(y) =
∫ +∞

−∞
dt e2iy t− t2 . (2.219)

which can be written

I(y) = e−y
2

∫ +∞

−∞
dte−(t−iy)2

= e−y
2

∫ +∞

−∞
dze−z

2
. (2.220)

Using (2.247) for a = i one obtains
I(y) =

√
π e−y

2
(2.221)

and, acording to the definition (2.226a),

e−y
2

=
1√
π

∫ +∞

−∞
dt e2iyt− t2 . (2.222)

Employing this expression now on the r.h.s. of the Rodrigues formula (2.200) yields

Hn(y) =
(−1)n√

π
ey

2

∫ +∞

−∞
dt

dn

dyn
e2iyt− t2 . (2.223)

The identity
dn

dyn
e2iy t− t2 = (2 i t)n e2iy t− t2 (2.224)

results, finally, in the integral representation of the Hermite polynomials

Hn(y) =
2n (−i)ney2

√
π

∫ +∞

−∞
dt tn e2iy t− t2 , n = 0, 1, 2, . . . (2.225)

Orthonormality Properties

We want to derive from the generating function (2.194, 2.196) the orthogonality properties of the
Hermite polynomials. For this purpose we consider the integral∫ +∞

−∞ dy w(y, z)w(y, z′) e−y
2

= e2 z z′
∫ +∞

−∞
dy e−(y−z−z′)2

=
√
π e2 z z′

=
√
π

∞∑
n=0

2n zn z′n

n!
. (2.226)

Expressing the l.h.s. through a double series over Hermite polynomials using (2.194, 2.196) yields
∞∑

n,n′=0

∫ +∞

−∞
dy Hn(y)Hn′(y) e−y

2 zn z′n
′

n!n′!
=

∞∑
n=0

2nn!
√
π
zn z′n

n!n!
(2.227)

Comparing the terms of the expansions allows one to conclude the orthonormality conditions∫ +∞

−∞
dy Hn(y)Hn′(y) e−y

2
= 2n n!

√
π δnn′ . (2.228)
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Figure 2.2: Stationary states φn(y) of the harmonic oscillator for n = 0, 1, 2, 3, 4.

Normalized Stationary States

The orthonormality conditions (2.228) allow us to construct normalized stationary states of the
harmonic oscillator. According to (2.197) holds

φ̃n(y) = e−y
2/2Hn(y) . (2.229)

The normalized states are [c.f. (2.189, 2.190)]

φn(y) = Nn e
−y2/2Hn(y) . (2.230)

and for the normalization constants Nn follows from (2.228)

N2
n

∫ +∞

−∞
dy e−y

2
H2
n(y) = N2

n 2n n!
√
π = 1 (2.231)

We conclude
Nn =

1√
2n n!

√
π

(2.232)

and can finally state the explicit form of the normalized stationary states

φn(y) =
1√

2n n!
√
π
e−y

2/2Hn(y) . (2.233)

The stationary states (2.233) are presented for n = 0, 1, 2, 3, 4 in Fig. 2.2. One can recognize, in
agreement with our above discussions, that the wave functions are even for n = 0, 2, 4 and odd
for n = 1, 3. One can also recognize that n is equal to the number of nodes of the wave function.
Furthermore, the value of the wave function at y = 0 is positive for n = 0, 4, negative for n = 2
and vanishes for n = 1, 3, in harmony with (??).
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The normalization condition (2.231) of the wave functions differs from that postulated in (2.189)
by the Jacobian dx/dy, i.e., by √∣∣∣∣dxdy

∣∣∣∣ =
[mω
~

] 1
4
. (2.234)

The explicit form of the stationary states of the harmonic oscillator in terms of the position variable
x is then, using (2.233) and (2.189)

φn(x) =
1√

2n n!

[mω
π~

] 1
4
e−

mωx2

2~ Hn(
√
mω

~

x) . (2.235)

Completeness of the Hermite Polynomials

The Hermite polynomials are the first members of a large class of special functions which one
encounters in the course of describing stationary quantum states for various potentials and in spaces
of different dimensions. The Hermite polynomials are so-called orthonogal polynomials since they
obey the conditions (2.228). The various orthonogal polynomials differ in the spaces Ω ⊂ R over
which they are defined and differ in a weight function w(y) which enter in their orthonogality
conditions. The latter are written for polynomials pn(x) in the general form∫

Ω
dx pn(x) pm(x) w(x) = In δnm (2.236)

where w(x) is a so-called weight function with the property

w(x) ≥ 0, w(x) = 0 only at a discrete set of points xk ∈ Ω (2.237)

and where In denotes some constants. Comparision with (2.228) shows that the orthonogality
condition of the Hermite polynomials is in complience with (2.236 , 2.237) for Ω = R, w(x) =
exp(−x2), and In = 2nn!

√
π.

Other examples of orthogonal polynomials are the Legendre and Jacobi polynomials which arise
in solving three-dimensional stationary Schrödinger equations, the ultra-spherical harmonics which
arise in n–dimensional Schrödinger equations and the associated Laguerre polynomials which arise
for the stationary quantum states of particles moving in a Coulomb potential. In case of the
Legendre polynomials, denoted by P`(x) and introduced in Sect. 5 below [c.f. (5.150 , 5.151, 5.156,
5.179] holds Ω = [−1, 1], w(x) ≡ 1, and I` = 2/(2` + 1). In case of the associated Laguerre

polynomials, denoted by L
(α)
n (x) and encountered in case of the stationary states of the non-

relativistic [see Sect. ??? and eq. ???] and relativistic [see Sect. 10.10 and eq. (10.459] hydrogen
atom, holds Ω = [0,+∞[, w(x) = xαe−x, In = Γ(n+α+1)/n! where Γ(z) is the so-called Gamma
function.
The orthogonal polynomials pn mentioned above have the important property that they form a
complete basis in the space F of normalizable functions, i.e., of functions which obey∫

Ω
dx f2(x) w(x) = <∞ , (2.238)

where the space is endowed with the scalar product

(f |g) =
∫

Ω
dx f(x) g(x) w(x) = <∞ , f, g ∈ F . (2.239)
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As a result holds for any f ∈ F
f(x) =

∑
n

cn pn(x) (2.240)

where
cn =

1
In

∫
Ω
dx w(x) f(x) pn(x) . (2.241)

The latter identity follows from (2.236). If one replaces for all f ∈ F : f(x) →
√
w(x) f(x) and,

in particular, pn(x) →
√
w(x) pn(x) the scalar product (2.239) becomes the conventional scalar

product of quantum mechanics

〈f |g〉 =
∫

Ω
dx f(x) g(x) . (2.242)

Let us assume now the case of a function space governed by the norm (2.242) and the existence of a
normalizable state ψ(y, t) which is stationary under the action of the harmonic oscillator propagator
(2.147), i.e., a state for which (2.172) holds. Since the Hermite polynomials form a complete basis
for such states we can expand

ψ(y, t) =
∞∑
n=0

cn(t) e−y
2/2Hn(y) . (2.243)

To be consistent with(2.188, 2.197) it must hold cn(t) = dn exp[−iω(n + 1
2)t] and, hence, the

stationary state ψ(y, t) is

ψ(y, t) =
∞∑
n=0

dn exp[−iω(n+
1
2

)t] e−y
2/2Hn(y) . (2.244)

For the state to be stationary |ψ(x, t)|2, i.e.,

∞∑
n,m=0

d∗ndm exp[iω(m− n)t] e−y
2
Hn(y)Hm(y) , (2.245)

must be time-independent. The only possibility for this to be true is dn = 0, except for a single
n = no, i.e., ψ(y, t) must be identical to one of the stationary states (2.233). Therefore, the states
(2.233) exhaust all stationary states of the harmonic oscillator.

Appendix: Exponential Integral

We want to prove

I =

+∞∫
−∞

dy1 . . .

+∞∫
−∞

dyn ei
∑n
j,k yjajkyk =

√
(iπ)n

det(a)
, (2.246)

for det(a) 6= 0 and real, symmetric a, i.e. aT = a. In case of n = 1 this reads∫ +∞

−∞
dx ei a x

2
=

√
i π

a
, (2.247)



2.7: Appendix / Exponential Integral 45

which holds for a ∈ C as long as a 6= 0.
The proof of (2.246) exploits that for any real, symmetric matrix exists a similarity transformation
such that

S−1a S = ã =


ã11 0 . . . 0
0 ã22 . . . 0
...

...
. . .

...
0 0 . . . ãnn

 . (2.248)

where S can be chosen as an orthonormal transformation, i.e.,

STS = 11 or S = S−1 . (2.249)

The ãkk are the eigenvalues of a and are real. This property allows one to simplify the bilinear
form

∑n
j,k yjajkyk by introducing new integration variables

ỹj =
n∑
k

(S−1)jkyk ; yk =
n∑
k

Skj ỹj . (2.250)

The bilinear form in (2.246) reads then in terms of ỹj

∑n
j,k yjajkyk =

n∑
j,k

n∑
`m

ỹ`Sj`ajkSkmỹm

=
n∑
j,k

n∑
`m

ỹ`(ST )`jajkSkmỹm

=
n∑
j,k

ỹj ãjkỹk (2.251)

where, according to (2.248, 2.249)

ãjk =
n∑
l,m

(ST )jlalmSmk . (2.252)

For the determinant of ã holds

det(ã) =
n∏
j=1

ãjj (2.253)

as well as

det(ã) = det(S−1aS) = det(S−1) det(a) , det(S)
= (det(S))−1 det(a) det(S) = det(a) . (2.254)

One can conclude

det(a) =
n∏
j=1

ãjj . (2.255)
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We have assumed det(a) 6= 0. Accordingly, holds

n∏
j=1

ãjj 6= 0 (2.256)

such that none of the eigenvalues of a vanishes, i.e.,

ãjj 6= 0 , for j = 1, 2, . . . , n (2.257)

Substitution of the integration variables (2.250) allows one to express (2.250)

I =

+∞∫
−∞

dỹ1 . . .

+∞∫
−∞

dỹn

∣∣∣∣det(∂(y1, . . . , yn)
∂(ỹ1, . . . , ỹn)

)∣∣∣∣ ei
∑n
k ãkkỹ

2
k . (2.258)

where we introduced the Jacobian matrix

J =
∂(y1, . . . , yn)
∂(ỹ1, . . . , ỹn)

(2.259)

with elements
Jjs =

∂yj
∂ỹs

. (2.260)

According to (2.250) holds
J = S (2.261)

and, hence,

det(
∂(y1, . . . , yn)
∂(ỹ1, . . . , ỹn)

) = det(S) . (2.262)

From (2.249) follows
1 = det

(
STS

)
= ( det S )2 (2.263)

such that one can conclude
det S = ±1 (2.264)

One can right then (2.258)

I =

+∞∫
−∞

dỹ1 . . .

+∞∫
−∞

dỹn ei
∑n
k ãkkỹ

2
k

=

+∞∫
−∞

dỹ1 e
iã11ỹ2

1 . . .

+∞∫
−∞

dỹn e
iãnnỹ2

n =
n∏
k=1

+∞∫
−∞

dỹk e
iãkkỹ

2
k (2.265)

which leaves us to determine integrals of the type

+∞∫
−∞

dx eicx
2

(2.266)
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where, according to (2.257) holds c 6= 0.
We consider first the case c > 0 and discuss the case c < 0 further below. One can relate inte-
gral (2.266) to the well-known Gaussian integral

+∞∫
−∞

dx e−cx
2

=
√
π

c
, c > 0 . (2.267)

by considering the contour integral

J =
∮
γ

dz eicz
2

= 0 (2.268)

along the path γ = γ1 +γ2 +γ3 +γ4 displayed in Figure 2.3. The contour integral (2.268) vanishes,
since eicz

2
is a holomorphic function, i.e., the integrand does not exhibit any singularities anywhere

in C. The contour intergral (2.268) can be written as the sum of the following path integrals

J = J1 + J2 + J3 + J4 ; Jk =
∮
γk

dz eicz
2

(2.269)

The contributions Jk can be expressed through integrals along a real coordinate axis by realizing
that the paths γk can be parametrized by real coordinates x

γ1 : z = x J1 =
p∫
−p
dx eicx

2

γ2 : z = ix+ p J2 =
p∫
0

i dx eic(ix+p)2

γ3 : z =
√
i x J3 =

−
√

2p∫
√

2p

√
i dx eic(

√
ix)2

= −
√
i

√
2p∫

−
√

2p

dx e−cx
2

γ4 : z = ix− p J4 =
0∫
−p
i dx eic(ix−p)

2
,

for x, p ∈ IR.

(2.270)

Substituting −x for x into integral J4 one obtains

J4 =

0∫
p

(−i) dx eic(−ix+p)2

=

p∫
0

i dx eic(ix−p)
2

= J2 . (2.271)
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p�

Im(z)
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γ� 3
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Figure 2.3: Contour path γ in the complex plain.

We will now show that the two integrals J2 and J4 vanish for p → +∞. This follows from the
following calculation

lim
p→+∞

|J2 or 4| = lim
p→+∞

|
p∫

0

i dx eic(ix+p)2 |

≤ lim
p→+∞

p∫
0

|i| dx |eic(p2−x2)| |e−2cxp| . (2.272)

It holds |eic(p2−x2)| = 1 since the exponent of e is purely imaginary. Hence,

lim
p→+∞

|J2 or 4| ≤ lim
p→+∞

p∫
0

dx |e−2cxp|

= lim
p→+∞

1− e−2cp

2 c p
= 0 . (2.273)

J2 and J4 do not contribute then to integral (2.268) for p = +∞. One can state accordingly

J =

∞∫
−∞

dx eicx
2 −

√
i

∞∫
−∞

dx e−cx
2

= 0 . (2.274)

Using 2.267) one has shown then
∞∫
−∞

dx eicx
2

=

√
iπ

c
. (2.275)
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One can derive the same result for c < 0, if one chooses the same contour integral as (2.268), but
with a path γ that is reflected at the real axis. This leads to

J =

∞∫
−∞

dx eicx
2

+
√
−i

−∞∫
∞

dx ecx
2

= 0 (2.276)

and (c < 0)
∞∫
−∞

dx eicx
2

=

√
−iπ
−|c|

=

√
iπ

c
. (2.277)

We apply the above results (2.275, 2.277) to (2.265). It holds

I =
n∏
k=1

√
iπ

ãkk
=

√
(iπ)n∏n
j=1 ãjj

. (2.278)

Noting (2.255) this result can be expressed in terms of the matrix a

I =

√
(iπ)n

det(a)
(2.279)

which concludes our proof.
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Chapter 3

The Schrödinger Equation

3.1 Derivation of the Schrödinger Equation

We will consider now the propagation of a wave function ψ(~r, t) by an infinitesimal time step ε. It
holds then according to (2.5)

ψ(~r, t+ ε) =
∫

Ω
d3r0 φ(~r, t+ ε|~r0, t)ψ(~r0, t) . (3.1)

We will expand the l.h.s. and the r.h.s. of this equation in terms of powers of ε and we will
demonstrate that the terms of order ε require that ψ(~r, t) satisfies a partial differential equation,
namely the Schrödinger equation. For many situations, but by no means all, the Schrödinger
equation provides the simpler avenue towards describing quantum systems than the path ingral
formulation of Section 2. Notable exceptions are non-stationary systems involving time-dependent
linear and quadratic Lagrangians.
The propagator in (3.1) can be expressed through the discretization scheme (2.20, 2.21). In the
limit of very small ε it is sufficient to employ a single discretization interval in (2.20) to evaluate
the propagator. Generalizing (2.20) to R3 one obtains then for small ε

φ(~r, t+ ε|~r0, t) =
[ m

2πi~ε

] 3
2 exp

{
i

~

[
m

2
(~r − ~r0)2

ε
− ε U(~r, t)

]}
. (3.2)

From this follows

ψ(~r, t+ ε) =
∫

Ω
d3r0

[ m

2πi~ε

] 3
2 exp

{
i

~

[
m

2
(~r − ~r0)2

ε
− ε U(~r, t)

]}
ψ(~r0, t) . (3.3)

In order to carry out the integration we set ~r0 = ~r + ~s and use ~s as the new integration variable.
We will denote the components of ~s by (x1, x2, x3)T . This yields

ψ(~r, t+ ε) =
∫ +∞
−∞ dx1

∫ +∞
−∞ dx2

∫ +∞
−∞ dx3

[
m

2πi~ε

] 3
2 ×

× exp
(
i

~

m

2
x2

1 + x2
2 + x2

3

ε
− ε U(~r, t)

)
︸ ︷︷ ︸

even in x1, x2, , x3

ψ(~r + ~s, t) . (3.4)
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It is important to note that the integration is not over ~r, but over ~s = (x1, x2, x3)T , e.g. U(~r, t) is a
constant with respect to this integration. The integration involves only the wave function ψ(~r+~s, t)
and the kinetic energy term. Since the latter contributes to (3.4) only for small x2

1 +x2
2 +x2

3 values
we expand

ψ(~r + ~s, t) = ψ(~r, t) +
3∑
j=1

xj
∂

∂xj
ψ(~r, t) +

1
2

3∑
j,k=1

xjxk
∂2

∂xj∂xk
ψ(~r, t) + . . . (3.5)

assuming that only the leading terms contribute, a supposition which will be examined below. Since
the kinetic energy contribution in (3.4) is even in all three coordinates x1, x2, x3, only terms of the
expansion (3.5) which are even separately in all three coordinates yield non-vanishing contributions.
It is then sufficient to consider the terms

ψ(~r, t) ; 1
2

∑3
j=1 x

2
j
∂2

∂x2
j
ψ(~r, t) ; 1

4

∑3
j,k=1 x

2
jx

2
k

∂4

∂x2
j∂x

2
k
ψ(~r, t) ;

1
12

∑3
j=1 x

4
j
∂4

∂x4
j
ψ(~r, t) ; . . . (3.6)

of the expansion of ψ(~r + ~s, t).
Obviously, we need then to evaluate integrals of the type

In(a) =
∫ +∞

−∞
dxx2n exp

(
i a x2

)
, n = 0, 1, 2 (3.7)

According to (2.36) holds

I0(a) =

√
iπ

a
(3.8)

Inspection of (3.7) shows

In+1(a) =
1
i

∂

∂a
In(a). (3.9)

Starting from (3.8) one can evaluate recursively all integrals In(a). It holds

I1(a) =
i

2a

√
iπ

a
; I2(a) = − 3

4a2

√
iπ

a
, . . . (3.10)

It is now important to note that in case of integral (3.4) one identifies

1
a

=
2 ε ~
m

= O(ε) (3.11)

and, consequently, the terms collected in (3.6) make contributions of the order

O(ε
3
2 ) , O(ε

5
2 ) , O(ε

7
2 ) , O(ε

7
2 ) . (3.12)

Here one needs to note that we are actually dealing with a three-fold integral. According to (3.11)
holds [ m

2πi~ε

] 3
2 ×

[
i π

a

] 3
2

= 1 (3.13)
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and one can conclude, using (3.10),

ψ(~r, t+ ε) = exp
[
− iε
~

U(~r, t)
] [

ψ(~r, t) +
1
4

2iε~
m
∇2ψ(~r, t) + O(ε2)

]
. (3.14)

This expansion in terms of powers of ε suggests that we also expand

ψ(~r, t+ ε) = ψ(~r, t) + ε
∂

∂t
ψ(~r, t) + O(ε2) (3.15)

and

exp
[
− iε
~

U(~r, t)
]

= 1 − iε

~

U(~r, t) + O(ε2) . (3.16)

Inserting this into (3.14) results in

ψ(~r, t) + ε ∂∂tψ(~r, t) = ψ(~r, t) − iε

~

U(~r, t)ψ(~r, t)

+
iε

~

~
2

2m
∇2ψ(~r, t) + O(ε2) . (3.17)

Obviously, this equation is trivially satisfied to order O(ε0). In order O(ε) the equation reads

i~
∂

∂t
ψ(~r, t) =

[
− ~

2

2m
∇2 + U(~r, t)

]
ψ(~r, t) . (3.18)

This is the celebrated time-dependent Schrödinger equation. This equation is often written in the
form

i~
∂

∂t
ψ(~r, t) = Ĥ ψ(~r, t) (3.19)

where

Ĥ = − ~
2

2m
∇2 + U(~r, t) . (3.20)

3.2 Boundary Conditions

The time-dependent Schrödinger equation is a partial differential equation, 1st order in time, 2nd
order in the spatial variables and linear in the solution ψ(~r, t). The following general remarks can
be made about the solution.
Due to its linear character any linear combination of solutions of the time-dependent Schrödinger
equation is also a solution.
The 1st order time derivative requires that for any solution a single temporal condition needs to be
specified, e.g., ψ(~r, t1) = f(~r). Usually, one specifies the so-called initial condition, i.e., a solution
is thought for t ≥ t0 and the solution is specified at the intial time t0.
The 2nd order spatial derivatives require that one specifies also properties of the solution on a
closed boundary ∂Ω surrounding the volume Ω in which a solution is to be determined. We will
derive briefly the type of boundary conditions encountered. As we will discuss in Chapter 5 below
the solutions of the Schrödinger equation are restricted to particular Hilbert spaces H which are
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linear vector spaces of functions f(~r) in which a scalar product between two elements f, g ∈ H is
defined as follows

〈f |g〉Ω =
∫

Ω
d3rf∗(~r)g(~r) (3.21)

This leads one to consider the integral

〈f |H |g〉Ω =
∫

Ω
d3rf∗(~r) Ĥ g(~r) (3.22)

where Ĥ is defined in (3.20). Interchanging f∗(~r) and g(~r) results in

〈g|H |f〉Ω =
∫

Ω
d3r g(~r) Ĥf∗(~r) . (3.23)

Since Ĥ is a differential operator the expressions (3.22) and (3.23), in principle, differ from each
other. The difference between the integrals is

〈g|H |f〉Ω = − 〈g|H |f〉Ω

=
∫

Ω
d3rf∗(~r)

(
− ~

2

2m
∇2

)
g(~r) −

∫
Ω
d3rg(~r)

(
− ~

2

2m
∇2

)
f∗(~r)

+
∫

Ω
d3rf∗(~r)U(~r, t) g(~r) −

∫
Ω
d3rg(~r)U(~r, t), f∗(~r)

= − ~
2

2m

∫
Ω
d3rf∗(~r)

(
∇2

)
g(~r) −

∫
Ω
d3rg(~r)

(
∇2

)
f∗(~r) (3.24)

Using Green’s theorem1 ∫
Ω d

3r
(
f∗(~r)∇2 g(~r) − g(~r)∇2 f∗(~r)

)
=
∫
∂Ω d~a · ( f∗(~r)∇g(~r) − g(~r)∇f∗(~r) ) (3.25)

one obtains the identity

〈f | Ĥ |g〉Ω = 〈g| Ĥ |f〉Ω +
∫
∂Ω
d~a · ~P (f∗, g|~r) (3.26)

where
∫
∂Ω d~a · ~A(~r) denotes an integral over the surface ∂Ω of the volume Ω, the surface elements

d~a pointing out of the surface in a direction normal to the surface and the vector–valued function
~A(~r) is taken at points ~r ∈ ∂Ω. In (3.26) the vector–valued function ~P (f∗, g|~r) is called the
concomitant of Ĥ and is

~P (f∗, g|~r) = − ~
2

2m
( f∗(~r)∇g(~r) − g(~r)∇f∗(~r) ) (3.27)

We will postulate below that Ĥ is an operator in H which represents energy. Since energy is a real
quantity one needs to require that the eigenvalues of the operator Ĥ are real and, hence, that Ĥ is
hermitian2. The hermitian property, however, implies

〈f | Ĥ |g〉Ω = 〈g| Ĥ |f〉Ω (3.28)
1See, for example, Calssical Electrodynamics, 2nd Ed., J. D. Jackson, (John Wiley, New York, 1975), Chapter 1.
2The reader is advised to consult a reference text on ‘Linear Algebra’ to follow this argument.
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and, therefore, we can only allow functions which make the differential d~a · ~P (f∗, g|~r) vanish on
∂Ω. It must hold then for all f ∈ H

f(~r) = 0 ∀~r, ~r ∈ ∂Ω (3.29)

or
d~a · ∇f(~r) = 0 ∀~r, ~r ∈ ∂Ω (3.30)

Note that these boundary conditions are linear in f , i.e., if f and g satisfy these conditions than
also does any linear combination αf + βg. Often the closed surface of a volume ∂Ω is the union
of disconnected surfaces3 ∂Ωj , i.e., ∂Ω = ∂Ω1 ∩ ∂Ω2 ∩ ∂Ω3 ∩ . . . In this case one can postulate
both conditions (3.29, 3.30) each condition holding on an entire surface ∂Ωj . However, to avoid
discontinuities in ψ(~r, t) on a single connected surface ∂Ωj only either one of the conditions (3.29,
3.30) can be postulated.
A most common boundary condition is encountered for the volume Ω = ~R3 in which case one
postulates

lim
|~r|→∞

f(~r) = 0 “natural boundary condition” . (3.31)

In fact, in this case also all derivatives of f(~r) vanish at infinity. The latter property stems from
the fact that the boundary condition (3.31) usually arises when a particle existing in a bound state
is described. In this case one can expect that the particle density is localized in the area where the
energy of the particle exceeds the potential eenrgy, and that the density decays rapidly when one
moves away from that area. Since the total probability of finding the particle anywhere in space is∫

d3r|f(~r)|2 = 1 (3.32)

the wave function must decay for |~r| → ∞ rapidly enough to be square integrable, i.e., obey (3.32),
e.g., like exp(−κr), κ > 0 or like r−α, α > 2. In either case does f(~r) and all of its derivatives
vanish asymptotically.

3.3 Particle Flux and Schrödinger Equation

The solution of the Schrödinger equation is the wave function ψ(~r, t) which describes the state of
a particle moving in the potential U(~r, t). The observable directly linked to the wave function is
the probability to find the particle at position ~r at time t, namely, |ψ(~r, t)|2. The probability to
observe the particle anywhere in the subvolume ω ⊂ Ω is

p(ω, t) =
∫
ω
d3r |ψ(~r, t)|2 . (3.33)

The time derivative of p(ω, t) is

∂tp(ω, t) =
∫
ω
d3r [ψ∗(~r, t)∂tψ(~r, t) + ψ(~r, t)∂tψ∗(~r, t) ] . (3.34)

3An example is a volume between two concentric spheres, in which case ∂Ω1 is the inner sphere and ∂Ω2 is the
outer sphere.
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Using (3.19) and its conjugate complex4

− i~ ∂
∂t
ψ∗(~r, t) = Ĥ ψ∗(~r, t) (3.35)

yields

i~∂tp(ω, t) =
∫
ω
d3r

[
ψ∗(~r, t) Ĥ ψ(~r, t) − ψ(~r, t) Ĥ ψ∗(~r, t)

]
. (3.36)

According to (3.26, 3.27) this can be written

i~∂tp(ω, t) =
∫
∂ω
d~a · ~P (ψ∗(~r, t), ψ(~r, t)~r, t) . (3.37)

If one applies this identity to ω = Ω one obtains according to (3.29, 3.30) ∂tp(Ω, t) = 0. Accord-
ingly the probability to observe the particle anywhere in the total volume Ω is constant. A natural
choice for this constant is 1. One can multiply the solution of (3.18) by any complex number and
accordingly one can define ψ(~r, t) such that∫

Ω
d3r|ψ(~r, t)|2 = 1 (3.38)

holds. One refers to such solution as normalized. We will assume in the remainder of this Section
that the solutions discussed are normalized. Note that for a normalized wave function the quantity

ρ(~r, t) = |ψ(~r, t)|2 (3.39)

is a probability density with units 1/volume.
The surface integral (3.37) can be expressed through a volume integral according to∫

∂ω
d~a · ~A(~r) =

∫
ω
d3r∇ · ~A(~r) (3.40)

One can rewrite then (3.37) ∫
ω
d3r

(
∂tρ(~r, t) + ∇ ·~j(~r, t)

)
= 0 (3.41)

where
~j(~r, t) = ~P (ψ∗, ψ|~r, t) . (3.42)

Using (3.27) one can express this

~j(~r, t) =
~

2mi
[ψ(~r, t)∇ψ∗(~r, t) − ψ∗(~r, t)∇ψ(~r, t) ] . (3.43)

Since (3.41) holds for any volume ω ⊂ Ω one can conclude

∂tρ(~r, t) + ∇ ·~j(~r, t) = 0 . (3.44)
4Note that the Hamiltonian Ĥ involves only real terms.
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The interpretation of ~j(~r, t) is that of density flux. This follows directly from an inspection of
Eq. (3.41) written in the form

∂t

∫
ω
d3r ρ(~r, t) = −

∫
∂ω
d~a ·~j(~r, t) . (3.45)

Obviously, ~j(~r, t) gives rise to a descrease of the total probability in volume ω due to the disap-
pearence of probability density at the surface ∂ω. Note that ~j(~r, t) points in the direction to the
outside of volume ω.
It is of interest to note from (3.43) that any real wave function ψ(~r, t) has vanishing flux anywhere.
One often encounters wave functions of the type

φ(~r) = f(~r) ei~k·~r , for f(~r) ∈ R. (3.46)

The corresponding flux is

~j(~r) =
~~k

m
f2(~r) , (3.47)

i.e., arises solely from the complex factor exp(i~k · ~r). Such case arose in Sect. 2 for a free parti-
cle [c.f. (2.48, 2.71)], and for particles moving in a linear [c.f. (2.105, 2.125)] and in a quadratic
[c.f. (2.148, 2.167)] potential. In Sect. 2 we had demonstrated that a factor exp(ipoxo/~) induces
a motion of 1-dimensional wave packets such that po/m corresponds to the initial velocity. This
finding is consistent with the present evaluation of the particle flux: a factor exp(ipoxo/~) gives rise
to a flux po/m, i.e., equal to the velocity of the particle. The generalization to three dimenisons
implies then that the factor exp(i~k ·~r) corresponds to an intial velocit ~~k/m and a flux of the same
magnitude.

3.4 Solution of the Free Particle Schrödinger Equation

We want to consider now solutions of the Schrödinger equation (3.18) in Ω∞ = R
3 in the case

U(~r, t) = 0

i~
∂

∂t
ψ(~r, t) = − ~

2

2m
∇2 ψ(~r, t) (3.48)

which describes the motion of free particles. One can readily show by insertion into (3.48) that the
general solution is of the form

ψ(~r, t) = [2π]−
3
2

∫
Ω∞

d3k φ̃(~k) exp
(
i(~k · ~r − ωt)

)
(3.49)

where the dispersion relationship holds

ω =
~k2

2m
. (3.50)

Obviously, the initial condition at ψ(~r, t0) determines φ̃(~k). Equation (3.49) reads at t = t0

ψ(~r, t0) = [2π]−
3
2

∫
Ω∞

d3k φ̃(~k) exp
(
i(~k · ~r − ωt0)

)
. (3.51)
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The inverse Fourier transform yields

φ̃(~k) = [2π]−
3
2

∫
Ω∞

d3r0 exp(−i~k · ~r0)ψ(~r0, t0) . (3.52)

We have not specified the spatial boundary condition in case of (3.49). The solution as stated is
defined in the infinte space Ω∞ = R

3. If one chooses the initial state f(~r) defined in (3.51) to
be square integrable it follows according to the properties of the Fourier–transform that ψ(~r, t) as
given by (3.49) is square integrable at all subsequent times and, hence, that the “natural boundary
condition” (3.31) applies. The ensuing solutions are called wave packets.

Comparision with Path Integral Formulation

One can write solution (3.49, 3.51, 3.52) above

ψ(~r, t) =
∫

Ω∞

d3r0 φ(~r, t|~r0, t0)ψ(~r0, t0) (3.53)

where

φ(~r, t|~r0, t0) =
[

1
2π

]3 ∫
Ω∞

d3k exp
(
i~k · (~r − ~r0) − i

~

~
2k2

2m
(t − t0)

)
. (3.54)

This expression obviously has the same form as postulated in the path integral formulation of Quan-
tum Mechanics introduced above, i.e., in (2.5). We have identified then with (3.54) an alternative
representation of the propagator (2.47). In fact, evaluating the integral in (3.54) yields (2.47). To
show this one needs to note

1
2π

∫ +∞

−∞
dk1 exp

(
i~k1(x − x0) − i

~

~
2k2

1

2m
(t − t0)

)
=
[

m

2πi~(t− t0)

] 1
2

exp
[
im

2~
(x− x0)2

t− t0

]
. (3.55)

This follows from completion of the square

i~k1(x − x0) − i

~

~
2k2

1

2m
(t − t0)

= −i ~(t− to)
2m

[
k1 −

m

~

x− xo
t− to

]2

+
i

~

m

2
(x− xo)2

t− to
(3.56)

and using (2.247).
Below we will generalize the propagator (3.54) to the case of non-vanishing potentials U(~r), i.e.,
derive an expression similar to (3.54) valid for this case. The general form for this propagator
involves an expansion in terms of a complete set of eigenfunctions as in (3.114) and (4.70) derived
below for a particle in a box and the harmonic oscillator, respectively. In case of the harmonoc
oscillator the expansion can be stated in a closed form given in (4.81)
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Free Particle at Rest

We want to apply solution (3.49, 3.52) to the case that the initial state of a 1-dimensional free
particle ψ(x0, t) is given by (??). The 1-dimensional version of (3.53, 3.54) is

ψ(x, t) =
∫ +∞

−∞
dx0 φ(x, t|x0, t0)ψ(x0, t) (3.57)

where

φ(x, t|x0, t0) =
1

2π

∫ +∞

−∞
dk exp

(
ik (x − x0) − i

~

~
2k2

2m
(t − t0)

)
. (3.58)

Integration over x0 leads to the integral∫ +∞

−∞
dx0exp

(
−ikx0 +

i

~

pox0 −
x2

0

2δ2

)
=
√

2πδ2 exp
(
−

(k − po
~

)2δ2

2

)
(3.59)

which is solved through completion of the square in the exponent [c.f. (3.55, (3.56)]. The remaining
integration over k leads to the integral∫ +∞

−∞ dk exp
[
ikx − 1

2 (k − po
~

)2 δ2 − i ~k
2

m (t− t0)
]

=???? (3.60)

Combining (3.57–3.60) yields with t0 = 0

ψ(x, t) =

[
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4
[

1
πδ2 (1 + ~2t2

m2δ4 )

] 1
4

× (3.61)

× exp

[
−

(x − po
m t)2

2δ2(1 + ~2t2

m2δ4 )
(1 − i

~t

mδ2
) + i

po
~

x − i

~

p2
o

2m
t

]
.

a result which is identical to the expression (??) obtained by means of the path integral propagator
(2.46). We have demonstrated then in this case that the Schrödinger formulation of Quantum
Mechanics is equivalent to the Feynman path integral formulation.

Stationary States

We consider now solutions of the time-dependent Schrödinger equation (3.19, 3.20) which are of
the form

ψ(~r, t) = f(t)φ(~r) . (3.62)

We will restrict the space of allowed solutions to a volume Ω such that the functions also make the
concomitant (3.27) vanish on the surface ∂Ω of Ω, i.e., the functions obey boundary conditions of
the type (3.29, 3.30). Accordingly, the boundary conditions are

φ(~r) = 0 ∀~r, ~r ∈ ∂Ω (3.63)

or
d~a · ∇φ(~r) = 0 ∀~r, ~r ∈ ∂Ω (3.64)
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and affect only the spatial wave function φ(~r). As pointed out above, a common case is Ω = Ω∞
and the ‘natural boundary condition’ (3.31). We will demonstrate that solutions of the type (3.62)
do exist and we will characterize the two factors of the solution f(t) and φ(~r). We may note in
passing that solutions of the type (3.62) which consist of two factors, one factor depending only on
the time variable and the other only on the space variables are called separable in space and time.
It is important to realize that the separable solutions (3.62) are special solutions of the time-
dependent Schrödinger equation, by no means all solutions are of this type. In fact, the solutions
(3.62) have the particular property that the associated probability distributions are independent
of time. We want to demonstrate this property now. It follows from the observation that for the
solution space considered (3.27) holds and, hence, according to (3.42) the flux ~j(~r, t) vanishes on
the surface of ∂Ω. It follows then from (3.45) that the total probability∫

Ω
d3r ρ(~r, t) =

∫
Ω
d3r |ψ(~r, t)|2 = |f(t)|2

∫
Ω
d3r |φ(~r)|2 (3.65)

is constant. This can hold only if |f(t)| is time-independent, i.e., if

f(t) = eiα, α ∈ R . (3.66)

One can conclude that the probability density for the state (3.62) is

|ψ(~r, t)|2 = |φ(~r)|2 , (3.67)

i.e., is time-independent. One calls such states stationary states.
In order to further characterize the solution (3.62) we insert it into (3.19). This yields an expression

g1(t)h1(~r) = g2(t)h2(~r) (3.68)

where g1(t) = i~∂tf(t), g2(t) = f(t), h1(~r) = φ(~r), and h2(~r) = Ĥ φ(~r). The identity (3.68) can
hold only for all t and all ~r if g1(t) = E g2(t) and E h1(~r) = h2(~r) for some E ∈ C. We must
postulate therefore

∂t f(t) = E f(t)
Ĥ φ(~r) = E φ(~r) . (3.69)

If these two equations can be solved simultaneously a solution of the type (3.62) exists.
It turns out that a solution for f(t) can be found for any E, namely

f(t) = f(0) exp
(
− i

~

E t

)
. (3.70)

The task of finding solutions φ(~r) which solve (3.69) is called an eigenvalue problem. We will
encounter many such problems in the subsequent Sections. At this point we state without proof
that, in general, for the eigenvalue problems in the confined function space, i.e., for functions
required to obey boundary conditions (3.63, 3.64), solutions exist only for a set of discrete E
values, the eigenvalues of the operator Ĥ. At this point we will accept that solutions φ(~r) of the
type (3.69) exist, however, often only for a discrete set of values En, n = 1, 2, . . . We denote the
corresponding solution by φE(~r). We have then shown that

ψ(~r, t) = f(0) exp
(
− i

~

E

)
φE(~r) where Ĥ φE(~r) = E φE(~r) . (3.71)
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is a solution of the time-dependent Schrödinger equation (3.19, 3.20).
According to (3.66) E must be real. We want to prove now that the eigenvalues E which arise in
the eigenvalue problem (3.71) are, in fact, real. We start our proof using the property (3.28) for
the special case that f and g in (3.28) both represent the state φE(~r), i.e.,∫

Ω
d3r φ∗E(~r) Ĥ φE(~r) =

∫
Ω
d3r φE(~r) Ĥ φ∗E(~r) . (3.72)

According to (3.71) this yields

E

∫
Ω
d3r φ∗E(~r)φE(~r) = E∗

∫
Ω
d3r φE(~r)φ∗E(~r) . (3.73)

from which follows E = E∗ and, hence, E ∈ R. We will show in Section 5 that E can be
interprerted as the total energy of a stationary state.

Stationary State of a Free Particle

We consider now the stationary state of a free particle described by

ψ(~r, t) = exp
(
− i
~

E t

)
φE(~r) , − ~

2

2m
∇2 φ(~r) = E φ(~r) . (3.74)

The classical free particle with constant energy E > 0 moves without bounds in the space Ω∞. As
a result we cannot postulate in the present case that wave functions are localized and normalizable.
We will wave this assumption as we always need to do later whenever we deal with unbound
particles, e.g. particles scattered of a potential.
The solution φE(~r) corresponding to the eigenvalue problem posed by (3.74) is actually best labelled
by an index ~k, ~k ∈ R3

φ~k(~r) = N exp
(
i~k · ~r

)
,
~

2k2

2m
= E . (3.75)

One can ascertain this statement by inserting the expression for φ~k(~r) into the eigenvalue problem

posed in (3.74) using ∇exp
(
i~k · ~r

)
= i~k exp

(
i~k · ~r

)
. The resulting total energy values E are

positive, a property which is to be expected since the energy is purely kinetic energy which, of
course, should be positive.
The corresponding stationary solution

ψ(~r, t) = exp
(
− i
~

~
2k2

2m
t

)
exp

(
i~k · ~r

)
(3.76)

has kinetic energy ~2k2/2m. Obviously, one can interpret then ~k as the magnitude of the momen-
tum of the particle. The flux corresponding to (3.76) according to (3.43) is

~j(~r, t) = |N |2 ~
~k

m
. (3.77)

Noting that ~k can be interpreted as the magnitude of the momentum of the particle the flux is
equal to the velocity of the particle ~v = ~~k/m multiplied by |N |2.
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3.5 Particle in One-Dimensional Box

As an example of a situation in which only bound states exist in a quantum system we consider the
stationary states of a particle confined to a one-dimensional interval [−a, a] ⊂ R assuming that the
potential outside of this interval is infinite. We will refer to this as a particle in a one-dimensional
‘box’.

Setting up the Space F1 of Proper Spatial Functions

The presence of the infinite energy wall is accounted for by restricting the spatial dependence of the
solutions to functions f(x) defined in the domain Ω1 = [−a, a] ⊂ R which vanish on the surface
∂Ω1 = {−a, a}, i.e.,

f ∈ F1 = {f : [−a, a] ⊂ R → R, f continuous, f(±a) = 0} (3.78)

Solutions of the Schrödinger Equation in F1

The time–dependent solutions satisfy

i~∂tψ(x, t) = − ~
2

2m
d2

dx2
ψ(x, t) . (3.79)

The stationary solutions have the form ψ(x, t) = exp(−iEt/~)φE(x) where φE(x) is determined
by

− ~
2

2m
d2

dx2
φE(x) = E φE(x) , φ(±a) = 0 . (3.80)

We note that the box is symmetric with respect to the origin. We can expect, hence, that the
solutions obey this symmetry as well. We assume, therefore, two types of solutions, so-called even
solutions obeying φ(x) = φ(−x)

φ
(e)
E (x) = A coskx ,

~
2k2

2m
= E (3.81)

and so-called odd solutions obeying φ(x) = −φ(−x)

φ
(o)
E (x) = A sinkx; ,

~
2k2

2m
= E . (3.82)

One can readily verify that (3.81, 3.82) satisfy the differential equation in (3.80).
The boundary conditions which according to (3.80) need to be satisfied are

φ
(e,o)
E (a) = 0 and φ

(e,o)
E (−a) = 0 (3.83)

The solutions (3.81, 3.82) have the property that either both boundary conditions are satisfied or
none. Hence, we have to consider only one boundary condition, let say the one at x = a. It turns
out that this boundary condition can only be satisfied for a discrete set of k–values kn, n ∈ N. In
case of the even solutions (3.81) they are

kn =
nπ

2a
, n = 1, 3, 5 . . . (3.84)
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since for such kn
cos(kna) = cos

(nπa
2a

)
= cos

(nπ
2

)
= 0 . (3.85)

In case of the odd solutions (3.82) only the kn–values

kn =
nπ

2a
, n = 2, 4, 6 . . . (3.86)

satisfy the boundary condition since for such kn

sin(kna) = sin
(nπa

2a

)
= sin

(nπ
2

)
= 0 . (3.87)

(Note that, according to (3.86), n is assumed to be even.)

The Energy Spectrum and Stationary State Wave Functions

The energy values corresponding to the kn–values in (3.84, 3.86), according to the dispersion
relationships given in (3.81, 3.82), are

En =
~

2π2

8ma2
n2 , n = 1, 2, 3 . . . (3.88)

where the energies for odd (even) n–values correspond to the even (odd) solutions given in (3.81)
and (3.82), respectively, i.e.,

φ(e)
n (a;x) = An cos

nπx

2a
, n = 1, 3, 5 . . . (3.89)

and
φ(o)
n (a;x) = An sin

nπx

2a
, n = 2, 4, 6 . . . . (3.90)

The wave functions represent stationary states of the particle in a one-dimensional box. The wave
functions for the five lowest energies En are presented in Fig. (3.1). Notice that the number of
nodes of the wave functions increase by one in going from one state to the state with the next
higher energy En. By counting the number of their nodes one can determine the energy ordering
of the wave functions.
It is desirable to normalize the wave functions such that∫ +a

−a
dx |φ(e,o)

n (a;x)|2 = 1 (3.91)

holds. This condition implies for the even states

|An|2
∫ +a

−a
dx cos2nπx

2a
= |An|2 a = 1 , n = 1, 3, 5 . . . (3.92)

and for the odd states

|An|2
∫ +a

−a
dx sin2nπx

2a
= |An|2 a = 1 , n = 2, 4, 6 . . . (3.93)

The normalization constants are then

An =

√
1
a
. (3.94)
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Figure 3.1: Eigenvalues En and eigenfunctions φ(e,o)
n (a;x) for n = 1, 2, 3, 4, 5 of particle in a box.
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The Stationary States form a Complete Orthonormal Basis of F1

We want to demonstrate now that the set of solutions (3.89, 3.90, 3.94)

B1 = {φn(a;x) , n = 1, 2, 3, . . .} (3.95)

where

φn(a;x) =

√
1
a

{
cosnπx2a for n = 1, 3, 5 . . .
sinnπx2a for n = 2, 4, 6 . . .

(3.96)

together with the scalar product5

〈f |g〉Ω1 =
∫ +a

−a
dxf(x) g(x) , f, g ∈ F1 (3.97)

form an orthonormal basis set, i.e., it holds

〈φn|φm〉Ω1 = δnm . (3.98)

The latter property is obviously true for n = m. In case of n 6= m we have to consider three cases,
(i) n,m both odd, (ii) n,m both even, and (iii) the mixed case. The latter case leads to integrals

〈φn|φm〉Ω1 =
1
a

∫ +a

−a
dx cos

nπx

2a
sin

mπx

2a
. (3.99)

Since in this case the integrand is a product of an even and of an odd function, i.e., the integrand
is odd, the integral vanishes. Hence we need to consider only the first two cases. In case of n,m
odd, n 6= m, the integral arises

〈φn|φm〉Ω1 = 1
a

∫ +a
−a dx cosnπx2a cosmπx2a =

1
a

∫ +a
−a dx

[
cos (n−m)πx

2a + cos (n+m)πx
2a

]
(3.100)

The periods of the two cos-functions in the interval [−a, a] are N, N ≥ 1. Obviously, the integrals
vanish. Similarly, one obtains for n,m even

〈φn|φm〉Ω1 = 1
a

∫ +a
−a dx sinnπx2a sinmπx2a =

1
a

∫ +a
−a dx

[
cos (n−m)πx

2a − cos (n+m)πx
2a

]
(3.101)

and, hence, this integral vanishes, too.
Because of the property (3.98) the elements of B1 must be linearly independent. In fact, for

f(x) =
∞∑
n=1

dn φn(a;x) (3.102)

holds according to (3.98)

〈f |f〉Ω1 =
∞∑
n=1

d2
n . (3.103)

5We will show in Section 5 that the property of a scalar product do indeed apply. In particular, it holds:
〈f |f〉Ω1 = 0 → f(x) ≡ 0.
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f(x) ≡ 0 implies 〈f |f〉Ω1 = 0 which in turn implies dn = 0 since d2
n ≥ 0. It follows that B1

defined in (3.95) is an orthonormal basis.
We like to show finally that the basis (3.95) is also complete, i.e., any element of the function space
F1 defined in (3.78) can be expressed as a linear combination of the elements of B1 defined in
(3.95, 3.96). Demonstration of completeness is a formidable task. In the present case, however,
such demonstration can be based on the theory of Fourier series. For this purpose we extend the
definition of the elements of F1 to the whole real axis through

f̃ : R → R ; ~f(x) = f([x+ a]a − a) (3.104)

where [y]a = ymod2a. The functions f̃ are periodic with period 2a. Hence, they can be expanded
in terms of a Fourier series, i.e., there exist real constants {an, n = 0, 1, 2, . . .} and {bn, n = 1, 2, . . .}
such that

f̃ =
∞∑
n=0

an cos
nπx

2a
+

∞∑
n=1

an sin
nπx

2a
(3.105)

The functions f̃ corresponding to the functions in the space F1 have zeros at x = ±ma, m =
1, 3, 5 . . . Accordingly, the coefficients an, n = 2, 4, . . . and bn, n = 1, 3, . . . in (3.105) must vanish.
This implies that only the trigonometric functions which are elements of B1 enter into the Fourier
series. We have then shown that any f̃ corresponding to elements of F1 can be expanded in terms
of elements in B1. Restricting the expansion (3.105) to the interval [−a, a] yields then also an
expansion for any element in F1 and B1 is a complete basis for F1.

Evaluating the Propagator

We can now use the expansion of any initial wave function ψ(x, t0) in terms of eigenfunctions
φn(a;x) to obtain an expression for ψ(x, t) at times t > t0. For this purpose we expand

ψ(x, t0) =
∞∑
n=1

dn φn(a;x) . (3.106)

Using the orthonormality property (3.98) one obtains∫ +a

−a
dx0φm(a;x0)ψ(x0, t0) = dm . (3.107)

Inserting this into (3.106) and generalizing to t ≥ t0 one can write

ψ(x, t) =
∞∑
n=1

φn(a;x) cn(t)
∫ +a

−a
dx0φn(a;x0)ψ(x0, t0) (3.108)

where the functions cn(t) are to be determined from the Schrödinger equation (3.79) requiring the
initial condition

cn(t0) = 1 . (3.109)

Insertion of (3.108) into the Schrödinger equation yields∑∞
n=1 φn(a;x) ∂tcn(t)

∫ +a
−a dx0φn(a;x0)ψ(x0, t0) =∑∞

n=1

(
− i
~
En
)
φn(a;x) cn(t)

∫ +a
−a dx0φn(a;x0)ψ(x0, t0) . (3.110)



3.5: Particle in One-Dimensional Box 67

Multiplying both sides by φm(a;x) and integrating over [−a, a] yields, according to (3.98),

∂t cm(t) = − i
~

Em cm(t) , cm(t0) = 1 . (3.111)

The solutions of these equations which satisfy (3.109) are

cm(t) = exp
(
− i
~

Em (t − t0)
)
. (3.112)

Equations (3.108, 3.112) determine now ψ(x, t) for any initial condition ψ(x, t0). This solution can
be written

ψ(x, t) =
∫ +a

−a
dx0 φ(x, t|x0, t0)ψ(x0, t0) (3.113)

where

φ(x, t|x0, t0) =
∞∑
n=1

φn(a;x) exp
(
− i
~

En (t − t0)
)
φn(a;x0) . (3.114)

This expression has the same form as postulated in the path integral formulation of Quantum
Mechanics introduced above, i.e., in (2.5). We have identified then with (3.114) the representation
of the propagator for a particle in a box with infinite walls.
It is of interest to note that φ(x, t|x0, t0) itself is a solution of the time-dependent Schrödinger
equation (3.79) which lies in the proper function space (3.78). The respective initial condition
is φ(x, t0|x0, t0) = δ(x − x0) as can be readily verified using (3.113). Often the propagator
φ(x, t|x0, t0) is also referred to as a Greens function. In the present system which is composed
solely of bound states the propagator is given by a sum, rather than by an integral (3.54) as in the
case of the free particle system which does not exhibit any bound states.
Note that the propagator has been evaluated in terms of elements of a particular function space F1,
the elements of which satisfy the appropriate boundary conditions. In case that different boundary
conditions hold the propagator will be different as well.

Example of a Non-Stationary State

As an illustration of a non-stationary state we consider a particle in an initial state

ψ(x0, t0) =
[

1
2πσ2

] 1
4

exp
(
− x2

0

2σ2
+ i k0 x0

)
, σ =

a

4
, k0 =

15
a
. (3.115)

This initial state corresponds to the particle being localized initially near x0 = 0 with a velocity
v0 = 15~/ma in the direction of the positive x-axis. Figure 3.2 presents the probability distribution
of the particle at subsequent times. One can recognize that the particle moves first to the left and
that near the right wall of the box interference effects develop. The particle moves then to the
left, being reflected at the right wall. The interference pattern begins to ‘smear out’ first, but the
collision with the left wall leads to new interference effects. The last frame shows the wave front
reaching again the right wall and the onset of new interference.
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Figure 3.2: Stroboscopic views of the probability distribution |ψ(x, t)|2 for a particle in a box
starting in a Gaussian distribution with momentum 15~/a.
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Summary: Particle in One-Dimensional Box

We like to summarize our description of the particle in the one-dimensional box from a point of
view which will be elaborated further in Section 5. The description employed a space of functions
F1 defined in (3.78). A complete basis of F1 is given by the infinite set B1 (3.95). An important
property of this basis and, hence, of the space F1 is that the elements of the basis set can be
enumerated by integer numbers, i.e., can be counted. We have defined in the space F1 a scalar
product (3.97) with respect to which the eigenfunctions are orthonormal. This property allowed us
to evaluate the propagator (3.114) in terms of which the solutions for all initial conditions can be
expressed.

3.6 Particle in Three-Dimensional Box

We consider now a particle moving in a three-dimensional rectangular box with side lengths
2a1, 2a2, 2a3. Placing the origin at the center and aligning the x1, x2, x3–axes with the edges
of the box yields spatial boundary conditions which are obeyed by the elements of the function
space

F3 = {f : Ω → R, f continuous, f(x1,x2,x3) = 0 ∀ (x1,x2,x3)T ∈ ∂
} . (3.116)

where Ω is the interior of the box and ∂Ω its surface

Ω = [−a1, a1]⊗ [−a2, a2]⊗ [−a3, a3] ⊂ R3

∂Ω = {(x1, x2, x3)T ∈ Ω, x1 = ±a1} ∪ {(x1, x2, x3)T ∈ Ω, x2 = ±a2}
∪ {(x1, x2, x3)T ∈ Ω, x3 = ±a3} . (3.117)

We seek then solutions of the time-dependent Schrödinger equation

i~∂tψ(x, t) = Ĥ ψ(x1, x2, x3, t) , Ĥ = − ~
2

2m
(
∂2

1 + ∂2
2 + ∂2

3

)
(3.118)

which are stationary states. The corresponding solutions have the form

ψ(x1, x2, x3, t) = exp
(
− i
~

E t

)
φE(x1, x2, x3) (3.119)

where φE(x1, x2, x3) is an element of the function space F3 defined in (3.116) and obeys the partial
differential equation

Ĥ φE(x1, x2, x3) = E φE(x1, x2, x3) . (3.120)

Since the Hamiltonian Ĥ is a sum of operators O(xj) each dependent only on a single variable, i.e.,
Ĥ = O(x1) +O(x2) +O(x3), one can express

φ(x1, x2, x3) =
3∏
j=1

φ(j)(xj) (3.121)

where

− ~
2

2m
∂2
j φ

(j)(xj) = Ej φ
(j)(xj) , φ(j)(±aj) = 0 , j = 1, 2, 3 (3.122)
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and E1 + E2 + E3 = E. Comparing (3.122) with (3.80) shows that the solutions of (3.122) are
given by (3.96) and, hence, the solutions of (3.120) can be written

φ(n1,n2,n3)(a1, a2, a3;x1, x2, x3) = φn1(a1;x1)φn2(a2;x2)φn3(a3;x3)
n1, n2, n3 = 1, 2, 3, . . . (3.123)

and

E(n1,n2,n3) =
~

2π2

8m

(
n2

1

a2
1

+
n2

2

a2
2

+
n2

3

a2
3

)
, n1, n2, n3 = 1, 2, 3, . . . (3.124)

The same considerations as in the one-dimensional case allow one to show that

B3 = {φ(n1,n2,n3)(a1, a2, a3;x1, x2, x3) , n1, n2, n3 = 1, 2, 3, . . .} (3.125)

is a complete orthonormal basis of F3 and that the propagator for the three-dimensional box is

φ(~r, t|~r0, t0) =
∞∑

n1,n2,n3=1

φ(n1,n2,n3)(a1, a2, a3;~r) (3.126)

exp
(
− i
~

E(n1n2n3) (t − t0)
)
φ(n1,n2,n3)(a1, a2, a3;~r0) .

Symmetries

The three-dimensional box confining a particle allows three symmetry operations that leave the box
unchanged, namely rotation by π around the x1, x2, x3–axes. This symmetry has been exploited
in deriving the stationary states. If two or all three orthogonal sides of the box have the same
length further symmetry operations leave the system unaltered. For example, if all three lengths
a1, a2, a3 are identical, i.e., a1 = a2 = a3 = a then rotation around the x1, x2, x3–axes by π/2
also leaves the system unaltered. This additional symmetry is also reflected by degeneracies in the
energy levels. The energies and corresponding degeneracies of the particle in the three-dimensional
box with all side lengths equal to 2a are given in the following Table:

n1 n2 n3 E/[~2π2/8ma2] degeneracy
1 1 1 3 single
1 1 2 6 three-fold
1 2 2 9 three-fold
1 1 3 11 three-fold
2 2 2 12 single
1 2 3 14 six-fold
2 2 3 17 three-fold
1 1 4 18 three-fold
2 3 3 22 three-fold
3 3 3 27 single
1 1 5 27 three-fold

One can readily verify that the symmetry of the box leads to three-fold and six-fold degeneracies.
Such degeneracies are always a signature of an underlying symmetry. Actually, in the present case
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‘accidental’ degeneracies also occur, e.g., for (n1, n2, n3) = (3, 3, 3) (1, 1, 5) as shown in the Table
above. The origin of this degeneracy is, however, the identity 32 + 32 + 32 = 12 + 12 + 52.
One particular aspect of the degeneracies illustrated in the Table above is worth mentioning. We
consider the degeneracy of the energy E122 which is due to the identity E122 = E212 = E221. Any
linear combination of wave functions

φ̃(~r) = αφ(1,2,2)(a, a, a;~r) + β φ(2,1,2)(a, a, a;~r) + γ φ(2,2,1)(a, a, a;~r) (3.127)

obeys the stationary Schrödinger equation Ĥ φ̃(~r) = E122 φ̃(~r). However, this linear combination
is not necessarily orthogonal to other degeneraste states, for example, φ(1,2,2)(a, a, a;~r). Hence,
in case of degenerate states one cannot necessarily expect that stationary states are orthogonal.
However, in case of an n–fold degeneracy it is always possible, due to the hermitian character of
Ĥ, to construct n orthogonal stationary states6.

6This is a result of linear algebra which the reader may find in a respective textbook.
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Chapter 4

Linear Harmonic Oscillator

The linear harmonic oscillator is described by the Schrödinger equation

i ~ ∂t ψ(x, t) = Ĥ ψ(x, t) (4.1)

for the Hamiltonian

Ĥ = − ~
2

2m
∂2

∂x2
+

1
2
mω2x2 . (4.2)

It comprises one of the most important examples of elementary Quantum Mechanics. There are sev-
eral reasons for its pivotal role. The linear harmonic oscillator describes vibrations in molecules and
their counterparts in solids, the phonons. Many more physical systems can, at least approximately,
be described in terms of linear harmonic oscillator models. However, the most eminent role of this
oscillator is its linkage to the boson, one of the conceptual building blocks of microscopic physics.
For example, bosons describe the modes of the electromagnetic field, providing the basis for its
quantization. The linear harmonic oscillator, even though it may represent rather non-elementary
objects like a solid and a molecule, provides a window into the most elementary structure of the
physical world. The most likely reason for this connection with fundamental properties of matter
is that the harmonic oscillator Hamiltonian (4.2) is symmetric in momentum and position, both
operators appearing as quadratic terms.
We have encountered the harmonic oscillator already in Sect. 2 where we determined, in the context
of a path integral approach, its propagator, the motion of coherent states, and its stationary states.
In the present section we approach the harmonic oscillator in the framework of the Schrödinger
equation. The important role of the harmonic oscillator certainly justifies an approach from two
perspectives, i.e., from the path integral (propagotor) perspective and from the Schrödinger equa-
tion perspective. The path integral approach gave us a direct route to study time-dependent
properties, the Schrödinger equation approach is suited particularly for stationary state properties.
Both approaches, however, yield the same stationary states and the same propagator, as we will
demonstrate below.
The Schrödinger equation approach will allow us to emphasize the algebraic aspects of quantum
theory. This Section will be the first in which an algebraic formulation will assume center stage.
In this respect the material presented provides an important introduction to later Sections using
Lie algebra methods to describe more elementary physical systems. Due to the pedagodical nature
of this Section we will link carefully the algebraic treatment with the differential equation methods
used so far in studying the Schrödinger equation description of quantum systems.

73
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In the following we consider first the stationary states of the linear harmonic oscillator and later
consider the propagator which describes the time evolution of any initial state. The stationary states
of the harmonic oscillator have been considered already in Chapter 2 where the corresponding wave
functions (2.235) had been determined. In the framework of the Schrödinger equation the stationary
states are solutions of (4.1) of the form ψ(x, t) = exp(−iEt/~)φE(x, t) where

Ĥ φE(x) = E φE(x) . (4.3)

Due to the nature of the harmonic potential which does not allow a particle with finite energy to
move to arbitrary large distances, all stationary states of the harmonic oscillator must be bound
states and, therefore, the natural boundary conditions apply

lim
x→±∞

φE(x) = 0 . (4.4)

Equation (4.3) can be solved for any E ∈ R, however, only for a discrete set of E values can the
boundary conditions (4.4) be satisfied. In the following algebraic solution of (4.3) we restrict the
Hamiltonian Ĥ and the operators appearing in the Hamiltonian from the outset to the space of
functions

N1 = {f : R → R, f ∈ C∞, lim
x→±∞

f(x) = 0} (4.5)

where C∞ denotes the set of functions which together with all of their derivatives are continuous.
It is important to keep in mind this restriction of the space, in which the operators used below,
act. We will point out explicitly where assumptions are made which built on this restriction. If
this restriction would not apply and all functions f : R → R would be admitted, the spectrum of
Ĥ in (4.3) would be continuous and the eigenfunctions φE(x) would not be normalizable.

4.1 Creation and Annihilation Operators

The Hamiltonian operator (4.2) can be expressed in terms of the two operators

p̂ =
~

i

d

dx
, x̂ = x (4.6)

the first being a differential operator and the second a multiplicative operator. The operators act
on the space of functions N1 defined in (4.5). The Hamiltonian Ĥ can be expressed in terms of the
operators acting on the space (4.5)

Ĥ =
1

2m
p̂2 +

1
2
mω2 x̂2 (4.7)

which is why these operators are of interest to us.
The cardinal property exploited below, beside the representation (4.7) of the Hamiltonian, is the
commutation property

[p̂, x̂] =
~

i
11 (4.8)

which holds for any position and momentum operator. This property states that p̂ and x̂ obey an
algebra in which the two do not commute, however, the commutator has a simple form. In order
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to derive (4.8) we recall that all operators act on functions in N1 and, hence, the action of [p̂, x̂]
on such functions must be considered. One obtains

[p̂, x̂] f(x) =
~

i

d

dx
x f(x) − x

~

i

d

dx
f(x) =

~

i
f(x) =

~

i
11 f(x) . (4.9)

From this follows (4.8).
Our next step is an attempt to factorize the Hamiltonian (4.7) assuming that the factors are easier
to handle than the Hamiltonian in yielding spectrum and eigenstates. Being guided by the identity
for scalar numbers

(b− ic)(b+ ic) = b2 − i(cb− bc) + c2 = b2 + c2 (4.10)

we define

â+ =
√
mω

2~
x̂ − i√

2m~ω
p̂ , â− =

√
mω

2~
x̂ +

i√
2m~ω

p̂ . (4.11)

The reader may note that we have attempted, in fact, to factor Ĥ/~ω. Since â+ and â− are
operators and not scalars we cannot simply expect that the identy (4.10) holds for â+ and â− since
[â−, â+] = â−â+ − â+â− does not necessarily vanish. In fact, the commutator property (4.8)
implies

[â−, â+] = 11 . (4.12)

To prove this commutation property we determine using (4.11)

â−â+ =
mω

2~
x̂2 +

1
2m~ω

p̂2 +
i

2~
[p̂, x̂] . (4.13)

(4.7) and (4.8) yield

â−â+ =
1
~ω

Ĥ +
1
2

11 . (4.14)

Similarly one can show

â+â− =
1
~ω

Ĥ − 1
2

11 . (4.15)

(4.14) and (4.15) together lead to the commutation property (4.12).
Before we continue we like to write (4.14, 4.15) in a form which will be useful below

Ĥ = ~ω â−â+ − ~ω

2
11 (4.16)

Ĥ = ~ω â+â− +
~ω

2
11 . (4.17)

We also express â+ and â− directly in terms of the coordinate x and the differential operator d
dx

â+ =
√
mω

2~
x −

√
~

2mω
d

dx
, â− =

√
mω

2~
x̂ +

√
~

2mω
d

dx
. (4.18)

It is of interest to note that the operators â+ and â− are real differential operators.
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Relationship between a+ and a−

The operators â+ and â− are related to each other by the following property which holds for all
functions f, g ∈ N1 ∫ +∞

−∞
dx f(x) a+ g(x) =

∫ +∞

−∞
dx g(x) a− f(x) . (4.19)

This property states that the operators â+ and â− are the adjoints of each other. The property
follows directly from (??). Using (??) we like to state (4.19) in the form1

〈f |â+g〉Ω∞ = 〈g|â−f〉Ω∞ . (4.20)

In the following we will determine the spectrum of Ĥ and its eigenstates. The derivation will be
based solely on the properties (4.12, 4.16, 4.17, 4.19).

â+ and â− as Ladder Operators

The operators â+ and â− allow one to generate all stationary states of a harmonic oscillator once
one such state φE(x)

Ĥ φE(x) = E φE(x) (4.21)

is available. In fact, one obtains using (4.16, 4.17, 4.21)

Ĥ â− φE(x) = ( ~ω â−â+ − ~ω

2
11 ) â− φE(x)

= â− ( ~ω â+â− +
~ω

2
11 − ~ω 11 )φE(x)

= â− ( Ĥ − ~ω )φE(x)
= (E − ~ω ) â− φE(x) . (4.22)

Similarly one can show using again (4.16, 4.17, 4.21)

Ĥ â+ φE(x) = ( ~ω â+â− +
~ω

2
11 ) â+ φE(x)

= â+ ( ~ω â−â+ − ~ω

2
11 + ~ω 11 )φE(x)

= â+ ( Ĥ + ~ω )φE(x)
= (E + ~ω ) â+ φE(x) . (4.23)

Together, it holds that for a stationary state φE(x) of energy E defined through (4.21) â−φE(x) is
a stationary state of energy E − ~ω and â+φE(x) is a stationary state of energy E + ~ω.
The results (4.22, 4.23) can be generalized to m-fold application of the operators â+ and â−

Ĥ (â+)m φE(x) = (E + m ~ω )
(
â+
)m

φE(x)

Ĥ (â−)m φE(x) = (E − m ~ω )
(
â−
)m

φE(x) . (4.24)
1This property states that the operators in the function space N1 are the hermitian conjugate of each other. This

property of operators is investigated more systematically in Section 5.
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One can use these relationships to construct an infinite number of stationary states by stepping up
and down the spectrum in steps of ±~ω. For obvious reasons one refers to â+ and â− as ladder
operators. Another name is creation (â+) and annihilation (â−) operators since these operators
create and annihilate vibrational quanta ~ω. There arise, however, two difficulties: (i) one needs to
know at least one stationary state to start the construction; (ii) the construction appears to yield
energy eigenvalues without lower bounds when, in fact, one expects that E = 0 should be a lower
bound. It turns out that both difficulties can be resolved together. In fact, a state φ0(x) which
obeys the property

â− φ0(x) = 0 (4.25)

on one side would lead to termination of the sequence E0 + m, m ∈ Z when m is decreased, on
the other side such a state is itself an eigenstate of Ĥ as can be shown using (4.17)

Ĥ φ0(x) = ( ~ω â+â− +
~ω

2
11 )φ0(x) =

1
2
~ω φ0(x) . (4.26)

Of course, the solution φ0(x) of (4.25) needs to be normalizable in order to represent a bound state
of the harmonic oscillator, i.e., φ0(x) should be an element of the function space N1 defined in
(4.5).
The property (??) has an important consequence for the stationary states φE(x). Let φE(x) and
φE′(x) be two normalized stationary states corresponding to two different energies E,E′, E 6= E′.
For f(x) = φE(x) and g(x) = φE′(x) in (??) follows (Note that according to (??) the eigenvalue
E is real.)

0 = 〈φE |ĤφE′〉Ω∞ − 〈φE′ |ĤφE〉Ω∞ = (E′ − E ) 〈φE |φE′〉Ω∞ . (4.27)

Since E 6= E′ one can conclude
〈φE |φE′〉Ω∞ = 0 . (4.28)

4.2 Ground State of the Harmonic Oscillator

A suitable solution of (4.25) can, in fact, be found. Using (4.6, 4.11) one can rewrite (4.25)(
d

dy
+ y

)
φ0(y) = 0 (4.29)

where

y =
√
mω

~

x . (4.30)

Assuming that φ0(y) does not vanish anywhere in its domain ]−∞,+∞[ one can write (4.29)

1
φ0(y)

d

dy
φ0(y) = =

d

dy
lnφ0(y) = − y , (4.31)

the solution of which is
lnφ0(y) = −1

2
y2 + c0 (4.32)

for some constant c0 or

φ0(y) = c0 exp
(
−1

2
y2

)
. (4.33)
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This solution is obviously normalizable. The conventional normalization condition

〈φ0|φ0〉Ω∞ = 1 (4.34)

reads ∫ +∞

−∞
dx |φ0(x)|2 = |c0|2

∫ +∞

−∞
dx exp

(
−mωx

2

2~

)
= |c0|2

√
π~

mω
. (4.35)

The appropriate ground state is

φ0(x) =
[mω
π~

] 1
4 exp

(
−mωx

2

2~

)
. (4.36)

Since the first order differential equation (4.25) admits only one solution there is only one set of
states with energy E + m ~ω, m ∈ Z which properly terminate at some minimum value E +
m0 ~ω ≥ 0. We recall that according to (4.26) the energy value associated with this state is 1

2~ω.
This state of lowest energy is called the ground state of the oscillator. The set of allowed energies
of the oscillator according to (4.24) can then be written as follows

En = ~ω (n +
1
2

) , n = 0, 1, 2, . . . (4.37)

It is most remarkable that the energy 1
2~ω of the ground state is larger than the lowest classically

allowed energy E = 0. The reason is that in the Hamiltonian (4.2) there are two competing
contributions to the energy, the potential energy contribution which for a state δ(x), i.e., a state
confined to the minimum corresponding to the classical state of lowest energy, would yield a van-
ishing contribution, and the kinetic energy contribution, which for a narrowly localized state yields
a large positive value. The ground state (4.36) assumes a functional form such that both terms
together assume a minimum value. We will consider this point more systematically in Section 5.

4.3 Excited States of the Harmonic Oscillator

Having obtained a suitable stationary state with lowest energy, we can now construct the stationary
states corresponding to energies (4.37) above the ground state energy, i.e., we construct the states
for n = 1, 2, . . ., the so-called excited states. For this purpose we apply the operator â+ to the
ground state (4.36) n times. Such states need to be suitably normalized for which purpose we
introduce a normalization constant c′n

φn(x) = c′n
(
â+
)n

φ0(x) , n = 0, 1, 2, . . . (4.38)

These states correspond to the energy eigenvalues (4.39), i.e., it holds

Ĥ φn(x) = ~ω (n +
1
2

)φn(x) , n = 0, 1, 2, . . . (4.39)

We notice that the ground state wave function φ0(x) as well as the operators (â+)n are real. We
can, therefore, choose the normalization constants c′n and the functions φn(x) real as well.
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We need to determine now the normalization constants c′n. To determine these constants we adopt
a recursion scheme. For n = 0 holds c′0 = 1. We consider then the situation that we have obtained
a properly normalized state φn(x). A properly normalized state φn+1(x) is then of the form

φn+1(x) = αn â
+ φn(x) (4.40)

for some real constant αn which is chosen to satisfy

〈φn+1|φn+1〉Ω∞ = α2
n 〈â+φn|â+φn〉Ω∞ = 1 . (4.41)

Employing the adjoint property (4.20) yields

α2
n 〈φn|â−â+φn〉Ω∞ = 1 . (4.42)

Using (4.14) together with Ĥ φn(x) = ~ω(n+ 1
2)φn(x) leads to the condition (note that we assumed

φn(x) to be normalized)

α2
n (n + 1 ) 〈φn|â−â+φn〉Ω∞ = α2

n (n + 1 ) = 1 (4.43)

From this follows αn = 1/
√
n+ 1 and, according to (4.40),

â+ φn(x) =
√
n+ 1φn+1(x) . (4.44)

One can conclude then that the stationary states of the oscillator are described by the functions

φn(x) =
1√
n!

(
â+
)n

φ0(x) , n = 0, 1, 2, . . . (4.45)

We like to note that these functions according to (4.28) and the construction (4.40–4.45) form an
orthonormal set, i.e., they obey

〈φn|φn′〉 = δnn′ , n, n′ = 0, 1, 2, . . . . (4.46)

According to (4.24) holds in analogy to (4.40)

φn−1(x) = βn â
− φn(x) (4.47)

for some suitable constants βn. Since â− is a real differential operator [see (4.18)] and since the
φn(x) are real functions, βn must be real as well. To determine βn we note using (4.20)

1 = 〈φn−1|φn−1〉Ω∞ = β2
n 〈â−φn|â−φn〉Ω∞ = β2

n 〈φn|â+â−φn〉Ω∞ . (4.48)

Equations (4.15 , 4.39) yield
1 = β2

n n 〈φn|φn〉Ω∞ = β2
n n . (4.49)

From this follows βn = 1/
√
n and, according to (4.47),

â− φn(x) =
√
nφn−1(x) . (4.50)

Repeated application of this relationship yields

φn−s(x) =

√
(n− s)!
n!

(
â−
)s
φn(x) . (4.51)
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Evaluating the Stationary States

We want to derive now an analytical expression for the stationary state wave functions φn(x)
defined through (4.39). For this purpose we start from expression (4.45), simplifying the calculation,
however, by introducing the variable y defined in (4.30) and employing the normalization∫ +∞

−∞
dy φ2

n(y) = 1 (4.52)

This normalization of the wave functions differs from that postulated in (4.35) by a constant,
n–independent factor, namely the square root of the Jacobian dx/dy, i.e., by√∣∣∣∣dxdy

∣∣∣∣ =
[mω
~

] 1
4
. (4.53)

We will later re-introduce this factor to account for the proper normalization (4.35) rather than
(4.52).
In terms of y the ground state wave function is

φ0(y) = π−
1
4 e−

y2

2 (4.54)

and â+ is

â+ =
1√
2

(
y − d

dy

)
. (4.55)

The eigenstates of the Hamiltonian are then given by

φn(y) =
1√

2n n!
√
π
e−

y2

2 e
y2

2

(
y − d

dy

)n
e−

y2

2 . (4.56)

Relationship to Hermite Polynomials

We want to demonstrate now that the expression (4.56) can be expressed in terms of Hermite
polynomials Hn(y) introduced in Sect. 2.7 and given, for example, by the Rodrigues formula (2.200).
We will demonstrate below the identity

Hn(y) = e
y2

2

(
y − d

dy

)n
e−

y2

2 (4.57)

such that one can write the stationary state wave functions of the harmonic oscillator

φn(y) =
1√

2n n!
√
π
e−

y2

2 Hn(y) . (4.58)

This result agrees with the expression (2.233) derived in Sect. 2.7. It should be noted that the
normalization (4.28) of the ground state and the definition (4.57) which includes the factor 1/

√
n!

according to Eqs. (4.40–4.46) yields a set of normalized states.
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To verify the realtionship between the definition (4.57) of the hermite polynomials and the definition
given by (2.200) we need to verify(

y − d

dy

)n
e−

y2

2 = (−1)n e
y2

2
dn

dyn
e−y

2
. (4.59)

which implies

Hn(y) = (−1)n ey
2 dn

dyn
e−y

2
(4.60)

and, hence, the Rodrigues formula (2.200).
We prove (4.59) by induction noting first that (4.59) holds for n = 0, 1, and showing then that the
property also holds for n+ 1 in case it holds for n, i.e.,

g(y) = (−1)n+1 e
y2

2
dn+1

dyn+1
e−y

2
=
(
y − d

dy

)n+1

e−
y2

2 . (4.61)

One can factor g(y) and employ (4.59) as follows

g(y) = −e
y2

2
d

dy
e−

y2

2 (−1)n e
y2

2
dn

dyn
e−y

2

= −e
y2

2
d

dy
e−

y2

2

(
y − d

dy

)n
e−

y2

2 . (4.62)

Denoting f(y) = (y − d/dy)exp(−y2/2) and employing

d

dy
e−

y2

2 f(y) = −y e−
y2

2 f(y) + e−
y2

2
d

dy
f(y) (4.63)

one obtains

g(y) =
(
y − d

dy

)
f(y) (4.64)

which implies that (4.61) and, therefore, (4.59) hold.

4.4 Propagator for the Harmonic Oscillator

We consider now the solution of the time-dependent Schrödinger equation of the harmonic oscillator
(4.1, 4.2) for an arbitrary initial wave function ψ(x0, t0). Our derivation will follow closely the
procedure adopted for the case of a ‘particle in a box’ [see Eqs. (3.106–3.114)]. For the sake of
notational simplicity we employ initially the coordinate y as defined in (4.30) and return later to
the coordinate x.
Starting point of our derivation is the assumption that the initial condition can be expanded in
terms of the eigenstates φn(y) (4.39)

ψ(y0, t0) =
∞∑
n=0

dn φn(y0) . (4.65)
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Such expansion is possible for any f(y0) = ψ(y0, t0) which is an element of N1 defined in (4.5),
a supposition which is not proven here2. Employing orthogonality condition (4.46) the expansion
coefficients dn are

dn =
∫ +∞

−∞
dy0 ψ(y0, t0)φn(y0) . (4.66)

One can extend expansion (4.65) to times t ≥ t0 through insertion of time-dependent coefficients
cn(t1)

ψ(y, t1) =
∞∑
n=0

dn φn(y) cn(t) (4.67)

for which according to (3.108–3.112) and (4.39) holds

cn(t1) = exp
(
−i ω (n +

1
2

) ( t1 − t0 )
)
. (4.68)

Altogether one can express then the solution

ψ(y, t1) =
∫ +∞

−∞
dy0 φ(y, t|y0, t0)ψ(y0, t) (4.69)

where

φ(y, t1|y0, t0) =
∞∑
n=0

φn(y)φn(y0) tn+ 1
2 , t = e−iω(t1−t0) (4.70)

is the propagator of the linear harmonic oscillator. We want to demonstrate now that this propaga-
tor is identical to the propagator (2.147) for the harmonic iscillator determined in Sect. sec:harm.
In order to prove the equivalence of (4.70) and (2.147) we employ the technique of generating
functions as in Sect. 2.7. For this purpose we start from the integral representation (2.225) which
allows one to derive a generating function for products of Hermite polynomials which can be applied
to the r.h.s. of (4.70). We consider for this purpose the following expression for |t| < 1

w(y, y0, t) =
∞∑
n=0

Hn(y)e−y
2/2Hn(y0)e−y

2
0/2

2n n!
√
π

tn . (4.71)

Applying (??) to express Hn(y) and Hn(y0) yields

w(y, y0, t) = π−3/2 exp
(
y2

2
+
y2

0

2

)∫ +∞

−∞
du

∫ +∞

−∞
dv

exp(−2tuv)︷ ︸︸ ︷
∞∑
n=0

1
n!

(−2tuv )n ×

× exp(−u2 − v2 + 2iyu + 2iy0v ) . (4.72)

2A demonstration of this property can be found in Special Functions and their Applications by N.N.Lebedev
(Prentice Hall, Inc., Englewood Cliffs, N.J., 1965) Sect. 4.15, pp. 68; this is an excellent textbook from which we
have borrowed heavily in this Section.
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Carrying out the sum on the r.h.s. one obtains

w(y, y0, t) = π−3/2 exp
(
y2

2
+
y2

0

2

) ∫ +∞

−∞
dv exp(−v2 + 2iy0v ) ×

×
∫ +∞

−∞
du exp(−u2 − 2u(tv − iy) )︸ ︷︷ ︸
√
πexp( t2v2− 2iytv− y2)

. (4.73)

The incomplete Gaussian integral∫ +∞

−∞
dx e−a

2x2− 2bx =
√
π

a
eb

2/a2
, Re a2 > 0 (4.74)

applied once results in

w(y, y0, t) = π−1 exp
(
−y

2

2
+
y2

0

2

) ∫ +∞

−∞
dv exp(−(1− t2) v2 − 2i (yt − y0) v) . (4.75)

Applying (4.74) a second time yields finally together with the definition (4.71) of w(y, y0, t)

1√
π(1−t2)

exp
[
−1

2(y2 + y2
0) 1 + t2

1− t2 + 2 y y0
t

1− t2

]
=
∑∞

n=0
Hn(y)e−y

2/2 Hn(y0)e−y
2
0/2

2n n!
√
π

tn . (4.76)

One can express this in terms of the stationary states (4.58) of the harmonic oscillator
∞∑
n=0

φn(y)φn(y0) tn =
1√

π(1− t2)
exp

[
−1

2
(y2 + y2

0)
1 + t2

1 − t2
+ 2 y y0

t

1 − t2

]
. (4.77)

The sum in (4.70) is, indeed, identical to the generating function (4.77), i.e., it holds

φ(y, t1|y0, t0) =
1√

2 i π F (t1, t0)
exp

[
i

2
(y2 + y2

0)G(t1, t0) − i y y0
1

F (t1, t0)

]
(4.78)

where

F (t1, t0) =
1 − e−2iω(t1−t0)

2 i e−iω(t1−t0)
= sinω(t1 − t0) (4.79)

and

G(t1, t0) = i
1 + e−2iω(t1−t0)

1 − e−2iω(t1−t0)
=

cosω(t1 − t0)
sinω(t1 − t0)

. (4.80)

We can finally express the propagator (4.78) in terms of the coordinates x and x0. This requires
that we employ (4.30) to replace y and y0 and that we multiply the propagator by

√
mω/~, i.e.,

by a factor 4
√
mω/~ for both φn(y) and φn(y0). The resulting propagator is

φ(x, t|x0, t0) =
[

mω

2iπ~ sinω(t1 − t0)

] 1
2

×

exp
{

imω

2~ sinω(t1 − t0)
[

(x2 + x2
0) cosω(t1 − t0) − 2xx0

]}
. (4.81)

This result agrees with the propagator (2.147) derived by means of the path integral description.
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4.5 Working with Ladder Operators

In the last section we have demonstrated the use of differential equation techniques, the use of
generating functions. We want to introduce now techniques based on the ladder operators â+ and
â−. For the present there is actually no pressing need to apply such techniques since the techniques
borrowed from the theory of differential equations serve us well in describing harmonic oscillator
type quantum systems. The reason for introducing the calculus of the operators â+ and â− is that
this calculus proves to be useful for the description of vibrations in crystals, i.e., phonons, and of
the modes of the quantized electromagnetic field; both quantum systems are endowed with a large
number of modes, each corresponding to a single harmonic oscillator of the type studied presently
by us. It is with quantum electrodynamics and solid state physics in mind that we cease the
opportunity of the single quantum mechanical harmonic oscillator to develop a working knowledge
for â+ and â− in the most simple setting.
To put the following material in the proper modest perspective we may phrase it as an approach
which rather than employing the coordinate y and the differential operator d/dy uses the operators

â+ =
1√
2

(
y − d

dy

)
, â− =

1√
2

(
y +

d

dy

)
. (4.82)

Obviously, one can express y =
√

2(â− + â+) and d/dy =
√

2(â− − â+) and, hence, the approaches
using y, d/dy and â+, â− must be equivalent.

Calculus of Creation and Annihilation Operators

We summarize first the key properties of the operators â+ and â−

[â−, â+] = 11
â− φ0(y) = 0
â+ φn(y) =

√
n+ 1φn+1(y)

â− φn(y) =
√
nφn−1(y)

〈â− f |g〉Ω∞ = 〈f |â+ g〉Ω∞ . (4.83)

We note that these properties imply

φn(y) = (â+)nφ0(y)/
√
n! . (4.84)

We will encounter below functions of â+ and â−, e.g., f(â+). Such functions are defined for
f : R → R in case that the Taylor expansion

f(y) =
∞∑
ν=0

f (ν)(0)
ν!

yν (4.85)

is convergent everywhere in R. Here f (ν)(y0) denotes the ν-th derivative of f(y) taken at y = y0.
In this case we define

f(â+) =
∞∑
ν=0

f (ν)(0)
ν!

(
â+
)ν (4.86)
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and similarly for f(â−). The following important property holds

â− f(â+) = f (1)(â+) + f(â+) â− . (4.87)

In particular,
â− f(â+)φ0(y) = f (1)(â+)φ0(y) (4.88)

which follows from â− φo(y) = 0. We note

â− f(â+) = [â−, f(â+)] + f(â+) â− (4.89)

which implies that in order to prove (4.87, 4.88) we need to show actually

[â−, f(â+)] = f (1)(â+) . (4.90)

To prove (4.90) we show that (4.90) holds for any function fn(â+) = (â+)n which is a power of
â+. The convergence of the Taylor expansion ascertains then that (4.90) holds for f(â+).
We proceed by induction noticing first that (4.90) holds for f0 and for f1. The first case is trivial,
the second case follows from

[â−, f1(â+)] = [â−, â+] = 11 = f
(1)
1 (â+) . (4.91)

Let us assume that (4.90) holds for fn. For fn+1 follows then

[â−, fn+1(â+)] = [â−, (â+)nâ+] = (â+)n [â−, â+] + [â−, (â+)n] â+

= (â+)n 11 + n (â+)n−1â+ = (n+ 1) (â+)n (4.92)

Since any function f(y) in the proper function space N1 can be expanded

f(y) =
∞∑
n=0

dn φn(y) =
∞∑
n=0

dn
(â+)n√
n!

φ0(y) (4.93)

one can reduce all operators acting on some proper state function by operators acting on the state
φ0(y). Hence, property (4.88) is a fundamental one and will be used in the following, i.e., we will
only assume operator functions acting on φ0(y). As long as the operators act on φ0(y) one can
state then that â− behaves like a differential operator with respect to functions f(â+). Note that
an immediate consequence of (4.88) is

(â−)n f(â+)φo(y) = f (n)(â+)φ0(y) . (4.94)

We like to state the following property of the functions f(â±)

〈f(â−)φ|ψ〉 = 〈φ|f(â+)ψ〉 . (4.95)

This identity follows from (4.83) and can be proven for all powers fn by induction and then inferred
for all proper functions f(â±).
An important operator function is the exponential function. An example is the so-called shift
operator exp(uâ−). It holds

euâ
−
f(â+)φ0(y) = f(â+ + u)φ0(y) . (4.96)
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To prove this property we expand exp(uâ−)

∞∑
ν=0

uν

ν!
(â−)ν f(â+)φ0(y) =

∞∑
ν=0

uν

ν!
f (ν)(â+)φ0(y) = f(â+ + u)φ0(y) . (4.97)

An example in which (4.96) is applied is

euâ
−
evâ

+
φ0(y) = ev (â+ +u) φ0(y) = euv evâ

+
φ0(y) . (4.98)

The related operators exp[vâ+ ± v∗â−] play also an important role. We assume in the following
derivation, without explicitly stating this, that the operators considered act on φ0(y). To express
these operators as products of operators exp(vâ+) and exp(v∗â−) we consider the operator Ĉ(u) =
exp(uzâ+) exp(uz∗â−) where u ∈ R, z ∈ C, zz∗ = 1 and determine its derivative

d
du Ĉ(u) = zâ+euzâ

+
euz
∗â− + euzâ

+
z∗â− euz

∗â− =(
zâ+ + z∗â−

)
euzâ

+
euz
∗â− −

[
z∗â−, euzâ

+
]
euz
∗â− (4.99)

Using (4.90) and zz∗ = 1 we can write this

d
du Ĉ(u) =

(
zâ+ + z∗â−

)
euzâ

+
euz
∗â− − u euzâ

+
euz
∗â− =(

zâ+ + z∗â− − u
)
Ĉ(u) . (4.100)

To solve this differential equation we define Ĉ(u) = D̂(u) exp(−u2/2) which leads to

d

du
D̂(u) =

(
zâ+ + z∗â−

)
D̂(u) (4.101)

Ĉ(u) obviously obeys Ĉ(0) = 11. This results in D̂(0) = 11 and, hence, the solution of (4.101)
is D̂(u) = exp(uzâ+ + uz∗â−). One can conclude then using the definition of Ĉ(u) and defining
v = uz

evâ
+ + v∗â−φ0(y) = e

1
2
vv∗ evâ

+
ev
∗â−φ0(y) . (4.102)

Similarly, one obtains
evâ

+− v∗â−φ0(y) = e−
1
2
vv∗ evâ

+
e− v

∗â−φ0(y) (4.103)

evâ
+ + v∗â−φ0(y) = e−

1
2
vv∗ ev

∗â− evâ
+
φ0(y) (4.104)

evâ
+− v∗â−φ0(y) = e

1
2
vv∗ e−v

∗â− e vâ
+
φ0(y) . (4.105)

Below we will use the operator identity which follows for the choice of v = α in (4.105)

eαâ
+−α∗â−φ0(y) = e

αα∗
2 e−α

∗â− eαâ
+
φ0(y) . (4.106)

Applying (4.98) for u = −α∗ and v = α yields

e−α
∗â− eαâ

+
φ0(y) = e−αα

∗
eαâ

+
φ0(y) . (4.107)

This together with (4.106) yields

eαâ
+−α∗â−φ0(y) = e−

αα∗
2 eαâ

+
φ0(y) . (4.108)
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Generating Function in Terms of â+

We want to demonstrate now that generating functions are as useful a tool in the calculus of the
ladder operators as they are in the calculus of differential operators. We will derive the equivalent
of a generating function and use it to rederive the values Hn(0) and the orthonormality properties
of φn(y).
We start from the generating function (??) and replace according to (4.58) the Hermite polynomials
Hn(y) by the eigenstates φn(y)

e2yt− t2 = π
1
4

∞∑
n=0

(
√

2t)n√
n!

ey
2/2 φn(y) (4.109)

Using (4.84) and defining
√

2t = u one can write then

π−
1
4 exp

(
−y

2

2
+
√

2u y − u2

2

)
=

∞∑
n=0

un

n!
(â+)n φ0(y) (4.110)

or

π−
1
4 exp

(
−y

2

2
+
√

2u y − u2

2

)
= euâ

+
φ0(y) . (4.111)

This expression, in the ladder operator calculus, is the equivalent of the generating function (??).
We want to derive now the values Hn(0). Setting y = 0 in (4.111) yields

π−
1
4 exp

(
− u

2

2

)
= euâ

+
φ0(0) . (4.112)

Expanding both sides of this equation and using (4.84, 4.58) one obtains

π−
1
4

∞∑
ν=0

(−1)νu2ν

2νν!
=

∞∑
ν=0

uν√
ν!
φν(0) =

∞∑
ν=0

uν√
2ν
√
π ν!

Hν(0) (4.113)

Comparision of all terms on the l.h.s. and on the r.h.s. provide the same values for Hn(0) as provided
in Eq. (??).
Similarly, we can reproduce by means of the generating function (4.111) the orthonormality prop-
erties of the wave functions φn(y). For this purpose we consider

〈euâ+
φ0|evâ

+
φ0〉 = 〈φ0|euâ

−
evâ

+
φ0〉 (4.114)

where we have employed (4.95). Using (4.98) and again (4.95) one obtains

〈euâ+
φ0|evâ

+
φ0〉 = 〈φ0|euv evâ

+
φ0〉 = euv 〈evâ− φ0|φ0〉 = euv (4.115)

where the latter step follows after expansion of evâ
−

and using â− φ0(y) = 0. Expanding r.h.s. and
l.h.s. of (4.115) and using (4.84) yields

∞∑
ν,µ=0

uµ vν√
µ!ν!
〈φµ|φν〉 =

∞∑
µ=0

uµ vµ

µ!
(4.116)

from which follows by comparision of each term on both sides 〈φµ|φν〉 = δµ ν , i.e., the expected
orthonormality property.
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4.6 Momentum Representation for the Harmonic Oscillator

The description of the harmonic oscillator provided so far allows one to determine the probability
density P (x) of finding an oscillator at position x. For example, for an oscillator in a stationary
state φn(x) as given by (2.235), the probability density is

P (x) = |φn(x)|2 . (4.117)

In this section we want to provide a representation for the harmonic oscillator which is most natural
if one wishes to determine for a stationary state of the system the probability density P̃ (p) of finding
the system at momentum p. For this purpose we employ the Schrödinger equation in the momentum
representation.
In the position representation the wave function is a function of x, i.e., is given by a function ψ(x);
the momentum and position operators are as stated in (4.6) and the Hamiltonian (4.7) is given by
(4.2). In the momentum representation the wave function is a function of p, i.e., is given by the
function ψ̃(p); the momentum and position operators are

p̂ = p , x̂ = i~
d

dp
, (4.118)

and the Hamiltonian (4.7) is

Ĥ =
1

2m
p2 − m~2ω2

2
d2

dp2
. (4.119)

Accordingly, the time-independent Schrödinger equation for the oscillator can be written(
−mω

2
~

2

2
d2

dp2
+

1
2m

p2

)
φ̃E(p) = E φ̃E(p) . (4.120)

Multiplying this equation by 1/m2ω2 yields(
− ~

2

2m
d2

dp2
+

1
2
mω̃2 p2

)
φ̃E(p) = Ẽ φ̃E(p) (4.121)

where
Ẽ = E /m2ω2 , ω̃ = 1 /m2ω . (4.122)

For a solution of the Schrödinger equation in the momentum representation, i.e., of (4.121), we
note that the posed eigenvalue problem is formally identical to the Schrödinger equation in the
position representation as given by (4.2, 4.3). The solutions can be stated readily exploiting the
earlier results. The eigenvalues, according to (4.37), are

Ẽn = ~ω̃ (n + 1
2

) , n = 0, 1, 2, . . . (4.123)

or, using (4.122),
En = ~ω (n + 1

2
)) , n = 0, 1, 2, . . . (4.124)

As to be expected, the eigenvalues are identical to those determined in the position representation.
The momentum representation eigenfunctions are, using (2.235),

φ̃n(p) =
(−i)n√

2n n!

[
mω̃

π~

] 1
4

exp
(
−mω̃p

2

2~

)
Hn(

√
mω̃

~

p) . (4.125)
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or with (4.122)

φ̃n(p) =
(−i)n√

2n n!

[
1

πm~ω

] 1
4

exp
(
− p2

2m~ω

)
Hn(

√
1

m~ω
p) . (4.126)

Normalized eigenfunctions are, of course, defined only up to an arbitrary phase factor eiα, α ∈ R;
this allowed us to introduce in (4.125, 4.126) a phase factor (−i)n.
We can now state the probability density P̃n(p) for an oscillator with energy En to assume momen-
tum p. According to the theory of the momentum representation holds

P̃n(p) = |φ̃n(p)|2 (4.127)

or

P̃n(p) =
1

2n n!

[
1

πm~ω

] 1
2

exp
(
− p2

m~ω

)
H2
n(

√
1

m~ω
p) . (4.128)

We may also express the eigenstates (4.126) in terms of dimensionless units following the procedure
adopted for the position representation where we employed the substitution (4.30) to obtain (4.58).
Defining k =

√
mω̃/~ p or

k =

√
1

m~ω
p (4.129)

one obtains, instead of (4.126),

φn(k) =
(−i)n√
2n n!

√
π
e−

k2

2 Hn(k) . (4.130)

We want to finally apply the relationship

φ̃n(p) =
1√
2π

∫ +∞

−∞
dx exp(−ipx/~)φn(x) (4.131)

in the present case employing dimensionless units. From (4.30) and (4.129) follows

k y = p x / ~ (4.132)

and, hence,

φ̃n(k) =
1√
2π

∫ +∞

−∞
dy exp(−iky)φn(y) (4.133)

where we note that a change of the normalization of φn(y) [c.f. (4.30) and (2.235)] absorbs the
replacement dx → dy, i.e., the Jacobian. This implies the property of Hermite polynomials

(−i)n e−
k2

2 Hn(k) =
∫ +∞

−∞
dy exp(−iky) e−

y2

2 Hn(y) (4.134)

Exercise 4.6.1: Demonstrate the validity of (4.134), i.e., the correctness of the phase factors
(−i)n, through direct integration. Proceed as follows.
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(a) Prove first the property

f(k, z) =
1√
2π

∫ +∞

−∞
dy exp(−iky) g(z, y) (4.135)

where

f(k, z) = exp
(
−2ikz + z2 − k2/2

)
, g(k, z) = exp

(
2yz − z2 − y2/2

)
(4.136)

(b) Employ the generating function (2.194, 2.196) of Hermite polynomials and equate coefficients
of equal powers of z to prove (4.134).

4.7 Quasi-Classical States of the Harmonic Oscillator

A classical harmonic oscillator, for example, a pendulum swinging at small amplitudes, carries out
a periodic motion described by

y(t) = Re
(
y0 e

iωt
)

(4.137)

where y(t) describes the center of the particle and where the mass of the particle remains narrowly
distributed around y(t) for an arbitrary period of time. The question arises if similar states exist
also for the quantum oscillator. The answer is ‘yes’. Such states are referred to as quasi-classical
states, coherent states, or Glauber states of the harmonic oscillator and they play, for example, a
useful role in Quantum Electrodynamics since they allow to reproduce with a quantized field as
closely as possible the properties of a classical field3. We want to construct and characterize such
states.
The quasi-classical states can be obtained by generalizing the construction of the ground state of
the oscillator, namely through the eigenvalue problem for normalized states

â− φ(α)(y) = αφ(α)(y) , α ∈ R , 〈φ(α) |φ(α)〉 = 1 . (4.138)

We will show that a harmonic oscillator prepared in such a state will remain forever in such a
state, except that α changes periodically in time. We will find that α can be characterized as
a displacement form the minimum of the oscillator and that the state φ(α)(y) displays the same
spatial probability distribution as the ground state. The motion of the probability distribution of
such state is presented in Fig. 4.1 showing in its top row the attributes of such state just discussed.
We first construct the solution of (4.138). For this purpose we assume such state exists and expand

φ(α)(y) =
∞∑
n=0

d(α)
n φn(y) ,

∞∑
n=0

∣∣∣d(α)
n

∣∣∣2 = 1 (4.139)

where we have added the condition that the states be normalized. Inserting this expansion into
(4.138) yields using â− φn(y) =

√
nφn−1(y)

∞∑
n=0

(√
nd(α)

n φn−1(y) − αd(α)
n φn(y)

)
= 0 (4.140)

3An excellent textbook is Photons and Atoms: Introduction to Quantum Electrodynamics by C.Chen-Tannoudji,
J.Dupont-Roc, and G.Grynberg (John Wiley & Sons, Inc., New York, 1989) which discusses quasi-classical states of
the free electromagnetic field in Sect.— III.C.4, pp. 192
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or
∞∑
n=0

(√
n+ 1 d(α)

n+1 − αd(α)
n

)
φn(y) = 0 . (4.141)

Because of the linear independence of the states φn(y) all coefficients multiplying φn(y) must vanish
and on obtains the recursion relationship

d
(α)
n+1 =

α√
n+ 1

d(α)
n . (4.142)

The solution is
d(α)
n =

αn√
n!
c (4.143)

for a constant c which is determined through the normalization condition [see (4.139)]

1 =
∞∑
n=0

∣∣∣d(α)
n

∣∣∣2 = |c|2
∞∑
n=0

α2

n!
= |c|2 eα2

. (4.144)

Normalization requires c = exp(−α2/2) and, hence, the quasi-classical states are

φ(α)(y) = exp
(
− α

2

2

) ∞∑
n=0

αn√
n!
φn(y) , (4.145)

Using the generating function in the form (4.109), i.e.,

[π]−
1
4 e−

y2

2
+
√

2αy−α2
= exp

(
− α

2

2

) ∞∑
n=0

αn√
n!
φn(y) , (4.146)

one can write

φ(α)(y) = [π]−
1
4 exp

(
− 1

2
(y −

√
2α)2

)
(4.147)

which identifies this state as a ground state of the oscillator displaced by
√

2α. This interpretation
justifies the choice of α ∈ R in (4.138). However, we will see below that α ∈ C are also admissible
and will provide a corresponding interpretation.
One can also write (4.145) using (4.84)

φ(α)(y) = exp
(
− α

2

2

) ∞∑
n=0

(αâ+)n

n!
φ0(y) = e−

αα∗
2 eαâ

+
φ0(y) . (4.148)

The identity (4.108) allows one to write

φ(α)(y) = T+(α)φ0(y) = T+(α) [π]−
1
4 e−y

2/2 (4.149)

where
T+(α) = eαâ

+−α∗â− (4.150)

for α presently real. Comparing (4.149) with (4.147) allows one to interprete T (α) as an operator
which shifts the ground state by

√
2α.
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The shift operator as defined in (4.150) for complex α obeys the unitary property

T+(α)T (α) = 11 (4.151)

which follows from a generalization of (4.95) to linear combinations αâ+ + βâ− and reads then

〈f(αâ+ + βâ−)φ|ψ〉 = 〈φ|f(α∗â− + β∗â+)ψ〉 . (4.152)

Since the operator function on the r.h.s. is the adjoint of the operator function on the l.h.s. one
can write in case of T+(α)(

T+(α)
)+ = T (α) = eα

∗â−−αâ+
= e− (αâ+−α∗â−) . (4.153)

This is obviously the inverse of T+(α) as defined in (4.150) and one can conclude that T+(α) is a
so-called unitary operator with the property

T+(α)T (α) = T (α)T+(α) = 11 (4.154)

or applying this to a scalar product like (4.152)

〈T+(α) f |T+(α) g〉 = 〈f |T (α)T+(α) g〉 = 〈f |g〉 . (4.155)

In particular, it holds

〈T+(α)φ0 |T+(α)φ0〉 = 〈f |T (α)T+(α) g〉 = 〈φ0 |φ0〉 , α ∈ C (4.156)

, i.e., the shift operator leaves the ground state normalized.
Following the procedure adopted in determining the propagator of the harmonic oscillator [see
(4.67, 4.68)] one can write the time-dependent solution with (4.145) as the initial state

φ(α)(y, t1) = exp
(
− α

2

2

) ∞∑
n=0

exp
(
−i ω (n +

1
2

) ( t1 − t0 )
)
αn√
n!
φn(y) (4.157)

or

φ(α)(y, t1) = u
1
2 exp

(
− α

2

2

) ∞∑
n=0

(αu)n√
n!

φn(y) , u = e−iω(t1− t0) . (4.158)

Comparision of this expression with (4.145) shows that α in (4.145) is replaced by a complex number
αu which at times t1 = t0 + 2πn/ω, n = 0, 1, . . . becomes real. Relationship (4.109) serves again
to simplify this sum

φ(α)(y, t1) = π−
1
4 u

1
2 exp

−y2

2
+
√

2 y αu − α2 (u2 + 1)
2︸ ︷︷ ︸

E

 (4.159)

Noticing the identity which holds for |u|2 = 1

u2 + 1 = (Reu)2 − (Imu)2 + 1 + 2 iReu Imu = 2 (Reu)2 + 2 iReu Imu (4.160)
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the exponent E can be written

E = −y
2

2
+
√

2αyReu − α2 (Reu)2 + i
√

2αy Imu − i α2 Reu Imu

= −1
2

(
y −

√
2αReu

)2

︸ ︷︷ ︸
displaced Gaussian

+ i
√

2yα Imu︸ ︷︷ ︸
momentum

− i α2Reu Imu︸ ︷︷ ︸
phase term

(4.161)

and is found to describe a displaced Gaussian, a momentum factor and a phase factor. It is of
interest to note that the displacement y0 of the Gaussian as well as the momentum k0 and phase
φ0 associated with (4.161) are time-dependent

y0(t1) =
√

2α cosω(t1 − t0)
k0(t1) = −

√
2α sinω(t1 − t0)

φ0(t1) = − 1
2
α2sin2ω(t1 − t0) (4.162)

with a periodic change. The oscillations of the mean position y0(t1) and of the mean momentum
k0(t1) are out of phase by π

2 just as in the case of the classical oscillator. Our interpretation
explains also the meaning of a complex α in (4.138): a real α corresponds to a displacement such
that initially the oscillator is at rest, a complex α corresponds to a displaced oscillator which has
initially a non-vanishing velocity; obviously, this characterization corresponds closely to that of the
possible initial states of a classical oscillator. The time-dependent wave function (4.159) is then

φ(α)(y, t1) = π−
1
4 exp

(
−1

2
[y − y0(t1)]2 + iy k0(t1) − iφ0(t1) − i

2
ω(t1 − t0)

)
. (4.163)

This solution corresponds to the initial state given by (4.138, 4.147).
In Fig. 4.1 (top row) we present the probability distribution of the Glauber state for various
instances in time. The diagram illustrates that the wave function retains its Gaussian shape with
constant width for all times, moving solely its center of mass in an oscillator fashion around the
minimum of the harmonic potential. This shows clearly that the Glauber state is a close analogue
to the classical oscillator, except that it is not pointlike.
One can express (4.163) also through the shift operator. Comparing (4.148, 4.150) with (4.158)
allows one to write

φ(α)(y, t1) = u
1
2 T+(αu)φ0(y) (4.164)

where according to (4.150)

T+(αu) = exp
(
α ( e−iω(t1−t0)â+ − eiω(t1−t0)â− )

)
. (4.165)

This provides a very compact description of the quasi-classical state.

Arbitrary Gaussian Wave Packet Moving in a Harmonic Potential

We want to demonstrate now that any initial state described by a Gaussian shows a time dependence
very similar to that of the Glauber states in that such state remains Gaussian, being displaced
around the center with period 2π/ω and, in general, experiences a change of its width (relative to
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Figure 4.1: Time dependence of Gaussian wave packets in harmonic oscillator potential.

that of the Glauber states) with a period π/ω. This behaviour is illustrated in Fig. 4.1 (second and
third row). One can recognize the cyclic displacement of the wave packet and the cyclic change of
its width with a period of twice that of the oscillator.
To describe such state which satisfies the initial condition

φ(ao, σ|y, t0) = [πσ2]−
1
4 exp

(
− (y − ao)2

2σ2

)
(4.166)

we expand

φ(ao, σ|y, t0) =
∞∑
n=0

dn φn(y) . (4.167)

One can derive for the expansion coefficients

dn =
∫ +∞

−∞
dy φn(y)φ(ao, σ|y, t0)

=
1√

2nn!πσ

∫ +∞

−∞
dy exp

(
− (y − ao)2

2σ2
− y2

2

)
Hn(y)

=
e−aoq/2√
2nn!πσ

∫ +∞

−∞
dy e−p(y−q)

2
Hn(y) (4.168)

where

p =
1 + σ2

2σ2
, q =

a

1 + σ2
. (4.169)
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The solution of integral (4.168) is4

dn =
e−aq/2√
2nn!σ

(p− 1)n/2

p(n+1)/2
Hn(q

√
p

p− 1
) . (4.170)

In order to check the resulting coefficients we consider the limit σ → 1. In this limit the coefficients
dn should become identical to the coefficients (4.143) of the Glauber state, i.e., a ground state shifted
by ao =

√
2α. For this purpose we note that according to the explicit expresssion (??) for Hn(y)

the leading power of the Hermite polynomial is

Hn(y) = (2 y)n +
{
O(yn−2) for n ≥ 2

1 for n = 0, 1
(4.171)

and, therefore,

lim
σ→1

(
p− 1
p

)n
2

Hn(q
√

p

p− 1
) = lim

σ→1
(2q)n = an . (4.172)

One can then conclude

lim
σ→1

dn =
e−a

2/4

√
2nn!

an (4.173)

which is, in fact, in agreement with the expected result (4.143).
Following the strategy adopted previously one can express the time-dependent state corresponding
to the initial condition (4.166) in analogy to (4.157) as follows

φ(ao, σ|y, t1) = (4.174)

e−aq/2√
pσ

∑∞
n=0 e

−iω(n+ 1
2

)(t1−to) 1√
2nn!

(
p−1
p

)n/2
Hn(q

√
p
p−1)φn(y) .

This expansion can be written

φ(ao, σ|y, t1) = 1√
pσ
√
π

exp
(
−1

2
a2

1+σ2 + 1
2y

2
o − 1

2ω(t1 − to)
)
×

×
∑∞

n=0
tn

2nn! Hn(yo) e−y
2
o/2Hn(y) e−y

2/2 (4.175)

where

yo = q

√
p

p− 1
=

a√
1 − σ4

, t =

√
1 − σ2

1 + σ2
e−iω(t1−to) (4.176)

The generating function (4.76) permits us to write this

φ(ao, σ|y, t1) = 1√
pσ
√
π

1√
1− t2 × (4.177)

× exp
[
− 1

2(y2 + y2
o)

1+t2

1−t2 −
1
2

a2

1 +σ2 + 1
2 y

2
o + 2 y yo t

1− t2 −
1
2ω(t1 − to)

]
.

4This integral can be found in Integrals and Series, vol. 2 by A.P. Prudnikov, Yu. Brychkov, and O.I. Marichev
(Wiley, New York, 1990); this 3 volume integral table is likely the most complete today, a worthy successor of the
famous Gradshteyn, unfortunately very expensive, namely $750
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Chapter 5

Theory of Angular Momentum and
Spin

Rotational symmetry transformations, the group SO(3) of the associated rotation matrices and the
corresponding transformation matrices of spin–1

2 states forming the group SU(2) occupy a very
important position in physics. The reason is that these transformations and groups are closely tied
to the properties of elementary particles, the building blocks of matter, but also to the properties of
composite systems. Examples of the latter with particularly simple transformation properties are
closed shell atoms, e.g., helium, neon, argon, the magic number nuclei like carbon, or the proton
and the neutron made up of three quarks, all composite systems which appear spherical as far as
their charge distribution is concerned. In this section we want to investigate how elementary and
composite systems are described.
To develop a systematic description of rotational properties of composite quantum systems the
consideration of rotational transformations is the best starting point. As an illustration we will
consider first rotational transformations acting on vectors ~r in 3-dimensional space, i.e., ~r ∈ R3,
we will then consider transformations of wavefunctions ψ(~r) of single particles in R3, and finally
transformations of products of wavefunctions like

∏N
j=1 ψj(~rj) which represent a system of N (spin-

zero) particles in R3.
We will also review below the well-known fact that spin states under rotations behave essentially
identical to angular momentum states, i.e., we will find that the algebraic properties of operators
governing spatial and spin rotation are identical and that the results derived for products of angular
momentum states can be applied to products of spin states or a combination of angular momentum
and spin states.

5.1 Matrix Representation of the group SO(3)

In the following we provide a brief introduction to the group of three-dimensional rotation matrices.
We will also introduce the generators of this group and their algebra as well as the representation
of rotations through exponential operators. The mathematical techniques presented in this section
will be used throughout the remainder of these notes.

97
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Properties of Rotations in R3

Rotational transformations of vectors ~r ∈ R3, in Cartesian coordinates ~r = (x1, x2, x3)T , are linear
and, therefore, can be represented by 3 × 3 matrices R(~ϑ), where ~ϑ denotes the rotation, namely
around an axis given by the direction of ~ϑ and by an angle |~ϑ|. We assume the convention that
rotations are right-handed, i.e., if the thumb in your right hand fist points in the direction of ~ϑ,
then the fingers of your fist point in the direction of the rotation. ~ϑ parametrizes the rotations
uniquely as long as |~ϑ| < 2π.
Let us define the rotated vector as

~r ′ = R(~ϑ)~r . (5.1)

In Cartesian coordinates this reads

x′k =
3∑
j=1

[R(~ϑ)]kj xj k = 1, 2, 3 . (5.2)

Rotations conserve the scalar product between any pair of vectors ~a and ~b, i.e., they conserve
~a ·~b =

∑3
j=1 ajbj . It holds then

~a ′ ·~b ′ =
3∑

j,k,`=1

[R(~ϑ)]jk [R(~ϑ)]j` ak b` =
3∑
j=1

ajbj . (5.3)

Since this holds for any ~a and ~b, it follows
3∑
j=1

[R(~ϑ)]jk [R(~ϑ)]j` = δk` . (5.4)

With the definition of the transposed matrix RT

[RT ]jk ≡ Rkj (5.5)

this property can be written

R(~ϑ)RT (~ϑ) = RT (~ϑ)R(~ϑ) = 11 . (5.6)

This equation states the key characteristic of rotation matrices. From (5.6) follows immediatety
for the determinant of R(~ϑ) using detAB = detAdetB and detAT = detA

detR(~ϑ) = ±1 . (5.7)

Let us consider briefly an example to illustrate rotational transformations and to interpret the sign
of detR(~ϑ). A rotation around the x3-axis by an angle ϕ is described by the matrix

R(~ϑ = (0, 0, ϕ)T ) = ±

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 (5.8)

In case of a prefactor +1, the matrix represents a proper rotation, in case of a prefactor −1 a
rotation and an inversion at the origin. In the latter case the determinant of R(~ϑ = (0, 0, ϕ)T ) is
negative, i.e. a minus sign in Eq.(5.7) implies that a rotation is associated with an inversion. In
the following we want to exclude inversions and consider only rotation matrices with detR = 1.
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Definition of the Group SO(3)

We will consider then the following set

SO(3) = { real 3× 3 matricesR; RRT = RTR = 11, detR = 1 } (5.9)

This set of matrices is closed under matrix multiplication and, in fact, forms a group G satisfying
the axioms

(i) For any pair a, b ∈ G the product c = a ◦ b is also in G.

(ii) There exists an element e in G with the property ∀a ∈ G → e ◦ a = a ◦ e = a.

(iii) ∀a, a ∈ G → ∃a−1 ∈ G with a ◦ a−1 = a−1 ◦ a = e.

(iv) For products of three elements holds the associative law
a ◦ (b ◦ c) = (a ◦ b) ◦ c.

We want to prove now that SO(3) as defined in (5.9) forms a group. For this purpose we must
demonstrate that the group properties (i–iv) hold. In the following we will assume R1, R2 ∈ SO(3)
and do not write out “◦” explicitly since it represents the matrix product.

(i) Obviously, R3 = R1R2 is a real, 3× 3–matrix. It holds

RT3 R3 = (R1R2 )T R1R2 = RT2 R
T
1 R1R2 = RT2 R2 = 11 . (5.10)

Similarly, one can show R3R
T
3 = 11. Furthermore, it holds

detR3 = det (R1R2 ) = detR1 detR2 = 1 . (5.11)

It follows that R3 is also an element of SO(3).

(ii) The group element ‘e’ is played by the 3× 3 identity matrix 11.

(iii) From detR1 6= 0 follows that R1 is non-singular and, hence, there exists a real 3× 3–matrix
R−1

1 which is the inverse of R1. We need to demonstrate that this inverse belongs also to
SO(3). Since (R−1

1 )T = (RT1 )−1 it follows

(R−1
1 )T R−1

1 = (RT1 )−1R−1
1 =

(
R1R

T
1

)−1
= 11−1 = 11 (5.12)

which implies R−1
1 ∈ SO(3).

(iv) Since the associative law holds for multiplication of any square matrices this property holds
for the elements of SO(3).

We have shown altogether that the elements of SO(3) form a group.
We would like to point out the obvious property that for all elements R of SO(3) holds

R−1 = RT (5.13)
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Exercise 5.1.1: Test if the following sets together with the stated binary operation ‘◦’ form groups;
identify subgroups; establish if 1-1 homomorphic mappings exist, i.e. mappings between the sets
which conserve the group properties:
(a) the set of real and imaginary numbers {1, i,−1,−i} together with multiplication as the binary
operation ‘◦’;
(b) the set of matrices {M1, M2, M3, M4}

=
{(

1 0
0 1

)
,

(
0 1
−1 0

)
,

(
−1 0
0 −1

)
,

(
0 −1
1 0

)}
(5.14)

together with matrix multiplication as the binary operation ‘◦’;
(c) the set of four rotations in the x1, x2–plane {rotation by Oo, rotation by 90o, rotation by 180o,
rotation by 270o} and consecutive execution of rotation as the binary operation ‘◦’.

Generators, Lie Group, Lie Algebra

We want to consider now a most convenient, compact representation of R(~ϑ) which will be of
general use and, in fact, will play a central role in the representation of many other symmetry
transformations in Physics. This representation expresses rotation matrices in terms of three 3×3–
matrices J1, J2, J3 as follows

R(~ϑ) = exp
(
− i
~

~ϑ · ~J
)

(5.15)

Below we will construct appropriate matrices Jk, presently, we want to assume that they exist.
We want to show that for the property RRT = 1 to hold, the matrices

Lk = − i
~

Jk (5.16)

must be antisymmetric. To demonstrate this property consider rotations with ~ϑ = ϑkêk where êk
is a unit vector in the direction of the Cartesian k–axis. Geometric intuition tells us

R(ϑkêk)−1 = R(−ϑkêk) = exp (−ϑk Lk) (5.17)

Using the property which holds for matrix functions

[f(R)]T = f(RT ) (5.18)

we can employ (5.13)

R(ϑkêk)−1 = R(ϑkêk)T = [exp (ϑk Lk)]
T = exp

(
ϑk L

T
k

)
(5.19)

and, due to the uniqueness of the inverse, we arrive at the property

exp
(
ϑk L

T
k

)
= exp (−ϑk Lk) (5.20)

from which follows LTk = −Lk.
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We can conclude then that if elements of SO(3) can be expressed as R = eA, the real matrix A is
anti-symmetric. This property gives A then only three independent matrix elements, i.e., A must
have the form

A =

 0 a b
−a 0 c
−b −c 0

 . (5.21)

It is this the reason why one can expect that three-dimensional rotation matrices can be expressed
through (5.15) with three real parameters ϑ1, ϑ2, ϑ3 and three matrices L1, L2, L3 which are inde-
pendent of the rotation angles.
We assume now that we parameterize rotations through a three-dimensional rotation vector ~ϑ =
(ϑ1, ϑ2, ϑ3)T such that for ~ϑ = (0, 0, 0)T the rotation is the identity. One can determine then the
matrices Lk defined in (5.15) as the derivatives of R(~ϑ) with respect to the Cartesian components
ϑk taken at ~ϑ = (0, 0, 0)T . Using the definition of partial derivatives we can state

L1 = lim
ϑ1→0

ϑ−1
1

(
R(~ϑ = (ϑ1, 0, 0)T ) − 11

)
(5.22)

and similar for L2 and L3.
Let us use this definition to evaluate L3. Using (5.8) we can state

lim
ϑ3→0

R[(0, 0, ϑ3)T ] = lim
ϑ3→0

 cosϑ3 −sinϑ3 0
sinϑ3 cosϑ3 0

0 0 1

 =

 1 −ϑ3 0
ϑ3 1 0
0 0 1

 . (5.23)

Insertion into (5.22) for k = 3 yields

L3 = ϑ−1
3

 0 −ϑ3 0
ϑ3 0 0
0 0 0

 =

 0 −1 0
1 0 0
0 0 0

 . (5.24)

One obtains in this way

− i
~

J1 = L1 =

 0 0 0
0 0 −1
0 1 0

 (5.25)

− i
~

J2 = L2 =

 0 0 1
0 0 0
−1 0 0

 (5.26)

− i
~

J3 = L3 =

 0 −1 0
1 0 0
0 0 0

 (5.27)

The matrices Lk are called the generators of the group SO(3).

Exercise 5.1.2: Determine the generator L1 according to Eq.(5.22).
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Sofar it is by no means obvious that the generators Lk allow one to represent the rotation matrices
for any finite rotation, i.e., that the operators (5.15) obey the group property. The latter property
implies that for any ~ϑ1 and ~ϑ2 there exists a ~ϑ3 such that

exp
(
− i
~

~ϑ1 · ~J
)

exp
(
− i
~

~ϑ2 · ~J
)

= exp
(
− i
~

~ϑ3 · ~J
)

(5.28)

The construction of the generators through the limit taken in Eq. (5.22) implies, however, that
the generators represent infinitesimal rotations with 1 >> |~ϑ| around the x1-, x2-, and x3-axes.
Finite rotations can be obtained by applications of many infinitesimal rotations of the type R(~ϑ =
(ε1, 0, 0)T ) = exp(ε1L1), R(~ϑ = (0, ε2, 0)T ) = exp(ε2L2) and R(~ϑ = (0, 0, ε3)T ) = exp(ε3L3). The
question is then, however, if the resulting products of exponential operators can be expressed in
the form (5.15). An answer can be found considering the Baker-Campbell-Hausdorf expansion

exp(λA ) exp(λB ) = exp(
∞∑
n=1

λn Zn ) (5.29)

where Z1 = A + B and where the remaining operators Zn are commutators of A and B, com-
mutators of commutators of A and B, etc. The expression for Zn are actually rather complicated,
e.g. Z2 = 1

2 [A, B], Z3 = 1
12 ( [A, [A, B]] + [[A, B], B] ). From this result one can conclude that

expressions of the type (5.15) will be closed under matrix multiplication only in the case that
commutators of Lk can be expressed in terms of linear combinations of generators, i.e., it must
hold

[Lk, L`] =
3∑

m=1

fk`m Lm . (5.30)

Groups with the property that their elements can be expressed like (5.15) and their generators
obey the property (5.30) are called Lie groups, the property (5.30) is called the Lie algebra, and
the constants fk`m are called the structure constants. Of course, Lie groups can have any number
of generators, three being a special case.
In case of the group SO(3) the structure constants are particularly simple. In fact, the Lie algebra
of SO(3) can be written

[Lk, L`] = εk`m Lm (5.31)

where εk`m are the elements of the totally antisymmetric 3-dimensional tensor, the elements of
which are

εk`m =


0 if any two indices are identical
1 for k = 1, ` = 2,m = 3
1 for any even permutation of k = 1, ` = 2,m = 3
−1 for any odd permutation of k = 1, ` = 2,m = 3

. (5.32)

For the matrices Jk = i~Lk which, as we see later, are related to angular momentum operators,
holds the algebra

[Jk, J`] = i ~ εk`m Jm . (5.33)

We want to demonstrate now that exp(~ϑ · ~L) yields the known rotational transformations, e.g., the
matrix (5.8) in case of ϑ = (0, 0, ϕ)T . We want to consider, in fact, only the latter example and
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determine exp(ϕL3). We note, that the matrix ϕL3, according to (5.27), can be written

ϕL3 =

(
A 0

0

0 0 0

)
, A = ϕ

(
0 −1
1 0

)
. (5.34)

One obtains then for the rotational transformation

exp

[
A 0

0

0 0 0

]
=

 1 0 0

0 1 0

0 0 1

+
∞∑
ν=1

1
ν!

(
A 0

0

0 0 0

)ν

=

 1 0 0

0 1 0

0 0 1

+
∞∑
ν=1

1
ν!

(
Aν 0

0

0 0 0

)

=

( ∑∞
ν=0

1
ν!A

ν 0

0

0 0 1

)
=

(
eA 0

0

0 0 1

)
. (5.35)

To determine expA =
∑∞

ν=1A
ν/ν! we split its Taylor expansion into even and odd powers

eA =
∞∑
n=0

1
(2n)!

A2n +
∞∑
n=0

1
(2n+ 1)!

A2n+1 . (5.36)

The property (
0 −1
1 0

)2

= −
(

1 0
0 1

)
(5.37)

allows one to write(
0 −1
1 0

)2n

= (−1)n
(

1 0
0 1

)
,

(
0 −1
1 0

)2n+1

= (−1)n
(

0 −1
1 0

)
(5.38)

and, accordingly,

eA =
∞∑
n=0

(−1)n

(2n)!
ϕ2n

(
1 0
0 1

)
+

∞∑
n=0

(−1)n

(2n+ 1)!
ϕ2n+1

(
0 −1
1 0

)
. (5.39)

Recognizing the Taylor expansions of cosϕ and sinϕ one obtains

eA =
(

cosϕ − sinϕ
sinϕ cosϕ

)
(5.40)

and, using (5.34, 5.35),

eϕL3 =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 (5.41)

which agrees with (5.8).

Exercise 5.1.3: Show that the generators Lk of SO(3) obey the commutation relationship (5.31).
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5.2 Function space representation of the group SO(3)

In this section we will investigate how rotational transformations act on single particle wavefunctions
ψ(~r). In particular, we will learn that transformation patterns and invariances are connected with
the angular momentum states of quantum mechanics.

Definition

We first define how a rotational transformation acts on a wavefunction ψ(~r ). For this purpose we
require stringent continuity properties of the wavefunction: the wavefunctions under consideration
must be elements of the set C∞(3), i.e., complex-valued functions over the 3-dimensional space R3
which can be differentiated infinitely often. In analogy to R(~ϑ) being a linear map R3 → R3, we
define rotations R(~ϑ) as linear maps C∞(3) → C∞(3), namely

R(~ϑ)ψ(~r ) = ψ(R−1(~ϑ)~r ) . (5.42)

Obviously, the transformation R(~ϑ): C∞(3) → C∞(3) is related to the transformation R(~ϑ):
R3 → R3, a relationship which we like to express as follows

R(~ϑ) = ρ
(
R(~ϑ)

)
. (5.43)

ρ( ) conserves the group property of SO(3), i.e. for A, B ∈ SO(3) holds

ρ(AB) = ρ(A) ρ(B) . (5.44)

This important property which makes ρ( SO(3) ) also into a group can be proven by considering

ρ
(
R(~ϑ1)R(~ϑ2)

)
ψ(~r) = ψ([R(~ϑ1)R(~ϑ2) ]−1~r) (5.45)

= ψ([R(~ϑ2)]−1 [R(~ϑ1)]−1~r ) = ρ
(
R(~ϑ2)

)
ψ([R(~ϑ1)]−1~r) (5.46)

= ρ
(
R(~ϑ1)

)
ρ
(
R(~ϑ2)

)
ψ(~r) . (5.47)

Since this holds for any ψ(~r ) one can conclude ρ
(
R(~ϑ1)

)
ρ
(
R(~ϑ2)

)
= ρ

(
R(~ϑ1)R(~ϑ2)

)
, i.e. the

group property (5.44) holds.

Exercise 5.2.1: Assume the definition ρ′
(
R(~ϑ)

)
ψ(~r) = ψ(R(~ϑ)~r ). Show that in this case holds

ρ′(AB) = ρ′(B) ρ′(A).

Generators

One can assume then that R(~ϑ) should also form a Lie group, in fact, one isomorphic to SO(3)
and, hence, its elements can be represented through an exponential

R(~ϑ) = exp
(
− i
~

~ϑ · ~J
)

(5.48)
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where the generators can be determined in analogy to Eq. (5.22) according to

− i
~

J1 = lim
ϑ1→0

ϑ−1
1

(
R(~ϑ = (−ϑ1, 0, 0)T ) − 1

)
(5.49)

(note the minus sign of −ϑ1 which originates from the inverse of the rotation in Eq.(5.42)) and
similarly for J2 and J3.
The generators Jk can be determined by applying (5.49) to a function f(~r), i.e., in case of J3,

− i
~

J3 f(~r) = lim
ϑ3→0

ϑ−1
3

(
R(~ϑ = (0, 0, ϑ3)T ) f(~r) − f(~r)

)
= lim

ϑ3→0
ϑ−1

3 ( f(R(0, 0,−ϑ3)~r ) − f(~r) ) . (5.50)

Using (5.23, 5.24) one can expand

R(0, 0,−ϑ3)~r ≈

 1 ϑ3 0
−ϑ3 1 0

0 0 1

  x1

x2

x3

 =

 x1 + ϑ3x2

−ϑ3x1 + x2 .
x3

 (5.51)

Inserting this into (5.50) and Taylor expansion yields

− i
~

J3 f(~r) = lim
ϑ3→0

ϑ−1
3 ( f(~r) + ϑ3 x2 ∂1f(~r) − ϑ3 x1 ∂2f(~r) − f(~r) )

= (x2 ∂1 − x1 ∂2 ) f(~r) . (5.52)

Carrying out similar calculations for J1 and J2 one can derive

− i
~

J1 = x3∂2 − x2∂3 (5.53)

− i
~

J2 = x1∂3 − x3∂1 (5.54)

− i
~

J3 = x2∂1 − x1∂2 . (5.55)

Not only is the group property of SO(3) conserved by ρ( ), but also the Lie algebra of the generators.
In fact, it holds

[Jk, J`] = i ~ εk`m Jm . (5.56)

We like to verify this property for [J1, J2]. One obtains using (5.53–5.55) and f(~r) = f

[J1,J2] f(~r) = −~2 [− i
~
J1,− i

~
J2] f(~r) = −~2×

[ (x3∂2 − x2∂3) (x1∂3f − x3∂1f) − (x1∂3 − x3∂1) (x3∂2f − x2∂3f) ]
= −~2 [ +x1x3∂2∂3f − x1x2∂

2
3f − x2

3∂1∂2f + x2x3∂1∂3f + x2∂1f

−x1∂2f − x1x3∂2∂3f + x2
3∂1∂2f + x1x2∂

2
3f − x2x3∂1∂3f ]

= −~2 (x2∂1 − x1∂2 ) f(~r) = i~J3 f(~r) . (5.57)

Exercise 5.2.2: (a) Derive the generators Jk, k = 1, 2 by means of limits as suggested in Eq. (5.49);
show that (5.56) holds for [J2, J3] and [J3, J1].
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Exercise 5.2.3: Consider a wave function ψ(φ) which depends only on the azimutal angle φ of the
spherical coordinate system (r, θ, φ), i.e. the system related to the Cartesian coordinates through
x1 = r sinθ cosφ, x2 = r sinθ sinφ, and x3 = r cosθ. Show that for J3 as defined above holds
exp( iα

~
J3)ψ(φ) = ψ(φ + α).

5.3 Angular Momentum Operators

The generators Jk can be readily recognized as the angular momentum operators of quantum
mechanics. To show this we first note that (5.53–5.55) can be written as a vector product of ~r and
∇

− i
~

~J = −~r × ∇ . (5.58)

From this follows, using the momentum operator ~̂p = ~

i∇,

~J = ~r × ~

i
∇ = ~r × ~̂p (5.59)

which, according to the correspondence principle between classical and quantum mechanics, iden-
tifies ~J as the quantum mechanical angular momentum operator.
Equation (5.56) are the famous commutation relationships of the quantium mechanical angular
momentum operators. The commutation relationships imply that no simultaneous eigenstates of
all three Jk exist. However, the operator

J 2 = J 2
1 + J 2

2 + J 2
3 (5.60)

commutes with all three Jk, k = 1, 2, 3, i.e.,

[J 2,Jk] = 0 , k = 1, 2, 3 . (5.61)

We demonstrate this property for k = 3. Using [AB,C] = A[B,C] + [A,C]B and (5.56) one
obtains

[J 2,J3] = [J 2
1 + J 2

2 ,J3] (5.62)
= J1 [J1,J3] + [J1,J3]J1 + J2 [J2,J3] + [J2,J3]J2

= −i~J1 J2 − i~J2 J1 + i~J2 J1 + i~J1 J2 = 0

According to (5.61) simultaneous eigenstates of J 2 and of one of the Jk, usually chosen as J3, can
be found. These eigenstates are the well-known spherical harmonics Y`m(θ, φ). We will show now
that the properties of spherical harmonics

J 2 Y`m(θ, φ) = ~
2`(`+ 1)Y`m(θ, φ) (5.63)

J3 Y`m(θ, φ) = ~mY`m(θ, φ) (5.64)

as well as the effect of the so-called raising and lowering operators

J± = J1 ± iJ2 (5.65)
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on the spherical harmonics, namely,

J+ Y`m(θ, φ) = ~

√
(`+m+ 1)(`−m)Y`m+1(θ, φ) (5.66)

J+ Y``(θ, φ) = 0 (5.67)
J− Y`m+1(θ, φ) = ~

√
(`+m+ 1)(`−m)Y`m(θ, φ) (5.68)

J− Y`−`(θ, φ) = 0 (5.69)

are a consequence of the Lie algebra (5.56). For this purpose we prove the following theorem.

An Important Theorem

Theorem 1.1 Let Lk, k = 1, 2, 3 be operators acting on a Hilbert space H which obey the algebra
[Lk, L`] = εk`m Lm and let L± = L1 ± i L2, L2 = L2

1 + L2
2 + L2

3. Let there exist states |` `〉 in
H with the property

L+ |` `〉 = 0 (5.70)
L3 |` `〉 = −i ` |` `〉 (5.71)

then the states defined through
L− |`m+ 1〉 = −i βm |`m〉 (5.72)

have the following properties

(i) L+ |`m〉 = −i αm |`m+ 1〉 (5.73)
(ii) L3 |`m〉 = −im |`m〉 (5.74)

(iii) L2 |`m〉 = − `(`+ 1) |`m〉 (5.75)

To prove this theorem we first show by induction that (i) holds. For this purpose we first demon-
strate that the property holds for m = `− 1 by considering (i) for the state L−|``〉 ∼ |``− 1〉. It
holds L+L−|``〉 = (L+L− − L−L+ + L−L+)|` `〉 = ([L+, L−] + L−L+)|` `〉. Noting [L+, L−] =
[L1 + iL2, L1 − iL2] = −2iL3 and L+|` `〉 = 0 one obtains L+L−|``〉 = −2iL3|``〉 = −2`|``〉,
i.e., in fact, L+ raises the m-value of |`` − 1〉 from m = ` − 1 to m = `. The definitions of the
coefficients α`−1 and β`−1 yield L+L−|``〉 = L+( iβ`−1|``− 1〉 = −α`−1β`−1 |``〉, i.e.

α`−1β`−1 = 2` . (∗) (5.76)

We now show that property (ii) also holds for m = ` − 1 proceeding in a similar way. We note
L3L−|``〉 = ( [L3, L−] + L−L3 ) |``〉. Using [L3, L−] = [L3, L1 − iL2] = L2 + iL1 = i (L1 −
iL2) = iL− and L3|``〉 = −i`|``〉 we obtain L3L−|``〉 = ( iL− + L−L3 )|``〉 = i(−` + 1)L−|``〉.
From this follows that L−|``〉 is an eigenstate of L3, and since we have already shown |`` − 1〉 =
(iβ`−1)−1L−|``〉 we can state L3|``− 1〉 = −i(`− 1)|``− 1〉.
Continuing our proof through induction we assume now that property (i) holds for m. We will
show that this property holds then also for m − 1. The arguments are very similar to the ones
used above and we can be brief. We consider L+L−|`m〉 = ( [L+, L−] + L−L+ )|`m〉 = (−2iL3 +
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L−L+ )|`m〉 = (−2m − αmβm )|`m〉. This implies that (i) holds for m − 1, in particular, from
L+L−|`m〉 = −αm−1βm−1|`m〉 follows the recursion relationship

αm−1βm−1 = 2m + αmβm . (∗∗) (5.77)

We will show now that if (ii) holds for m, it also holds for m− 1. Again the argumemts are similar
to the ones used above. We note L3L−|`m〉 = ( [L3, L−] + L−L3 )|`m〉 = ( iL− − imL− )|`m〉 =
−i (m− 1)L−|`m〉 from which we can deduce L3|`m− 1〉 = −i(m− 1)|`m− 1〉.
Before we can finally show that property (iii) holds as well for all −` ≤ m ≤ ` we need to determine
the coefficients αm and βm. We can deduce from (∗) and (∗∗)

α`−1β`−1 = 2`
α`−2β`−2 = 2 (`− 1 + `)
α`−3β`−3 = 2 (`− 2 + `− 1 + `)

·
·

Obviously, it holds αmβm = 2
(∑`

k=m+1 k
)

. Using the familiar formula
∑n

k=0 k = n (n + 1)/2
one obtains

αmβm = (`+ 1) ` − (m+ 1)m = (`+ 1) ` + m` − `m − (m+ 1)m
= (` + m + 1)(` − m) (5.78)

One can normalize the states |`m〉 such that αm = βm, i.e., finally

αm = βm =
√

(` + m + 1)(` − m) . (5.79)

We can now show that (iii) holds for all proper m–values. We note that we can write L2 =
1
2L+L− + 1

2L−L+ + L2
3. It follows then L2|`m〉 = −

(
1
2αm−1βm−1 + 1

2αmβm + m2
)
|`m〉 =

−
(

1
2(`+m+ 1)(`−m)

+ 1
2(`+m)(`−m+ 1) + m2

)
= − `(`+ 1)|`m〉. This completes the proof of the theorem.

We note that Eqs. (5.70, 5.72, 5.73, 5.79) read

L+|`m〉 = −i
√

(`+m+ 1)(`−m) |`m+ 1〉 (5.80)
L−|`m+ 1〉 = −i

√
(`+m+ 1)(`−m) |`m〉 , (5.81)

i.e., yield properties (5.66, 5.69).
We will have various opportunities to employ the Theorem just derived. A first application will
involve the construction of the eigenstates of the angular momentum operators as defined in (5.63,
5.64). For this purpose we need to express the angular momentum operators in terms of spherical
coordinates (r, θ, φ.

Angular Momentum Operators in Spherical Coordinates

We want to express now the generators Jk, given in (5.53–5.55), in terms of spherical coordinates
defined through

x1 = r sin θ cosφ (5.82)
x2 = r sin θ sinφ (5.83)
x3 = r cos θ (5.84)
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We first like to demonstrate that the generators Jk, actually, involve only the angular variables θ
and φ and not the radius r. In fact, we will prove

− i

~

J1 = L1 = sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ
(5.85)

− i

~

J2 = L2 = − cosφ
∂

∂θ
+ cot θ sinφ

∂

∂φ
(5.86)

− i

~

J3 = L3 = − ∂

∂φ
. (5.87)

To derive these properties we consider, for example, L1f(θ, φ) = (x3∂2 − x2∂3)f(θ, φ). Using
(5.82–5.84 ) one obtains, applying repeatedly the chain rule,

L1f(θ, φ) = (x3∂2 − x2∂3 ) f(θ, φ) (5.88)

=
(
x3
∂x2/x1

∂x2

∂

∂ tanφ
+ x3

∂x3/r

∂x2

∂

∂ cos θ
(5.89)

− x2
∂x2/x1

∂x3︸ ︷︷ ︸
= 0

∂
∂ tanφ − x2

∂x3/r
∂x3

∂
∂ cos θ

)
f(θ, φ)

=
(
x3

x1

∂

∂ tanφ
− x2

3x2

r3

∂

∂ cos θ
− x2

x2
1 + x2

2

r3

∂

∂ cos θ

)
f(θ, φ) (5.90)

This yields, using ∂/∂tanφ = cos2φ∂/∂φ and ∂/∂cosθ = −(1/sinθ) ∂/∂θ,

L1f(θ, φ) =
(

cos θ
sin θ cosφ

cos2 φ
∂

∂φ
+ (5.91)

+
cos2 θ sin θ sinφ

sin θ
∂

∂θ
+

sin θ sinφ
sin θ

sin2 θ
∂

∂θ

)
f(θ, φ)

which agrees with expression (5.85).
We like to express now the operators J3 and J 2, the latter defined in (5.60), in terms of spherical
coordinates. According to (5.87) holds

J3 =
~

i
∂φ . (5.92)

To determine J 2 we note, using (5.85),

(L1)2 =
(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)2

= sin2φ
∂2

∂θ2
− 1

sin2θ
sinφ cosφ

∂

∂φ
+ 2 cotθ sinφ cosφ

∂2

∂θ∂φ

+ cotθ cos2φ
∂

∂θ
+ cot2θ cos2φ

∂2

∂φ2
(5.93)

and similarly, using (5.86),

(L2)2 =
(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)2
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= cos2φ
∂2

∂θ2
+

1
sin2θ

sinφ cosφ
∂

∂φ
− 2 cotθ sinφ cosφ

∂2

∂θ∂φ

+ cotθ sin2φ
∂

∂θ
+ cot2θ sin2φ

∂2

∂φ2
. (5.94)

It follows

(L1)2 + (L2)2 + (L3)2 =
∂2

∂θ2
+ cotθ

∂

∂θ
+ ( cot2θ + 1 )

∂2

∂φ2
. (5.95)

With cot2θ + 1 = 1/sin2θ,

1
sin2θ

(
sinθ

∂

∂θ

) (
sinθ

∂

∂θ

)
=

∂2

∂θ2
+ cotθ

∂

∂θ
, (5.96)

and the relationship between Lk and Jk as given in (5.85, 5.86, 5.87), one can conclude

J 2 = − ~
2

sin2θ

[(
sinθ

∂

∂θ

)2

+
∂2

∂φ2

]
. (5.97)

Kinetic Energy Operator The kinetic energy of a classical particle can be expressed

~p 2

2m
=

p2
r

2m
+

J2
class

2mr2
(5.98)

where ~Jclass = ~r × m~v is the angular momentum and pr = mṙ is the radial momentum. The
corresponding expression for the quantum mechanical kinetic energy operator is

T̂ = − ~
2

2m
∇2 = − ~

2

2m
1
r

∂2

∂r2
r +

J 2

2mr2
, (5.99)

which follows from the identity

∇2 =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2sin2θ

[(
sinθ

∂

∂θ

)2

+
∂2

∂φ2

]
(5.100)

1
r

∂2

∂r2
r =

∂2

∂r2
+

2
r

∂

∂r
(5.101)

and comparision with (5.97).

5.4 Angular Momentum Eigenstates

According to the theorem on page 107 above the eigenfunctions (5.63, 5.64) can be constructed as
follows. One first identifies the Hilbert space H on which the generators Lk operate. The operators
in the present case are Lk = − i

~
Jk where the Jk are differential operators in θ and φ given in (5.85,

5.86, 5.87). These generators act on a subspace of C∞(3), namely on the space of complex-valued
functions on the unit 3-dim. sphere S2, i.e. C∞(S2). The functions in C∞(S2) have real variables
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θ, φ, 0 ≤ θ < π, 0 ≤ φ < 2π, and to be admissable for description of quantum states, must be
cyclic in φ with period 2π. The norm in H is defined through

|f |2 =
∫
S2

dΩ f∗(θ, φ)f(θ, φ) (5.102)

where dΩ = sinθ dθ dφ is the volume element of S2. The function space endowed with this norm
and including only functions for which the integral (5.102) exists, is indeed a Hilbert space.
The eigenfunctions (5.63, 5.64) can be constructed then by seeking first functions Y``(θ, φ) in H
which satisfy L+Y``(θ, φ) = 0 as well as L3Y``(θ, φ) = −i` Y``(θ, φ), normalizing these functions,
and then determining the family {Y`m(θ, φ),m = −`,−`+ 1, . . . , `} applying

L−Y`m+1(θ, φ) = −i
√

(`+m+ 1)(`−m)Y`m(θ, φ) (5.103)

iteratively for m = `− 1, `− 2, . . . ,−`. One obtains in this way

Y`m(θ, φ) = ∆(`,m)
(

1
~

J−
)`−m

Y``(θ, φ) (5.104)

∆(`,m) =
[

(` + m)!
(2`)! (` − m)!

] 1
2

(5.105)

Constructing Y`` → Y``−1 →→ · · · Y`−`

We like to characterize the resulting eigenfunctions Y`m(θ, φ), the so-called spherical harmonics, by
carrying out the construction according to (5.104, 5.105) explicitly. For this purpose we split off
a suitable normalization factor as well as introduce the assumption that the dependence on φ is
described by a factor exp(imφ)

Y`m(θ, φ) =

√
2`+ 1

4π
(`−m)!
(`+m)!

P`m(cosθ) eimφ . (5.106)

It must hold

L+ Y``(θ, φ) = 0 (5.107)
L3 Y``(θ, φ) = −i ` Y``(θ, φ) . (5.108)

The latter property is obviously satisfied for the chosen φ-dependence. The raising and lowering
operators

L± = L1 ± iL2 , (5.109)

using (5.85–5.87), can be expressed

L± = ∓ i e±iφ
(
∂

∂θ
± i cotθ

∂

∂φ

)
. (5.110)

Accordingly, (5.107) reads (
∂

∂θ
+ i cotθ

∂

∂φ

)
P``(cosθ) ei`φ = 0 (5.111)
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or (
∂

∂θ
− ` cotθ

)
P``(cosθ) = 0 (5.112)

where we employed the definition of P``(cosθ) in (5.107). A proper solution of this equation, i.e.,
one for which ∫ π

0
dθ sinθ |P``(cosθ)|2 (5.113)

is finite, is
P``(cos θ) = N` sin` θ (5.114)

as one can readily verify. The normalization factor N` is chosen such that∫ π

0
dθ sinθ |Y``(cosθ)|2 = 1 (5.115)

holds. (5.106, 5.114) yield

|N`|2
2`+ 1

4π
1

(2`)!
2π
∫ π

0
dθ sin2`+1θ = 1 . (5.116)

The integral appearing in the last expression can be evaluated by repeated integration by parts.
One obtains, using the new integration variable x = cos θ,∫ π

0
dθ sin2`+1θ =

∫ +1

−1
dx (1 − x2)`

=
[
x (1 − x2)`

]+1

−1
+ 2`

∫ +1

−1
dxx2 (1 − x2)`−1

= 2`
[
x3

3
(1 − x2)`−1

]+1

−1

+
2` · (2`− 2)

1 · 3

∫ +1

−1
dxx4 (1 − x2)`−2

...

=
2` · (2`− 2) · · · 2

1 · 3 · 5 · · · (2`− 1)

∫ +1

−1
dxx2`

=
2` · (2`− 2) · · · 2

1 · 3 · 5 · · · (2`− 1)
2

2`+ 1
=

(2`)!
[1 · 3 · 5 · · · (2`− 1)]2

2
2`+ 1

(5.117)

Accordingly, (5.116) implies

|N`|2
1

[1 · 3 · 5 · · · (2`− 1)]2
= 1 (5.118)

from which we conclude
N` = (−1)` 1 · 3 · 5 · · · (2`− 1) (5.119)

where the factor (−1)` has been included to agree with convention1. We note that (5.106, 5.114,
5.119) provide the following expression for Y``

Y``(θ, φ) = (−1)`
√

2`+ 1
4π

1
(2`)!

1
2``!

sin` θ ei`φ . (5.120)

1See, for example, ”Classical Electrodynamics, 2nd Ed.” by J.D. Jackson (John Wiley, New York, 1975)
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We have constructed a normalized solution of (5.106), namely Y``(θ, φ), and can obtain now, through
repeated application of (5.103, 5.110), the eigenfunctions Y`m(θ, φ), m = `−1, `−2, . . .−` defined
in (5.63, 5.64). Actually, we seek to determine the functions P`m(cos θ) and, therefore, use (5.103,
5.110) together with (5.106)

i e−iφ
(
∂

∂θ
− i cotθ

∂

∂φ

) √
2`+ 1

4π
(`−m− 1)!
(`+m+ 1)!

P`m+1(cos θ) ei(m+1)φ

= −i
√

(`+m+ 1)(`−m)

√
2`+ 1

4π
(`−m)!
(`+m)!

P`m(cos θ) eimφ. (5.121)

This expressions shows that the factor eimφ, indeed, describes the φ-dependence of Y`m(θ, φ); every
application of L− reduces the power of eiφ by one. (5.121) states then for the functions P`m(cos θ)(

∂

∂θ
+ (m+ 1) cotθ

)
P`m+1(cos θ) = − (`+m+ 1) (`−m)P`m(cos θ) . (5.122)

The latter identity can be written, employing again the variable x = cos θ,

P`m(x) =
−1

(`+m+ 1) (`−m)
× (5.123)

×

[
−(1− x2)

1
2
∂

∂x
+ (m+ 1)

x

(1− x2)
1
2

]
P`m+1(x) .

We want to demonstrate now that the recursion equation (5.123) leads to the expression

P`m(x) =
1

2``!
(`+m)!
(`−m)!

(1− x2)−
m
2
∂`−m

∂x`−m
(x2 − 1)` (5.124)

called the associated Legendre polynomials. The reader should note that the associated Legendre
polynomials, as specified in (5.124), are real. To prove (5.124) we proceed by induction. For m = `
(5.124) reads

P``(x) =
(2`)!
2``!

(1− x2)−
`
2 (x2 − 1)`

= (−1)` 1 · 3 · 5 · · · (2`− 1) sin` θ (5.125)

which agrees with (5.114, 5.119). Let us then assume that (5.124) holds for m+ 1, i.e.,

P`m+1(x) =
1

2``!
(`+m+ 1)!
(`−m− 1)!

(1− x2)−
m+1

2
∂`−m−1

∂x`−m−1
(x2 − 1)` . (5.126)

Then holds, according to (5.123),

P`m(x) =
−1
2``!

(`+m)!
(`−m)!

[
−(1− x2)

1
2
∂

∂x
+ (m+ 1)

x

(1− x2)
1
2

]
×

× (1− x2)−
m+1

2
∂`−m−1

∂x`−m−1
(x2 − 1)` . (5.127)
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By means of

−(1− x2)
1
2
∂

∂x
(1− x2)−

m+1
2

∂`−m−1

∂x`−m−1
(x2 − 1)`

= −(1− x2)−
m
2
∂`−m

∂x`−m
(x2 − 1)`

− (m+ 1)
x

(1− x2)
1
2

(1− x2)−
m+1

2
∂`−m−1

∂x`−m−1
(5.128)

one can show that (5.127) reproduces (5.124) and, therefore, that expression (5.124) holds for m if
it holds for m+ 1. Since (5.124) holds for m = `, it holds then for all m.
We want to test if the recursion (5.123) terminates for m = −`, i.e., if

L− Y``(θ, φ) = 0 (5.129)

holds. In fact, expression (5.124), which is equivalent to recursive application of L−, yields a
vanishing expression for m = −`− 1 as long as ` is a non-negative integer. In that case (1− x2)`

is a polynomial of degree 2` and, hence, the derivative ∂2`+1/∂x2`+1 of this expression vanishes.

Constructing Y`−` → Y`−`+1 → · · ·Y``

An alternative route to construct the eigenfunctions Y`m(θ, φ) determines first a normalized solution
of

L− f(θ, φ) = 0 (5.130)
L3 f(θ, φ) = i ` f(θ, φ) , (5.131)

identifies f(θ, φ) = Y`−`(θ, φ) choosing the proper sign, and constructs then the eigenfunctions
Y`−`+1, Y`−`+2, etc. by repeated application of the operator L+. Such construction reproduces
the eigenfunctions Y`m(θ, φ) as given in (5.106, 5.124) and, therefore, appears not very interesting.
However, from such construction emerges an important symmetry property of Y`m(θ, φ), namely,

Y ∗`m(θ, φ) = (−1)m Y`−m(θ, φ) (5.132)

which reduces the number of spherical harmonics which need to be evaluated independently roughly
by half ; therefore, we embark on this construction in order to prove (5.132).
We first determine Y`−`(θ, φ) using (5.106, 5.124). It holds, using x = cos θ,

P`−`(x) =
1

2``!
1

(2`)!
(1− x2)

`
2
∂2`

∂x2`
(x2 − 1)` . (5.133)

Since the term with the highest power of (x2 − 1)` is x2`, it holds

∂2`

∂x2`
(x2 − 1)` = (2`)! (5.134)

and, therefore,

P`−`(x) =
1

2``!
(1− x2)

`
2 . (5.135)
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Due to (5.106, 5.124) one arrives at

Y`−`(θ, φ) =

√
2`+ 1

4π
1

(2`)!
1

2``!
sin` θ e−i`φ . (5.136)

We note in passing that this expression and the expression (5.120) for Y`` obey the postulated
relationship (5.132).
Obviously, the expression (5.136) is normalized and has the proper sign, i.e., a sign consistent with
the family of functions Y`m constructed above. One can readily verify that this expression provides
a solution of (5.129). This follows from the identity(

∂

∂θ
− i cotθ

∂

∂φ

)
sin` θ e−i`φ = 0 . (5.137)

One can use (5.136) to construct all other Y`m(θ, φ). According to (5.80) and (5.110) applies the
recursion

eiφ
(
∂

∂θ
+ i cotθ

∂

∂φ

)
Y`m(θ, φ) =

√
(`+m+ 1)(`−m)Y`m+1(θ, φ) . (5.138)

Employing (5.106), one can conclude for the associated Legendre polynomials√
(`−m)!
(`+m)!

(
∂

∂θ
− m cotθ

)
P`m(cos θ)

=
√

(`+m+ 1)(`−m)

√
(`−m− 1)!
(`+m+ 1)!

P`m+1(cos θ) (5.139)

or

P`m+1(cos θ) =
(
∂

∂θ
− m cotθ

)
P`m(cos θ) . (5.140)

Introducing again the variable x = cos θ leads to the recursion equation [c.f. (5.122, 5.123)]

P`m+1(x) =

(
−(1− x2)

1
2
∂

∂x
− m

x

(1− x2)
1
2

)
P`m(x) . (5.141)

We want to demonstrate now that this recursion equation leads to the expression

P`m(x) =
(−1)m

2``!
(1− x2)

m
2
∂`+m

∂x`+m
(x2 − 1)` (5.142)

For this purpose we proceed by induction, following closely the proof of eq. (5.124). We first note
that for m = −` (5.142) yields

P`−`(x) =
(−1)`

2``!
(1− x2)−

`
2 (x2 − 1)` =

1
2``!

(1− x2)
`
2 (5.143)
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wich agrees with (5.135). We then assume that (5.142) holds for m. (5.141) reads then

P`m+1(x) = (5.144)(
−(1− x2)

1
2
∂

∂x
− m

x

(1− x2)
1
2

)
(−1)m

2``!
(1− x2)

m
2
∂`+m

∂x`+m
(x2 − 1)` .

Replacing in (5.128) m+ 1 → −m or, equivalently, m → −m− 1 yields

−(1− x2)
1
2
∂

∂x
(1− x2)

m
2
∂`+m

∂x`+m
(x2 − 1)`

= −(1− x2)
m+1

2
∂`+m+1

∂x`+m+1
(x2 − 1)`

+ m
x

(1− x2)
1
2

(1− x2)
m
2
∂`+m

∂x`+m
. (5.145)

Hence, (5.144) reads

P`m+1(x) =
(−1)m+1

2``!
(1− x2)

m+1
2

∂`+m+1

∂x`+m+1
(x2 − 1)` , (5.146)

i.e., (5.142) holds for m + 1 if it holds for m. Since (5.142) holds for m = −` we verified that it
holds for all m.
The construction beginning with Y`−` and continuing with Y`−`+1, Y`−`+2, etc. yields the same
eigenfunctions as the previous construction beginning with Y`` and stepping down the series of
functions Y``−1, Y``−2, etc. Accordingly, also the associated Legendre polynomials determined this
way, i.e., given by (5.142) and by (5.124), are identical. However, one notes that application of
(5.124) yields

(−1)m
(`−m)!
(`+m)!

P`−m(x) =
(−1)m

2``!
(1− x2)

m
2
∂`+m

∂x`+m
(x2 − 1)` , (5.147)

the r.h.s. of which agrees with the r.h.s. of (5.142). Hence, one can conclude

P`m(x) = (−1)m
(`−m)!
(`+m)!

P`−m(x) . (5.148)

According to (5.106) this implies for Y`m(θ, φ) the identity (5.132).

The Legendre Polynomials

The functions
P`(x) = P`0(x) (5.149)

are called Legendre polynomials. According to both (5.124) and (5.142) one can state

P`(x) =
1

2``!
∂`

∂x`
(x2 − 1)` . (5.150)
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The first few polynomials are

P0(x) = 1 , P1(x) = x , P2(x) = 1
2(3x2 − 1)

P3(x) = 1
2 (5x3 − 3x) . (5.151)

Comparision of (5.150) and (5.142) allows one to express the associated Legendre polynomials in
terms of Legendre polynomials

P`m(x) = (−1)m (1− x2)
m
2
∂m

∂xm
P`(x) , m ≥ 0 (5.152)

and, accordingly, the spherical harmonics for m ≥ 0

Y`m(θ, φ) =

√
2`+ 1

4π
(`−m)!
(`+m)!

(−1)m sinm θ × (5.153)

×
(

∂

∂ cos θ

)m
P`(cos θ) eimφ .

The spherical harmonics for m < 0 can be obtained using (5.132).
The Legendre polynomials arise in classical electrodynamics as the expansion coefficients of the
electrostatic potential around a point charge q/|~r1 − ~r2| where q is the charge, ~r1 is the point where
the potential is measured, and ~r2 denotes the location of the charge. In case q = 1 and |~r2| < |~r1|
holds the identity2

1
|~r1 − ~r2|

=
∞∑
`=0

r`2
r`+1

1

P`(cos γ) (5.154)

where γ is the angle between ~r1 and ~r2. Using x = cos γ, t = r2/r1, and

|~r1 − ~r2| = r1

√
1 − 2x t + t2 , (5.155)

(5.154) can be written

w(x, t) =
1√

1 − 2xt + t2
=

∞∑
`=0

P`(x) t` . (5.156)

w(x, t) is called a generating function of the Legendre polynomials3.
The generating function allows one to derive useful properties of the Legendre polynomials. For
example, in case of x = 1 holds

w(1, t) =
1√

1 − 2t + t2
=

1
1 − t

=
∞∑
`=0

t` . (5.157)

Comparision with (5.156) yields

P`(1) = 1 , ` = 0, 1, 2, . . . (5.158)
2see, e.g., ”Classical Electrodynamics, 2nd Ed.” by J.D. Jackson (John Wiley, New York, 1975), pp. 92
3To prove this property see, for example, pp. 45 of “Special Functions and their Applications” by N.N. Lebedev

(Prentice-Hall, Englewood Cliffs, N.J., 1965) which is an excellent compendium on special functions employed in
physics.
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For w(x, t) holds
∂lnw(x, t)

∂t
=

x − t

1 − 2xt + t2
. (5.159)

Using ∂lnw/∂t = (1/w) ∂w/∂t and multiplying (5.159) by w(1 − 2xt + t2) leads to the differential
equation obeyed by w(x, t)

(1 − 2xt + t2)
∂w

∂t
+ (t − x)w = 0 . (5.160)

Employing (5.156) and (∂/∂t)
∑

` P`(x)t` =
∑

` `P`(x)t`−1 this differential equation is equivalent
to

(1 − 2xt + t2)
∞∑
`=0

`P`(x) t`−1 + (t − x)
∞∑
`=0

P`(x) t` = 0 (5.161)

Collecting coefficients with equal powers t` yields

0 = P1(x) − xP0(x) (5.162)

+
∞∑
`=1

[(`+ 1)P`+1(x) − (2`+ 1)xP`(x) + ` P`−1(x) ] t`

The coefficients for all powers t` must vanish individually. Accordingly, holds

P1(x) = xP0(x) (5.163)
(` + 1)P`+1(x) = (2` + 1)xP`(x) − ` P`−1(x) (5.164)

which, using P0(x) = 1 [c.f. (5.151)] allows one to determine P`(x) for ` = 1, 2, . . ..

Inversion Symmetry of Y`m(θ, φ) Under inversion at the origin vectors ~r are replaced by −~r.
If the spherical coordinates of ~r are (r, θ, φ), then the coordinates of −~r are (r, π − θ, π + φ).
Accordingly, under inversion Y`m(θ, φ) goes over to Y`m(π− θ, π+ φ). Due to cos(π− θ) = − cos θ
the replacement ~r → −~r alters P`m(x) into P`m(−x). Inspection of (5.142) allows one to conclude

P`m(−x) = (−1)`+m P`m(x) (5.165)

since ∂n/∂(−x)n = (−1)n∂n/∂xn. Noting exp[im(π + φ)] = (−1)mexp(imφ) we determine

Y`m(π − θ, π + φ) = (−1)` Y`m(θ, φ) . (5.166)

Properties of Y`m(θ, φ)

We want to summarize the properties of the spherical harmonics Y`m(θ, φ) derived above.

1. The spherical harmonics are eigenfunctions of the angular momentum operators

J 2 Y`m(θ, φ) = ~
2 `(`+ 1)Y`m(θ, φ) (5.167)

J3 Y`m(θ, φ) = ~mY`m(θ, φ) . (5.168)
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2. The spherical harmonics form an orthonormal basis of the space C∞(S2) of normalizable,
uniquely defined functions over the unit sphere S2 which are infinitely often differentiable∫ π

0
sin θdθ

∫ 2π

0
dφY ∗`′m′(θ, φ)Y`m(θ, φ) = δ`′`δm′m . (5.169)

3. The spherical harmonics form, in fact, a complete basis of C∞(S2), i.e., for any f(θ, φ) ∈
C∞(S2) holds

f(θ, φ) =
∞∑
`=0

∑̀
m=−`

C`m Y`m(θ, φ) (5.170)

C`m =
∫ π

0
sin θdθ

∫ 2π

0
dφY ∗`m(θ, φ)f(θ, φ) . (5.171)

4. The spherical harmonics obey the recursion relationships

J+ Y`m(θ, φ) = ~

√
(`+m+ 1)(`−m) Y`m+1(θ, φ) (5.172)

J− Y`m+1(θ, φ) = ~

√
(`+m+ 1)(`−m) Y`m(θ, φ) (5.173)

where J± = J1 ± iJ2.

5. The spherical harmonics are given by the formula

Y`m(θ, φ) =

√
2`+ 1

4π
(`−m)!
(`+m)!

(−1)m

2``!
sinm θ × (5.174)

×
(

∂

∂ cos θ

)m
P`(cos θ) eimφ , m ≥ 0

where (` = 1, 2, . . .)

P0(x) = 1 , P1(x) = x , (5.175)
P`+1(x) = 1

`+ 1 [ (2` + 1)xP`(x) − ` P`−1(x) ] (5.176)

are the Legendre polynomials. The spherical harmonics for m < 0 are given by

Y`−m(θ, φ) = (−1)m Y ∗`m(θ, φ) . (5.177)

Note that the spherical harmonics are real, except for the factor exp(imφ).

6. The spherical harmonics Y`0 are

Y`0(θ, φ) =

√
2`+ 1

4π
P`(cos θ) . (5.178)

7. For the Legendre polynomials holds the orthogonality property∫ +1

−1
dx P`(x)P (`′(x) =

2
2` + 1

δ``′ . (5.179)
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8. The spherical harmonics for θ = 0 are

Y`m(θ = 0, φ) = δm0

√
2`+ 1

4π
. (5.180)

9. The spherical harmonics obey the inversion symmetry

Y`m(θ, φ) = (−1)` Y`m(π − θ, π + φ) . (5.181)

10. The spherical harmonics for ` = 0, 1, 2 are given by

Y00 =
1√
4π

(5.182)

Y11 = −
√

3
8π

sin θ eiφ (5.183)

Y10 =

√
3

4π
cos θ (5.184)

Y22 =
1
4

√
15
2π

sin2 θ e2iφ (5.185)

Y21 = −
√

15
8π

sin θ cos θ eiφ (5.186)

Y20 =

√
5

4π

(
3
2

cos2 θ − 1
2

)
(5.187)

together with (5.177).

11. For the Laplacian holds

∇2 h(r)Y`m(θ, φ) =
[

1
r

∂2

∂r2
r − `(`+ 1)

r2

]
h(r)Y`m(θ, φ) . (5.188)

Exercise 5.4.1: Derive expressions (5.86), (5.87).
Exercise 5.4.2: Derive the orthogonality property for the Legendre polynomials (5.179) using the
generating function w(x, t) stated in (5.156). For this purpose start from the identity∫ +1

−1
dx w(x, t)2 =

∞∑
`,`′=0

t`+`
′
∫ +1

−1
dxP`(x)P`′(x) , (5.189)

evaluate the integral on the l.h.s., expand the result in powers of t and equate the resulting powers
to those arising on the r.h.s. of (5.189).
Exercise 5.4.3: Construct all spherical harmonics Y3m(θ, φ).
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5.5 Irreducible Representations

We will consider now the effect of the rotational transformations introduced in (5.42),
exp

(
− i
~

~ϑ · ~J
)

, on functions f(θ, φ) ∈ C∞(S2). We denote the image of a function f(θ, φ)

under such rotational transformation by f̃(θ, φ), i.e.,

f̃(θ, φ) = exp
(
− i
~

~ϑ · ~J
)
f(θ, φ) . (5.190)

Since the spherical harmonics Y`m(θ, φ) provide a complete, orthonormal basis for the function
space C∞(S2) one can expand

f̃(θ, φ) =
∑
`,m

c`m Y`m(θ, φ) (5.191)

c`m =
∫
S2

dΩ′ Y ∗`m(θ′, φ′) exp
(
− i
~

~ϑ · ~J
)
f(θ′, φ′) (5.192)

One can also represent C∞(S2)

C∞(S2) = [ {Y`m, ` = 0,1, . . . ∞, m = −`,−`+ 1, . . . , `} ] (5.193)

where [ { } ] denotes closure of a set by taking all possible linear combinations of the elements
of the set. The transformations exp

(
− i
~

~ϑ · ~J
)

, therefore, are characterized completely if one
specifies the transformation of any Y`m(θ, φ)

Ỹ`m(θ, φ) =
∑
`′,m′

[
D(~ϑ)

]
`′m′; `m

Y`m(θ, φ) (5.194)

[
D(~ϑ)

]
`′m′; `m

=
∫
S2

dΩY ∗`′m′(θ, φ) exp
(
− i
~

~ϑ · ~J
)
Y`m(θ, φ) , (5.195)

i.e., if one specifies the functional form of the coefficients [D(ϑ)]`′m′; `m. These coefficients can
be considered the elements of an infinite-dimensional matrix which provides the representation of
exp

(
− i
~

~ϑ · ~J
)

in the basis {Y`m, ` = 0, 1, . . . ∞, m = −`,−`+ 1, . . . , `}.
We like to argue that the matrix representing the rotational transformations of the function space
C∞(S2), with elements given by (5.195), assumes a particularly simple form, called the irreducible
representation. For this purpose we consider the subspaces of C∞(S2)

X` = [ {Y`m, m = −`,−`+ 1, . . . , `} ] , ` = 0,1,2, . . . (5.196)

Comparision with (5.193) shows

C∞(S2) =
∞⋃
`=1

X` . (5.197)

The subspaces X` have the important property that (i) they are invariant under rotations
exp

(
− i
~

~ϑ · ~J
)

, i.e., exp
(
− i
~

~ϑ · ~J
)

(X`) = X`, and (ii) they form the lowest dimensional sets X`
obeying C∞(S2) =

⋃
` X` which have this invariance property.
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The invariance of the subspaces X` under rotations follows from a Taylor expansion of the expo-
nential operator exp

(
− i
~

~ϑ · ~J
)

. One proceeds by expanding first ~ϑ · ~J in terms of J+, J−, and
J3

ϑ · ~J =
1
2
ϑ−J+ +

1
2
ϑ+J− + ϑ3J3 (5.198)

where ϑ± = ϑ1 ∓ ϑ2. The exponential operator exp
(
− i
~

~ϑ · ~J
)

can be expanded in powers

(1
2ϑ−J+ + 1

2ϑ+J− + ϑ3J3)n. One employs then the commutation properties

[J+, J−] = 2~J3 , [J3, J±] = ±~J± (5.199)

which follow readily from (5.56, 5.65). Application of (5.199) allows one to express

exp
(
− i
~

~ϑ · ~J
)

=
∑

n1,n2,n3

cn1,n2,n3 J
n1
+ J

n2
− J

n3
3 . (5.200)

Accordingly, one needs to consider the action of J n1
+ J

n2
− J

n3
3 on the subspaces X`. Since the Y`m are

eigenfunctions of J3 the action of J n3
3 reproduces the basis functions of X`, i.e., leaves X` invariant.

The action of J− on Y`m produces Y`m−1 or, in case m = −`, produces 0, i.e., J n2
− also leaves

X` invariant. Similarly, one can conclude that J n1
+ leaves X` invariant. Since any additive term

in (5.200) leaves X` invariant, the transformation exp
(
− i
~

~ϑ · ~J
)

leaves X` invariant as well. One
can conclude then that in the expansion (5.194) only spherical harmonics with `′ = ` contribute
or, equivalently, one concludes for the matrix elements (5.195)

[D(ϑ)]`′m′; `m = δ`′`

∫
S2

dΩY ∗`m′(θ, φ) exp
(
− i
~

~ϑ · ~J
)
Y`m(θ, φ) . (5.201)

From expression (5.200) of the rotational transformations one can also conclude that the X` are
the smallest invariant subspaces of C∞(S2).
If one orders the basis according to the partitoning (5.197) of C∞(S2) the matrix representation of
D(ϑ) assumes a block-diagonal form, with blocks of dimension 1, 3, 5, . . ., i.e.,

D(ϑ) =



1× 1

3× 3

. . .

(2`+ 1)× (2`+ 1)

. . .



(5.202)
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This representation of D(ϑ) is the one wich has blocks of the lowest dimensions possible. The
representation is referred to as the irreducible representation, other representations are termed
reducible representations.

Exercise 5.5.1: Representations of the group SO(2)
SO(2) is the set of all 2×2 matrices R which are orthogonal, i.e. for which holds RTR = RRT = 11,
and for which detR = 1.
(a) Show that SO(2) with the group operation ◦ defined as matrix multiplication, is a group.
(b) Prove that the elements of SO(2) can be completely characterized through a single parameter.
(c) Show that the map R(ϕ)(

x
y

)
=
(
x′

y′

)
=
(

cosϕ −sinϕ
sinϕ cosϕ

) (
x
y

)
= R(ϕ)

(
x
y

)
defines a representation of SO(2).
(d) Show that the similarity transformation T (ϕ) defined in the space of non-singular, real 2× 2–
matrices O through

O′ = T (ϕ)O = R(ϕ)OR−1(ϕ)

with R(ϕ) as in (c) is also a representation of SO(2).
(e) In the space C∞(1) of infinitely often differentiable, and periodic functions f(α), i.e. f(α +
2π) = f(α), the map ρ(ϕ) defined through

f(α)
ρ→ g(ϕ) = f(α − ϕ) = ρ(ϕ)f(α)

also defines a representation of SO(2). Determine the generator of ρ(ϕ) in analogy to (5.22, 5.49).
(f) The transformation ρ(ϕ) as defined in (e) leaves the following subspace of functions considered
in (e)

Xm = { f(α) = Ae−imα, A ∈ C,m ∈ N}

invariant. Give the corresponding expression of ρ(ϕ).

5.6 Wigner Rotation Matrices

We will now take an important first step to determine the functional form of the matrix elements
of D(ϑ). This step reconsiders the parametrization of rotations by the vector ~ϑ assumed sofar. The
three components ϑk, k = 1, 2, 3 certainly allow one to describe any rotation around the origin.
However, this parametrization, though seemingly natural, does not provide the simplest mathe-
matical description of rotations. A more suitable parametrization had been suggested by Euler:
every rotation exp

(
− i
~

~ϑ · ~J
)

can be represented also uniquely by three consecutive rotations:

(i) a first rotation around the original x3–axis by an angle α,

(ii) a second rotation around the new x′2–axis by an angle β,

(iii) a third rotation around the new x′′3–axis by an angle γ.
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The angles α, β, γ will be referred to as Euler angles. The axis x′2 is defined in the coordinate frame
which is related to the original frame by rotation (i), the axis x′′3 is defined in the coordinate frame
which is related to the original frame by the consecutive rotations (i) and (ii).
The Euler rotation replaces exp

(
− i
~

~ϑ · ~J
)

by

e−
i
~
γJ ′′3 e−

i
~
βJ ′2 e−

i
~
αJ3 . (5.203)

For any ϑ ∈ R3 one can find Euler angles α, β, γ ∈ R such that

exp
(
− i
~

~ϑ · ~J
)

= e−
i
~
γJ ′′3 e−

i
~
βJ ′2 e−

i
~
αJ3 (5.204)

is satisfied. Accordingly, one can replace (5.194, 5.195) by

Ỹ`m(θ, φ) =
∑
`′,m′

[D(α, β, γ)]`′m′; `m Y`m(θ, φ) (5.205)

[D(α, β, γ)]`′m′; `m =
∫
S2

dΩY ∗`′m′(θ, φ) e−
i
~
γJ ′′3 e−

i
~
βJ ′2 e−

i
~
αJ3Y`m(θ, φ) ,

(5.206)

The expression (5.203) has the disadvantage that it employs rotations defined with respect to three
different frames of reference. We will demonstrate that (5.203) can be expressed, however, in terms
of rotations defined with respect to the original frame. For this purpose we notice that J ′2 can be
expressed through the similarity transformation

J ′2 = e−
i
~
αJ3J2 e

i
~
αJ3 (5.207)

which replaces J ′2 by the inverse transformation (i), i.e., the transformation from the rotated frame
to the original frame, followed by J2 in the original frame, followed by transformation (i), i.e., the
transformation from the original frame to the rotated frame. Obviously, the l.h.s. and the r.h.s. of
(5.207) are equivalent. For any similarity transformation involving operators A and S holds

eS AS
−1

= S eA S−1 . (5.208)

Accordingly, we can write
e−

i
~
βJ ′2 = e−

i
~
αJ3 e−

i
~
βJ2 e

i
~
αJ3 (5.209)

The first two rotations in (5.203), i.e., (i) and (ii), can then be written

e−
i
~
βJ ′2 e−

i
~
αJ3 = e−

i
~
αJ3 e−

i
~
βJ2 (5.210)

The third rotation in (5.203), in analogy to (5.209), is

e−
i
~
γJ ′′3 = e−

i
~
βJ ′2 e−

i
~
αJ3 e−

i
~
γJ3 e

i
~
αJ3 e

i
~
βJ ′2 (5.211)

Using (5.209) in this expression one obtains

e−
i
~
γJ ′′3 = e−

i
~
αJ3 e−

i
~
βJ2 e

i
~
αJ3 e−

i
~
αJ3 e−

i
~
γJ3 e

i
~
αJ3 e−

i
~
αJ3 e

i
~
βJ2 e

i
~
αJ3

= e−
i
~
γJ ′′3 = e−

i
~
αJ3 e−

i
~
βJ2 e−

i
~
γJ3 e

i
~
βJ2 e

i
~
αJ3 (5.212)
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Multiplication from the left with (5.210) yields the simple result

e−
i
~
γJ ′′3 e−

i
~
βJ ′2 e−

i
~
αJ3 = e−

i
~
αJ3 e−

i
~
βJ2 e−

i
~
γJ3 , (5.213)

i.e., to redefine the three rotations in (5.203) with respect to the original (unprimed) frame one
simply needs to reverse the order of the rotations. This allows one to express the rotational
trasnformation (5.205, 5.206) by

Ỹ`m(θ, φ) =
∑
`′,m′

[D(α, β, γ)]`′m′; `m Y`m(θ, φ) (5.214)

[D(α, β, γ)]`′m′; `m =
∫
S2

dΩY ∗`′m′(θ, φ) e−
i
~
αJ3 e−

i
~
βJ2 e−

i
~
γJ3Y`m(θ, φ) .

(5.215)

The evaluation of the matrix elements (5.215) benefits from the choice of Euler angles for the
parametrization of rotational transformations. The eigenvalue property (5.64) yields∫

S2

dΩ f(θ, φ) e−
i
~
γJ3Y`m(θ, φ) =

∫
S2

dΩ f(θ, φ) Y`m(θ, φ) e−imγ . (5.216)

Using, in addition, the self-adjointness of the operator J3 one can state∫
S2

dΩY ∗`m(θ, φ) e−
i
~
αJ3f(θ, φ) = e−im

′α

∫
S2

dΩY ∗`m′(θ, φ) f(θ, φ) . (5.217)

Accordingly, one can write

[D(α, β, γ)]`m; `′m′ = e−iαm
′
(∫

S2

dΩY ∗`m′(θ, φ) e−
i
~
βJ2 Y`m(θ, φ)

)
e−iγm δ``′ (5.218)

Defining the so-called Wigner rotation matrix

d
(`)
mm′(β) =

∫
S2

dΩY ∗`m′(θ, φ) e−
i
~
βJ2 Y`m(θ, φ) (5.219)

one can express the rotation matrices

[D(α, β, γ)]`m; `′m′ = e−iαm
′
d

(`)
m′m(β) e−iγm δ``′ . (5.220)

We will derive below [see Eqs. (5.309, 5.310)] an explicit expression for the Wigner rotation matrix
(5.219).

5.7 Spin 1
2 and the group SU(2)

The spin describes a basic and fascinating property of matter. Best known is the spin of the
electron, but many other elementary components of matter are endowed with spin-like properties.
Examples are the other five members of the lepton family to which the electron belongs, the electron
e and the electron neutrino νe of the first generation, the muon µ and its neutrino νµ of the second
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generation, the tau τ and its neutrino ντ of the third generation and their antiparticles carry a
spin-1

2 . So do the three generations of six quarks, two of which (in certain linear combinations)
make up the vector mesons which carry spin 1, and three of which make up the baryons which
carry spin-1

2 and spin-3
2 . There are also the mediators, the gluon, the photon, the two W± and the

Zo, particles which mediate the strong and the electro-weak interactions, and which carry spin 1.
The particles mentioned, e.g. the quarks, carry other spin-like properties which together, however,
have properties beyond those of single spins. In any case, there is nothing more elementary to
matter than the spin property. The presence of this property permeates matter also at larger scales
than those of the elementary particles mentioned, leaving its imprint on the properties of nuclei,
atoms and molecules; in fact, the spin of the electron is likely the most important property in
Chemistry. We may finally mention that the spin is at the heart of many properties of condensed
matter systems, like superconductivity and magnetism. It appears to be rather impossible for a
Physicist not to be enamored with the spin property. We will find that the spin in its transformation
behaviour is closely related to angular momentum states, a relationship, which might be the reason
why consideration of rotational symmetry is so often fruitful in the study of matter.
We will consider first only the so-called spin–1

2 , generalizing then further below. Spin-1
2 systems

can be related to two states which we denote by χ+ and χ−. Such systems can also assume any
linear combination c+χ+ + c−χ−, c± ∈ C, as long as |c+|2 + |c−|2 = 1. If we identify the states
χ+ and χ− with the basis of a Hilbert space, in which we define the scalar product between any
state |1〉 = a+χ+ + a−χ− and |2〉 = b+χ+ + b−χ− as 〈1|2〉 = a∗+b+ + a∗−b−, then allowed
symmetry transformations of spin states are described by 2 × 2-matrices U with complex-valued
matrix elements Ujk. Conservation of the scalar product under symmetry transformations requires
the property U U † = U †U = 11 where U † denotes the adjoint matrix with elements

[
U †
]
jk

= U∗kj .
We will specify for the transformations considered detU = 1. This specification implies that we
consider transformations save for overall factors eiφ since such factors are known not to affect any
observable properties.
The transformation matrices are then elements of the set

SU(2) = { complex 2× 2 matricesU ; U U † = U †U = 11, detU = 1 } (5.221)

One can show readily that this set forms a group with the groups binary operation being matrix
multiplication.
How can the elements of SU(2) be parametrized. As complex 2×2 matrices one needs, in principle,
eight real numbers to specify the matrix elements, four real and four imaginary parts of Ujk, j, k =
1, 2. Because of the unitarity condition U †U = 11 which are really four equations in terms of real
quantities, one for each matrix element of U †U , and because of detU = 1, there are together five
conditions in terms of real quantities to be met by the matrix elements and, hence, the degrees of
freedom of the matrices U are three real quantities. The important feature is that all U ∈ SU(2)
can be parametrized by an exponential operator

U = exp
(
− i ~ϑ · ~S

)
(5.222)

where the vector ~S has three components, each component Sk, k = 1, 2, 3 representing a 2 × 2
matrix. One can show that the unitarity condition requires these matrices to be hermitian, i.e.
[Sk]mn = ([Sk]nm)∗, and the condition detU = 1 requires the Sk to have vanishing trace. There
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exist three such linear independent matrices, the simplest choice being

S1 =
1
2
σ1, S2 =

1
2
σ2, S3 =

1
2
σ3 (5.223)

where σk, k = 1, 2, 3 are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (5.224)

Algebraic Properties of the Pauli Matrices

The Pauli matrices (5.224) provide a basis in terms of which all traceless, hermitian 2× 2–matrices
A can be expandend. Any such A can be expressed in terms of three real parameters x, y, z

A =
(

z x − iy
x + iy −z

)
, x, y, z, ∈ R . (5.225)

In fact, it holds,
A = xσ1 + y σ2 + z σ3 . (5.226)

The Pauli matrices satisfy very special commutation and anti-commutation relationships. One can
readily verify the commutation property

σj σk − σk σj = [σj , σk]− = 2iεjk` σ` (5.227)

which is essentially identical to the Lie algebra (5.31) of the group SO(3). We will show below that a
2-1–homomorphic mapping exists between SU(2) and SO(3) which establishes the close relationship
between the two groups.
The Pauli matrices obey the following anti-commutation properties

σj σk + σk σj = [σj , σk]+ = 2δjk11 , (5.228)

i.e. (
σj
)2 = 11 ; σjσk = −σkσj for j 6= k (5.229)

which can also be readily verified. According to this property the Pauli matrices generate a 3-
dimensional Clifford algebra C3. Clifford algebras play an important role in the mathematical
structure of physics, e.g. they are associated with the important fermion property of matter. At
this point we will state a useful property, namely,

(~σ · ~a) (~σ ·~b) = ~a ·~b 11 + i~σ · (~a×~b) (5.230)

where ~a, ~b are vectors commuting with ~σ, but their comonents must not necessarily commute with
each other, i.e., it might hold ajbk − bkaj 6= 0. The proof of this relation rests on the commuta-
tion relationship and the anti-commutation relationship (5.227, 5.229) and avoids commuting the
components aj and bk. In fact, one obtains

(~σ · ~a) (~σ ·~b) =
∑3

j,k=1 σ
jσk ajbk =∑3

j=1(σj)2 ajbj +
∑3

j,k=1
j>k

σjσk ajbk +
∑3

j,k=1
j<k

σjσk ajbk . (5.231)
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Using (σj)2 = 1 the first term on the r.h.s. yields ~a · ~b. The two remaining terms yield using
σjσk = −σkσj for j 6= k and altering ‘dummy’ summation indices∑3

j,k=1
j>k

σjσk (ajbk − akbj) =

1
2

∑3
j,k=1
j>k

σjσk (ajbk − akbj) − 1
2

∑3
j,k=1
j>k

σkσj (ajbk − akbj) =

1
2

∑3
j,k=1
j>k

(σjσk − σkσj) (ajbk − akbj) . (5.232)

The commutation property (5.227) leads to

i

3∑
j,k=1
j>k

εjk`σl (ajbk − akbj) = i

3∑
`=1

σ`

(
~a×~b

)
`
. (5.233)

This result together with (5.231) proves (5.230).
In the special case ~a = ~b ∈ R3 holds

(~σ · ~a)2 = ~a 211 . (5.234)

5.8 Generators and Rotation Matrices of SU(2)

Sofar there is nothing which relates the transformations U , i.e. (5.222), to rotations in space. This
relationship emerges, however, through the algebra obeyed by the operators Sk

[Sk, S`] = i εk`m Sm (5.235)

which is identical to that of the generators of SO(3). The algebra of the generators of a transforma-
tion is such a basic property that the ‘accident’ that the generators of spin transformations behave
in this respect like the generators of 3-dimensional rotations makes spins appear in their physical
behaviour like rotations. Well almost like it, since there is a slight difference: when you interprete
the 3-component ~ϑ in (5.222) as a rotation vector and you rotate once, let say around the x2–axis
by 360o, spin changes sign; only a 720o rotation leaves the spin invariant. We like to derive this
result now by evaluating the transformations of SU(2) explicitly. For this purpose we choose to
replace (5.222) by the Euler form

exp(−iγS3) exp(−iβS2) exp(−iαS3) . (5.236)

The matrix elements of this 2× 2 operator can be labelled by the basis states χ+ and χ−, however,
we like to draw in this respect also on a close analogy to angular momentum states which developes
if one considers the operators S2 = S2

1 + S2
2 + S2

3 and S3. Noticing the idempotence of the Sk’s

S2
k =

1
4

(
1 0
0 1

)
(5.237)

one obtains S2 = 3
411 = 1

2(1
2 + 1)11 and, hence,

S2 χ± =
1
2

(
1
2

+ 1)χ± ; S3 χ± = ± 1
2
χ± . (5.238)
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This result implies that the states χ± behave in relation to the generators of SU(2) like an angular
momentum state |12 ±

1
2〉 in relation to the generators of SO(3). We may, therefore, use the label

|12 ±
1
2〉 for the states χ±.

We obtain with this notation for the transformations (5.236)

〈12m | exp(−iγS3) exp(−iβS2) exp(−iαS3) | 1
2m
′〉

= e−iγm 〈12m | exp(−iβS2) | 1
2m
′〉 e−iαm′

= e−iγm d
( 1

2
)

mm′(β)e−iαm
′

(5.239)

where we made use of the notation (5.219).
In order to determine the Wigner matrix in (5.219,5.239 ) one expands the exponential operator
exp(−iβS2). For this purpose one needs to determine the powers of −iβS2. The idempotence
property of Sk yields particularly simple expressions for these powers, namely,

(−β S2)2n = (−1)n
(
β
2

)2n
11 (5.240)

(−β S2)2n+1 = (−1)n
(
β
2

)2n+1
(

0 1
−1 0

)
. (5.241)

Taylor expansion of the exponential operator yields then

exp(−iβS2) =

[ ∞∑
n=0

(−1)n
(
β

2

)2n
]

11 +

[ ∞∑
n=0

(−1)n
(
β

2

)2n+1
] (

0 1
−1 0

)
(5.242)

The expressions in brackets [. . .] can be identified with the Taylor expansion of the cos- and sin-
functions and one obtains for the rotation matrices(

d
( 1

2
)

mm′(β)
)

=
(

cosβ2 − sinβ2
sinβ2 cosβ2

)
. (5.243)

We note the property of this rotation matrix(
d

( 1
2

)

mm′(2π)
)

= − 11 ; (5.244)

i.e. rotation by 360o changes the sign of the spin state.
The complete matrix elements (5.239) in the notation (5.220) are

[D(α, β, γ)]`m; `′m′ =

(
cosβ2 e

−i(α
2

+ γ
2 − sinβ2 e

i(α
2
− γ

2

sinβ2 e
i(−α

2
+ γ

2 cosβ2 e
i(α

2
+ γ

2

)
. (5.245)

5.9 Constructing Spin States with Larger Quantum Numbers
Through Spinor Operators

In this section we like to demonstrate, following Jourdan and Schwinger, that states |`m〉 for higher
quantum numbers ` = 0, 1

2 , 1,
3
2 , 2, . . ., m = −`,−`+ 1, . . . ` can be constructed formally from spin

states χ± if one considers the two properties χ± to be carried by two kinds of bosons, i.e. identical
particles any number of which can exist in the same state χ+ and χ−. One cannot consider the
entities carrying the spin–1

2 to be particles in the ordinary sense for it can be shown that spin–1
2

particles have fermion character, i.e. no two such particles can exist in the same state.
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Definition of Spinor Creation and Annihilation Operators

We present the states χ± through creation operators b†± which when applied to a formal vacuum
state |Ψ0〉 generate χ±, i.e.

b†+|Ψ0〉 = χ+ ; b†−|Ψ0〉 = χ− . (5.246)

The corresponding adjoint operators are denoted by b+ and b−. The boson character of the op-
erators b† = (b†+, b

†
−)T and b = (b+, b−)T is expressed through the commutation relationships

(ζ, ζ ′ = +,−) [
bζ , bζ′

]
=
[
b†ζ , b

†
ζ′

]
= 0 (5.247)[

bζ , b
†
ζ′

]
= δζζ′ . (5.248)

For the vacuum state |Ψ0〉 holds
b± |Ψ0〉 = 0 (5.249)

In the following will refer to b† = (b†+, b
†
−)T and b = (b+, b−)T as spinor creation and annihilation

operators. These operators are associated with a given spatial reference system. We consider,
therefore, also operators of the type

x b† = x+b
†
+ + x−b

†
− ; x∗b = x∗+b+ + x∗−b− (5.250)

which for x∗x = x∗+x+ + x∗−x− = 1 represent spinor operators in an arbitrary reference system.
For example, using (5.243) the creation operators in a coordinate system rotated by an angle β
around the y–axis are

(
b′+
)† = cos

β

2
b†+ + sin

β

2
b†− ;

(
b′−
)† = − sin

β

2
b†+ + cos

β

2
b†− . (5.251)

One can show using this property and (5.247,5.248) that
(
b′ζ

)†
and b′ζ obey the commutation

relationships [
b′ζ , b

′
ζ′
]

=
[
b′
†
ζ , b
′†
ζ′

]
= 0 (5.252)[

b′ζ , b
′†
ζ′

]
= δζζ′ . (5.253)

The States |Ψ(j,m)〉

The operators b†± allow one to construct a set of states which represent j +m–fold and j −m–fold
χ+ and χ− states as follows

|Ψ (j,m)〉 =

(
b†+

)j+m
√

(j +m)!

(
b†−

)j−m
√

(j −m)!
|Ψ0〉 . (5.254)

We will show below that these states are orthonormal and form spin states with higher quantum
numbers, i.e. j = 0, 1

2 , 1,
3
2 , . . . ; m = −j,−j + 1, . . . j.
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5.10 Algebraic Properties of Spinor Operators

We want to establish first a few important and useful algebraic properties which result from the
commutation relationships (5.247, 5.248) and from (5.249).

The Spinor Derivative Operator

A most important operation is the action of the annihilation operators b+ and b− on operators
which can be expressed as polynomials, possibly infinite power series, in b†+ and b†−. An example

is the monomial
(
b†+

)j+m (
b†−

)j−m
which generates the states (5.254). We will derive the result,

well-known for the quantum mechanical harmonic oscillator, that the annihilation operators play
a role similar to the differential operator in calculus.
For this purpose we consider the following polynomial of creation operators

f(b†+) =
N∑
n=0

cn

(
b†+

)n
. (5.255)

In order to determine how this operator is modified by multiplication from the left by b+ we note

b+f(b†+) |state〉 =
[
b+, f(b†+)

]
|state〉 + f(b†+) b+ |state〉 . (5.256)

In the special case |state〉 = |Ψ0〉 this reads using (5.249)

b+f(b†+) |Ψ0〉 =
[
b+, f(b†+)

]
|Ψ0〉 . (5.257)

Equations (5.256) and (5.257) motivate us to determine the commutator
[
b+, f(b†+)

]
which for

(5.255) is [
b+, f

(
b†
)]

=
∑
n

cn

[
b+,
(
b†+

)n]
. (5.258)

Obviously, we need to evaluate
[
b+,
(
b†+

)n]
. We will show that for this commutator holds

[
b+,
(
b†+

)n]
= n

(
b†+

)n−1
. (5.259)

The property is obviously true for n = 0. If it is true for n then using (5.248) we obtain[
b+,
(
b†+

)n+1
]

=
[
b+,
(
b†+

)n
b†+

]
=

[
b+,
(
b†+

)n]
b†+ +

(
b†+

)n [
b+, b

†
+

]
= n

(
b†+

)n−1
b†+ +

(
b†+

)n
= (n+ 1)

(
b†+

)n
, (5.260)
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i.e. the property holds also for n+1. By induction we can conclude that (5.259) holds for all n ∈ N.
One can finally conclude for polynomials (5.255)[

b+, f(b†+)
]

= f ′(b†+) (5.261)

where f ′(x) = df
dx . Similarly, one can prove[

b−, f(b†−)
]

= f ′(b†−) (5.262)

Because of the commutation relationships (5.247) the more general property for polynomials
f(b†+, b

†
−) in b†+ and b†− holds (ζ = +,−)[

bζ , f(b†+, b
†
−)
]

=
∂

∂b†ζ
f(b†+, b

†
−) . (5.263)

According to (5.257) we can conclude in particular

bζ f(b†+, b
†
−) |Ψ0〉 =

∂

∂b†ζ
f(b†+, b

†
−) |Ψ0〉 . (5.264)

This demonstrates the equivalence of the spinor operators bζ and the derivative operation.
Equation (5.263) corresponds to the product rule of calculus ∂kf(~x)g(~x) = (∂kf(~x))g(~x) +
f(~x)(∂kg(~x)) which can be written ( ∂kf(~x) − f(~x)∂k ) g(~x) = [∂k, f(~x)] g(~x) = (∂kf(~x))g(~x)
or

[∂k, f(~x)] = ∂kf(~x) . (5.265)

Generating Function of the States |Ψ(j,m)〉

We want to prove now the property

exp
(
xb†
)
|Ψ0〉 =

∞∑
j=0, 1

2
,1,...

j∑
m=−j

φjm (x) Ψ (j,m) (5.266)

where xb† has been defined in (5.250) and where φjm (x) represents the function of the two variables
x+ and x− closely related to |Ψ(j,m)〉

φjm (x) =
xj+m+ xj−m−√

(j +m)! (j −m)!
. (5.267)

exp
(
xb†
)
|Ψ0〉 is called a generating function of |Ψ(j,m)〉.

In order to derive (5.266) we compare the terms

φjm (x) Ψ (j,m) =

(
x+b

†
+

)j+m
(j +m)!

(
x−b

†
−

)j−m
(j −m)!

|Ψ0〉. (5.268)
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with the s–th term in the binomial expansion of (a+ b)n

n!
s! (n− s)!

an−sbs . (5.269)

Defining

j +m = N − s
j −m = s . (5.270)

one obtains

φjm (x) Ψ (j,m) =

(
x+b

†
+

)N−s
(N − s)!

(
x−b

†
−

)s
s!

|Ψ0〉

=
1
N !

[
N !

(N − s)!s!

](
x+b

†
+

)N−s (
x−b

†
−

)s
|Ψ0〉. (5.271)

Summation over s from s = 0 to s = N yields

1
N !

N∑
s=0

[
N !

(N − s)!s!

](
x+b

†
+

)N−s (
x−b

†
−

)s
|Ψ0〉

=
1
N !

(
x+b

†
+ + x−b

†
−

)N
|Ψ0〉

=
1

(2j)!

(
x+b

†
+ + x−b

†
−

)2j
|Ψ0〉 (5.272)

The summation over s can be written in terms of j and m using (5.270)
N∑
s=0

→
2j∑

j−m=0

→
j∑

m=−j
. (5.273)

Change of the summation indices allows one to conclude
j∑

m=−j
φjm (x) Ψ (j,m)

=
1

(2j)!

(
x+b

†
+ + x−b

†
−

)2j
|Ψ0〉

=
1

(2j)!

(
xb†
)2j
|Ψ0〉. (5.274)

Summing this expression over 2j = 0, 1, 2, . . ., i.e. chosing the summation index j = 0, 1
2 , 1,

3
2 , 2, . . .,

leads to
∞∑

j=0, 1
2
,1,...

j∑
m=−j

φjm (x) |Ψ (j,m)〉 =
∞∑

j=0, 1
2
,1,...

1
2j!

(
xb†
)2j
|Ψ0〉

=
∞∑

u=0,1,...

1
u!

(
xb†
)u
|Ψ0〉

= exp
(
xb†
)
|Ψ0〉 (5.275)
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which concludes our derivation. The generating function allows one to derive various properties of
the states |Ψ (j,m)〉 and will be used for this purpose below.

Orthonormality of the States |Ψ (j,m)〉

We want to show now that the states (5.254) are orthonormal, i.e. that

〈Ψ (j,m) |Ψ
(
j′,m′

)
〉 = δjj′δmm′ (5.276)

holds. For this purpose we consider the inner product

〈e(xb†)Ψ0|e(yb
†)Ψ0〉

=
∑

j,m,j′,m′

φjm (x∗)φj′m′ (y) 〈Ψ (j,m) |Ψ
(
j′,m′

)
〉 . (5.277)

To evaluate this expression we first notice[
e(xb

†)
]†

= e(x∗b) . (5.278)

which allows us to replace the l.h.s. of (5.277) by 〈Ψ0|e(x∗b)e(yb
†)Ψ0〉. In order to evaluate the

operator e(x∗b)e(yb†) we notice that the derivative property (5.264) implies

bζe
(yb†)|Ψ0〉 = yζe

(yb†)|Ψ0〉 . (5.279)

One can generalize this to
(bζ)

s e(yb
†)|Ψ0〉 = ysζe

(yb†)|Ψ0〉 . (5.280)

The commutation properties [b+, b−] = 0, [b†+, b
†
−] = 0 and [b−, b

†
+] = 0 allow one to state that for

any polynomial f(b+, b−) holds

f(b+, b−)e(yb
†)|Ψ0〉 = f(y+, y−)e(yb

†)|Ψ0〉 (5.281)

and, hence, one can write

〈e(xb†)Ψ0|e(yb
†)Ψ0〉

= 〈Ψ0|e(x∗y)e(yb
†)Ψ0〉

= e(x∗y) 〈Ψ0|e(yb
†)Ψ0〉 (5.282)

where we defined x∗y = x∗+y+ + x∗−y−. According to (5.249) for any non-vanishing integer s holds

〈Ψ0|bsΨ0〉 = 0 (5.283)

and, therefore, we can conclude

〈e(xb†)Ψ0|e(yb
†)Ψ0〉 = e(x∗y) (5.284)
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and comparing (5.282) and (5.277)∑
j,m,j′,m′

φjm (x∗)φj′m′ (y) 〈Ψ (j,m) |Ψ
(
j′,m′

)
〉 = e(x∗y) . (5.285)

Following steps similar to those in Eqs. (5.268–5.275) one can show

e(x∗y) =
∑
j,m

φjm (x∗)φjm (y) . (5.286)

from which follows immediately the orthonormality property (5.276).

New Representation of Spin 0, 1
2 , 1,

3
2 , . . . States

We want to demonstrate now that the states |Ψ (j,m)〉 as given in (5.254) are eigenstates of oper-
ators J2 and J3 with eigenvalues j(j + 1) and m where J2 and J3 are representations of the spin
operators S2 = S2

1 +S2
2 +S2

3 and S3 defined in 5.223, 5.224). One defines corresponding operators
Jk through

Jk =
1
2

∑
ζ,ζ′

b†ζ < ζ |σk| ζ ′ > bζ′ , (5.287)

where σk, k = 1, 2, 3 denote the Pauli spin matrices (5.224). In our present notation the matrix
elements < ζ |σk| ζ ′ > for ζ = ± correspond to the matrix elements < ζ |σk| ζ ′ > for σ = ±1

2 . The
operators are explicitly, using < + |σ1|+ >=< − |σ1| − >= 0, < + |σ1| − >=< − |σ1|+ >= 1,
etc.,

J1 =
1
2

(
b†+b− + b†−b+

)
J2 =

1
2i

(
b†+b− − b

†
−b+

)
J3 =

1
2

(
b†+b+ − b

†
−b−

)
. (5.288)

The three operators obey the Lie algebra of SU(2)

[Ji, Jj ] = iεijkJk . (5.289)

This property is derived as follows

[Ji, Jj ] =
1
4

∑
n,n′,m,m′

< n |σi|m >< n′ |σj |m′ >
[
b†nbm, b

†
n′bm′

]
=

1
4

∑
n,n′,m,m′

< n |σi|m >< n′ |σj |m′ > {b†n
[
bm, b

†
n′

]
bm′

+b†n′
[
b†n, bm′

]
bm}

=
1
4

∑
n,n′,m,m′

< n |σi|m >< n′ |σj |m′ > {b†nbm′δmn′ − b
†
n′bmδm′n}
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=
1
4

∑
n,m,m′

< n |σi|m >< m |σj |m′ > b†nbm′

−1
4

∑
n′,m,m′

< n′ |σj |m′ >< m′ |σi|m > b†n′bm

=
1
4

∑
n,m

< n |[σi, σj ]|m > b†nbm

=
1
4

∑
n,m,k

< n |2iεijkσk|m > b†nbm

= iεijk
1
2

∑
n,m

< n |σk|m > b†nbm

= iεijkJk . (5.290)

|Ψ (j,m)〉 as Eigenstates of J2 and J3

We wish to show now that the states |Ψ (j,m)〉 are eigenstates of J2 and J3. To this end we note

J2 = J2
1 + J2

2 + J2
3 =

1
2
J+J− +

1
2
J−J+ + J2

3 . (5.291)

Here we have defined

J+ = J1 + iJ2 = b†+b−

J− = J1 − iJ2 = b†−b+ . (5.292)

The commutation relationships (5.289) yield

[J−, J+] = [J1 − iJ2, J1 + iJ2] = −i [J2, J1] + i [J1, J2] = −2 J3 (5.293)

from which we can conclude the property

1
2
J−J+ =

1
2
J+J− − J3 . (5.294)

Hence,
J2 = J+J− + J2

3 − J3 = J3 (J3 − 1) + J+J− . (5.295)

The last result together with (5.292), (5.288) yields first the expression

J2 =
1
4

( b†+ b+ − b†−b− ) ( b†+ b+ − b†−b− − 2 ) + b†+b−b
†
−b+ . (5.296)

which results in

J2 = 1
4 ( b†+ b+ b†+ b+ + b†+ b+ b

†
−b− − 2 b†+ b+ − b†−b− b

†
+ b+

+ b†−b−b
†
−b− + 2 b†−b− + 4 b†+b−b†−b+ ) (5.297)
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The last term on the r.h.s. can be written

b†+b−b
†
−b+ = b†+b+ + b†+ b+b

†
−b−

= b†+b+ +
1
2
b†+ b+b

†
−b− +

1
2
b†−b−b

†
+ b+ . (5.298)

One can then state

J2 =
1
4

[
(b†+b+)2 + b†+b+b

†
−b− + b†−b−b

†
+ b+

+ (b†−b−)2 + 2 b†+b+ + 2 b†−b−

]
. (5.299)

Defining the operator

k̂ =
1
2

( b†+b+ + b†−b− ) (5.300)

one can write finally
J2 = k̂ ( k̂ + 1 ) . (5.301)

Obviously, the states (5.254) are eigenstates of b†+b+ and b†−b− with eigenvalues j+m and j−m,
respectively, and eigenstates of k̂ with eigenvalues j. One can then conclude

J2 |Ψ (j,m)〉 = j ( j + 1 ) |Ψ (j,m)〉 (5.302)
J3 |Ψ (j,m)〉 = m |Ψ (j,m)〉 . (5.303)

One can furthermore derive readily

J+|Ψ (j,m)〉 =
√

(j +m+ 1) (j −m) |Ψ (j,m+ 1)〉 (5.304)
J− |Ψ (j,m)〉 =

√
(j +m) (j −m+ 1)|Ψ (j,m− 1)〉 . (5.305)

Exercise 5.10.1: The system investigated in this section is formally identical to a 2-dimensional
isotropic harmonic oscillator governed by the Hamiltonian

H = ~ω(b+1 b1 + b+2 b2 + 1) ; [bj , b+k ] = δjk , j = 1, 2 .

(a) Show that the eigenstates are given by

|n1, n2〉 =
1√
n1!

(
b+1
)n1 |0〉1

1√
n2!

(
b+2
)n2 |0〉2

where the vacuum states are defined through bj |0〉j = 0. State the corresponding eigenvalues and
the degree of degeneracy, i.e., the number of states to the possible energy eigenvalues.
(b) Show that the three operators

I1 =
1
2

(b+1 b2 + b+2 b1) , I2 =
1
2i

(b+1 b2 − b+2 b1) , I3 =
1
2

(b+1 b1 + b+2 b2)

satisfy the Lie algebra of SU(2), i.e. [Ij , Ik] = iεjk`I`. Construct, using operators I± = I1 ± iI2

and the subspace {|n1, n2〉, n = n1 +n2 fixed, n1 = 0, 1, 2, . . . , n} eigenstates of I2 = I2
1 +I2

2 +I2
3

and of I3

I2||λ,m〉 = λ||λ,m〉 ; I3||λ,m〉 = m||λ,m〉
where λ = 0, 1 2, . . . , m = −λ,−λ+1, . . . , λ. Show λ = n1+n2

2 (n1+n2
2 + 1) and m = 1

2(n1 − n2).
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5.11 Evaluation of the Elements djmm′(β) of the Wigner Rotation
Matrix

The spinor algorithm allows one to derive expressions for the Wigner rotation matrix elements
djmm′(β). For this purpose we note that the states |Ψ(jm)〉 in a rotated coordinate system according
to (5.254) are

|Ψ′
(
j,m′

)
〉 =

(
b′†+

)j+m′
√

(j +m′)!

(
b′†−

)j−m′
√

(j −m′)!
|Ψ0〉 (5.306)

where b′†+ and b′†− are given by (5.251). On the other side the states |Ψ′ (j,m′)〉 are related to the
states |Ψ (j,m)〉 in the original coordinate system by

|Ψ′
(
j,m′

)
〉 =

j∑
m=−j

d
(j)
mm′(β) |Ψ (j,m)〉 . (5.307)

Comparision of (5.306) and (5.307) shows that the elements of the rotation matrix can be obtained
by binomial expansion of b′†+ and b′†− in terms of b†+ and b†−. For this purpose we expand(

b′†+

)j+m′ (
b′†−

)j−m′
=(

cosβ2 b
†
+ + sinβ2 b

†
−

)j+m′ (
−sinβ2 b

†
+ + cosβ2 b

†
−

)j−m′
=∑j+m′

σ′=0

∑j−m′
σ=0

(
j +m′

σ′

)(
cosβ2

)σ′ (
sinβ2

)j+m′−σ′
(
j −m′
σ

)(
−sinβ2

)σ (
cosβ2

)j−m′−σ (
b†+

)σ′+σ (
b†−

)2j−σ′−σ
(5.308)

The latter sum involves terms (b†+)j+m(b†−)j−m for σ′ + σ = j + m and 2j − σ′ − σ = j − m.
One may expect that these two conditions restrict both σ′ and σ. However, both conditions are
satisfied for σ′ = j + m − σ. The combination of σ, σ′ values which yields (b†+)j+m(b†−)j−m is
then σ′ = j + m − σ. The prefactor of (b†+)j+m(b†−)j−m which according to (5.306,5.307) can be
identified with the elements d(j)

mm′(β) of the rotation matrix can then be written

d
(j)
mm′(β) =

√
(j +m)!(j −m)!
(j +m′)!(j −m′)!

j−m′∑
σ=0

(
j +m′

j +m− σ

) (
j −m′
σ

)
× (5.309)

× (−1)j−m
′−σ
(

sin
β

2

)2j−m−m′−2σ (
cos

β

2

)m+m′+2σ

.

In case j = 1 this expression yields, for example,

(d(1)
m′m) =


1
2(1 + cosβ) 1√

2
sinβ 1

2(1− cosβ)
− 1√

2
sinβ cosβ 1√

2
sinβ

1
2(1− cosβ) − 1√

2
sinβ 1

2(1 + cosβ)

 (5.310)

and in case j = 1
2 it reduces to (5.243).
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5.12 Mapping of SU(2) onto SO(3)

The representation (5.310) establishes a mapping of SU(2) onto SO(3). This can be shown by
applying to the matrix A = (d(1)

m′m) in (5.310) the similarity transformation

Ã = U †AU (5.311)

where U is the 3× 3 unitary matrix which establishes the transformation
1√
2
(−x1 − ix2 )

x3
1√
2
(x1 − ix2 )

 = U

 x1

x2

x3

 ; U =

 −
1√
2
− i√

2
0

0 0 1
1√
2
− i√

2
0

 . (5.312)

The choice of this transformation derives from a property shown further below, namely that
the component of the vector on the l.h.s. of (5.312) transforms like an angular momentum state
|1m〉. Hence, the matrix Ã should represent a rotation around the x2–axis in the space of vectors
(x1, x2, x3) ∈ R3. Evaluation of Ã yields

Ã = 1
4

 −1 0 1
i 0 i

0
√

2 0

  1 + cosβ
√

2 sinβ 1 − cosβ
−
√

2 sinβ 2 cosβ
√

2 sinβ
1 − cosβ −

√
2 sinβ 1 + cosβ

 ×
×

 −1 −i 0
0 0

√
2

1 −i 0

 = 1
4

 −2 cosβ −2
√

2 sinβ 2 cosβ
2i 0 2i

−2 sinβ 2
√

2 cosβ 2 sinβ

 ×
×

 −1 −i 0
0 0

√
2

1 −i 0

 =

 cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ

 (5.313)

which, in fact, is the expected element of SO(3), i.e., the orthogonal 3× 3 matrix which describes
a rotation around the x2–axis.
It is of interest to trace the mapping from SU(2) onto SO(3) as represented by (5.310) to the
SU(2) transformation assumed in deriving the general result (5.309) and the particular matrix
(5.310). The SU(2) transformation entered in (5.308) and had the form (5.251). Replacing the
latter transformation by its negative form, i.e.,(

b′+
)† = −cos

β

2
b†+ − sin

β

2
b†− ;

(
b′−
)† = sin

β

2
b†+ − cos

β

2
b†− . (5.314)

leaves (5.308) unaltered except for a factor (−1)2j which multiplies then also the final result (5.309).
This factor implies, however, that the the representation (5.309) does not distinguish between SU(2)
transformations (5.251) and (5.314) in case of integer j–values, e.g. in case of j = 1. One can,
therefore, conclude that the mapping from SU(2) onto SO(3) is a 2–1 mapping.
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Chapter 6

Quantum Mechanical Addition of
Angular Momenta and Spin

In this section we consider composite systems made up of several particles, each carrying orbital
angular momentum decribed by spherical harmonics Y`m(θ, φ) as eigenfunctions and/or spin. Often
the socalled total angular momentum, classically speaking the sum of all angular momenta and spins
of the composite system, is the quantity of interest, since related operators, sums of orbital angular
momentum and of spin operators of the particles, commute with the Hamiltonian of the composite
system and, hence, give rise to good quantum numbers. We like to illustrate this for an example
involving particle motion. Further below we will consider composite systems involving spin states.

Example: Three Particle Scattering

Consider the scattering of three particles A, B, C governed by a Hamiltonian H which depends
only on the internal coordinates of the system, e.g., on the distances between the three particles,
but neither on the position of the center of mass of the particles nor on the overall orientation of
the three particle system with respect to a laboratory–fixed coordinate frame.
To specify the dependency of the Hamiltonian on the particle coordinates we start from the nine
numbers which specify the Cartesian components of the three position vectors ~rA, ~rB, ~rC of the
particles. Since the Hamiltonian does not depend on the position of the center of mass ~R =
(mA~rA + mB~rB + mC~rC)/(mA+mB+mC), six parameters must suffice to describe the interaction
of the system. The overall orientation of any three particle configuration can be specified by
three parameters1, e.g., by a rotational vector ~ϑ. This eleminates three further parameters from
the dependency of the Hamiltonian on the three particle configuration and one is left with three
parameters. How should they be chosen?
Actually there is no unique choice. We like to consider a choice which is physically most reasonable
in a situation that the scattering proceeds such that particles A and B are bound, and particle C
impinges on the compound AB coming from a large distance. In this case a proper choice for a
description of interactions would be to consider the vectors ~rAB = ~rA − ~rB and ~ρC = (mA~rA +
mB~rB)/(mA +mB)− ~rC , and to express the Hamiltonian in terms of |~rAB|, |~ρC |, and ^(~rAB, ~ρC).
The rotational part of the scattering motion is described then in terms of the unit vectors r̂AB and

1We remind the reader that, for example, three Eulerian angles α, β, γ are needed to specify a general rotational
transformation
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ρ̂C , each of which stands for two angles. One may consider then to describe the motion in terms
of products of spherical harmonics Y`1m1(r̂AB)Y`2m2(ρ̂C) describing rotation of the compound AB
and the orbital angular momentum of C around AB.
One can describe the rotational degrees of freedom of the three-particle scattering process through
the basis

B = {Y`1m1(r̂AB)Y`2m2(ρ̂C), `1 = 0, 1, . . . , `1,max,−`1 ≤ m1 ≤ `1;
`2 = 0, 1, . . . , `2,max,−`2 ≤ m1 ≤ `2 } (6.1)

where `1,max and `2,max denote the largest orbital and rotational angular momentum values, the
values of which are determined by the size of the interaction domain ∆V , by the total energy E,
by the masses mA, mB, mC , and by the moment of inertia IA−B of the diatomic molecule A–B
approximately as follows

`1,max =
∆
~

√
2mAmBmC E

mAmB + mBmC + mAmC
, `2,max =

1
~

√
2 IA−BE . (6.2)

The dimension d(B) of B is

d(B) =
`1,max∑
`1=0

(2 `1 + 1)
`2,max∑
`2=0

(2 `2 + 1) = (`1,max + 1)2 (`2,max + 1)2 (6.3)

For rather moderate values `1,max = `2,max = 10 one obtains d(B) = 14 641, a very large number.
Such large number of dynamically coupled states would constitute a serious problem in any detailed
description of the scattering process, in particular, since further important degrees of freedom, i.e.,
vibrations and rearrangement of the particles in reactions like AB + C → A + BC, have not
even be considered. The rotational symmetry of the interaction between the particles allows one,
however, to separate the 14 641 dimensional space of rotational states Y`1m1(r̂AB)Y`2m2(ρ̂C) into
subspaces Bk, B1⊕B2⊕ . . . = B such, that only states within the subspaces Bk are coupled in the
scattering process. In fact, as we will demonstrate below, the dimensions d(Bk) of these subspaces
does not exceed 100. Such extremely useful transformation of the problem can be achieved through
the choice of a new basis set

B′ = {
∑
`1,m1
`2,m2

c
(n)
`1,m1;`2,m2

Y`1m1(r̂AB)Y`2m2(ρ̂C), n = 1, 2, . . . 14 641} . (6.4)

The basis set which provides a maximum degree of decoupling between rotational states is of great
principle interest since the new states behave in many respects like states with the attributes
of a single angular momentum state: to an observer the three particle system prepared in such
states my look like a two particle system governed by a single angular momentum state. Obviously,
composite systems behaving like elementary objects are common, albeit puzzling, and the following
mathematical description will shed light on their ubiquitous appearence in physics, in fact, will make
their appearence a natural consequence of the symmetry of the building blocks of matter.
There is yet another important reason why the following section is of fundamental importance for
the theory of the microscopic world governed by Quantum Mechanics, rather than by Classical
Mechanics. The latter often arrives at the physical properties of composite systems by adding the
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corresponding physical properties of the elementary components; examples are the total momentum
or the total angular momentum of a composite object which are the sum of the (angular) momenta
of the elementary components. Describing quantum mechanically a property of a composite object
as a whole and relating this property to the properties of the elementary building blocks is then the
quantum mechanical equivalent of the important operation of addittion. In this sense, the reader
will learn in the following section how to add and subtract in the microscopic world of Quantum
Physics, presumably a facility the reader would like to acquire with great eagerness.

Rotational Symmetry of the Hamiltonian

As pointed out already, the existence of a basis (6.4) which decouples rotational states is connected
with the rotational symmetry of the Hamiltonian of the three particle system considered, i.e.,
connected with the fact that the Hamiltonian H does not depend on the overall orientation of the
three interacting particles. Hence, rotations R(~ϑ) of the wave functions ψ(~rAB, ~ρC) defined through

R(~ϑ)ψ(~rAB, ~ρC) = ψ(R−1(~ϑ)~rAB, R−1(~ϑ) ~ρC) (6.5)

do not affect the Hamiltonian. To specify this property mathematically let us denote by H′ the
Hamiltonian in the rotated frame, assuming presently that H′ might, in fact, be different from H.
It holds then H′R(~ϑ)ψ = R(~ϑ) Hψ. Since this is true for any ψ(~rAB, ~ρC) it follows H′R(~ϑ) =
R(~ϑ) H, from which follows in turn the well-known result that H′ is related to H through the
similarity transformation H′ = R(~ϑ) H R−1(~ϑ). The invariance of the Hamiltonian under overall
rotations of the three particle system implies then

H = R(~ϑ) H R−1(~ϑ) . (6.6)

For the following it is essential to note that H is not invariant under rotations of only ~rAB or ~ρC ,
but solely under simultaneous and identical rotations of ~rAB or ~ρC .
Following our description of rotations of single particle wave functions we express (6.5) according
to (5.48)

R(~ϑ) = exp
(
− i

~

~ϑ · ~J (1)

)
exp

(
− i

~

~ϑ · ~J (2)

)
(6.7)

where the generators ~J (k) are differential operators acting on r̂AB (k = 1) and on ρ̂C (k = 2). For
example, according to (5.53, 5.55) holds

− i
~

J (1)
1 = zAB

∂

∂yAB
− yAB

∂

∂zAB
; − i

~

J (2)
3 = ρy

∂

∂ρx
− ρx

∂

∂ρy
. (6.8)

Obviously, the commutation relationships[
J (1)
p , J (2)

q

]
= 0 for p, q = 1, 2, 3 (6.9)

hold since the components of ~J (k) are differential operators with respect to different variables. One
can equivalently express therefore (6.7)

R(~ϑ) = exp
(
− i

~

~ϑ ·~J
)

(6.10)
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where
~J = ~J (1) + ~J (2) . (6.11)

By means of (6.11) we can write the condition (6.6) for rotational invariance of the Hamiltonian in
the form

H = exp
(
− i
~

~ϑ ·~J
)

H exp
(

+
i

~

~ϑ ·~J
)

. (6.12)

We consider this equation for infinitesimal rotations, i.e. for |~ϑ| � 1. To order O(|~ϑ|) one obtains

H ≈
(

11 − i

~

~ϑ ·~J
)

H
(

11 +
i

~

~ϑ ·~J
)
≈ H +

i

~

H ~ϑ ·~J − i

~

~ϑ ·~JH . (6.13)

Since this holds for any ~ϑ it follows H~J − ~JH = 0 or, componentwise,

[H, Jk] = 0 , k = 1, 2, 3 . (6.14)

We will refer in the following to Jk, k = 1, 2, 3 as the three components of the total angular
momentum operator.
The property (6.14) implies that the total angular momentum is conserved during the scattering
process, i.e., that energy, and the eigenvalues of ~J2 and J3 are good quantum numbers. To describe
the scattering process of AB + C most concisely one seeks eigenstates YJM of ~J2 and J3 which can
be expressed in terms of Y`1m1(r̂AB)Y`2m2(ρ̂C).

Definition of Total Angular Momentum States

The commutation property (6.14) implies that the components of the total angular momentum
operator (6.12) each individually can have simultaneous eigenstates with the Hamiltonian. We
suspect, of course, that the components Jk, k = 1, 2, 3 cannot have simultaneous eigenstates among
each other, a supposition which can be tested through the commutation properties of these opera-
tors. One can show readily that the commutation relationships

[Jk, J`] = i~ εk`mJm (6.15)

are satisfied, i.e., the operators Jk, k = 1, 2, 3 do not commute. For a proof one uses (6.9), the
properties [J (n)

k ,J (n)
` ] = i~ εk`mJ

(n)
m for n = 1, 2 together with the property [A,B + C] =

[A,B] + [A,C].
We recognize, however, the important fact that the Jk obey the Lie algebra of SO(3). According
to the theorem above this property implies that one can construct eigenstates YJM of J3 and of

J
2 = J

2
1 + J

2
2 + J

2
3 (6.16)

following the procedure stated in the theorem above [c.f. Eqs. (5.71–5.81)]. In fact, we will find
that the states yield the basis B′ with the desired property of a maximal uncoupling of rotational
states.
Before we apply the procedure (5.71–5.81) we want to consider the relationship between YJM and
Y`1m1(r̂AB)Y`2m2(ρ̂C). In the following we will use the notation

Ω1 = r̂AB , Ω2 = ρ̂C . (6.17)
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6.1 Clebsch-Gordan Coefficients

In order to determine YJM we notice that the states Y`1m1(Ω1)Y`2m2(Ω2) are characterized by four
quantum numbers corresponding to eigenvalues of

[
J (1)

]2
, J (1)

3 ,
[
J (2)

]2
, and J (2)

3 . Since YJM

sofar specifies solely two quantum numbers, two further quantum numbers need to be specified
for a complete characterization of the total angular momentum states. The two missing quantum
numbers are `1 and `2 corresponding to the eigenvalues of

[
J (1)

]2
and

[
J (2)

]2
. We, therefore,

assume the expansion

YJM (`1, `2|Ω1,Ω2) =
∑
m1,m2

(J M |`1m1 `2m2)Y`1m1(Ω1)Y`2m2(Ω2) (6.18)

where the states YJM (`1, `2|Ω1, ρ̂C) are normalized. The expansion coefficients (J M |`1m1 `2m2)
are called the Clebsch-Gordan coefficients which we seek to determine now. These coefficients,
or the closely related Wigner 3j-coefficients introduced further below, play a cardinal role in the
mathematical description of microscopic physical systems. Equivalent coefficients exist for other
symmetry properties of multi–component systems, an important example being the symmetry
groups SU(N) governing elementary particles made up of two quarks, i.e., mesons, and three quarks,
i.e., baryons.

Exercise 6.1.1: Show that J2, J3,
(
J (1)

)2
,
(
J (2)

)2
, and ~J (1) · ~J (2) commute. Why can states YJM

then not be specified by 5 quantum numbers?

Properties of Clebsch-Gordan Coefficients

A few important properties of Clebsch-Gordan coefficients can be derived rather easily. We first
notice that YJM in (6.18) is an eigenfunction of J3, the eigenvalue being specified by the quantum
number M , i.e.

J3 YJM = ~M YJM . (6.19)

Noting J3 = J (1)
3 + J (2)

3 and applying this to the l.h.s. of (6.18) yields using the property
J (k)

3 Y`kmk(Ωk) = ~mk Y`kmk(Ωk) , k = 1, 2

M YJM (`1, `2|Ω1,Ω2) =∑
m1,m2

(m1 + m2) (J M |`1m1 `2m2)Y`1m1(Ω1)Y`2m2(Ω2) . (6.20)

This equation can be satisfied only if the Clebsch-Gordan coefficients satisfy

(J M |`1m1 `2m2) = 0 for m1 + m2 6= M . (6.21)

One can, hence, restrict the sum in (6.18) to avoid summation of vanishing terms

YJM (`1, `2|Ω1,Ω2) =
∑
m1

(J M |`1m1 `2M −m1)Y`1m1(Ω1)Y`2m2(Ω2) . (6.22)

We will not adopt such explicit summation since it leads to cumbersum notation. However, the
reader should always keep in mind that conditions equivalent to (6.21) hold.
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The expansion (6.18) constitutes a change of an orthonormal basis

B(`1, `2) = {Y`1m1(Ω1)Y`2m2(Ω2),m1 = −`1,−`1 + 1, . . . , `1 ,
m2 = −`2,−`2 + 1, . . . , `2} , (6.23)

corresponding to the r.h.s., to a new basis B′(`1, `2) corresponding to the l.h.s. The orthonormality
property implies∫

dΩ1

∫
dΩ2 Y`1m1(Ω1)Y`2m2(Ω2)Y`′1m′1Ω1)Y`′2m′2(Ω2) = δ`1`′1δm1m′1

δ`2`′2δm2m′2
. (6.24)

The basis B(`1, `2) has (2`1 + 1)(2`2 + 1) elements. The basis B′(`1, `2) is also orthonormal2 and
must have the same number of elements. For each quantum number J there should be 2J + 1
elements YJM with M = −J,−J + 1, . . . , J . However, it is not immediately obvious what the J–
values are. Since YJM represents the total angular momentum state and Y`1m1(Ω1) and Y`2m2(Ω2)
the individual angular momenta one may start from one’s classical notion that these states represent
angular momentum vectors ~J , ~J (1) and ~J (2), respectively. In this case the range of | ~J |–values would
be the interval [

∣∣∣| ~J (1)| − | ~J (2)|
∣∣∣ , | ~J (1)| + | ~J (2)|]. This obviously corresponds quantum mechanically

to a range of J–values J = |`1 − `2|, |`1 − `2|+ 1, . . . `1 + `2. In fact, it holds

`1+`2∑
J=|`1−`2|

( 2J + 1 ) = (2`1 + 1) (2`2 + 1) , (6.25)

i.e., the basis B′(`1, `2) should be

B2 = {YJM (`1, `2|Ω1,Ω2); J = |`1 − `2|, |`1 − `2|+ 1, `1 + `2 ,

M = −J,−J + 1, . . . , J} . (6.26)

We will show below in an explicit construction of the Clebsch-Gordan coefficients that, in fact, the
range of values assumed for J is correct. Our derivation below will also yield real values for the
Clebsch-Gordan coefficients.

Exercise 6.1.2: Prove Eq. (6.25)

We want to state now two summation conditions which follow from the orthonormality of the two
basis sets B(`1, `2) and B′(`1, `2). The property∫

dΩ1

∫
dΩ2 Y∗JM (`1, `2|Ω1,Ω2) YJ ′M ′(`1, `2|Ω1,Ω2) = δJJ ′δMM ′ (6.27)

together with (6.18) applied to Y∗JM and to YJ ′M ′ and with (6.24) yields∑
m1,m2

(J M |`1m1 `2m2)∗(J ′M ′|`1m1 `2m2) = δJJ ′δMM ′ . (6.28)

2This property follows from the fact that the basis elements are eigenstates of hermitian operators with different
eigenvalues, and that the states can be normalized.



6.2: Construction of Clebsch-Gordan Coefficients 147

The second summation condition starts from the fact that the basis sets B(`1, `2) and B′(`1, `2)
span the same function space. Hence, it is possible to expand Y`1m1(Ω1)Y`2m2(Ω2) in terms of
YJM (`1, `2|Ω1,Ω2), i.e.,

Y`1m1(Ω1)Y`2m2(Ω2) =
`1+`2∑

J ′=|`1−`2|

J∑
M ′=−J

cJ ′M ′ YJ ′M ′(`1, `2|Ω1,Ω2) , (6.29)

where the expansion coefficients are given by the respective scalar products in function space

cJ ′M ′ =
∫
dΩ1

∫
dΩ2 Y∗J ′M ′(`1, `2|Ω1,Ω2)Y`1m1(Ω1)Y`2m2(Ω2) . (6.30)

The latter property follows from multiplying (6.18) by Y∗J ′M ′(`1, `2|Ω1,Ω2) and integrating. The
orthogonality property (6.27) yields

δJJ ′δMM ′ =
∑
m1,m2

(J M |`1m1 `2m2) cJ ′M ′ . (6.31)

Comparision with (6.28) allows one to conclude that the coefficients cJ ′M ′ are identical to
(J ′M ′|`1m1 `2m2)∗, i.e.,

Y`1m1(Ω1)Y`2m2(Ω2)

=
`1+`2∑

J ′=|`1−`2|

J∑
M ′=−J

(J ′M ′|`1m1 `2m2)∗YJ ′M ′(`1, `2|Ω1,Ω2) , (6.32)

which complements (6.18). One can show readily using the same reasoning as applied in the
derivation of (6.28) from (6.18) that the Clebsch-Gordan coefficients obey the second summation
condition ∑

JM

(J M |`1m1 `2m2)∗(J M |`1m′1 `2m′2) = δm1m′1
δm2m′2

. (6.33)

The latter summation has not been restricted explicitly to allowed J–values, rather the convention

(J M |`1m1 `2m2) = 0 if J < |`1 − `2| , or J > `1 + `2 (6.34)

has been assumed.

6.2 Construction of Clebsch-Gordan Coefficients

We will now construct the Clebsch-Gordan coefficients. The result of this construction will include
all the properties previewed above. At this point we like to stress that the construction will be based
on the theorems (5.71–5.81) stated above, i.e., will be based solely on the commutation properties of
the operators ~J and ~J (k). We can, therefore, also apply the results, and actually also the properties
of Clebsch-Gordan coefficients stated above, to composite systems involving spin-1

2 states. A similar
construction will also be applied to composite systems governed by other symmetry groups, e.g.,
the group SU(3) in case of meson multiplets involving two quarks, or baryons multiplets involving
three quarks.
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For the construction of YJM we will need the operators

J± = J1 + iJ2 . (6.35)

The construction assumes a particular choice of J ∈ {|`1 − `2|, |`1 − `2| + 1, . . . `1 + `2} and for
such J–value seeks an expansion (6.18) which satisfies

J+ YJJ(`1, `2|Ω1,Ω2) = 0 (6.36)
J3 YJJ(`1, `2|Ω1,Ω2) = ~ J YJJ(`1, `2|Ω1,Ω2) . (6.37)

The solution needs to be normalized. Having determined such YJJ we then construct the whole
family of functions XJ = {YJM (`1, `2|Ω1,Ω2), M = −J,−J + 1, . . . J} by applying repeatedly

J−YJM+1(`1, `2|Ω1,Ω2) = ~

√
(J +M + 1)(J −M)YJM (`1, `2|Ω1,Ω2) . (6.38)

for M = J − 1, J − 2, . . . ,−J .
We embark on the suggested construction for the choice J = `1 + `2. We first seek an unnormalized
solution GJJ and later normalize. To find GJJ we start from the observation that GJJ represents the
state with the largest possible quantum number J = `1 + `2 with the largest possible component
M = `1 + `2 along the z–axis. The corresponding classical total angular momentum vector ~Jclass

would be obtained by aligning both ~J (1)
class and ~J (2)

class also along the z–axis and adding these two
vectors. Quantum mechanically this corresponds to a state

G`1+`2,`1+`2(`1, `2|Ω1,Ω2) = Y`1`1(Ω1)Y`2`2(Ω2) (6.39)

which we will try for a solution of (6.37). For this purpose we insert (6.39) into (6.37) and replace
according to (6.11) J+ by J (1)

+ + J (2)
+ . We obtain using (5.66,5.68)(

J (1)
+ + J (2)

+

)
Y`1`1(Ω1)Y`2`2(Ω2) (6.40)

=
(
J (1)

+ Y`1`1(Ω1)
)
Y`2`2(Ω2) + Y`1`1(Ω1)

(
J (2)

+ Y`2`2(Ω2)
)

= 0 .

Similarly, we can demonstrate condition (6.25) using (6.11) and (5.64)(
J (1)

3 + J (2)
3

)
Y`1`1(Ω1)Y`2`2(Ω2)

=
(
J (1)

3 Y`1`1(Ω1)
)
Y`2`2(Ω2) + Y`1`1(Ω1)

(
J (2)

3 Y`2`2(Ω2)
)

= ~ (`1 + `2)Y`1`1(Ω1)Y`2`2(Ω2) . (6.41)

In fact, we can also demonstrate using (??) that G`1+`2,`1+`2(`1, `2|Ω1,Ω2) is normalized∫
dΩ1

∫
dΩ2 G`1+`2,`1+`2(`1, `2|Ω1,Ω2)

=
(∫

dΩ1Y`1`1(Ω1)
) (∫

dΩ2Y`2`2(Ω2)
)

= 1 . (6.42)

We, therefore, have shown

Y`1+`2,`1+`2(`1, `2|Ω1,Ω2) = Y`1`1(Ω1)Y`2`2(Ω2) . (6.43)
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We now employ property (6.38) to construct the family of functions B`1+`2 =
{Y`1+`2M(`1, `2|
1,
2), M = −(`1 + `2), . . . , (`1 + `2)}. We demonstrate the procedure ex-
plicitly only for M = `1 + `2 − 1. The r.h.s. of (6.38) yields with J− = J (1)

− + J (1)
− the ex-

pression ~
√

2`1 Y`1`1−1(Ω1)Y`2`2(Ω2) + ~

√
2`2 Y`1`1−1(Ω1)Y`2`2−1(Ω2). The l.h.s. of (6.38) yields

~

√
2(`1 + `2)Y`1+`2`1+`2−1(`1, `2|Ω1,Ω2). One obtains then

Y`1+`2 `1+`2−1(`1, `2|Ω1,Ω2) = (6.44)√
`1

`1+`2
Y`1`1−1(Ω1)Y`2`2(Ω2) +

√
`2

`1+`2
Y`1`1(Ω1)Y`2`2−1(Ω2) .

This construction can be continued to obtain all 2(`1 + `2) + 1 elements of B`1+`2 and, thereby,
all the Clebsch-Gordan coefficients (`1 + `2M |`1m1`2m2). We have provided in Table 1 the explicit
form of YJ M (`1`2|Ω1Ω2) for `1 = 2 and `2 = 1 to illustrate the construction. The reader should
familiarize himself with the entries of the Table, in particular, with the symmetry pattern and with
the terms Y`1m1Y`2m2 contributing to each YJ M .
We like to construct now the family of total angular momentum functions B`1+`2−1 =
{Y`1+`2−1M(`1, `2|
1,
2), M = −(`1 + `2 − 1), . . . , (`1 + `2 − 1)}. We seek for this pur-
pose first an unnormalized solution G`1+`2−1 `1+`2−1 of (6.36, 6.37). According to the condition
(6.21) we set

G`1+`2−1 `1+`2−1(`1`2|Ω1Ω2) = Y`1`1−1(Ω1)Y`2`2(Ω2) + c Y`1`1(Ω1)Y`2`2−1(Ω2) (6.45)

for some unknown constant c. One can readily show that (6.37) is satisfied. To demonstrate (6.36)
we proceed as above and obtain(

J (1)
+ Y`1`1−1(Ω1)

)
Y`2`2(Ω2) + c Y`1`1(Ω1)

(
J (2)

+ Y`2`2−1(Ω2)
)

=
(√

2`1 + c
√

2`2
)
Y`1`1(Ω1)Y`2`2(Ω2) = 0 . (6.46)

To satisfy this equation one needs to choose c = −
√
`1/`2. We have thereby determined

G`1+`2−1 `1+`2−1 in (6.45). Normalization yields furthermore

Y`1+`2−1 `1+`2−1(`1`2|Ω1Ω2) (6.47)

=
√

`2
`1 + `2

Y`1`1−1(Ω1)Y`2`2(Ω2) −
√

`1
`1 + `2

Y`1`1(Ω1)Y`2`2−1(Ω2) .

This expression is orthogonal to (6.39) as required by (6.27).
Expression (6.47) can serve now to obtain recursively the elements of the family B`1+`2−1 for
M = `1 + `2−2, `1 + `2−3, . . . ,−(`1 + `2−1). Having constructed this family we have determined
the Clebsch-Gordan coefficients (`1 + `2 − 1M |`1m1`2m2). The result is illustrated for the case
`1 = 2, `2 = 1 in Table 1.
One can obviously continue the construction outlined to determine Y`1+`2−2 `1+`2−2, etc. and all
total angular momentum functions for a given choice of `1 and `2.

Exercise 6.2.1: Construct following the procedure above the three functions YJM (`1, `2|Ω1,Ω2)
for M = `1 + `2 − 2 and J = `1 + `2, `1 + `2 − 1, `1 + `2 − 2. Show that the resulting functions
are orthonormal.
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Y22(Ω1)Y11(Ω2)
Y33(2, 1|Ω1,Ω2) 1

Y21(Ω1)Y11(Ω2) Y22(Ω1)Y10(Ω2)

Y32(2, 1|Ω1,Ω2)
√

2
3 ' 0.816497

√
1
3 ' 0.57735

Y22(2, 1|Ω1,Ω2) −
√

1
3 ' −0.57735

√
2
3 ' 0.816497

Y20(Ω1)Y11(Ω2) Y21(Ω1)Y10(Ω2) Y22(Ω1)Y1−1(Ω2)

Y31(2, 1|Ω1,Ω2)
√

2
5 ' 0.632456

√
8
15 ' 0.730297

√
1
15 ' 0.258199

Y21(2, 1|Ω1,Ω2) −
√

1
2 ' −0.707107

√
1
6 ' 0.408248

√
1
3 ' 0.57735

Y11(2, 1|Ω1,Ω2)
√

1
10 ' 0.316228 −

√
3
10 ' −0.547723

√
3
5 ' 0.774597

Y2−1(Ω1)Y11(Ω2) Y20(Ω1)Y10(Ω2) Y21(Ω1)Y1−1(Ω2)

Y30(2, 1|Ω1,Ω2)
√

1
5 ' 0.447214

√
3
5 ' 0.774597

√
1
5 ' 0.447214

Y20(2, 1|Ω1,Ω2) −
√

1
2 ' −0.707107 0

√
1
2 ' 0.707107

Y10(2, 1|Ω1,Ω2)
√

3
10 ' 0.547723 −

√
2
5 ' −0.632456

√
3
10 ' 0.547723

Y2−2(Ω1)Y11(Ω2) Y2−1(Ω1)Y10(Ω2) Y20(Ω1)Y1−1(Ω2)

Y3−1(2, 1|Ω1,Ω2)
√

1
15 ' 0.258199

√
8
15 ' 0.730297

√
2
5 ' 0.632456

Y2−1(2, 1|Ω1,Ω2) −
√

1
3 ' −0.57735 −

√
1
6 ' −0.408248

√
1
2 ' 0.707107

Y1−1(2, 1|Ω1,Ω2)
√

3
5 ' 0.774597 −

√
3
10 ' −0.547723

√
1
10 ' 0.316228

Y2−2(Ω1)Y10(Ω2) Y2−1(Ω1)Y1−1(Ω2)

Y3−2(2, 1|Ω1,Ω2)
√

1
3 ' 0.57735

√
2
3 ' 0.816497

Y2−2(2, 1|Ω1,Ω2) −
√

2
3 ' −0.816497

√
1
3 ' 0.57735

Y2−2(Ω1)Y1−1(Ω2)
Y3−3(2, 1|Ω1,Ω2) 1

Table 6.1: Some explicit analytical and numerical values of Clebsch-Gordan coefficients and their
relationship to the total angular momentum wave functions and single particle angular momentum
wave functions.
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Exercise 6.2.2: Use the construction for Clebsch-Gordan coefficients above to prove the following
formulas

〈J,M |`,m− 1
2
, 1

2
,+ 1

2
〉 =


√

J+M
2J for ` = J − 1

2

−
√

J−M+1
2J+2 for ` = J + 1

2

〈J,M |`,m+ 1
2
, 1

2
,− 1

2
〉 =


√

J−M
2J for ` = J − 1

2√
J+M+1

2J+2 for ` = J + 1
2

.

The construction described provides a very cumbersome route to the analytical and numerical
values of the Clebsch-Gordan coefficients. It is actually possible to state explicit expressions for
any single coefficient (JM |`1m1`2m2). These expressions will be derived now.

6.3 Explicit Expression for the Clebsch–Gordan Coefficients

We want to establish in this Section an explicit expression for the Clebsch–Gordan coefficients
(JM |`1m1`2m2). For this purpsose we will employ the spinor operators introduced in Sections 5.9,
5.10.

Definition of Spinor Operators for Two Particles

In contrast to Sections 5.9, 5.10 where we studied single particle angular momentum and spin, we
are dealing now with two particles carrying angular momentum or spin. Accordingly, we extent
definition (5.287) to two particles

(1)Jk = 1
2

∑
ζ,ζ′ a

†
ζ < ζ |σk| ζ ′ > aζ′ (6.48)

(2)Jk = 1
2

∑
ζ,ζ′ b

†
ζ < ζ |σk| ζ ′ > bζ′ (6.49)

where ζ, ζ ′ = ± and the matrix elements < ζ |σk| ζ ′ > are as defined in Section 5.10. The creation
and annihilation operators are again of the boson type with commutation properties[

aζ , aζ′
]

=
[
a†ζ , a

†
ζ′

]
= 0 ,

[
aζ , a

†
ζ′

]
= δζζ′ (6.50)[

bζ , bζ′
]

=
[
b†ζ , b

†
ζ′

]
= 0 ,

[
bζ , b

†
ζ′

]
= δζζ′ . (6.51)

The operators aζ , a
†
ζ and bζ , b

†
ζ refer to different particles and, hence, commute with each other[
aζ , bζ′

]
=
[
a†ζ , b

†
ζ′

]
=
[
aζ , b

†
ζ′

]
= 0 . (6.52)

According to Section 5.10 [cf. (5.254)] the angular momentum / spin eigenstates |`1m1〉1 and |`2m2〉2
of the two particles are

|`1m1〉1 =

(
a†+

)`1+m1

√
(`1+m1)!

(
a†−

)`1−m1

√
(`1−m1)!

|Ψ0〉 (6.53)

|`2m2〉2 =

(
b†+

)`2+m2

√
(`2+m2)!

(
b†−

)`2−m2

√
(`2−m2)!

|Ψ0〉 . (6.54)
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It holds, in analogy to Eqs. (5.302, 5.303),
(1)J2|`1m1〉1 = `1(`1 + 1) |`1m1〉1 , (1)J3|`1m1〉1 = m1 |`1m1〉1 (6.55)
(2)J2|`2m2〉2 = `2(`2 + 1) |`2m2〉2 , (2)J3|`2m2〉2 = m2 |`2m2〉2 . (6.56)

The states |`1,m1〉1|`2,m2〉2, which describe a two particle system according to (6.53, 6.54), are

|`1,m1〉1 |`2,m2〉2 = (6.57)(
a†+

)`1+m1√
(`1 +m1)!

(
a†−

)`1−m1√
(`1 −m1)!

(
b†+

)`2+m2√
(`2 +m2)!

(
b†−

)`2−m2√
(`2 −m2)!

|Ψo〉 .

The operator of the total angular momentum/spin of the two particle system is
~J = (1) ~J + (2) ~J (6.58)

with Cartesian components

Jk = (1)Jk + (2)Jk ; k = 1, 2, 3 . (6.59)

We seek to determine states |J,M(`1, `2)〉 which are simultaneous eigenstates of the operators
J

2, J3,
(1)J

2
, (2)J

2
which, as usual are denoted by their respective quantum numbers J,M, `1, `2,

i.e., for such states should hold

J
2|J,M(`1, `2)〉 = J(J + 1) |J,M(`1, `2)〉 (6.60)
J3|J,M(`1, `2)〉 = M |J,M(`1, `2)〉 (6.61)

(1)J
2|J,M(`1, `2)〉 = `1(`1 + 1) |J,M(`1, `2)〉 (6.62)

(2)J
2|J,M(`1, `2)〉 = `2(`2 + 1) |J,M(`1, `2)〉 . (6.63)

At this point, we like to recall for future reference that the operators (1)J
2
, (2)J

2
, according to

(5.300), can be expressed in terms of the number operators

k̂1 =
1
2

(
a†+a+ + a†−a−

)
, k̂2 =

1
2

(
b†+b+ + b†−b−

)
, (6.64)

namely,
(j)J

2
= k̂j ( k̂j + 1 ) , j = 1, 2 . (6.65)

For the operators k̂j holds
k̂j |`j ,mj〉j = `j |`j ,mj〉j (6.66)

and, hence,
k̂j |J,M(`1, `2)〉 = `j |J,M(`1, `2)〉 (6.67)

We will also require below the raising and lowering operators associated with the total angular
momentum operator (6.59)

J± = J1 ± i J2 . (6.68)

The states |J,M(`1, `2)〉 can be expressed in terms of Clebsch-Gordan coefficients (6.18) as follows

|J,M(`1, `2)〉 =
∑

m1,m2
|`1,m1〉1|`2,m2〉2 (`1,m1, `2,m2|J,M(`1, `2)) ,

|`1 − `2| ≤ J ≤ `1 + `2 , −J ≤ M ≤ J . (6.69)

The aim of the present Section is to determine closed expressions for the Clebsch–Gordan coefficents
(`1,m1, `2,m2|J,M(`1, `2)).
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The Operator K†

The following operator
K† = a†+ b

†
− − a†− b

†
+ . (6.70)

will play a crucial role in the evaluation of the Clebsch-Gordan-Coefficients. This operator obeys the
following commutation relationships with the other pertinent angular momentum / spin operators[

k̂j , K
†
]

=
1
2
K† , j = 1, 2 (6.71)[

(j)J2, K†
]

= K† k̂j +
3
4
K† , j = 1, 2 (6.72)[

J3, K
†] = 0 (6.73)[

J±, K
†] = 0 . (6.74)

We note that, due to J2 = 1
2J+J− + 1

2J−J+ + J
2
3, the relationships (6.73, 6.74) imply[

J
2, K†

]
= 0 . (6.75)

The relationships (6.71–6.73) can be readily proven. For example, using (6.64, 6.50, 6.51) one
obtains [

k̂1, K
†
]

=
1
2

[
a†+a+ + a†−a−, a

†
+b
†
− − a†−b

†
+

]
=

1
2
a†+

[
a+, a

†
+

]
b†− −

1
2
a†−

[
a−, a

†
−

]
b†+

=
1
2

(
a†+b

†
− − a†−b

†
+

)
=

1
2
K† .

A similar calculation yields [k̂2,K
†] = 1

2K
†. Employing (6.65) and (6.71) one can show[

(j)J2, K†
]

=
1
2

[
k̂j(k̂j + 1), K†

]
=

1
2
k̂j

[
k̂j + 1, K†

]
+

1
2

[
k̂j , K

†
]

(k̂j + 1)

=
1
2
k̂jK

† +
1
2
K† (k̂j + 1)

= K† k̂j +
1
2

[
k̂j , K

†
]

+
1
2
K†

= K† k̂j +
3
4
K† .

Using J3 = (1)J3 + (2)J3, expressing (k)J3 through the creation and annihilation operators accord-
ing to (5.288), and applying the relationships (6.71–6.73) yields[

J3,K
†] =

1
2

[
a†+a+ − a†−a− + b†+b+ − b†−b−, a

†
+b
†
− − a†−b

†
+

]
=

1
2
a†+

[
a+, a

†
+

]
b†− +

1
2
a†−

[
a−, a

†
−

]
b†+

− 1
2
b†+a

†
−

[
b+, b

†
+

]
− 1

2
b†−a

†
+

[
b−, b

†
−

]
= 0 .
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Starting from (5.292) one can derive similarly[
J+,K

†] =
[
a†+a− + b†+b−, a

†
+b− − a†−b

†
+

]
= − a†+

[
a−, a

†
−

]
b†+ + b†+a

†
+

[
b−, b

†
−

]
= 0 .

The property [J−, K†] = 0 is demonstrated in an analoguous way.

Action of K† on the states |J,M(`1, `2)〉

We want to demonstrate now that the action of K† on the states |J,M(`1, `2)〉 produces again
total angular momentum eigenstates to the same J and M quantum numbers of J2 and J3, but for
different `1 and `2 quantum numbers of the operators (1)J2 and (2)J2.
The commutation properties (6.73, 6.75) ascertain that under the action of K† the states
|J,M(`1, `2)〉 remain eigenstates of J2 and J3 with the same quantum numbers. To demonstrate
that the resulting states are eigenstates of (1)J2 and (2)J2 we exploit (6.72) and (6.62, 6.63, 6.67)

(j)J2K† |J,M(`1, `2)〉 =
( [

(j)J2, K†
]

+ K† (j)J
2
)
|J,M(`1, `2)〉

=
(
K† k̂j +

3
4
K† + K†`j (`j + 1)

)
|J,M(`1, `2)〉

= K†
(
`j +

3
4

+ `j (`j + 1)
)
|J,M(`1, `2)〉

=
(
`j +

1
2

)(
`j +

3
2

)
K† |J,M(`1, `2)〉 .

However, this result implies that K†|J,M(`1, `2)〉 is a state with quantum numbers `1 + 1
2 and

`2 + 1
2 , i.e., it holds

K† |J,M(`1, `2)〉 = N |J,M(`1 +
1
2
, `2 +

1
2

)〉 . (6.76)

Here N is an unknown normalization constant.
One can generalize property (6.76) and state(

K†
)n
|J,M(`1, `2)〉 = N ′ |J,M(`1 +

n

2
, `2 +

n

2
)〉 (6.77)

where N ′ is another normalization constant. We consider now the case that (K†)n acts on the
simplest total angular momentum / spin state, namely, on the state

|j1 + j2, j1 + j2(j1, j2)〉 = |j1, j1〉1 |j2, j2〉2 , (6.78)

a state which has been used already in the construction of Clebsch-Gordan coefficients in Section 6.2.
Application of (K†)n to this state yields, according to (6.77),

|j1 + j2, j1 + j2 (j1 +
n

2
, j2 +

n

2
)〉 (6.79)

= N(n, j11 +
n

2
, j1 +

n

2
)
(
K†
)n
|j1 + j2, j1 + j2(j1, j2)〉
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where we denoted the associated normalization constant by N(n, j1 + n
2 , j2 + n

2 ).
It is now important to notice that any state of the type |J, J(`1, `2)〉 can be expressed through the
r.h.s. of (6.79). For this purpose one needs to choose in (6.79) n, j1, j2 as follows

J = j1 + j2 , `1 = j1 +
n

2
, `2 = j2 +

n

2
(6.80)

which is equivalent to

n = `1 + `2 − J

j1 = `1 −
n

2
=

1
2

(J + `1 − `2)

j2 = `2 −
n

2
=

1
2

(J + `1 − `2) . (6.81)

Accodingly, holds

|J, J(`1, `2)〉 = N(`1 + `2 − J, `1, `2)
(
K†
)`1+`2−J

×

× |1
2

(J + `1 − `2) ,
1
2

(J + `1 − `2)〉1 ×

× |1
2

(J + `2 − `1) ,
1
2

(J + `2 − `1)〉2 . (6.82)

The normalization constant appearing here is actually

N(`1 + `2 − J, `1, `2) =
[

(2J + 1)!
(`1 + `2 − J)! (`1 + `2 + J + 1)!

] 1
2

. (6.83)

The derivation of this expression will be provided further below (see page 158 ff).

Strategy for Generating the States |J,M(`1, `2)〉

Our construction of the states |J,M(`1, `2)〉 exploits the expression (6.82) for |J, J(`1, `2)〉. The
latter states, in analogy to the construction (5.104, 5.105) of the spherical harmonics, allow one to
obtain the states |J,M(`1, `2)〉 for −J ≤ M ≤ J as follows

|J,M(`1, `2)〉 = ∆(J,M) (J−)J−M |J, J(`1, `2)〉 (6.84)

∆(J,M) =
[

(J + M)!
(2J)! (J − M)!

] 1
2

. (6.85)

Combining (6.84) with (6.82, 6.57) and exploiting the fact that J− and K† commute [c.f. (6.74)]
yields

|J,M(`1, `2)〉 =
N(`1 + `2 − J, `1, `2) ∆(J,M)√

(J + `1 − `2)! (J + `2 − `1)!
× (6.86)

×
(
K†
)`1+`2−J

(J−)J−M
(
a†+

)J+`1−`2 (
b†+

)J+`2−`1
|Ψo〉
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Our strategy for the evaluation of the Clebsch-Gordan-coefficients is to expand (6.86) in terms of
monomials (

a†+

)`1+m1
(
a†−

)`1−m1
(
b†+

)`2+m2
(
b†−

)`2−m2

|Ψo〉 , (6.87)

i.e., in terms of |`1,m1〉1|`2,m2〉2 [cf. (6.57)]. Comparision with (6.69) yields then the Clebsch-
Gordan-coefficients.

Expansion of an Intermediate State

We first consider the expansion of the following factor appearing in (6.86)

|Grst〉 = J
r
−

(
a†+

)s (
b†+

)t
|Ψo〉 (6.88)

in terms of monomials (6.87). For this purpose we introduce the generating function

I(λ, x, y) = exp (λJ−) exp
(
x a†+

)
exp

(
x b†+

)
|Ψo〉 . (6.89)

Taylor expansion of the two exponential operators yields immediately

I(λ, x, y) =
∑
r,s,t

λrxsyt

r!s!t!
|Grst〉 , (6.90)

i.e., I(λ, x, y) is a generating function for the states |Grst〉 defined in (6.88).
The desired expansion of |Grst〉 can be obtained from an alternate evaluation of I(λ, x, y) which is
based on the properties

aζf(a†ζ) |Ψo〉 =
∂

∂a†ζ
f(a†ζ) |Ψo〉 bζf(b†ζ) |Ψo〉 =

∂

∂b†ζ
f(b†ζ) |Ψo〉 (6.91)

which, in analogy to (5.264), follows from the commutation properties (6.50–6.52). One obtains
then using

J− = a†−a+ + b†−b+ (6.92)

and noting [a+, a
†
−] = [b+, b

†
−] = 0 [cf. (6.50)]

exp (λJ− ) f(a†+) g(b†+) |Ψo〉 = exp
(
a†−a+

)
f(a†+) exp

(
b†b+

)
g(b†+) |Ψo〉

=
∑
u

λu

u!

(
a†−a+

)u
f(a†+) ×

×
∑
v

λv

v!

(
b†−b+

)v
g(b†+) |Ψo〉

=
∑
u

(
λ a†−

)u
u!

(
∂

∂a†+

)u
f(a†+) ×

×
∑
v

(
λ b†−

)v
v!

(
∂

∂b†+

)v
g(b†+) |Ψo〉

= f(a†+ + λ a†−) g(b†+ + λ b†−) |Ψo〉 . (6.93)
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We conclude
I(λ, x, y) = exp

(
a†+ + λ a†−

)
exp

(
b†+ + λ b†−

)
|Ψo〉 . (6.94)

One can infer from this result the desired expressions for |Grst〉. Expanding the exponentials in
(6.94) yields

I(λ, x, y) =
∑
s,t

xs

s!
yt

t!

(
a†+ + λ a†−

)s (
b†+ + λ b†−

)t
|Ψo〉

=
∑
s,t

xs

s!
yt

t!

∑
t

∑
v

(
s
u

)(
t
v

)
×

×
(
a†+

)s−u
λu
(
a†−

)u (
b†+

)t−v
λv
(
b†−

)v
|Ψo〉

=
∑
r,s,t

λr

r!
xs

s!
yt

t!

∑
q

r!
(
s
q

)(
t

r − q

)
×

×
(
a†+

)s−q (
a†−

)q (
b†+

)t−r+q (
b†−

)r−q
|Ψo〉 (6.95)

Comparision with (6.90) allows one to infer

|Grs,t〉 =
∑
q

r!
(
s
q

)(
t

r − q

)
×

×
(
a†+

)s−q (
a†−

)q (
b†+

)t−r+q (
b†−

)r−q
|Ψo〉 (6.96)

and, using the definition (6.88), one can write the right factor in (6.86)

(J−)J−M
(
a†+

)J+`1−`2 (
b†+

)J+`2−`1
|Ψo〉 (6.97)

=
∑
q

(J −M)!(J + `1 − `2)!(J + `2 − `1)!
q!(J + `1 − `2 − q)!(J −M − q)!(M + `2 − `1 + q)!

×

×
(
a†+

)J+`1−`2−q (
a†−

)q (
b†+

)M+`2−`1+q (
b†−

)J−M−q
|Ψo〉

Final Result

Our last step is to apply the operator (K†)`1+`2−J to expression (6.97), to obtain the desired
expansion of |J,M(`1, `2)〉 in terms of states |`1,m1〉1|`2,m2〉2. With K† given by (6.70) holds

(
K†
)`1+`2−J =

∑
s

(
`1 + `2 − J

s

)
(−1)s (6.98)

(
a†+

)`1+`2−J−s (
b†−

)`1+`2−J−s (
a†−

)s (
b†+

)s
.

Operation of this operator on (6.97) yields, using the commutation property (6.50),

|J,M(`1, `2)〉 =
∑
s,q

(−1)s (6.99)
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(`1 + `2 − J)!(J −M)!(J + `1 − `2)!(J + `2 − `1)!
s!(`1 + `2 − J − s)!q!(J + `1 − `2 − q)!(J −M − q)!(M + `2 − `1 + q)!(
a†+

)2`1−q−s (
a†−

)q+s (
b†+

)M+`2−`1+q+s (
b†−

)`1+`2−M−q−s
|Ψo〉

The relationships (6.53,6.54) between creation operator monomials and angular momentum states
allow one to write this

|J,M(`1, `2)〉 =
N(`1 + `2 − J, `1, `2) ∆(J,M)√

(J + `1 − `2)! (J + `2 − `1)!

∑
s,q

(−1)s × (6.100)

× (`1 + `2 − J)!(J −M)!(J + `1 − `2)!(J + `2 − `1)!
s!(`1 + `2 − J − s)!q!(J + `1 − `2 − q)!(J −M − q)!(M + `2 − `1 + q)!

×
√

(2`1 − q − s)!(q + s)!
×
√

(M + `2 − `1 + q + s)!(`1 + `2 −M − q − s)!
×|`1, `1 − q − s〉1 |`2,M − `1 + q + s〉2

One can conclude that this expression reproduces (6.69) if one identifies

m1 = `1 − q − s , m2 = M − `1 + q + s . (6.101)

Note that m1 + m2 = M holds. The summation over q corresponds then to the summation
over m1, m2 in (6.69) since, according to (6.101), q = `1 − m1 − s and m2 = M − m1. The
Clebsch-Gordan coefficents are then finally

(`1,m1, `2,m2|J,M) =

√
2J + 1

[
`1 + `2 − J)!(`1 − `2 + J)!(−`1 + `2 + J)!

(`1 + `2 + J + 1)!

] 1
2

× [(`1 +m1)!(`1 −m1)!(`2 +m2)!(`2 −m2)!(J +M)!(J −M)!]
1
2

×
∑
s

(−1)s

s!(`1 −m1 − s)!(`2 +m2 − s)!

× 1
(`1 + `2 − J − s)!(J − `1 −m2 + s)!(J − `2 +m1 + s)!

(6.102)

The Normalization

We want to determine now the expression (6.83) of the normalization constant N(`1 + `2−J, `1, `2)
defined through (6.82). For this purpose we introduce

j1 =
1
2

(J + `1 − `2) , j2 =
1
2

(J + `2 − `1) , n = `1 + `2 − J . (6.103)

To determine N = N(`1+`2−J, `1, `2) we consider the scalar product 〈J, J(`1, `2)|J, J(`1, `2)〉 = 1.
Using (6.82) and (6.103) this can be written

1 = N2 〈ψ(j1, j2, n)|ψ(j1, j2, n)〉 (6.104)
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where
|ψ(j1, j2, n)〉 =

(
K†
)n
|j1, j1〉1|j2, j2〉2 . (6.105)

The first step of our calculation is the expansion of ψ(j1, j2, n) in terms of states |j′1,m1〉1|j′2,m2〉2.
We employ the expression (6.57) for these states and the expression (6.70) for the operator K†.
Accordingly, we obtain

|ψ(j1, j2, n)〉 =
1√

(2j1)!(2j2)!

∑
s

(
n
s

)(
a†+b

†
−

)n−s
(−1)s

(
a†−b

†
+

)s
(
a†+

)2j1 (
b†+

)2j2
|Ψo〉 =

n!√
(2j1)!(2j2)!

∑
s

(−1)s
√

(2j1 + n− s)!s!(2j2 + s)!(n− s)!
s!(n− s)!(

a†+

)2j1−n−s (
a†−

)s (
b†+

)2j2+s (
b†−

)n−s
√

(2j1 + n− s)!s!(2j2 + s)!(n− s)!
|Ψo〉 . (6.106)

The orthonormality of the states occurring in the last expression allows one to write (6.104)

1 = N2 (n!)2

(2j1)!(2j2)!

∑
s

(2j1 + n− s)!(2j2 + s)!
s!(n− s)!

= (n!)2
∑
s

(
2j1 + n− s

2j1

)(
2j2 + s

2j2

)
(6.107)

The latter sum can be evaluated using(
1

1 − λ

)n1+1

=
∑
m1

(
n1 +m1

n1

)
λm1 (6.108)

a property which follows from

∂ν

∂λν

(
1

1 − λ

)n1+1
∣∣∣∣∣
λ=0

=
(n1 + ν)!

n1!
(6.109)

and Taylor expansion of the left hand side of (6.108). One obtains then, applying (6.108) twice,(
1

1 − λ

)n1+1( 1
1 − λ

)n2+1

=
∑
m1,m2

(
n1 +m1

n1

)(
n2 +m2

n2

)
λm1+m2 (6.110)

which can be written(
1

1 − λ

)n1+n2+2

=
∑
r

[∑
s

(
n1 + r − s

n1

)(
n2 + s
n2

)]
λr (6.111)

Comparision with (6.108) yields the identity∑
s

(
n1 + r − s

n1

)(
n2 + s
n2

)
=
(
n1 + n2 + r + 1
n1 + n2 + 1

)
. (6.112)
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Applying this to (6.107) yields

1 = N2 (n!)2

(
2j1 + 2j2 + n+ 1

2j1 + 2j2 + 1

)
= N2 n!(2j1 + 2j2 + n+ 1)!

(2j1 + 2j2 + 1)!
. (6.113)

Using the identities (6.103) one obtains the desired result (6.83).

6.4 Symmetries of the Clebsch-Gordan Coefficients

The Clebsch-Gordan coefficients obey symmetry properties which reflect geometrical aspects of the
operator relationship (6.11)

~J = ~J (1) + ~J (2) . (6.114)

For example, interchanging the operators ~J (1) and ~J (2) results in

~J = ~J (2) + ~J (1) . (6.115)

This relationship is a trivial consequence of (6.114) as long as ~J, ~J (1), and ~J (2) are vectors in
R
3. For the quantum mechanical addition of angular momenta the Clebsch Gordan coefficients

(`1,m1, `2,m2|J,M) corresponding to (6.114) show a simple relationship to the Clebsch Gordan
coefficients (`2,m2, `1,m1|J,M) corresponding to (6.115), namely,

(`1,m1, `2,m2|J,M) = (−1)`1+`2−J (`2,m2, `1,m1|J,M) . (6.116)

If one takes the negatives of the operators in (6.114) one obtains

−~J = − ~J (1) − ~J (2) . (6.117)

The respective Clebsch-Gordan coefficients (`1,−m1, `2,−m12|J,−M) are again related in a simple
manner to the coefficients (`1,m1, `2,m2|J,M)

(`1,m1, `2,m2|J,M) = (−1)`1+`2−J (`1,−m1, `2,−m2|J,−M) . (6.118)

Finally, one can interchange also the operator ~J on the l.h.s. of (6.114) by, e.g., ~J (1) on the r.h.s.
of this equation

~J (1) = ~J (2) − ~J . (6.119)

The corresponding symmetry property of the Clebsch-Gordan coefficients is

(`1,m1, `2,m2|J,M) = (−1)`2+m2

√
2J + 1
2`1 + 1

(`2,−m2, J,M |`1,m1) . (6.120)

The symmetry properties (6.116), (6.118), and (6.120) can be readily derived from the expression
(6.102) of the Clebsch-Gordan coefficients. We will demonstrate this now.
To derive relationship (6.116) one expresses the Clebsch-Gordan coefficient on the r.h.s. of (6.116)
through formula (6.102) by replacing (`1,m1) by (`2,m2) and, vice versa, (`2,m2) by (`1,m1), and



6.4: Symmetries of the Clebsch-Gordan Coefficients 161

seeks then to relate the resulting expression to the original expression (6.102) to prove identity with
the l.h.s. Inspecting (6.102) one recognizes that only the sum

S(`1,m1, `2,m2|J,M) =
∑
s

(−1)s

s!(`1 −m1 − s)!(`2 +m2 − s)!

× 1
(`1 + `2 − J − s)!(J − `1 −m2 + s)!(J − `2 +m1 + s)!

(6.121)

is affected by the change of quantum numbers, the factor in front of S being symmetric in (`1,m1)
and (`2,m2). Correspondingly, (6.116) implies

S(`1,m1, `2,m2|J,M) = (−1)`1+`2−J S(`2,m2, `1,m1|J,M) . (6.122)

To prove this we note that S on the r.h.s. reads, according to (6.121),

S(`2,m2, `1,m1|J,M) =
∑
s

(−1)s

s!(`2 −m2 − s)!(`1 +m1 − s)!

× 1
(`1 + `2 − J − s)!(J − `2 −m1 + s)!(J − `1 +m2 + s)!

. (6.123)

Introducing the new summation index

s′ = `1 + `2 − J − s (6.124)

and using the equivalent relationships

s = `1 + `2 − J − s′ , −s = J − −`1 − `2 + s′ (6.125)

to express s in terms of s′ in (6.123) one obtains

S(`2,m2, `1,m1|J,M) =

(−1)`1 + `2− J
∑
s′

(−1)−s
′

(`1 + `2 − J − s′)!(J − `1 −m2 + s′)!(J − `2 +m1 + s′)!

× 1
s′!(`1 −m1 − s′)!(`2 +m2 − s′)!

. (6.126)

Now it holds that `1 + `2 − J in (6.124) is an integer, irrespective of the individual quantum
numbers `1, `2, J being integer or half-integer. This fact can best be verified by showing that the
construction of the eigenstates of ( ~J (1) + ~J (2))2 and ( ~J (1) + ~J (2))3 in Sect. 6.2 does, in fact,
imply this property. Since also s in (6.102) and, hence, in (6.122) is an integer, one can state that
s′, as defined in (6.124), is an integer and, accordingly, that

(−1)− s
′

= (−1)s
′

(6.127)

holds in (6.126). Reordering the factorials in (6.126) to agree with the ordering in (6.121) leads
one to conclude the property (6.122) and, hence, one has proven (6.116).



162 Theory of Angular Momentum and Spin

To prove (6.118) we note that in the expression (6.102) for the Clebsch-Gordan coefficients the pref-
actor of S, the latter defined in (6.121), is unaltered by the change m1, m2, M → −m1, −m2, −M .
Hence, (6.118) implies

S(`1,m1, `2,m2|J,M) = (−1)`1+`2−J S(`1,−m1, `2,−m12|J,−M) . (6.128)

We note that according to (6.121) holds

S(`1,−m1, `2,−m12|J,−M) =
∑
s

(−1)s

s!(`1 +m1 − s)!(`2 −m2 − s)!

× 1
(`1 + `2 − J − s)!(J − `1 +m2 + s)!(J − `2 −m1 + s)!

. (6.129)

Introducing the new summation index s′ as defined in (6.124) and using the relationships (6.125)
to replace, in (6.129), s by s′ one obtains

S(`1,−m1, `2,−m2|J,−M) =

(−1)`1+`2−J
∑
s

(−1)−s
′

(`1 + `2 − J − s′)!(J − `2 +m1 + s′)!(J − `1 −m2 + s′)!

× 1
s′!(`2 +m2 − s′)!(`1 −m1 − s′)!

. (6.130)

For reasons stated already above, (6.127) holds and after reordering of the factorials in (6.130) to
agree with those in (6.121) one can conclude (6.128) and, hence, (6.118).
We want to prove finally the symmetry property (6.120). Following the strategy adopted in the
proof of relationships (6.116) and (6.118) we note that in the expression (6.102) for the Clebsch-
Gordan coefficients the prefactor of S, the latter defined in (6.121), is symmetric in the pairs of
quantum numbers (`1,m1), (`2,m2) and (J,M), except for the factor

√
2J + 1 which singles out

J . However, in the relationship (6.120) this latter factor is already properly ‘repaired’ such that
(6.120) implies

S(`1,m1, `2,m2|J,M) = (−1)`2+m2 S(`2,−m2, J,M |`1,m1) . (6.131)

According to (6.121) holds

S(`2,−m2, J,M |`1,m1) =
∑
s

(−1)s

s!(`2 +m2 − s)!(J +M − s)!

× 1
(`2 + J − `1 − s)!(`1 − `2 −M + s)!(`1 − J −m2 + s)!

. (6.132)

Introducing the new summation index

s′ = `2 + m2 − s (6.133)

and, using the equivalent relationships

s = `2 + m2 − s′ , −s = −`2 − m2 + s′ (6.134)
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to replace s by s′ in (6.132), one obtains

S(`1,−m1, `2,−m12|J,−M) =

(−1)`2+m2
∑
s

(−1)−s
′

(`2 +m2 − s′)!s′!(J − `2 +m1 + s′)!

× 1
(J − `1 −m2 + s′)!(`1 −m1 − s′)!(`1 + `2 − J − s′)!

. (6.135)

Again for the reasons stated above, (6.127) holds and after reordering of the factorials in (6.135)
to agree with those in (6.121) one can conclude (6.131) and, hence, (6.120).

6.5 Example: Spin–Orbital Angular Momentum States

Relativistic quantum mechanics states that an electron moving in the Coulomb field of a nucleus
experiences a coupling ∼ ~J · ~S between its angular momentum, described by the operator ~J and
wave functions Y`m(r̂), and its spin-1

2 , described by the operator ~S and wave function χ 1
2
± 1

2
. As a

result, the eigenstates of the electron are given by the eigenstates of the total angular momentum-
spin states

Yjm(`, 1
2
|r̂) =

∑
m′,σ

(`,m′, 1
2
, σ|j,m)Y`m′(r̂)χ 1

2
σ (6.136)

which have been defined in (6.18). The states are simultaneous eigenstates of (J (tot))2, J (tot)
3 , J 2,

and S2 and, as we show below, also of the spin-orbit coupling term ∼ ~J · ~S. Here J (tot) is defined
as

~J (tot) = ~J + ~S . (6.137)

Here we assume for ~S the same units as for ~J , namely, ~, i.e., we define

~S =
~

2
~σ (6.138)

rather than (5.223).

Two-Dimensional Vector Representation

One can consider the functions χ 1
2
± 1

2
to be represented alternatively by the basis vectors of the

space C2

χ 1
2

1
2

=
(

1
0

)
, χ 1

2
− 1

2
=
(

0
1

)
. (6.139)

The states Yjm(`, 1
2
|r̂), accordingly, can then also be expressed as two-dimensional vectors. Using

m′ = m − σ ; σ = ± 1
2

(6.140)

one obtains

Yjm(`, 1
2
|r̂) = (`,m− 1

2
, 1

2
, 1

2
|j,m)Y`m− 1

2
(r̂)

(
1
0

)
+ (`,m+ 1

2
,− 1

2
, 1

2
|j,m)Y`m+ 1

2
(r̂)

(
0
1

)
(6.141)



164 Addition of Angular Momentum and Spin

or

Yjm(`, 1
2
|r̂) =

(
(`,m− 1

2
, 1

2
, 1

2
|j,m)Y`m− 1

2
(r̂)

(`,m+ 1
2
,− 1

2
, 1

2
|j,m)Y`m+ 1

2
(r̂)

)
. (6.142)

In this expression the quantum numbers (`,m′) of the angular momentum state are integers. Ac-
cording to (6.140), m is then half-integer and so must be j. The triangle inequalities (6.220) state
in the present case |` − 1

2
| ≤ j ≤ ` + 1

2
and, therefore, we conclude j = ` ± 1

2
or, equivalently,

` = j ± 1
2
. The different Clebsch-Gordon coefficients in (6.141) have the values

(j − 1
2
,m− 1

2
, 1

2
, 1

2
|j,m) =

√
j + m

2j
(6.143)

(j − 1
2
,m+ 1

2
, 1

2
,− 1

2
|j,m) =

√
j − m

2j
(6.144)

(j + 1
2
,m− 1

2
, 1

2
, 1

2
|j,m) = −

√
j − m + 1

2j + 2
(6.145)

(j + 1
2
,m+ 1

2
, 1

2
,− 1

2
|j,m) =

√
j + m + 1

2j + 2
(6.146)

which will be derived below (see pp. 170). Accordingly, the spin-orbital angular momentum states
(6.141, 6.142) are

Yjm(j − 1
2
, 1

2
|r̂) =


√

j+m
2j Yj− 1

2
m− 1

2
(r̂)√

j−m
2j Yj− 1

2
m+ 1

2
(r̂)

 (6.147)

Yjm(j + 1
2
, 1

2
|r̂) =

 −
√

j−m+1
2j+ 2 Yj+ 1

2
m− 1

2
(r̂)√

j+m+1
2j+ 2 Yj+ 1

2
m+ 1

2
(r̂)

 . (6.148)

Eigenvalues

For the states (6.147, 6.148) holds

( ~J + ~S)2 Yjm(j ∓ 1
2
, 1

2
|r̂) = ~

2 j(j + 1)Yjm(j ∓ 1
2
, 1

2
|r̂) (6.149)

( ~J + ~S)3 Yjm(j ∓ 1
2
, 1

2
|r̂) = ~mYjm(j ∓ 1

2
, 1

2
|r̂) (6.150)

J 2 Yjm(j ∓ 1
2
, 1

2
|r̂) = (6.151)

~
2 (j ∓ 1

2
) ( j ∓ 1

2
+ 1)Yjm(j ∓ 1

2
, 1

2
|r̂)

S2 Yjm(j ∓ 1
2
, 1

2
|r̂) =

3
4
~

2 Yjm(j ∓ 1
2
, 1

2
|r̂) (6.152)

Furthermore, using
(J (tot))2 = ( ~J + ~S )2 = J 2 + S2 + 2 ~J · ~S (6.153)

or, equivalently,
2 ~J · ~S = (J (tot))2 − J 2 − S2 (6.154)
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one can readily show that the states Yjm(`, 1
2
|r̂) are also eigenstates of ~J · ~S. Employing (6.149,

6.151, 6.152) one derives

2 ~J · ~S Yjm(j − 1
2
, 1

2
|r̂)

= ~
2 [j(j + 1) − (j − 1

2
)(j + 1

2
) − 3

4
]Yjm(j − 1

2
, 1

2
|r̂)

= ~
2 (j − 1

2
)Yjm(j − 1

2
, 1

2
|r̂) (6.155)

and

2 ~J · ~S Yjm(j + 1
2
, 1

2
|r̂)

= ~
2[j(j + 1) − (j + 1

2
)(j + 3

2
) − 3

4
]Yjm(j + 1

2
, 1

2
|r̂)

= ~
2 (−j − 3

2
)Yjm(j + 1

2
, 1

2
|r̂) . (6.156)

Orthonormality Properties

The construction (6.141) in terms of Clebsch-Gordon coefficients produces normalized states. Since
eigenstates of hermitean operators, i.e., of ( ~J + ~S)2, ( ~J + ~S)3, J 2 with different eigenvalues are
orthogonal, one can conclude the orthonormality property∫ +π

−π
sin θdθ

∫ 2π

0
dφ [Y∗j′m′(`′, 1

2
|θ, φ) ]T Y∗jm(`, 1

2
|θ, φ) = δjj′δmm′δ``′ (6.157)

where we have introduced the angular variables θ, φ to represent r̂ and used the notation [· · ·]T
to denote the transpose of the two-dimensional vectors Y∗j′m′(`′, 1

2
|θ, φ) which defines the scalar

product (
a∗

b∗

)T (
c
d

)
=
(
a∗ b∗

) ( c
d

)
= a ∗ c + b∗ d . (6.158)

The Operator σ · r̂

Another important property of the spin-orbital angular momentum states (6.147, 6.148) concerns
the effect of the operator ~σ · r̂ on these states. In a representation defined by the states (6.139),
this operator can be represented by a 2× 2 matrix.
We want to show that the operator ~σ · r̂ in the basis

{(Yjm(j − 1
2
, 1

2
|r̂),Yjm(j + 1

2
, 1

2
|r̂) ) ,

j = 1
2
, 3

2
. . . ; m = −j, −j + 1, . . .+ j } (6.159)

assumes the block-diagonal form

~σ · r̂ =


0 −1
−1 0

0 −1
−1 0

. . .

 (6.160)
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where the blocks operate on two-dimensional subspaces spanned by {Yjm(j − 1
2
, 1

2
|r̂), Yjm(j +

1
2
, 1

2
|r̂)}. We first demonstrate that ~σ · r̂ is block-diagonal. This property follows from the commu-

tation relationships
[J (tot)
k , ~σ · ~r ] = 0 , k = 1, 2, 3 (6.161)

where J totk is defined in (6.137) To prove this we consider the case k = 1. For the l.h.s. of (6.161)
holds, using (6.137),

[J1 + S1, σ1x1 + σ2x2 + σ3x3 ]
= σ2 [J1, x2 ] + [S1, σ2 ]x2 + σ3 [J1, x3 ] + [S1, σ3 ]x3 . (6.162)

The commutation properties [cf. (5.53) for J1 and (5.228), (6.138) for ~σ and S1]

[J1, x2 ] = −i~ [x2∂3 − x3∂2, x2 ] = i~x3 (6.163)
[J1, x3 ] = −i~ [x2∂3 − x3∂2, x3 ] = − i~x2 (6.164)

[S1, σ2 ] =
~

2
[σ1, σ2 ] = i~σ3 (6.165)

[S1, σ3 ] =
~

2
[σ1, σ3 ] = − i~σ2 (6.166)

allow one then to evaluate the commutator (6.161) for k = 1

[J (tot)
1 , ~σ · ~r] = i~ (σ2x3 + σ3x2 − σ3x2 − σ2x3 ) = 0 . (6.167)

One can carry out this algebra in a similar way for the k = 2, 3 and, hence, prove (6.161).
Since the differential operators in J (tot)

k do not contain derivatives with respect to r, the property
(6.161) applies also to ~σ · r̂, i.e., it holds

[J (tot)
k , ~σ · r̂] = 0 , k = 1, 2 3 . (6.168)

From this follows (
J (tot)

)2
~σ · r̂ Yjm(j ± 1

2
, 1

2
|r̂)

= ~σ · r̂
(
J (tot)

)2
Yjm(j ± 1

2
, 1

2
|r̂)

= ~
2 j(j + 1)~σ · r̂Yjm(j ± 1

2
, 1

2
|r̂) , (6.169)

i.e., ~σ · r̂Yjm(j ± 1
2
, 1

2
|r̂) is an eigenstate of (J (tot))2 with eigenvalue ~2j(j + 1). One can prove

similarly that this state is also an eigenstate of J (tot)
3 with eigenvalue ~m. Since in the space

spanned by the basis (6.159) only two states exist with such eigenvalues, namely, Yjm(j ± 1
2
, 1

2
|r̂),

one can conclude

~σ · r̂Yjm(j + 1
2
, 1

2
|r̂) = α++(jm)Yjm(j + 1

2
, 1

2
|r̂) + α+−(jm)Yjm(j − 1

2
, 1

2
|r̂) (6.170)

and, similarly,

~σ · r̂Yjm(j − 1
2
, 1

2
|r̂) = α−+(jm)Yjm(j + 1

2
, 1

2
|r̂) + α−−(jm)Yjm(j − 1

2
, 1

2
|r̂) . (6.171)



6.5: Spin–Orbital Angular Momentum States 167

We have denoted here that the expansion coefficients α±±, in principle, depend on j and m.
We want to demonstrate now that the coefficients α±±, actually, do not depend on m. This property
follows from

[J (tot)
± , ~σ · r̂ ] = 0 (6.172)

which is a consequence of (6.168) and the definition of J (tot)
± [c.f. (6.35)]. We will, hence, use the

notation α±±(j)

Exercise 6.5.1: Show that (6.172) implies that the coefficients α±± in (6.170, 6.171) are indepen-
dent of m.

We want to show now that the coeffients α++(j) and α−−(j) in (6.170, 6.171) vanish. For this
purpose we consider the parity of the operator ~σ · r̂ and the parity of the states Yjm(j ± 1

2
, 1

2
|r̂),

i.e., their property to change only by a factor ±1 under spatial inversion. For ~σ · r̂ holds

~σ · r̂ → ~σ · (−r̂) = −~σ · r̂ , (6.173)

i.e., ~σ · r̂ has odd parity. Replacing the r̂-dependence by the corresponding (θ, φ)-dependence and
noting the inversion symmetry of spherical harmonics [c.f. (5.166)]

Yj+ 1
2
m± 1

2
(π − θ, π + φ) = (−1)j+

1
2Yj+ 1

2
m± 1

2
(θ, φ) (6.174)

one can conclude for Yjm(j + 1
2
, 1

2
|r̂) as given by (6.142)

Yjm(j + 1
2
, 1

2
|θ, φ) → Yjm(j + 1

2
, 1

2
|π − θ, π + φ) = (−1)j+

1
2Yjm(j + 1

2
, 1

2
|θ, φ) . (6.175)

Similarly follows for Yjm(j − 1
2
, 1

2
|r̂)

Yjm(j − 1
2
, 1

2
|θ, φ) → (−1)j−

1
2Yjm(j + 1

2
, 1

2
|θ, φ) . (6.176)

We note that Yjm(j + 1
2
, 1

2
|r̂) and Yjm(j − 1

2
, 1

2
|r̂) have opposite parity. Since ~σ · r̂ has odd parity,

i.e., when applied to the states Yjm(j ± 1
2
, 1

2
|r̂) changes their parity, we can conclude α++(j) =

α−−(j) = 0. The operator ~σ ·r̂ in the two-dimensional subspace spanned by Yjm(j± 1
2
, 1

2
|r̂) assumes

then the form

~σ · r̂ =
(

0 α+−(j)
α−+(j) 0

)
. (6.177)

Since ~σ · r̂ must be a hermitean operator it must hold α−+(j) = α∗+−(j).
According to (5.230) one obtains

(~σ · r̂ )2 = 11 . (6.178)

This implies |α+−(j)| = 1 and, therefore, one can write

~σ · r̂ =
(

0 eiβ(j)

e−iβ(j) 0

)
, β(j) ∈ R . (6.179)

One can demonstrate that ~σ · r̂ is, in fact, a real operator. For this purpose one considers the
operation of ~σ · r̂ for the special case φ = 0. According to the expressions (6.147, 6.148) for



168 Addition of Angular Momentum and Spin

Yjm(j ± 1
2
, 1

2
|θ, φ) and (5.174–5.177) one notes that for φ = 0 the spin-angular momentum states

are entirely real such that ~σ · r̂ must be real as well. One can conclude then

~σ · r̂ = ±
(

0 1
1 0

)
(6.180)

where the sign could depend on j.
We want to demonstrate finally that the “−”-sign holds in (6.180). For this purpose we consider
the application of ~σ · r̂ in the case of θ = 0. According to (5.180) and (6.147, 6.148) the particular
states Yj 1

2
(j − 1

2
, 1

2
|r̂) and Yj 1

2
(j + 1

2
, 1

2
|r̂) at θ = 0 are

Yj 1
2
(j − 1

2
, 1

2
|θ = 0, φ) =

( √
j+ 1

2
4π

0

)
(6.181)

Yj 1
2
(j + 1

2
, 1

2
|θ = 0, φ) =

(
−
√

j+ 1
2

4π

0

)
. (6.182)

Since ~σ · r̂, given by

~σ · r̂ = σ1 sin θ cosφ + σ2 sin θ sinφ + σ3 cos θ , (6.183)

in case θ = 0 becomes in the standard representation with respect to the spin-1
2 states χ 1

2
± 1

2

[c.f. (5.224)]

~σ · r̂ =
(

1 0
0 1

)
space χ 1

2±
1
2

, for θ = 0 (6.184)

one can conclude from (6.181, 6.182)

~σ · r̂Yj 1
2
(j − 1

2
, 1

2
|θ = 0, φ) = −Yj 1

2
(j + 1

2
, 1

2
|θ = 0, φ) , for θ = 0. (6.185)

We have, hence, identified the sign of (6.180) and, therefore, have proven (6.160). The result can
also be stated in the compact form

~σ · r̂Yjm(j ± 1
2
, 1

2
|r̂) = −Yjm(j ∓ 1

2
, 1

2
|r̂) (6.186)

The Operator ~σ · ~̂p

The operator ~σ · ~̂p plays an important role in relativistic quantum mechanics. We want to determine
its action on the wave functions f(r)Yjm(j ± 1

2
, 1

2
|r̂). Noting that ~̂p = −i~∇ is a first order

differential operator it holds

~σ · ~̂p f(r)Yjm(j ± 1
2
, 1

2
|r̂) = ((~σ · ~̂p f(r)))Yjm(j ± 1

2
, 1

2
|r̂) + f(r)~σ · ~̂pYjm(j ± 1

2
, 1

2
|r̂) (6.187)

Here (( · · · )) denotes again confinement of the diffusion operator ∂r to within the double bracket.
Since f(r) is independent of θ and φ follows

((~σ · ~̂p f(r))) = −i~(( ∂rf(r) ))~σ · r̂ . (6.188)
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Using (6.186) for both terms in (6.187) one obtains

~σ · ~̂p f(r)Yjm(j ± 1
2
, 1

2
|r̂) =

[
i~∂rf(r) − f(r)~σ · ~̂p ~σ · r̂

]
Yjm(j ∓ 1

2
, 1

2
|r̂) . (6.189)

The celebrated property of the Pauli matrices (5.230) allows one to express

~σ · ~̂p ~σ · r̂ = ~̂p · r̂ + i ~σ · (~̂p× r̂) . (6.190)

For the test function h(~r) holds

~̂p · r̂ h = −i~∇ ·
(
~r

r
h

)
= −i~h

r
∇ · ~r − i~~r · ∇h

r

= −i~ 3
r
h − i~h~r · ∇1

r
− i~ r̂ · ∇h . (6.191)

Using ∇(1/r) = −~r/r3 and r̂ · ∇h = ∂rh one can conclude

~̂p · r̂ h = −i~
(

2
r

+ ∂r

)
h (6.192)

The operator ~̂p× r̂ in (6.190) can be related to the angular momentum operator. To demonstrate
this we consider one of its cartision components, e.g.,

( ~̂p× r̂ )1 h = −i~ (∂2
x3

r
− ∂3

x2

r
)h (6.193)

= −i~ 1
r

(∂2x3 − ∂3x2)h− i~h (x3∂2
1
r
− x2∂3

1
r

) .

Using ∂2(1/r) = −x2/r
3, ∂3(1/r) = −x3/r

3 and ∂2x3 = x3∂2, ∂3x2 = x2∂3 we obtain

( ~̂p× r̂ )1 h = −i~ 1
r

(x3∂2 − x2∂3)h = −1
r
J1 h (6.194)

where J1 is defined in (5.53). Corresponding results are obtained for the other components of ~̂p× r̂
and, hence, we conclude the intuitively expected identity

~̂p× r̂ = − 1
r
~J . (6.195)

Altogether we obtain, using ∂rYjm(j ± 1
2
, 1

2
|r̂) = 0 and ~σ = 2~S/~,

~σ · ~̂p f(r)Yjm(j ± 1
2
, 1

2
|r̂) = i [ ~∂r +

2~
r

+
1
r

~J · ~S
~

] f(r)Yjm(j ∓ 1
2
, 1

2
|r̂) (6.196)

Using (6.155, 6.156) this yields finally

~σ · ~̂p f(r)Yjm(j + 1
2
, 1

2
|r̂) = i~

[
∂r +

j + 3
2

r

]
f(r)Yjm(j − 1

2
, 1

2
|r̂)

(6.197)

~σ · ~̂p g(r)Yjm(j − 1
2
, 1

2
|r̂) = i~

[
∂r +

1
2 − j
r

]
g(r)Yjm(j + 1

2
, 1

2
|r̂)

(6.198)
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To demonstrate the validity of this key result we note that according to (5.230, 5.99) holds

(~σ · ~̂p)2 = −~2∇2 =
~

2

r

∂2

∂r2
r +

J 2

r2
. (6.199)

We want to show that eqs. (6.197, 6.198), in fact, are consistent with this identity. We note

(~σ · ~̂p)2f(r)Yjm(j + 1
2
, 1

2
|r̂)

= ~~σ · ~̂p [ i∂r +
i

r
(j +

3
2

) ] f(r)Yjm(j − 1
2
, 1

2
|r̂)

= ~
2 [ i∂r +

i

r
(
1
2
− j) ] [ i∂r +

i

r
(j +

3
2

) ] f(r)Yjm(j + 1
2
, 1

2
|r̂)

= ~
2 [−∂2

r −
2
r
∂r +

j + 3
2

r2
−

(1
2 − j)(j + 3

2)
r2

] f(r)Yjm(j + 1
2
, 1

2
|r̂)

= ~
2 [−∂2

r −
2
r
∂r +

j2 + 2j + 3
4

r2
] f(r)Yjm(j + 1

2
, 1

2
|r̂) (6.200)

and, using (5.101), j2 + 2j + 3
4 = (j + 1

2)(j + 3
2), as well as (6.151), i.e.,

~
2 (j +

1
2

)(j +
3
2

)Yjm(j + 1
2
, 1

2
|r̂) = J 2 Yjm(j + 1

2
, 1

2
|r̂) (6.201)

yields

(~σ · ~̂p)2 f(r)Yjm(j + 1
2
, 1

2
|r̂) =

(
−~

2

r
∂2
r r +

J 2

r2

)
f(r)Yjm(j + 1

2
, 1

2
|r̂)

which agrees with (6.199).

Evaluation of Relevant Clebsch-Gordan Coefficients

We want to determine now the Clebsch-Gordan coefficients (6.143–6.146). For this purpose we use
the construction method introduced in Sec. 6.2. We begin with the coefficients (6.143, 6.144) and,
adopting the method in Sec. 6.2, consider first the case of the largest m-value m = j. In this case
holds, according to (6.43),

Yjj(j − 1
2
, 1

2
|r̂) = Yj− 1

2
j− 1

2
(r̂)χ 1

2
1
2
. (6.202)

The Clebsch-Gordan coefficients are then

(j − 1
2
, j − 1

2
, 1

2
, 1

2
|j, j) = 1 (6.203)

(j − 1
2
, j + 1

2
, 1

2
,− 1

2
|j, j) = 0 (6.204)

(6.205)

which agrees with the expressions (6.143, 6.144) for m = j.
For m = j − 1 one can state, according to (6.45),

Yjj−1(j − 1
2
, 1

2
|r̂) =

√
2j − 1

2j
Yj− 1

2
j− 3

2
χ 1

2
1
2

+
√

1
2j

Yj− 1
2
j− 1

2
χ 1

2
− 1

2
(6.206)
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The corresponding Clebsch-Gordan coefficients are then

(j − 1
2
, j − 3

2
, 1

2
, 1

2
|j, j − 1) =

√
2j − 1

2j
(6.207)

(j − 1
2
, j − 1

2
, 1

2
,− 1

2
|j, j − 1) =

√
1
2j

(6.208)

(6.209)

which again agrees with the expressions (6.143, 6.144) for m = j − 1.
Expression (6.206), as described in Sec. 6.2, is obtained by applying the operator [c.f. (6.137)]

J (tot)
− = J− + S− (6.210)

to (6.202). The further Clebsch-Gordan coefficients (· · · |jj − 2), (· · · |jj − 3), etc., are obtained
by iterating the application of (6.210). Let us verify then the expression (6.143, 6.144) for the
Clebsch-Gordan coefficients by induction. (6.143, 6.144) implies for j = m

Yjm(j − 1
2
, 1

2
|r̂) =

√
j +m

2j
Yj− 1

2
m− 1

2
χ 1

2
1
2

+

√
j −m

2j
Yj− 1

2
m+ 1

2
χ 1

2
− 1

2
. (6.211)

Applying J (tot)
− to the l.h.s. and J− + S− to the r.h.s. [c.f. (6.210)] yields√

(j +m)(j −m+ 1)Yjm−1(j − 1
2
, 1

2
|r̂) =√

j +m

2j

√
(j +m− 1)(j −m+ 1) Yj− 1

2
m− 3

2
χ 1

2
1
2

+

√
j +m

2j
Yj− 1

2
m− 1

2
χ 1

2
− 1

2

+

√
j −m

2j

√
(j +m)(j −m) Yj− 1

2
m− 1

2
χ 1

2
− 1

2

or

Yjm−1(j − 1
2
, 1

2
|r̂) =√

j +m− 1
2j

Yj− 1
2
m− 3

2
χ 1

2
1
2

+(
(j − m)

√
1

2j(j −m+ 1)
+

√
1

2j(j −m+ 1)

)
Yj− 1

2
m− 1

2
χ 1

2
− 1

2

=

√
j +m− 1

2j
Yj− 1

2
m− 3

2
χ 1

2
1
2

+

√
j −m+ 1

2j
Yj− 1

2
m− 1

2
χ 1

2
− 1

2
.

This implies

(j − 1
2
,m− 3

2
, 1

2
, 1

2
|j,m− 1) =

√
j + m − 1

2j
(6.212)
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(j − 1
2
,m− 1

2
, 1

2
,− 1

2
|j,m− 1) =

√
j − m + 1

2j
(6.213)

which is in agreement with (6.143, 6.144) for j = m − 1. We have, hence, proven (6.143, 6.144)
by induction.
The Clebsch-Gordan coefficients (6.146) can be obtained from (6.143) by applying the symmetry
relationships (6.116, 6.120). The latter relationships applied together read

(`1,m1, `2,m2|`3,m3) = (−1)`2+`3−`1+`2+m2 × (6.214)

×
√

2`3 + 1
2`1 + 1

(`3,m3, `2,−m2|`1,m1)

For

(j,m, 1
2
, 1

2
|j + 1

2
,m+ 1

2
) =

√
j +m+ 1

2j + 1
, (6.215)

which follows from (6.143), the relationship (6.214) yields

(j,m, 1
2
, 1

2
|j + 1

2
,m+ 1

2
) =

√
2j + 2
2j + 1

(j + 1
2
,m+ 1

2
, 1

2
,− 1

2
|j,m) (6.216)

and, using (6.215), one obtains

(j + 1
2
,m+ 1

2
, 1

2
,− 1

2
|j,m) =

√
j +m+ 1

2j + 2
. (6.217)

Similarly, one can obtain expression (6.145) from (6.144).

6.6 The 3j–Coefficients

The Clebsch-Gordan coefficients describe the quantum mechanical equivalent of the addition of two
classical angular momentum vectors ~J (1)

class and ~J (2)
class to obtain the total angular momentum vector

~J (tot)
class = ~J (1)

class + ~J (2)
class. In this context ~J (1)

class and ~J (2)
class play the same role, leading quantum

mechanically to a symmetry of the Clebsch-Gordan coefficients (JM |`1m1`2m2) with respect to
exchange of `1m1 and `2m2. However, a higher degree of symmetry is obtained if one rather
considers classically to obtain a vector ~J (−tot)

class with the property ~J (1)
class + ~J (2)

class + ~J (−tot)
class = 0.

Obviously, all three vectors ~J (1)
class, ~J

(2)
class and ~J (−tot)

class play equivalent roles.
The coefficients which are the quantum mechanical equivalent to ~J (1)

class + ~J (2)
class + ~J (−tot)

class = 0
are the 3j–coefficients introduced by Wigner. They are related in a simple manner to the Clebsch-
Gordan coefficients(

j1 j2 j3
m1 m2 m3

)
= (−1)j1−j2+m3(2j3 + 1)−

1
2 (j3 −m3|j1m1, j2m2) (6.218)

where we have replaced the quantum numbers J,M, `1,m1, `2,m2 by the set j1,m1, j2,m2, j3,m3

to reflect in the notation the symmetry of these quantities.
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We first like to point out that conditions (6.21, 6.34) imply(
j1 j2 j3
m1 m2 m3

)
= 0 if not m1 + m2 + m3 = 0 (6.219)(

j1 j2 j3
m1 m2 m3

)
= 0 if not |j1 − j2| ≤ j3 ≤ j1 + j2 . (6.220)

The latter condition |j1 − j2| ≤ j3 ≤ j1 + j2, the so-called triangle condition, states that j1, j2, j3
form the sides of a triangle and the condition is symmetric in the three quantum numbers.
According to the definition of the 3j–coefficients one would expect symmetry properties with respect
to exchange of j1,m1, j2,m2 and j3,m3 and with respect to sign reversals of all three values
m1,m2,m3, i.e. with respect to alltogether 12 symmetry operations. These symmetries follow the
equations (

j1 j2 j3
m1 m2 m3

)
=
(

j2 j3 j1
m2 m3 m1

)
= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)
(6.221)

where the the results of a cyclic, anti-cyclic exchange and of a sign reversal are stated. In this way
the values of 12 3j-coefficients are related.
However, there exist even further symmetry properties, discovered by Regge, for which no known
classical analogue exists. To represent the full symmetry one expresses the 3j–coefficients through
a 3× 3–matrix, the Regge-symbol, as follows(

j1 j2 j3
m1 m2 m3

)
=

 −j1 + j2 + j3 j1 − j2 + j3 j1 + j2 − j3
j1 −m1 j2 −m2 j3 −m3

j1 +m1 j2 +m2 j3 +m3

 . (6.222)

The Regge symbol vanishes, except when all elements are non-negative integers and each row and
column has the same integer value Σ = j1 + j2 + j3. The Regge symbol also vanishes in case that
two rows or columns are identical and Σ is an odd integer. The Regge symbol reflects a remarkable
degree of symmetry of the related 3j–coefficients: One can exchange rows, one can exchange columns
and one can reflect at the diagonal (transposition). In case of a non-cyclic exchange of rows and
columns the 3j–coefficent assumes a prefactor (−1)Σ. These symmetry operations relate altogether
72 3j–coefficients.
The reader may note that the entries of the Regge-symbol, e.g., −j1 + j2 + j3, are identical to the
integer arguments which enter the analytical expression (6.102) of the Clebsch-Gordan coefficients,
safe for the prefactor

√
2j3 + 1 which is cancelled according to the definition (6.218) relating 3j-

coefficients and Clebsch-Gordan coefficients. The two integer entries J − `1 −m2 and J − `2 +m1

in (6.102) are obtained each through the difference of two entries of the Regge-symbol.
Because of its high degree of symmetry the Regge symbol is very suited for numerical evaluations
of the 3j–coefficents. For this purpose one can use the symmetry transformations to place the
smallest element into the upper left corner of the Regge symbol. Assuming this placement the
Regge symbol can be determined as follows (n11 is the smallest element!) n11 n12 n13

n21 n22 n23

n31 n32 n33

 = (−1)n23+n32

√
n12!n13!n21!n31!

(Σ + 1)!n11!n22!n33!n23!n32!))

n11∑
n=0

sn (6.223)
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where

Σ = n11 + n12 + n13 = j1 + j2 + j3 (6.224)
s0 = n23!

(n23−n11)!
n32!

(n32−n11)! (6.225)

sn = − (n11+1−n)(n22+1−n)(n33+1−n)
n(n23−n11+n)(n32−n11+n) sn−1 . (6.226)

We like to state finally a few explicit analytical expressions for Clebsch-Gordan coefficients which
were actually obtained using (6.223-6.226) by means of a symbolic manipulation package (Mathe-
matica)

(1m|2m11m2) =
(−1)1+m+m1 δ(m,m1 +m2)

√
(2−m1)!

√
(2 +m1)!

√
10
√

(1−m)!
√

(1 +m)!
√

(1−m2)!
√

(1 +m2)!
1 ≥ |m| ∧ 1 ≥ |m2| ∧ 2 ≥ |m1| (6.227)

(2m|2m11m2) =
(−1)m+m1 (m+ 2m2) δ(m,m1 +m2)

√
(2−m1)! (2 +m1)!

√
6
√

(2−m)!
√

(2 +m)!
√

(1−m2)!
√

(1 +m2)!
1 ≥ |m2| ∧ 2 ≥ |m| ∧ 2 ≥ |m1| (6.228)

(3m|2m11m2) =
(−1)2m1−2m2

√
7 δ(m,m1 +m2)

√
(3−m)!

√
(3 +m)!

√
105
√

(2−m1)!
√

(2 +m1)!
√

(1−m2)!
√

(1 +m2)!
1 ≥ |m2|) ∧ 2 ≥ |m1| ∧ 3 ≥ |m| (6.229)

(0m|1
2
m1

1
2
m2) =

i(−1)1−m2 δ(0,m) δ(−m1,m2)√
2

1
2
≥ |m1|) (6.230)

(1m|1
2
m1

1
2
m2) =

(−1)2m1−2m2
√

3 δ(m,m1 +m2)
√

(1−m)!
√

(1 +m)!
√

6
√(

1
2 −m1

)
!
√(

1
2 +m1

)
!
√(

1
2 −m2

)
!
√(

1
2 +m2

)
!

1
2
≥ |m1| ∧

1
2
≥ |m2| ∧ 1 ≥ |m| (6.231)

Here is an explicit value of a Clebsch-Gordan coefficient:

(701
2 −151

2 |120−10 601
2 −51

2) =
4793185293503147294940209340

√
127
√

142√
35834261990081573635135027068718971996984731222241334046198355

' 0.10752786393409395427444450130056540562826159542886 (6.232)

We also illustrate the numerical values of a sequence of 3j-coefficients in Figure 6.1.
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Figure 6.1: Oscillatory behavior of 3j-coefficients.

Irreducible Representation

We had stated above that the spherical harmonics Y`m(Ω)), eigenfunctions of the single particle
angular momentum operators J 2 and J3, provide the irreducible representation for D(ϑ), i.e. the
rotations in single particle function space. Similarly, the 2–particle total angular momentum wave
functions YJM (`1, `2|Ω1,Ω2) provide the irreducible representation for the rotation R(ϑ) defined in
(6.5), i.e. rotations in 2–particle function space. If we define the matrix representation of R(ϑ) by
D(ϑ), then for a basis {Y`1m1(Ω1)Y`2m2(Ω2), `1, `2 = 1, 2, . . . , m1 = −`1, . . .+`1, m2 = −`2, . . .+`2}
the matrix has the blockdiagonal form

D(ϑ) =



1·1×1·1

1·3×1·3

. . .

(2`1 + 1)
(2`2 + 1) ×

(2`1 + 1)
(2`2 + 1)

. . .



. (6.233)
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For the basis {YJM (`1, `2|Ω1,Ω2), `1, `2 = 1, 2, . . . , J = |`1 − `2|, . . . , `1 + `2, M = −J, . . . J}
each of the blocks in (6.233) is further block-diagonalized as follows

(2`1 + 1)
(2`2 + 1) ×

(2`1 + 1)
(2`2 + 1) =

(2|`1 − `2|+ 1)
×(2|`1 − `2|+ 1)

(2|`1 − `2|+ 3)
×(2|`1 − `2|+ 3)

. . .

(2(`1 + `2) + 1)
×(2(`1 + `2) + 1)

(6.234)

Partitioning in smaller blocks is not possible.

Exercise 6.6.1: Prove Eqs. (6.233,6.234)
Exercise 6.6.2: How many overall singlet states can be constructed from four spin–1

2 states
|12m1〉(1)|12m2〉(2)|12m3〉(3)|12m4〉(4)? Construct these singlet states in terms of the product wave
functions above.
Exercise 6.6.3: Two triplet states |1m1〉(1)|1m2〉(2) are coupled to an overall singlet state Y00(1, 1).
Show that the probability of detecting a triplet substate |1m1〉(1) for arbitrary polarization (m2–
value) of the other triplet is 1

3 .
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6.7 Tensor Operators and Wigner-Eckart Theorem

In this Section we want to discuss operators which have the property that they impart angular
momentum and spin properties onto a quantum state. Such operators T can be characterized
through their behaviour under rotational transformations.
Let T |ψ〉 denote the state obtained after the operator T has been applied and let R(~ϑ) denote
a rotation in the representation of SO(3) or SU(2) which describes rotational transformations
of the quantum states under consideration, e.g. the operator (5.42) in case (i) of the position
representation of single particle wave functions or the operator (5.222) in case (ii) of single particle
spin operators. Note that in the examples mentioned the operator T would be defined within the
same representation as R(~ϑ). This implies, for example, that in

case (i) T is an operator C∞(3) → C∞(3) acting on single particle wave functions, e.g. a mul-
tiplicative operator T ψ(~r) = f(~r)ψ(~r) or a differential operator T ψ(~r) = ( ∂2

∂x2
1

+ ∂2

∂x2
2

+
∂2

∂x2
3
)ψ(~r);

case (ii) the operator T could be a spin operator Sk defined in (5.223), e.g. S2 = S2
1 + S2

2 + S2
3

or any other polynomial of Sk.

The operator T may also act on multi-particle states like Y`1m1(r̂1)Y`2m2(r̂2). In fact, some of the
examples considered below involve tensor operators T of this type.
Rotations transform |ψ〉 as |ψ′〉 = R(~ϑ)|ψ〉 and T |ψ〉 as R(~ϑ)T |ψ〉. The latter can be written
T ′|ψ′〉 where T ′ denotes T in the rotated frame given by

T ′ = R(~ϑ)T R−1(~ϑ) . (6.235)

The property that T imparts onto states |ψ〉 angular momentum or spin corresponds to T behaving
as an angular momentum or spin state multiplying |ψ〉. The latter implies that T transforms like
an angular momentum or spin state |`m〉, i.e. that T belongs to a family of operators {Tkq, q =
−k,−k + 1, . . . k} such that

T ′kq =
k∑

q′=−k
D(k)
q′q (~ϑ)Tkq′ . (6.236)

In this equation D(k)
q′q (~ϑ) denotes the rotation matrix

D(k)
q′q (~ϑ) = 〈kq′|R(~ϑ)|kq〉 . (6.237)

The operators T ∈ {Tkq, q = −k,−k + 1, . . . k} with the transformation property (6.236, 6.237)
are called tensor operators of rank k.

Examples of Tensor Operators

The multiplicative operators C∞(3) → C∞(3)

Ykq(~r) def= r
k
Ykq(̃r) (6.238)
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are tensor operators of rank k. Examples are

Y00 =
1√
4π

Y1±1 = ∓
√

3
8π
r sinθ e±iφ = ∓

√
3

8π
(x1 ± ix2)

Y10 =

√
3

4π
r cosθ =

√
3

4π
x3

Y2±2 =
1
4

√
15
2π
r2 sin2θ e±2iφ =

1
4

√
15
2π

(x1 ± ix2)2

Y2±1 = ∓
√

15
8π
r2 sinθ e±iφ = ∓

√
15
8π

(x1 ± ix2)x3

Y20 =

√
5

4π
r2

(
3
2

cos2θ − 1
2

)
=

√
5

4π

(
3
2
x2

3 −
r2

2

)
(6.239)

These operators can be expressed in terms of the coordinates x1, x2, x3. The fact that these opera-
tors form tensor operators of rank 1, 2, 3 follows from the transformation properties of the spherical
harmonics derived in Section 1.3.

Exercise 6.7.1: Show that the following set of spin operators

T00 = 1

T1±1 = ∓ 1√
2
S±

T10 = S3

T2±2 =
(
S±
)2

T2±1 = ∓(S3S
± + S±S3)

T20 =

√
2
3

(3S2
3 − S2)

are tensor operators of rank 0, 1, 2.
Exercise 6.7.2: Express the transformed versions of the following operators (a) T = x2

1 − x2
2 and

(b) S2S3 in terms of Wigner rotation matrices and untransformed operators.

For the following it is important to note that the rotation matrix elements (6.237) do not require
that the rotation R−1(~ϑ) is expressed in terms of Euler angles according to (5.203), but rather
any rotation and any parametrization can be assumed. In fact, we will assume presently that the
rotation is chosen as follows

R(~ϑ) = exp (ϑ+L+ + ϑ−L− + ϑ3L3 ) (6.240)

where we have defined ϑ± = 1
2(ϑ1 ∓ iϑ2) and L± = L1 ± iL2. This choice of parametrization

allows us to derive conditions which are equivalent to the property (6.235 - 6.237), but are far easier
to ascertain for any particular operator.
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The conditions can be derived if we consider the property (6.235 - 6.237) for transformations
characterized by infinitesimal values of ϑ+, ϑ−, ϑ3. We first consider a rotation with ~ϑ = (ϑ+, 0, 0)T

in case of small ϑ+. The property (6.235 - 6.237) yields first

R(~ϑ)TkqR−1(~ϑ) =
k∑

q′=−k
〈kq′|R(~ϑ)|kq〉Tkq′ . (6.241)

Using R(~ϑ) = 11 + ϑ+L+ + O(ϑ2
+) this equation can be rewritten neglecting terms of order O(ϑ2

+)

(11 + ϑ+L+)Tkq (11 − ϑ+L+) =
k∑

q′=−k
〈kq′|11 + ϑ+L+|kq〉Tkq′ . (6.242)

from which follows by means of 〈kq′|11|kq〉 = δqq′ and by subtracting Tkq on both sides of the
equation

ϑ+ [L+, Tkq] =
k∑

q′=−k
ϑ+〈kq′|L+|kq〉Tkq′ . (6.243)

From (5.80) follows 〈kq′|L+|kq〉 = −i
√

(k + q + 1)(k − q)δq′ q+1 and, hence,

[L+, Tkq] = −iTk q+1

√
(k + q + 1)(k − q) . (6.244)

Similar equations can be derived for infinitesimal rotations of the form ~ϑ = (0, ϑ−, 0)T , (0, 0, ϑ3)T .
Expressing the results in terms of the angular momentum operators J+, J−, J3 yields

[J+, Tkq] = ~Tkq+1

√
(k + q + 1)(k − q) (6.245)

[J−, Tkq] = ~Tkq−1

√
(k + q)(k − q + 1) (6.246)

[J3, Tkq] = ~ q Tkq . (6.247)

These properties often can be readily demonstrated for operators and the transformation properties
(6.235 - 6.237) be assumed then.

Exercise 6.7.3: Derive Eqs. (6.246, 6.247).
Exercise 6.7.4: Is the 1-particle Hamiltonian

H = − ~
2

2m
∇2 + V (|~r|) (6.248)

a tensor operator?
Exercise 6.7.5: Consider a system of two spin-1

2 particles for which the first spin is described by
the operator ~S(1) and the second spin by the operator ~S(2). Show that ~S(1) · ~S(2) is a tensor operator
of rank 0 in the space of the products of the corresponding spin states |12m1〉(1)|12m2〉(2). For this
purpose state first the proper rotation operator R(~ϑ) and note then that ~S(1) · ~S(2) commutes with
the generators of the rotation of |12m1〉(1)|12m2〉(2).
Exercise 6.7.6: Form tensor operators of rank 1 in terms of the three components of ∇ acting on
the space of 1-particle wave functions.
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6.8 Wigner-Eckart Theorem

A second important property of tensor operators Tkq beside (6.235 - 6.237) is that their matrix ele-
ments 〈`1m1γ1|Tkq|`2m2γ2〉 obey simple relationships expressed in terms of Clebsch-Gordan coeffi-
cients. |`1m1γ1〉 denotes an angular momentum (spin) state, possibly the total angular momentum–
spin state of a compositie system, which is characterized also by a set of other quantum numbers γ1

which are not affected by the rotational transformation R(~ϑ). The relationships among the matrix
elements 〈`1m1γ1|Tkq|`2m2γ2〉 are stated by the Wigner–Eckart theorem which we will derive now.
Starting point of the derivation is the fact that the states Tkq|`2m2γ2〉 behave like angular momen-
tum states of a composite system of two particles each carrying angular momentum or spin, i.e.
behave like |kq〉|`1m1〉. To prove this we consider the transformation of Tkq|`2m2γ2〉

R(~ϑ)Tkq |`2m2γ2〉 = R(~ϑ)TkqR−1(~ϑ)R(~ϑ) |`2m2γ2〉

=
∑
q′m′2

D(k)
q′qTkq′ D

(`2)
m′2m2

|`2m′2γ2〉 (6.249)

which demonstrates, in fact, the stated property. One can, hence, construct states Φ`1m1(k, `2|γ2)
which correspond to total angular momentum states. These states according to (6.18) are defined
through

Φ`1m1(k, `2|γ2) =
∑
q,m2

(`1m1|kq `2m2)Tkq |`2m2γ2〉 . (6.250)

We want to show now that these states are eigenstates of J2 = J2
1 + J2

2 + J2
3 and of J3 where

J1, J2, J3 are the generators of the rotation R(~ϑ). Before we proceed we like to point out that the
states |`2m2γ2〉 are also eigenstates of J2, J3, i.e.

J2 |`2m2γ2〉 = ~
2`2(`2 + 1) |`2m2γ2〉 ; J3 |`2m2γ2〉 = ~m2 |`2m2γ2〉 . (6.251)

The corresponding property for Φ`1m1(k, `2|γ2) can be shown readily as follows using (6.247),
J3|`2m2γ2〉 = ~m2γ2|`2m2〉 and the property (6.21) of Clebsch-Gordan coefficients

J3 Φ`1m1(k, `2|γ2) =
∑
q,m2

(`1m1|kq `2m2) (J3Tkq − TkqJ3︸ ︷︷ ︸
=~qTkq

+TkqJ3) |`2m2γ2〉

= ~

∑
q,m2

(`1m1|kq `2m2)︸ ︷︷ ︸
∼δm1 q+m2

(q + m2)Tkq |`2m2γ2〉

= ~m1

∑
q,m2

(`1m1|kq `2m2)Tkq |`2m2γ2〉 (6.252)

Similarly, one can show that Φ`1m1(k, `2|γ2) is an eigenstate of J2 with eigenvalue ~2`1(`1 +1). The
hermitian property of J3 and J2 implies that states Φ`1m1(k, `2|γ2) are orthogonal to |`′1m′1〉 in case
of different quantum numbers `1,m1, i.e.

〈`′1m′1|Φ`1m1(k, `2|γ2) = C δ`1`′1δm1m′1
(6.253)

Exercise 6.8.1: Show that Φ`1m1(k, `2|γ2) is an eigenstate of J2 with eigenvalue ~2`1(`1 + 1).
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In order to evaluate the matrix elements 〈`1m1γ1|Tkq|`2m2γ2〉 we express using the equivalent of
(6.32)

Tkq |`2m2γ2〉 =
∑
`1m1

(`1m1|kq`2m2) Φ`1m1(k`2|γ2) (6.254)

and orthogonality property (6.253)

〈`1m1γ1|Tkq|`2m2γ2〉 = 〈`1m1γ1|Φ`1m1(k`2|γ2)〉 (`1m1|kq`2m2) . (6.255)

At this point the important property can be proven that 〈`1m1γ1|Φ`1m1(k`2|γ2)〉 is independent
of m1, i.e. the matrix elements 〈`1m1γ1|Tkq|`2m2γ2〉 can be reduced to an m1–independent factor,
its m1–dependence being expressed solely through a Clebsch-Gordan coefficient. To prove this
property we consider 〈`1m1γ1|Φ`1m1(k`2|γ2)〉 for a different m1 value, say m1 + 1. Using

|`1m1 + 1γ1〉 =
1√

(`1 +m1 + 1)(`1 −m1)
J+|`1m1γ1〉 (6.256)

and noting that the operator adjoint to J+ is J−, one obtains

〈`1m1 + 1γ1|Φ`1m1+1(k`2|γ2) =
1√

(`1+m1+1)(`1−m1)
〈`1m1γ1|J−Φ`1m1+1(k`2|γ2)〉 =

〈`1m1γ1|Φ`1m1(k`2|γ2)〉 (6.257)

which establishes the m1–independence of 〈`1m1γ1|Φ`1m1(k`2|γ2)〉. In order to express the m1–
independence explicitly we adopt the following notation

〈`1m1γ1|Φ`1m1(k`2|γ2)〉 = (−1)k−`2+`1 1√
2`1 + 1

〈`1, γ1||Tk||`2, γ2〉 . (6.258)

We can then finally express the matrix elements of the tensor operators Tkq as follows

〈`1m1, γ1|Tkq|`2m2, γ2〉 =
(`1m1|kq`2m2) (−1)k−`2+`1 1√

2`1+1
〈`1, γ1||Tk||`2, γ2〉 (6.259)

The socalled reduced matrix element 〈`1, γ1||Tk||`2, γ2〉 is determined by applying (6.259) to a
combination of magnetic quantum numbers m′1, q

′,m′2, e.g. m′1 = q′ = m′2 = 0, for which
the l.h.s. can be evaluated as easily as possible. One can then evaluate also the corresponding
Clebsch-Gordan coefficient (`1m′1|kq′`2m′2) and determine

〈`1, γ1||Tk||`2, γ2〉 =
√

2`1 + 1
〈`1m′1, γ1|Tkq′ |`2m′2, γ2〉

(−1)k−`2+`1(`1m′1|kq′`2m′2)
(6.260)

Exercise 6.8.2: Determine the matrix elements of the gradient operator ∇ of the type∫
d3rF (~r)∇G(~r) (6.261)
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when the functions F (~r) and G(~r) are of the type f(r)Y`m(r̂). For this purpose relate ∇ to a tensor
operator T1q, evaluate the matrix for m1 = q = m2 = 0 using

cosθ Y`m(θ, φ) =√
(`+1−m)(`+1+m)

(2`+1)(2`+3) Y`+1m(θ, φ) +
√

(`−m)(`+m)
(2`−1)(2`+1) Y`−1m(θ, φ)

sinθ Y`m(θ, φ) =
`(`+1)√

(2`+1)(2`+3)
Y`+1m(θ, φ) − `(`−1)√

2`−1)(2`+1)
Y`−1m(θ, φ)

and express the remaining matrix elements using the Wigner–Eckart theorem. (The necessary
evaluations are cumbersome, but a very useful exercise!)



Chapter 7

Motion in Spherically Symmetric
Potentials

We describe in this section the stationary bound states of quantum mechanical particles in spher-
ically symmetric potentials V (r), i.e., in potentials which are solely a function of r and are inde-
pendent of the angles θ, φ. Four examples will be studied. The first potential

V (r) =
{

0 0 ≤ r ≤ R
∞ r > R

(7.1)

confines a freely moving particle to a spherical box of radius R. The second potential is of the
square well type

V (r) =
{
−Vo 0 ≤ r ≤ R
0 r > R

. (7.2)

The third potential

V (r) =
1
2
mω2r2 (7.3)

describes an isotropic harmonic oscillator . The fourth potential

V (r) = − Z e
2

r
(7.4)

governs the motion of electrons in hydrogen-type atoms.
Potential (7.4) is by far the most relevant of the four choices. It leads to the stationary electronic
states of the hydrogen atom (Z = 1). The corresponding wave functions serve basis functions for
multi-electron systems in atoms, molecules, and crystals. The potential (7.3) describes the motion
of a charge in a uniformely charged sphere and can be employed to describe the motion of protons
and neutrons in atomic nuclei1. The potentials (7.1, 7.2) serve as schematic descriptions of quantum
particles, for example, in case of the so-called bag model of hadronic matter.

1See, for example, Simple Models of Complex Nuclei / The Shell Model and the Interacting Boson Model by I.
Talmi (Harwood Academic Publishers, Poststrasse 22, 7000 Chur, Switzerland, 1993)
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7.1 Radial Schrödinger Equation

A classical particle moving in a potential V (r) is governed by the Newtonian equation of motion

m~̇v = − êr ∂rV (r) . (7.5)

In the case of an angular independent potential angular momentum ~J = m~r × ~v is a constant of
motion. In fact, the time variation of ~J can be written, using (7.5) and ~̇r = ~v,

d

dt
~J = ~v ×m~v + ~r ×m~̇v = 0 + ~r × êr (−∂rV (r)) = 0 . (7.6)

Since J̇k is also equal to the poisson bracket {H,Jk} where H is the Hamiltonian, one can conclude

J̇k = {H,Jk} = 0 , k = 1, 2, 3. (7.7)

The correspondence principle dictates then for the quantum mechanical Hamiltonian operator Ĥ
and angular momentum operators Jk

[Ĥ, Jk] = 0 , k = 1, 2, 3 . (7.8)

This property can also be proven readily employing the expression of the kinetic energy operator
[c.f. (5.99)]

− ~
2

2m
∇2 = − ~

2

2m
1
r
∂2
r r +

J 2

2mr2
, (7.9)

the expressions (5.85– 5.87) for Jk as well as the commutation property (5.61) of J 2 and Jk. Ac-
cordingly, stationary states ψE,`,m(~r) can be chosen as simultaneous eigenstates of the Hamiltonian
operator Ĥ as well as of J 2 and J3, i.e.,

Ĥ ψE,`,m(~r) = E ψE,`,m(~r) (7.10)
J 2ψE,`,m(~r) = ~

2`(`+ 1)ψE,`,m(~r) (7.11)
J3ψE,`,m(~r) = ~mψE,`,m(~r) . (7.12)

In classical mechanics one can exploit the conservation of angular momentum to reduce the equation
of motion to an equation governing solely the radial coordinate of the particle. For this purpose
one concludes first that the conservation of angular momentum ~J implies a motion of the particle
confined to a plane. Employing in this plane the coordinates r, θ for the distance from the origin
and for the angular position, one can state

J = mr2 θ̇ . (7.13)

The expression of the kinetic energy

~p 2

2m
=

1
2
m ṙ2 +

1
2
mr2θ̇2 =

1
2
m ṙ2 +

J2

2mr2
(7.14)

and conservation of energy yield

1
2
m ṙ2 +

J2

2mr2
+ V (r) = E . (7.15)
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This is a differential equation which governs solely the radial coordinate. It can be solved by
integration of

ṙ = ±
{

2
m

[
E − V (r) − J2

2mr2

]} 1
2

. (7.16)

Once, r(t) is determined the angular motion follows from (7.13), i.e., by integration of

θ̇ =
J

mr2(t)
. (7.17)

In analogy to the classical description one can derivem, in the present case, for the wave function
of a quantum mechanical particle a differential equation which governs solely the r-dependence.
Employing the kinetic energy operator in the form (7.9) one can write the stationary Schrödinger
equation (7.10), using (7.11),[

− ~
2

2m
1
r
∂2
r r +

J 2

2mr2
+ V (r) − E`,m

]
ψE,`,m(~r) = 0 . (7.18)

Adopting for ψE,`,m(~r) the functional form

ψE,`,m(~r) = vE,`,m(r)Y`m(θ, φ) (7.19)

where Y`m(θ, φ) are the angular momentum eigenstates defined in Section 5.4, equations (7.11, 7.12)
are obeyed and one obtains for (7.10)[

− ~
2

2m
1
r
∂2
r r +

~
2`(`+ 1)
2mr2

+ V (r) − E`,m

]
vE,`,m(r) = 0 . (7.20)

Since this equation is independent of the quantum number m we drop the index m on the radial
wave function vE,`,m(r) and E`,m.
One can write (7.20) in the form of the one-dimensional Schrödinger equation[

− ~
2

2m
∂2
r + Veff(r) − E

]
φE(r) = 0 . (7.21)

where

Veff(r) = V (r) +
~

2`(`+ 1)
2mr2

(7.22)

φE(r) = r vE,`,m(r) . (7.23)

This demonstrates that the function r vE,`,m(r) describes the radial motion as a one-dimensional
motion in the interval [0, ∞[ governed by the effective potential (7.22) which is the original potential
V (r) with an added rotational barrier potential ~

2`(`+1)
2mr2 . This barrier, together with the original

potential, can exclude particles from the space with small r values, but can also trap particles in
the latter space giving rise to strong scattering resonances (see Section ??).
Multiplying (7.20) by −2mr/~2 yields the so-called radial Schrödinger equation[

∂2
r −

`(`+ 1)
r2

− U(r) − κ2
`

]
r vκ,`(r) = 0 . (7.24)
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where we defined

U(r) = −2m
~

2
V (r) (7.25)

κ2
` = −2m

~
2
E` (7.26)

In case E < 0, κ assumes real values. We replaced in (7.20) the index E by the equivalent index
κ.

Boundary Conditions

In order to solve (7.20) one needs to specify proper boundary conditions2. For r → 0 one may
assume that the term `(`+ 1)/r2 becomes larger than the potential U(r). In this case the solution
is governed my [

∂2
r −

`(`+ 1)
r2

]
r vκ,`(r) = 0 , r → 0 (7.27)

and, accordingly, assumes the general form

r vκ,`(r) ∼ Ar`+1 + B r−` (7.28)

or
vκ,`(r) ∼ Ar` + B r−`−1 (7.29)

Only the first term is admissable. This follows for ` > 0 from consideration of the integral which
measures the total particle density. The radial part of this integral is∫ ∞

0
dr r2 v2

κ,`(r) (7.30)

and, hence, the term Br−(`+1) would contribute

|B|2
∫ ε

0
dr r−2` (7.31)

which, for ` > 0 is not integrable. For ` = 0 the contribution of Br−(`+1) to the complete wave
function is, using the expression (5.182) for Y00,

ψE,`,m(~r) ∼ B√
4π|~r|

. (7.32)

The total kinetic energy resulting from this contribution is, according to a well-known result in
Classical Electromagnetism3,

~
2

2m
∇2ψE,`,m(~r) ∼

√
4π B δ(x1)δ(x2)δ(x3) . (7.33)

2A detailed discussion of the proper boundary conditions, in particular, at r = 0 is found in the excellent
monographs Quantum Mechanics I, II by A. Galindo and P. Pascual (Springer, Berlin, 1990)

3We refer here to the fact that the function Φ(~r) = 1/r is the solution of the Poisson equation ∇2 =
−4πδ(x)δ(y)δ(z); see, for example, ”Classical Electrodynamics, 2nd Ed.” by J.D. Jackson (John Wiley, New York,
1975).
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Since there is no term in the stationary Schrödinger equation which could compensate this δ-
function contribution we need to postulate that the second term in (7.29) is not permissible. One
can conclude that the solution of the radial Schrödinger equation must obey

r vκ,`(r) → 0 for r → 0 . (7.34)

The boundary conditions for r → ∞ are governed by two terms in the radial Schrödinger equation,
namely, [

∂2
r − κ2

`

]
r vκ,`(r) = 0 for r → ∞ . (7.35)

We have assumed here limr→∞ V (r) = 0 which is the convention for potentials. The solution of
this equation is

r vκ,`(r) ∼ Ae−κr + B e+κr for r → ∞ . (7.36)

For bound states κ is real and, hence, the second contribution is not permissible. We conclude,
therefore, that the asymptotic boundary condition for the solution of the radial Schrödinger equa-
tion (7.20) is

r vκ,`(r) ∼ e−κr for r → ∞ . (7.37)

Degeneracy of Energy Eigenvalues

We have noted above that the differential operator appearing on the l.h.s. of the in radial
Schrödinger equation (7.24) is independent of the angular momentum quantum number m. This
implies that the energy eigenvalues associated with stationary bound states of radially symmetric
potentials with identical `, but different m quantum number, assume the same values. This be-
haviour is associated with the fact that any rotational transformation of a stationary state leaves
the energy of a stationary state unaltered. This property holds since (7.8) implies

[Ĥ, exp(− i
~

ϑ · ~J ) ] = 0 . (7.38)

Applying the rotational transformation exp(− i
~
ϑ · ~J ) to (7.10) yields then

Ĥ exp(− i
~

ϑ · ~J )ψE,`,m(~r) = E exp(− i
~

ϑ · ~J )ψE,`,m(~r) , (7.39)

i.e., any rotational transformation produces energetically degenerate stationary states. One might
also apply the operators J± = J1 ± iJ2 to (7.10) and obtain for −` < m < `

Ĥ J± ψE,`,m(~r) = E J± ψE,`,m(~r) , (7.40)

which, together with the identities (5.172, 5.173), yields

Ĥ ψE,`,m±1(~r) = E ψE,`,m±1(~r) (7.41)

where E is the same eigenvalue as in (7.40). One expect, therefore, that the stationary states for
spherically symmetric potentials form groups of 2` + 1 energetically degenerate states, so-called
multiplets where ` = 0, 1, 2, . . .. Following a convention from atomic spectroscopy, one refers to
the multiplets with ` = 0, 1, 2, 3 as the s, p, d, f -multipltes, respectively.
In the remainder of this section we will solve the radial Schrödinger equation (7.20) for the potentials
stated in (7.1–7.4). We seek to describe bound states for the particles, i.e., states with E < 0.
States with E > 0, which play a key role in scattering processes, will be described in Section ??.
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7.2 Free Particle Described in Spherical Coordinates

We consider first the case of a particle moving in a force-free space described by the potential

V (r) ≡ 0 . (7.42)

The stationary Schrödinger equation for this potential reads[
− ~

2

2m
∇2 − E

]
ψE(~r) = 0 . (7.43)

Stationary States Expressed in Cartesian Coordinates The general solution of (7.43), as
expressed in (3.74–3.77), is

ψ(~k|~r) = N ei
~k·~r (7.44)

where

E =
~

2k2

2m
≥ 0 . (7.45)

The possible energies can assume continuous values. N in (7.44) is some suitably chosen normal-
ization constant; the reader should be aware that (7.44) does not represent a localized particle and
that the function is not square integrable. One chooses N such that the orthonormality property∫

Ω∞

d3r ψ∗(~k ′|~r)ψ(~k|~r) = δ(~k ′ − ~k) (7.46)

holds. The proper normalization constant is N = (2π)−3/2.
In case of a force-free motion momentum is conserved. In fact, the Hamiltonian in the present case

Ho = − ~
2

2m
∇2 (7.47)

commutes with the momentum operator ~̂p = (~/i)∇ and, accordingly, the eigenfunctions of (7.45)
can be chosen as simultaneous eigenfunction of the momentum operator. In fact, it holds

~̂pN ei
~k·~r = ~~k N ei

~k·~r . (7.48)

as one can derive using in (7.48) Cartesian coordinates, i.e.,

∇ =

 ∂1

∂2

∂3

 , ~k · ~r = k1x1 + k2x2 + k3x3 . (7.49)

Stationary States Expressed in Spherical Coordinates Rather than specifying energy
through k = |~k| and the direction of the momentum through k̂ = ~k/|~k| one can exploit the
fact that the angular momentum operators J 2 and J3 given in (5.97) and in (5.92), respectively,
commute with Ho as defined in (7.47). This latter property follows from (5.100) and (5.61). Ac-
cordingly, one can choose stationary states of the free particle which are eigenfunctions of (7.47) as
well as eigenfunctions of J 2 and J3 described in Sect. 5.4.
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The corresponding stationary states, i.e., solutions of (7.43) are given by wave functions of the form

ψ(k, `,m|~r) = vk,`(r)Y`m(θ, φ) (7.50)

where the radial wave functions obeys [c.f. (7.20)][
− ~

2

2m
1
r
∂2
r r +

~
2`(`+ 1)
2mr2

− E`,m

]
vk,`(r) = 0 . (7.51)

Using (7.45) and multiplying (7.20) by −2mr/~2 yields the radial Schrödinger equation[
∂2
r −

`(`+ 1)
r2

+ k2

]
r vk,`(r) = 0 . (7.52)

We want to determine now the solutions vk,`(r) of this equation.
We first notice that the solution of (7.52) is actually only a function of kr, i.e., one can write
vk,`(r) = j`(kr). In fact, one can readily show, introducing the new variable z = kr, that (7.52)
is equivalent to [

d2

dz2
− `(`+ 1)

z2
+ 1

]
z j`(z) = 0 . (7.53)

According to the discussion in Sect. 7.1 the regular solution of this equation, at small r, behaves
like

j`(z) ∼ z` for r → 0 . (7.54)

There exists also a so-called irregular solution of (7.53), denoted by n`(z) which behaves like

n`(z) ∼ z−`−1 for r → 0 . (7.55)

We will discuss further below also this solution, which near r = 0 is inadmissable in a quantum
mechanical wave function, but admissable for r 6= 0.
For large z values the solution of (7.53) is governed by[

d2

dz2
+ 1

]
z j`(z) = 0 for r → ∞ (7.56)

the general solution of which is

j`(z) ∼
1
z

sin(z + α) for r → ∞ (7.57)

for some phase α.
We note in passing that the functions g`(z) = j`(z), n`(z) obey the differential equation equivalent
to (7.53) [

d2

dz2
+

2
z

d

dz
− `(`+ 1)

z2
+ 1

]
g`(z) = 0 . (7.58)

Noting that sin(z + α) can be written as an infinite power series in z we attempt to express the
solution of (7.53) for arbitary z values in the form

j`(z) = z` f(z2) , f(z2) =
∞∑
n=0

an z
2n . (7.59)
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The unknown expansion coefficients can be obtained by inserting this series into (7.53). We have
introduced here the assumption that the factor f in (7.59) depends on z2. This follows from

d2

dz2
z`+1f(z) = z`+1 d2

dz2
f(z) + 2(`+ 1)z`

d

dz
f + `(`+ 1)z`−1f (7.60)

from which we can conclude(
d2

dz2
+ (`+ 1)

2
z

d

dz
+ 1

)
f(z) = 0 . (7.61)

Introducing the new variable v = z2 yields, using

1
z

d

dz
= 2

d

dv
,

d2

dz2
= 4v

d2

dv2
+ 2

d

dv
, (7.62)

the differential equation (
d2

dv2
+

2`+ 3
2v

d

dv
+

1
4v

)
f(v) = 0 (7.63)

which is consistent with the functional form in (7.59). The coefficients in the series expansion of
f(z2) can be obtained from inserting

∑∞
n=0 an z

2n into (7.63) (v = z2)∑
n

(
an n (n− 1) vn−2 +

1
2

(2`+ 3) an vn−2 +
1
4
an v

n−1

)
= 0 (7.64)

Changing the summation indices for the first two terms in the sum yields∑
n

(
an+1 n (n− 1) +

1
2

(2`+ 3) an +
1
4
an

)
vn−1 = 0 . (7.65)

In this expression each term ∼ vn−1 must vanish individually and, hence,

an+1 = −1
2

1
(n+ 1) (2n + 2` + 3)

an (7.66)

One can readily derive

a1 = −1
2

1
1! (2`+ 3)

a0 , a2 =
1
4

1
2! (2`+ 3)(2`+ 5)

a0 . (7.67)

The common factor a0 is arbitrary. Choosing

a0 =
1

1 · 3 · 5 · (2`+ 1)
. (7.68)

the ensuing functions (` = 0, 1, 2, . . .)

j`(z) =
z`

1 · 3 · 5 · · · (2`+ 1)

[
1 −

1
2z

2

1!(2`+ 3)
+

(1
2z

2)2

2!(2`+ 3)(2`+ 5)
− + · · ·

]
(7.69)

are called regular spherical Bessel functions.
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One can derive similarly for the solution (7.55) the series expansion (` = 0, 1, 2, . . .)

n`(z) = − 1 · 3 · 5 · · · (2`− 1)
z`+1

[
1 −

1
2z

2

1!(1− 2`)
+

(1
2z

2)2

2!(1− 2`)(3− 2`)
− + · · ·

]
. (7.70)

These functions are called irregular spherical Bessel functions.

Exercise 7.2.1: Demonstrate that (7.70) is a solution of (7.52) obeying (7.55).

The Bessel functions (7.69, 7.70) can be expressed through an infinite sum which we want to specify
now. For this purpose we write (7.69)

j`(z) =
(z

2

)` 1
1
2 ·

3
2 ·

5
2 · · · (`+ 1

2)[
1 +

(
(
iz
2

)2
1!(`+ 3

2)
+

((
(
iz
2

)4
2!(`+ 3

2)(2`+ 5
2)

+ · · ·

]
(7.71)

The factorial-type products
1
2
· 3

2
· · ·
(
`+

1
2

)
(7.72)

can be expressed through the so-called Gamma-function4 defined through

Γ(z) =
∫ ∞

0
dt tz−1 e−t . (7.73)

This function has the following properties5

Γ(z + 1) = z Γ(z) (7.74)
Γ(n+ 1) = n! for n ∈ N (7.75)

Γ( 1
2
) =

√
π (7.76)

Γ(z) Γ(1− z) =
π

sinπz
. (7.77)

from which one can deduce readily

Γ(`+ 1
2) =

√
π · 1

2
· 3

2
· · ·
(
`+

1
2

)
. (7.78)

One can write then

j`(z) =
√
π

2

(z
2

)` ∞∑
n=0

(
iz
2

)2n
n! Γ(n+ 1 + `+ 1

2)
. (7.79)

4For further details see Handbook of Mathematical Functions by M. Abramowitz and I.A. Stegun (Dover Publica-
tions, New York)

5The proof of (7.74–7.76) is elementary; a derivation of (7.77) can be found in Special Functions of Mathematical
Physics by A.F. Nikiforov and V.B. Uvarov, Birkhäuser, Boston, 1988)
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Similarly, one can express n`(z) as given in (7.70)

n`(z) = − 2`√
πz`+1

Γ(`+
1
2

)

[
1 +

(
iz
2

)2
1!(1

2 − `)
+

(
iz
2

)4
2!(1

2 − `)(
3
2 − `)

+ · · ·

]
. (7.80)

Using (7.77) for z = `+ 1
2 , i.e.,

Γ(`+ 1
2) = (−1)`

π

Γ(1
2 − `)

(7.81)

yields

n`(z) = (−1)`+1√π 2`

z`+1

[
1

Γ(1
2 − `)

+

(
iz
2

)2
1! Γ(1

2 − `)(
1
2 − `)

+

(
iz
2

)4
2! Γ(1

2 − `)(
1
2 − `)(

3
2 − `)

+ · · ·

]
. (7.82)

or

n`(z) = (−1)`+1

√
π

2

(
2
z

)`+1 ∞∑
n=0

(
iz
2

)2n
n! Γ(n+ 1− `− 1

2)
. (7.83)

Linear independence of the Regular and Irregular spherical Bessel Functions

We want to demonstrate now that the solutions (7.69) and (7.69) of (7.53) are linearly independent.
For this purpose we need to demonstrate that the Wronskian

W (j`, n`) = j`(z)
d

dz
n` −

d

dz
j`(z)n` (7.84)

does not vanish. Let f1, f2 be solutions of (7.53), or equivalently, of (7.58). Using

d2

dz2
f1,2 = − 2

z

d

dz
f1,2 +

`(`+ 1)
z2

f1,2 − f1,2 (7.85)

one can demonstrate the identity

d

dz
W (f1, f2) = −2

z
W (f1, f2) (7.86)

This equation is equivalent to
d

dz
lnW =

d

dz
ln

1
z2

(7.87)

the solution of which is
lnW =

c

z2
(7.88)

for some constant c. For the case of f1 = j` and f2 = n` this constant can be determined using
the expansions (7.69, 7.70) keeping only the leading terms. One obtains c = 1 and, hence,

W (j`, n`) =
1
z2

. (7.89)

The Wronskian (7.89) doesn not vanish and, therefore, the regular and irregular Bessel functions
are linearly independent.
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Relationship to Bessel functions

The differential equation (7.58) for the spherical Bessel functions g`(z) can be simplified by seeking
the corresponding equation for G`+ 1

2
(z) defined through

g`(z) =
1√
z
G`+ 1

2
(z). (7.90)

Using

d

dz
g`(z) =

1√
z

d

dz
G`+ 1

2
(z) − 1

2z
√
z
G`+ 1

2
(z) (7.91)

d2

dz2
g`(z) =

1√
z

d2

dz2
G`+ 1

2
(z) − 1

z
√
z

d

dz
G`+ 1

2
(z) +

3
4z2
√
z
G`+ 1

2
(z)

(7.92)

one is lead to Bessel’s equation[
d2

dz2
+

1
z

d

dz
− ν2

z2
+ 1

]
Gν(z) = 0 (7.93)

where ν = ` + 1
2 . The regular solution of this equation is called the regular Bessel function. Its

power expansion, using the conventional normalization, is given by [c.f. (7.79)]

Jν(z) =
(z

2

)ν ∞∑
n=0

(iz/2)2n

n! Γ(ν + n+ 1)
. (7.94)

One can show that J−ν(z), defined through (7.94), is also a solution of (7.93). This follows from
the fact that ν appears in (7.93) only in the form ν2. In the present case we consider solely the
case ν = ` + 1

2 . In this case J−ν(z) is linearly independent of Jν(z) since the Wronskian

W (J`+ 1
2
, J−`− 1

2
) = (−1)`

2
πz

(7.95)

is non-vanishing. One can relate J`+ 1
2

and J−`− 1
2

to the regular and irregular spherical Bessel
functions. Comparision with (7.79) and (7.83) shows

j`(z) =
√

π

2z
J`+ 1

2
(z) (7.96)

n`(z) = (−1)`+1

√
π

2z
J−`− 1

2
(z) . (7.97)

These relationships are employed in case that since numerical algorithms provide the Bessel func-
tions Jν(z), but not directly the spherical Bessel functions j`(z) and n`(z).

Exercise 7.2.2: Demonstrate that expansion (7.94) is indeed a regular solution of (7.93). Adopt
the procedures employed for the function j`(z).
Exercise 7.2.3: Prove the identity (7.95).
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Generating Function of Spherical Bessel Functions

The stationary Schrödinger equation of free particles (7.43) has two solutions, namely, one given
by (7.44, 7.45) and one given by (7.50). One can expand the former solution in terms of solutions
(7.50). For example, in case of a free particle moving along the x3-axis one expands

eik3x3 =
∑
`,m

a`m j`(kr)Y`m(θ, φ) . (7.98)

The l.h.s. can be written exp(ikr cos θ), i.e., the wave function does not depend on φ. In this case
the expansion on the r.h.s. of (7.98) does not involve any non-vanishing m-values since Y`m(θ, φ)
for non-vanishing m has a non-trivial φ-dependence as described by (5.106). Since the spherical
harmonics Y`0(θ, φ), according to (5.178) are given in terms of Legendre polynomials P`(cos θ) one
can replace the expansion in (7.98) by

eik3x3 =
∞∑
`=0

b` j`(kr)P`(cos θ) . (7.99)

We want to determine the expansion coefficients b`.
The orthogonality properties (5.179) yield from (7.99)∫ +1

−1
d cos θ eikr cos θ P`(cos θ) = b` j`(kr)

2
2` + 1

. (7.100)

Defining x = cos θ, z = kr, and using the Rodrigues formula for Legendre polynomials (5.150)
one obtains ∫ +1

−1
dx eizx P`(x) =

∫ +1

−1
dx eizx

1
2``!

∂`

∂x`
(x2 − 1)` . (7.101)

Integration by parts yields∫ +1

−1
dx eizx P`(x) =

1
2``!

[
eizx

d`−1

dx`−1
(x2 − 1)`

]+1

−1

(7.102)

− 1
2``!

∫ +1

−1
dx

(
d

dx
eizx

)
d`−1

dx`−1
(x2 − 1)` .

One can show
d`−1

dx`−1
(x2 − 1)` ∼ (x2 − 1) × polynomial in x (7.103)

and, hence, the surface term ∼ [· · ·]+1
−1 vanishes. This holds for ` consecutive integrations by part

and one can conclude∫ +1

−1
dx eizx P`(x) =

(−1)`

2``!

∫ +1

−1
dx (x2 − 1)`

d`

dx`
eizx

=
(iz)`

2``!

∫ +1

−1
dx (1 − x2)`eizx . (7.104)



7.2: Free Particle 195

Comparision with (7.100) gives

b` j`(kr)
2

2` + 1
=

(iz)`

2``!

∫ +1

−1
dx (1 − x2)`eizx . (7.105)

This expression allows one to determine the expansion coefficients b`. The identity (7.105) must
hold for all powers of z, in particular, for the leading power x` [c.f. (7.69)]

b`
z`

1 · 3 · 5 · · · (2`+ 1)
2

2` + 1
=

(iz)`

2``!

∫ +1

−1
dx (1 − x2)` . (7.106)

Employing (5.117) one can write the r.h.s.

z` i`
1

2``!
(2`)!

[1 · 3 · 5 · · · (2`− 1)]2
2

2`+ 1
(7.107)

or
i` (2`+ 1) z`

1
1 · 3 · 5 · · · (2`+ 1)

2
2`+ 1

(2`)!
1 · 2 · 3 · 4 · · · (2`− 1) · 2`

(7.108)

where the last factor is equal to unity. Comparision with the l.h.s. of (7.106) yields finally

b` = i` (2`+ 1) (7.109)

or, after insertion into (7.99),

eikr cos θ =
∞∑
`=0

i` (2`+ 1) j`(kr) P`(cos θ) . (7.110)

One refers to the l.h.s. as the generating function of the spherical Bessel functions.

Integral Representation of Bessel Functions

Combining (7.105) and (7.109) results in the integral representation of j`(z)

j`(z) =
(z)`

2`+1`!

∫ +1

−1
dx (1 − x2)` eizx . (7.111)

Employing (7.96) one can express this, using ν = `+ 1
2 ,

Jν(z) =
1

√
πΓ(ν + 1

2)

(z
2

)ν ∫ +1

−1
dx (1 − x2)ν−

1
2 eizx . (7.112)

We want to consider the expression

Gν(z) = aνz
νfν(z) (7.113)

where we define
fν(z) =

∫
C
dt (1 − t2)ν−

1
2 eizt . (7.114)
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Here C is an integration path in the complex plane with endpoints t1, t2. Gν(z), for properly
chosen endpoints t1, t2 of the integration paths C, obeys Bessel’s equation (7.93) for arbitrary ν.
To prove this we note

f ′ν(z) = i

∫
C
dt (1 − t2)ν−

1
2 t eizt . (7.115)

Integration by part yields

f ′ν(z) = − i

2ν + 1

[
(1− t2)ν+ 1

2 eizt
]t2
t1
− z

2ν + 1

∫
C
dt (1 − t2)ν+ 1

2 eizt . (7.116)

In case that the endpoints of the integration path C satisfy[
(1− t2)ν+ 1

2 eizt
]t2
t1

= 0 (7.117)

one can write (7.116)

f ′ν(z) = − z

2ν + 1

∫
C
dt (1 − t2)ν−

1
2 eizt +

∫
C
dt (1 − t2)ν−

1
2 t2 eizt (7.118)

or
f ′ν(z) = − z

2ν + 1
[
fν(z) + f ′′ν (z)

]
. (7.119)

From this we can conclude

f ′′ν (z) +
2ν + 1
z

f ′ν(z) + fν(z) = 0 . (7.120)

We note that equations (7.114, 7.120) imply also the property

(2ν + 1) f ′ν(z) + z fν+1(z) = 0 . (7.121)

Exercise 7.2.4: Prove (7.121).

We can now demonstrate that Gν(z) defined in (7.113) obeys the Bessel equation (7.93) as long as
the integration path in (7.113) satisfies (7.117). In fact, it holds for the derivatives of Gν(z)

G′ν(z) =
ν

z
aνz

νfν(z) + aνz
νf ′ν(z) (7.122)

G′′(z) =
ν(ν − 1)

z2
aνz

νfν(z) +
2ν
z
aνz

νf ′ν(z) + aνz
νf ′′ν (z)

(7.123)

Insertion of these identities into Bessel’s equation leads to a differential equation for fν(z) which is
identical to (7.120) such that we can conclude that Gν(z) for proper integration paths is a solution
of (7.93).
We consider now the functions

u(j)(z) =
1

√
πΓ(ν + 1

2)

(z
2

)ν ∫
Cj

dx (1 − x2)ν−
1
2 eizx , j = 1, 2, 3, 4. (7.124)
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for the four integration paths in the complex plane parametrized as follows through a real path
length s

C1(t1 = −1 → t2 = +1) : t = s −1 ≤ s ≤ 1
(7.125)

C2(t1 = 1 → t2 = 1 + i∞) : t = 1 + is 0 ≤ s < ∞
(7.126)

C3(t1 = 1 + i∞ → t2 = −1 + i∞) : t = 1 + is −1 ≤ s ≤ 1
(7.127)

C4(t1 = −1 + i∞ → t1 = −1) : t = −1 + is 0 ≤ s < ∞
(7.128)

C = C1 ∪C2 ∪C3 ∪C4 is a closed path. Since the integrand in (7.124) is analytical in the part of
the complex plane surrounded by the path C we conclude

4∑
j=1

u(j)(z) ≡ 0 (7.129)

The integrand in (7.124) vanishes along the whole path C3 and, therefore, u(3)(z) ≡ 0. Comparision
with (7.112) shows u(1)(z) = Jν(z). Accordingly, one can state

Jν(z) = −
[
u(2)(z) + u(4)(z)

]
. (7.130)

We note that the endpoints of the integration paths C2 and C4, for Rez > 0 and ν ∈ R obey
(7.117) and, hence, u(2)(z) and u(2)(z) are both solutions of Bessel’s equation (7.93).
Following convention, we introduce the so-called Hankel functions

H(1)
ν (z) = −2u(2)(z) , H(2)

ν (z) = −2u(4)(z) . (7.131)

According to (7.130) holds

Jν(z) =
1
2

[
H(1)
ν (z) + H(2)

ν (z)
]
. (7.132)

For H(1)
ν (z) one derives, using t = 1 + is, dt = i ds, and

(1− t2)ν−
1
2 eizt = [(1− t)(1 + t)]ν−

1
2 eizt

= [−is(2 + is)]ν−
1
2 eize−zs

= ei(z−πν/2+π/4)2ν−
1
2 [s(1 + is/2)]ν−

1
2 e−zs , (7.133)

the integral expression

H(1)
ν (z) = ei(z−πν/2−π/4)

√
2 zν

√
π Γ(ν + 1

2)

∫ ∞
0

ds [s(1 + is/2)]ν−
1
2 e−zs . (7.134)

Similarly, one can derive

H(2)
ν (z) = e−i(z−πν/2−π/4)

√
2 zν

√
π Γ(ν + 1

2)

∫ ∞
0

ds [s(1− is/2)]ν−
1
2 e−zs . (7.135)

(7.134) and (7.135) are known as the Poisson integrals of the Bessel functions.
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Asymptotic Behaviour of Bessel Functions

We want to obtain now expansions of the Hankel functions H(1,2)

`+ 1
2

(z) in terms of z−1 such that

the expansions converge fast asymptotically, i.e., converge fast for |z| → ∞. We employ for this
purpose the Poisson integrals (7.134) and (7.135) which read for ν = `+ 1

2

H
( 1

2
)

`+ 1
2

(z) = e±i[z− (`+1)π
2

]

√
2z
π

z`

`!
f

( 1
2

)

` (z) (7.136)

where
f

( 1
2

)

` (z) =
∫ ∞

0
ds [s(s ± is/2)]` e−zs . (7.137)

The binomial formula yields

f
( 1

2
)

` (z) =
∑̀
r=0

(
`

r

)(
± i

2

)r ∫ ∞
0

ds s`+r e−zs . (7.138)

The formula for the Laplace transform of sn leads to

f
( 1

2
)

` (z) =
∑̀
r=0

(`+ r)! `!
r!(`− r)!

(
± i

2

)r (1
z

)`+r+1

(7.139)

and, hence, we obtain

H
( 1

2
)

`+ 1
2

(z) =

√
2
πz

e±i[z− (`+1)π
2

]
∑̀
r=0

(`+ r)!
r!(`− r)!

(
± i

2z

)r
(7.140)

Bessel Functions with Negative Index

Since ν enters the Bessel equation (7.93) only as ν2, H(1)
ν (z) as well as H(1)

−ν (z) are solutions of this
equation. As a second order differential equation the Bessel equation has two linearly independent
solutions. For such solutions g(z), h(z) to be linearly independent, the Wronskian W (g, h) must
be a non-vanishing function.
For the Wronskian connected with the Bessel equation (7.93) holds the identity

W ′ = −1
z
W (7.141)

the derivation of which follows the derivation on page 192 for the Wronskian of the radial
Schrödinger equation. The general solution of (7.141) is

W (z) = − c
z
. (7.142)

In case of g(z) = H
(1)

`+ 1
2

(z) and h(z) = H
(2)

`+ 1
2

(z) one can identify the constant c by using the

leading terms in the expansions (7.140). One obtains

W (z) = − 4i
πz

, (7.143)
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i.e., H(1,2)

`+ 1
2

(z) are, in fact, linearly independent.

One can then expand
H

(1)
−ν (z) = AH

(1)

`+ 1
2

(z) + BH
(2)

`+ 1
2

(z) . (7.144)

The expansion coefficients A, B can be obtained from the asymptotic expansion (7.140). For
|z| → ∞ the leading terms yield

1√
z
ei(z+

`π
2

) =
1√
z
A ei(z−

`π
2
−π

2
) +

1√
z
B e−i(z−

`π
2
−π

2
) |z| → ∞ . (7.145)

This equation can hold only for B = 0 and A = exp[i(`+ 1
2)π]. We conclude

H
(1)

−(`+ 1
2

)
(z) = i (−1)`H(1)

`+ 1
2

(z) . (7.146)

Simarly, one can show
H

(2)

−(`+ 1
2

)
(z) = −i (−1)`H(2)

`+ 1
2

(z) . (7.147)

Spherical Hankel Functions

In analogy to equations (7.90, 7.97) one defines the spherical Hankel functions

h
(1,2)
` (z) =

√
π

2z
H

(1,2)

`+ 1
2

(z) . (7.148)

Following the arguments provided above (see page 193) the functions h(1,2)
` (z) are solutions of the

radial Schrödinger equation of free particles (7.53). According to (7.96, 7.132, 7.148) holds for the
regular spherical Bessel function

j`(z) =
1
2

[h(1)
` (z) + h

(2)
` (z) ] . (7.149)

We want to establish also the relationship between h
(1,2)
` (z) and the irregular spherical Bessel

function n`(z) defined in (7.97). From (7.97, 7.132) follows

n`(z) =
1
2

√
π

2z
(−1)`+1

[
H

(1)

−(`+ 1
2

)
(z) + H

(2)

−(`+ 1
2

)
(z)
]
. (7.150)

According to (7.146, 7.147) this can be written

n`(z) =
1
2i

[
h

(1)
` (z) − h

(2)
` (z)

]
. (7.151)

Equations (7.149, 7.151) are equivalent to

h
(1)
` (z) = j`(z) + i n`(z) (7.152)

h
(2)
` (z) = j`(z) − i n`(z) . (7.153)
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Asymptotic Behaviour of Spherical Bessel Functions

We want to derive now the asymptotic behaviour of the spherical Bessel functions h(1,2)
` (z), j`(z)

and n`(z). From (7.140) and (7.148) one obtains readily

h
( 1

2
)

` (z) =
(∓i)`+1

z
e±iz

∑̀
r=0

(`+ r)!
r!(`− r)!

(
± i

2z

)r
(7.154)

The leading term in this expansion, at large |z|, is

h
( 1

2
)

` (z) =
(∓i)`+1

z
e±iz . (7.155)

To determine j`(z) and n`(z) we note that for z ∈ R the spherical Hankel functions h(1)
` (z) and

h
(2)
` (z), as given by (7.140, 7.148), are complex conjugates. Hence, it follows

z ∈ R : j`(z) = Re[h(1)
` (z)] , nell(z) = Im[h(1)

` (z)] . (7.156)

Using

p`(z) = Re
∑̀
r=0

(`+ r)!
r!(`− r)!

(
i

2z

)r
=

[`/2]∑
r=0

(`+ 2r)!
(2r)!(`− 2r)!

(
−1
4z2

)r
(7.157)

i

2z
q`(z) = i Im

∑̀
r=0

(`+ r)!
r!(`− r)!

(
i

2z

)r
=

{
i

2z

∑[`−1/2]
r=0

(`+2r+1)!
(2r+1)!(`−2r−1)!

( −1
4z2

)r
` ≥ 1

0 ` = 0
(7.158)

one can derive then from (7.154) the identities

j`(z) =
cos[z − (`+ 1)π2 ]

z
p`(z) −

sin[z − (`+ 1)π2 ]
2z2

q`(z) (7.159)

n`(z) =
cos[z − (`+ 1)π2 ]

2z2
q`(z) +

cos(z − `π/2)
z

p`(z) . (7.160)

Employing cos[z − (`+ 1)π2 ] . = sin(z − `π/2) and sin[z − (`+ 1)π2 ] . = −cos(z − `π/2) results in
the alternative expressions

j`(z) =
sin(z − `π/2)

z
p`(z) +

cos(z − `π/2)
2z2

q`(z) (7.161)

n`(z) =
sin(z − `π/2)

2z2
q`(z) −

cos(z − `π/2)
z

p`(z) . (7.162)

The leading terms in these expansions, at large |z|, are

j`(z) =
sin(z − `π/2)

z
(7.163)

n`(z) = − cos(z − `π/2)
z

. (7.164)
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Expressions for the Spherical bessel Functions j`(z) and n`(z)

The identities (7.161, 7.162) allow one to provide explicit expressions for j`(z) and n`(z). One
obtains for ` = 0, 1, 2

j0(z) =
sin z
z

(7.165)

n0(z) = − cos z
z

(7.166)

j1(z) =
sin z
z2

− cos z
z

(7.167)

n1(z) = − cos z
z2

− sin z
z

(7.168)

j2(z) =
(

3
z3
− 1
z

)
sin z − 3

z2
cos z (7.169)

n2(z) =
(
− 3
z3

+
1
z

)
cos z − 3

z2
sin z (7.170)

Recursion Formulas of Spherical Bessel Functions

The spherical Bessel functions obey the recursion relationships

g`+1(z) =
`

z
g`(z) − g′`(z) (7.171)

g`+1(z) =
2`+ 1
z

g`(z) − g`−1(z) (7.172)

where g`(z) is either of the functions h(1,2)
` (z), j`(z) and n`(z). One can combine (7.171, 7.172) to

obtain the recursion relationship(
g`+1(z)
g′`+1(z)

)
= A`(z)

(
g`(z)
g′`(z)

)
(7.173)

A`(z) =

 `
z −1

1 − `(`+1)
z2

`+2
z

 (7.174)

We want to prove these relationships. For this purpose we need to demonstrate only that the
relationships hold for g`(z) = h

(1,2)
` (z). From the linearity of the relationships (7.171–7.174) and

from (7.149, 7.151) follows then that the relatiosnhips hold also for g`(z) = j`(z) and g`(z) = n`(z).
To demonstrate that (7.171) holds for g`(z) = h

(1,2)
` (z) we employ (7.124, 7.131, 7.148) and express

g`(z) = h
(1,2)
` (z) = −2

√
π

2z
1

√
πΓ(ν + 1

2)

(z
2

)ν ∫
C2,4

dx (1 − x2)ν−
1
2 eizx . (7.175)

Using Γ(`+ 1) = `!, defining a = −1 and employing fν(z) as defined in (7.114) we can write

g`(z) = a
z`

2``!
f`+ 1

2
(z) . (7.176)
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The derivative of this expression is

g′`(z) =
`

z
g`(z) + a

z`

2``!
f ′
`+ 1

2

(z) . (7.177)

Employing (7.121), i.e.,
f ′
`+ 1

2

(z) = − z

2`+ 2
f`+ 3

2
(z) , (7.178)

yields, together with (7.176)

g′`(z) =
`

z
g`(z) − g`+1(z) (7.179)

from which follows (7.171).
In order to prove (7.172) we differentiate (7.179)

g′′` (z) = − `

z2
g`(z) +

`

z
g′`(z) − g′`+1(z) . (7.180)

Since g`(z) is a solution of the radial Schrödinger equation (7.58) it holds

g′′` (z) = −2
z
g′`(z) +

`(`+ 1)
z2

g`(z) − g`(z) . (7.181)

Using this identity to replace the second derivative in (7.180) yields

g′`+1(z) = g`(z) −
`(`+ 2)
z2

g`(z) +
`+ 2
z

g′`(z) . (7.182)

Replacing all first derivatives employing (7.179) leads to (7.172).
To prove (7.173, 7.174) we start from (7.171). The first component of (7.173), in fact, is equivalent
to (7.171). The second component of (7.173) is equivalent to (7.182).

Exercise 7.2.5: Provide a detailed derivation of (7.172).
Exercise 7.2.6: Employ the recursion relationship (7.173, 7.174) to determine (a) j1(z), j2(z)
from j0(z), j′0(z) using (7.165), and (b) n1(z), n2(z) from n0(z), n′0(z) using (7.166).



Chapter 8

Interaction of Charged Particles with
Electromagnetic Radiation

In this Section we want to describe how a quantum mechanical particle, e.g., an electron in a
hydrogen atom, is affected by electromagnetic fields. For this purpose we need to establish a suitable
description of this field, then state the Hamiltonian which describes the resulting interaction.

It turns out that the proper description of the electromagnetic field requires a little bit of effort.
We will describe the electromagnetic field classically. Such description should be sufficient for high
quantum numbers, i.e., for situations in which the photons absorbed or emitted by the quantum
system do not alter the energy content of the field. We will later introduce a simple rule which
allows one to account to some limited degree for the quantum nature of the electromagnetic field,
i.e., for the existence of discrete photons.

8.1 Description of the Classical Electromagnetic Field / Separa-
tion of Longitudinal and Transverse Components

The aim of the following derivation is to provide a description of the electromagnetic field which is
most suitable for deriving later a perturbation expansion which yields the effect of electromagnetic
radiation on a bound charged particle, e.g., on an electron in a hydrogen atom. The problem is that
the latter electron, or other charged particles, are affected by the Coulomb interaction V (~r) which is
part of the forces which produce the bound state, and are affected by the external electromagnetic
field. However, both the Coulomb interaction due to charges contributing to binding the particle,
e.g., the attractive Coulomb force between proton and electron in case of the hydrogen atom,
and the external electromagnetic field are of electromagnetic origin and, hence, must be described
consistently. This is achieved in the following derivation.

The classical electromagnetic field is governed by the Maxwell equations stated already in (1.27–
1.29). We assume that the system considered is in vacuum in which charge and current sources
described by the densities ρ(~r, t) and ~J(~r, t) are present. These sources enter the two inhomogeneous

203
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Maxwell equations1

∇ · ~E(~r, t) = 4π ρ(~r, t) (8.1)
∇× ~B(~r, t) − ∂t ~E(~r, t) = 4π ~J(~r, t) . (8.2)

In addition, the two homogeneous Maxwell equations hold

∇× ~E(~r, t) + ∂t ~B(~r, t) = 0 (8.3)
∇ · ~B(~r, t) = 0 . (8.4)

Lorentz Force A classical particle with charge q moving in the electromagnetic field experiences
the so-called Lorentz force q[ ~E(~r, t) + ~v × ~B(~r, t)] and, accordingly, obeys the equation of motion

d

dt
~p = q

{
~E[~ro(t), t] + ~v × ~B[~ro(t), t]

}
(8.5)

where ~p is the momentum of the particle and ~ro(t) it’s position at time t. The particle, in turn,
contributes to the charge density ρ(~r, t) in (8.1) the term qδ(~r − ~ro(t)) and to the current density
~J(~r, t) in (8.2) the term q~̇roδ(~r−~ro(t)). In the non-relativistic limit holds ~p ≈ m~̇r and (8.5) above
agrees with the equation of motion as given in (1.25).

Scalar and Vector Potential Setting

~B(~r, t) = ∇× ~A(~r, t) (8.6)

for some vector-valued function ~A(~r, t), called the vector potential, solves implicitly (8.4). Equation
(8.3) reads then

∇×
(
~E(~r, t) + ∂t ~A(~r, t)

)
= 0 (8.7)

which is solved by
~E(~r, t) + ∂t ~A(~r, t) = −∇V (~r, t) (8.8)

where V (~r, t) is a scalar function, called the scalar potential. From this follows

~E(~r, t) = −∇V (~r, t) − ∂t ~A(~r, t) . (8.9)

Gauge Transformations We have expressed now the electric and magnetic fields ~E(~r, t) and
~B(~r, t) through the scalar and vector potentials V (~r, t) and ~A(~r, t). As is well known, the rela-
tionship between fields and potentials is not unique. The following substitutions, called gauge
transformations, alter the potentials, but leave the fields unaltered:

~A(~r, t) −→ ~A(~r, t) + ∇χ(~r, t) (8.10)
V (~r, t) −→ V (~r, t) − ∂tχ(~r, t) . (8.11)

1We assume so-called Gaussian units. The reader is referred to the well-known textbook ”Classical Electrody-
namics”, 2nd Edition, by J. D. Jackson (John Wiley & Sons, New York, 1975) for a discussion of these and other
conventional units.
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This gauge freedom will be exploited now to introduce potentials which are most suitable for the
purpose of separating the electromagnetic field into a component arising from the Coulomb potential
connected with the charge distribution ρ(~r, t) and the current due to moving net charges, and a
component due to the remaining currents. In fact, the gauge freedom allows us to impose on the
vector potential ~A(~r, t) the condition

∇ · ~A(~r, t) = 0 . (8.12)

The corresponding gauge is referred to as the Coulomb gauge, a name which is due to the form of
the resulting scalar potential V (~r, t). In fact, this potential results from inserting (8.9) into (8.1)

∇ ·
(
−∇V (~r, t) − ∂t ~A(~r, t)

)
= 4π ρ(~r, t) . (8.13)

Using ∇ · ∂t ~A(~r, t) = ∂t∇ · ~A(~r, t) together with (8.12) yields then the Poisson equation

∇2V (~r, t) = − 4π ρ(~r, t) . (8.14)

In case of the boundary condition

V (~r, t) = 0 for ~r ∈ ∂Ω∞ (8.15)

the solution is given by the Coulomb integral

V (~r, t) =
∫

Ω∞

d3r′
ρ(~r ′, t)
|~r − ~r ′|

(8.16)

This is the potential commonly employed in quantum mechanical calculations for the description
of Coulomb interactions between charged particles.
The vector potential ~A(~r, t) can be obtained employing (8.2), the second inhomogeneous Maxwell
equation. Using the expressions (8.6) and (8.9) for the fields results in

∇×
(
∇× ~A(~r, t)

)
+ ∂t

(
∇V (~r, t) + ∂t ~A(~r, t

)
= 4π ~J(~r, t) . (8.17)

The identity
∇×

(
∇× ~A(~r, t)

)
= ∇

(
∇ · ~A(~r, t)

)
− ∇2 ~A(~r, t) (8.18)

together with condition (8.12) leads us to

∇2 ~A(~r, t) − ∂2
t
~A(~r, t) − ∂t∇V (~r, t) = − 4π ~J(~r, t) . (8.19)

Unfortunately, equation (8.19) couples the vector potential ~A(~r, t) and V (~r, t). One would prefer
a description in which the Coulomb potential (8.16) and the vector potential are uncoupled, such
that the latter describes the electromagnetic radiation, and the former the Coulomb interactions
in the unperturbed bound particle system. Such description can, in fact, be achieved. For this
purpose we examine the offending term ∂t∇V (~r, t) in (8.19) and define

~J`(~r, t) =
1

4π
∂t∇V (~r, t) . (8.20)
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For the curl of ~J` holds
∇× ~J`(~r, t) = 0 . (8.21)

For the divergence of ~J`(~r, t) holds, using ∂t∇ = ∇∂t and the Poisson equation (8.14),

∇ · ~J`(~r, t) =
1

4π
∂t∇2V (~r, t) = − ∂tρ(~r, t) (8.22)

or
∇ · ~J`(~r, t) + ∂tρ(~r, t) = 0 . (8.23)

This continuity equation identifies ~J`(~r, t) as the current due to the time-dependence of the charge
distribution ρ(~r, t). Let ~J(~r, t) be the total current of the system under investigation and let
~Jt = ~J − ~J`. For ~J also holds the continuity equation

∇ · ~J(~r, t) + ∂tρ(~r, t) = 0 (8.24)

and from this follows
∇ · ~Jt(~r, t) = 0 . (8.25)

Because of properties (8.21) and (8.25) one refers to ~J` and ~Jt as the longitudinal and the transverse
currents, respectively.
The definitions of ~J` and ~Jt applied to (8.19) yield

∇2 ~A(~r, t) − ∂2
t
~A(~r, t) = − 4π ~Jt(~r, t) . (8.26)

This equation does not couple anymore scalar and vector potentials. The vector potential deter-
mined through (8.26) and (8.12) and the Coulomb potential (8.16) yield finally the electric and
magnetic fields. V (~r, t) contributes solely an electric field component

~E`(~r, t) = −∇V (~r, t) (8.27)

which is obviously curl-free (∇× ~E`(~r, t) = 0), hence, the name longitudinal electric field. ~A(~r, t)
contributes an electrical field component as well as the total magnetic field

~Et(~r, t) = − ∂t ~A(~r, t) (8.28)
~Bt(~r, t) = ∇× ~A(~r, t) . (8.29)

These fields are obviously divergence -free (e.g., ∇· ~Et(~r, t) = 0), hence, the name transverse fields.

8.2 Planar Electromagnetic Waves

The current density ~Jt describes ring-type currents in the space under consideration; such current
densities exist, for example, in a ring-shaped antenna which exhibits no net charge, yet a current.
Presently, we want to assume that no ring-type currents, i.e., no divergence-free currents, exist in
the space considered. In this case (8.26) turns into the well-known wave equation

∇2 ~A(~r, t) − ∂2
t
~A(~r, t) = 0 (8.30)
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which describes electromagnetic fields in vacuum. A complete set of solutions is given by the
so-called plane waves

~A(~r, t) = Ao û exp
[
i(~k · ~r ∓ ωt)

]
(8.31)

where the dispersion relationship
|~k| = ω (8.32)

holds. Note that in the units chosen the velocity of light is c = 1. Here the “-” sign corresponds
to so-called incoming waves and the “+” sign to outgoing waves2, the constant ~k is referred to as
the wave vector. The Coulomb gauge condition (8.12) yields

û · ~k = 0 . (8.33)

û is a unit vector (|û| = 1) which, obviously, is orthogonal to ~k; accordingly, there exist two linearly
independent orientations for û corresponding to two independent planes of polarization.
We want to characterize now the radiation field connected with the plane wave solutions (8.31).
The corresponding electric and magnetic fields, according to (8.28, 8.29), are

~Et(~r, t) = ±i ω ~A(~r, t) (8.34)
~Bt(~r, t) = i~k × ~A(~r, t) . (8.35)

The vector potential in (8.31) and the resulting fields (8.34, 8.35) are complex-valued quantities.
In applying the potential and fields to physical observables and processes we will only employ the
real parts.
Obviously, ~Et(~r, t) and ~Bt(~r, t) in (8.34, 8.35), at each point ~r and moment t, are orthogonal to
each other and are both orthogonal to the wave vector ~k. The latter vector describes the direction
of propagation of the energy flux connected with the plane wave electromagnetic radiation. This
flux is given by

~S(~r, t) =
1

4π
Re ~Et(~r, t)× Re ~B(~r, t) . (8.36)

Using the identity ~a× (~b× ~c) = ~b (~a · ~c) − ~c (~a ·~b) and (8.31, 8.32, 8.34, 8.35) one obtains

~S(~r, t) = ±ω
2

4π
|Ao|2 k̂ sin2(~k · ~r − ωt ) (8.37)

where k̂ is the unit vector k̂ = ~k/|~k|. Time average over one period 2π/ω yields

〈 ~S(~r, t) 〉 = ±ω
2

8π
|Ao|2 k̂ . (8.38)

In this expression for the energy flux one can interprete k̂ as the propagation velocity (note c = 1)
and, hence,

〈ε〉 =
ω2

8π
|Ao|2 (8.39)

2The definition incoming waves and outgoing waves is rationalized below in the discussion following Eq. (8.158);
see also the comment below Eqs. (8.38, 8.39).
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as the energy density. The sign in (8.38) implies that for incoming waves, defined below
Eqs. (8.31,8.32), the energy of the plane wave is transported in the direction of −~k, whereas in
the case of outgoing waves the energy is transported in the direction of ~k.
A correct description of the electromagnetic field requires that the field be quantized. A ‘poor
man’s’ quantization of the field is possible at this point by expressing the energy density (8.39)
through the density of photons connected with the planar waves (8.31). These photons each carry
the energy ~ω. If we consider a volume V with a number of photons Nω the energy density is
obviously

〈ε〉 =
Nω~ω
V

. (8.40)

It should be pointed out that Nω represents the number of photons for a specific frequency ω, a
specific k̂ and a specific û. Comparision of (8.39) and (8.40) allows one to express then the field
amplitudes

Ao =

√
8πNω~
ωV

. (8.41)

Inserting this into (8.31) allows one finally to state for the planar wave vector potential

~A(~r, t) =

√
8πNω~
ωV

û exp
[
i(~k · ~r − ωt)

]
, |~k| = ω , û · ~k = 0 . (8.42)

8.3 Hamilton Operator

The classical Hamiltonian for a particle of charge q in a scalar and vector potential V (~r) and ~A(~r, t),
respectively, is

H =

[
~p − q ~A(~r, t)

]2

2m
+ qV (~r)

+
1

8π

∫
Ω∞

d3r′E2
` +

1
16π

∫
Ω∞

d3r
(
|Et|2 + |Bt|2

)
. (8.43)

Here the fields are defined through Eqs. (8.27, 8.28, 8.29) together with the potentials (8.16, 8.31).
The integrals express the integration over the energy density of the fields. Note that ~E`(~r, t) is real
and that ~Et(~r, t), ~Bt(~r, t) are complex leading to the difference of a factor 1

2 in the energy densities
of the lontitudinal and transverse components of the fields.
We assume that the energy content of the fields is not altered significantly in the processes described
and, hence, we will neglect the respective terms in the Hamiltonian (8.43). We are left with a
classical Hamiltonian function which has an obvious quantum mechanical analogue

Ĥ =

[
~̂p − q ~A(~r, t)

]2

2m
+ qV (~r) . (8.44)

replacing the classical momentum ~p by the differential operator ~̂p = ~

i∇. The wave function Ψ(~r, t)
of the particle is then described by the Schrödinger equation

i ~ ∂t Ψ(~r, t) = Ĥ Ψ(~r, t) . (8.45)
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Gauge Transformations It is interesting to note that in the quantum mechanical description
of a charged particle the potentials V (~r, t) and ~A(~r, t) enter whereas in the classical equations of
motion

m~̈r = q ~E(~r, t) + q ~̇r × ~B(~r, t) (8.46)

the fields enter. This leads to the question in how far the gauge transformations (8.10, 8.11) affect
the quantum mechanical description. In the classical case such question is mute since the gauge
transformations do not alter the fields and, hence, have no effect on the motion of the particle
described by (8.46).
Applying the gauge transformations (8.10, 8.11) to (8.44, 8.45) leads to the Schrödinger equation

i~∂tΨ(~r, t) =


[
~̂p − q ~A − q((∇χ))

]2

2m
+ qV − q((∂tχ))

 Ψ(~r, t) (8.47)

where ((· · ·)) denotes derivatives in ((∇χ)) and ((∂tχ)) which are confined to the function χ(~r, t)
inside the double brackets. One can show that (8.47) is equivalent to

i~∂te
iqχ(~r,t)/~Ψ(~r, t) =


[
~̂p − q ~A

]2

2m
+ qV

 eiqχ(~r,t)/~Ψ(~r, t) . (8.48)

For this purpose one notes

i~∂t e
iqχ(~r,t)/~Ψ(~r, t) = eiqχ(~r,t)/~ [ i~∂t − q((∂tχ)) ] Ψ(~r, t) (8.49)

~̂p eiqχ(~r,t)/~Ψ(~r, t) = eiqχ(~r,t)/~
[
~̂p + q((∇χ))

]
Ψ(~r, t) . (8.50)

The equivalence of (8.47, 8.48) implies that the gauge transformation (8.10, 8.11) of the potentials
is equivalent to multiplying the wave function Ψ(~r, t) by a local and time-dependent phase factor
eiqχ(~r,t)/~. Obviously, such phase factor does not change the probability density |Ψ(~r, t)|2 and,
hence, does not change expectation values which contain the probability densities3.
An important conceptual step of modern physics has been to turn the derivation given around and
to state that introduction of a local phase factor eiqχ(~r,t)/~ should not affect a system and that,
accordingly, in the Schrödinger equation

i~∂tΨ(~r, t) =


[
~̂p − q ~A

]2

2m
+ qV

 Ψ(~r, t) . (8.51)

the potentials ~A(~r, t) and V (~r, t) are necessary to compensate terms which arise through the phase
factor. It should be noted, however, that this principle applies only to fundamental interactions,
not to phenomenological interactions like the molecular van der Waals interaction.
The idea just stated can be generalized by noting that multiplication by a phase factor eiqχ(~r,t)/~

constitutes a unitary transformation of a scalar quantity, i.e., an element of the group U(1). Ele-
mentary constituents of matter which are governed by other symmetry groups, e.g., by the group

3The effect on other expectation values is not discussed here.
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SU(2), likewise can demand the existence of fields which compensate local transformations de-
scribed by ei~σ·~χ(~r,t) where ~σ is the vector of Pauli matrices, the generators of SU(2). The resulting
fields are called Yang-Mills fields.
The Hamiltonian (8.44) can be expanded

H =
~̂p

2

2m
− q

2m

(
~̂p · ~A + ~A · ~̂p

)
+

q2

2m
A2 + qV (8.52)

For any function f(~r) holds(
~̂p · ~A − ~A · ~̂p

)
f(~r) =

~

i

(
~A · ∇f + f ∇ · ~A − ~A · ∇f

)
=
~

i
f ∇ · ~A . (8.53)

This expression vanishes in the present case since since ∇ ·A = 0 [cf. (8.12)]. Accordingly, holds

~̂p ·Af = ~A · ~̂p f (8.54)

and, consequently,

H =
~̂p

2

2m
− q

m
~̂p · ~A +

q2

2m
A2 + qV . (8.55)

8.4 Electron in a Stationary Homogeneous Magnetic Field

We consider now the motion of an electron with charge q = −e and massm = me in a homogeneous
magnetic field as described by the Schrödinger equation (8.45) with Hamiltonian (8.55). In this
case holds V (~r, t) ≡ 0. The stationary homogeneous magnetic field

~B(~r, t) = ~Bo , (8.56)

due to the gauge freedom, can be described by various vector potentials. The choice of a vector
potential affects the form of the wave functions describing the eigenstates and, thereby, affects the
complexity of the mathematical derivation of the wave functions.

Solution for Landau Gauge A particularly convenient form for the Hamiltonian results for
a choice of a so-called Landau gauge for the vector potential ~A(~r, t). In case of a homogeneous
potential pointing in the x3-direction, e.g., for ~Bo = Bo ê3 in (8.56), the so-called Landau gauge
associates the vector potential

~AL(~r) = Bo x1 ê2 (8.57)

with a homogeneous magnetic field ~Bo. The vector potential (8.57) satisfies ∇ · ~A = 0 and,
therefore, one can employ the Hamiltonian (8.55). Using Cartesian coordinates this yields

H = − ~
2

2me

(
∂2

1 + ∂2
2 + ∂2

3

)
+
eBo~

ime
x1 ∂2 +

e2B2
o

2me
x2

1 (8.58)

where ∂j = (∂/∂xj), j = 1, 2, 3.
We want to describe the stationary states corresponding to the Hamiltonian (8.58). For this purpose
we use the wave function in the form

Ψ(E, k2, k3;x1, x2, x3) = exp(ik2x2 + ik3x3)φE(x1) . (8.59)
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This results in a stationary Schrödinger equation(
− ~

2

2me
∂2

1 +
~

2k2
2

2me
+
~

2k2
3

2me
+

eBo~k2

me
x1 +

e2B2
o

2me
x2

1

)
φE(x1)

= E φE(x1) . (8.60)

Completing the square

e2B2
o

2me
x2

1 +
eBo~k2

me
x1 =

e2B2
o

2me

(
x +

~k2

eBo

)2

− ~
2k2

2

2me
(8.61)

leads to [
− ~

2

2me
∂2

1 +
1
2
meω

2 (x1 + x1o )2 +
~

2k2
3

2me

]
φE(x1) = E φE(x1) . (8.62)

where
x1o =

~k2

eBo
(8.63)

and where
ω =

eBo
me

(8.64)

is the classical Larmor frequency (c = 1). It is important to note that the completion of the square
absorbs the kinetic energy term of the motion in the x2-direction described by the factor exp(ik2x2)
of wave function (8.59).
The stationary Schrödinger equation (8.62) is that of a displaced (by x1o) harmonic oscillator with
shifted (by ~2k2

3/2me) energies. From this observation one can immediately conclude that the wave
function of the system, according to (8.59), is

Ψ(n, k2, k3;x1, x2, x3) = exp(ik2x2 + ik3x3) ×
1√

2n n!

[
meω
π~

] 1
4 exp

[
−meω(x1+x1o)2

2~

]
Hn

(√
mω
~

(x1 + x1o)
)

(8.65)

where we replaced the parameter E by the integer n, the familiar harmonic oscillator quantum
number. The energies corresponding to these states are

E(n, k2, k3) = ~ω(n +
1
2

) +
~

2k2
3

2me
. (8.66)

Obviously, the states are degenerate in the quantum number k2 describing displacement along the
x2 coordinate. Without affecting the energy one can form wave packets in terms of the solutions
(8.65) which localize the electrons. However, according to (8.63) this induces a spread of the wave
function in the x1 direction.

Solution for Symmetric Gauge The solution obtained above has the advantage that the deriva-
tion is comparatively simple. Unfortunately, the wave function (8.65), like the corresponding gauge
(8.57), is not symmetric in the x1- and x2-coordinates. We want to employ , therefore, the so-called
symmetric gauge which expresses the homogeneous potential (8.56) through the vector potential

~A(~r) =
1
2
~Bo × ~r . (8.67)
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One can readily verify that this vector potential satisfies the condition (8.12) for the Coulomb
gauge.
For the vector potential (8.67) one can write

~̂p · ~A =
~

2i
∇ · ~Bo × ~r . (8.68)

Using ∇ · (~u × ~v) = − ~u · ∇ × ~v + ~v · ∇ × ~u yields, in the present case of constant ~Bo, for any
function f(~r)

~̂p · ~Af = − ~Bo · ~̂p× ~r f . (8.69)

The latter can be rewritten, using ∇× (~uf) = −~u×∇f + f∇× ~u and ∇× ~r = 0,

~Bo · ~̂p× ~r f = ~Bo ·
(
~r × ~̂p

)
f . (8.70)

Identifying ~r × ~̂p with the angular momentum operator ~L, the Hamiltonian (8.52) becomes

H =
~̂p

2

2me
+

e

2me

~Bo · ~L +
e2

8me

(
~Bo × ~r

)2
. (8.71)

Of particular interest is the contribution

Vmag =
e

2me

~L · ~Bo (8.72)

to Hamiltonian (8.71). The theory of classical electromagnetism predicts an analogue energy con-
tribution , namely,

Vmag = −~µclass · ~Bo (8.73)

where ~µclass is the magnetic moment connected with a current density ~j

~µclass =
1
2

∫
~r ×~j(~r) d~r (8.74)

We consider a simple case to relate (8.72) and (8.73, 8.74), namely, an electron moving in the
x, y-plane with constant velocity v on a ring of radius r. In this case the current density measures
−e v oriented tangentially to the ring. Accordingly, the magnetic moment (8.74) is in the present
case

~µclass = − 1
2
e r v ê3 . (8.75)

The latter can be related to the angular momentum ~̀
class = rmev ê3 of the electron

~µclass = − e

2me

~̀
class (8.76)

and, accordingly,
Vmag =

e

2me

~̀
class · ~Bo . (8.77)

Comparision with (8.72) allows one to interpret

~µ = − e

2me

~L (8.78)
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as the quantum mechanical magnetic moment operator for the electron (charge −e).
We will demonstrate in Sect. 10 that the spin of the electron, described by the operator ~S, likewise,
gives rise to an energy contribution (8.72) with an associated magnetic moment − g e

2me
~S where

g ≈ 2. A derivation of his property and the value of g, the so-called gyromagnetic ratio of the
electron, requires a Lorentz-invariant quantum mechanical description as provided in Sect. 10.
For a magnetic field (8.56) pointing in the x3-direction the symmetric gauge (8.67) yields a more
symmetric solution which decays to zero along both the ±x1- and the ±x2-direction. In this case,
i.e., for ~Bo = Bo ê3, the Hamiltonian (8.71) is

Ĥ =
~̂p

2

2me
+

e2B2
o

8me

(
x2

1 + x2
2

)
+

eBo
2me

L3 . (8.79)

To obtain the stationary states, i.e, the solutions of

Ĥ ΨE(x1, x2, x3) = EΨE(x1, x2, x3) , (8.80)

we separate the variable x1, x2 from x3 setting

ΨE(x1, x2, x3) = exp(ik3x3)ψ(x1, x2) . (8.81)

The functions ψ(x1, x2) obey then

Ĥo ψ(x1, x2) = E′ψ(x1, x2) (8.82)

where

Ĥo = − ~
2

2me

(
∂2

1 + ∂2
2

)
+

1
2
meω

2
(
x2

1 + x2
2

)
+ ~ω

1
i

(x1∂2 − x2∂1) (8.83)

E′ = E − ~
2k2

3

2me
. (8.84)

We have used here the expression for the angular momentum operator

L̂3 = (~/i)(x1∂2 − x2∂1) . (8.85)

The Hamiltonian (8.83) describes two identical oscillators along the x1-and x2-directions which
are coupled through the angular momentum operator L̂3. Accordingly, we seek stationary states
which are simultaneous eigenstates of the Hamiltonian of the two-dimensional isotropic harmonic
oscillator

Ĥosc = − ~
2

2me

(
∂2

1 + ∂2
2

)
+

1
2
meω

2
(
x2

1 + x2
2

)
(8.86)

as well as of the angular momentum operator L̂3. To obtain these eigenstates we introduce the
customary dimensionless variables of the harmonic oscillator

Xj =
√
meω

~

xj , j = 1, 2 . (8.87)

(8.83) can then be expressed

1
~ω

Ĥo = −1
2

(
∂2

∂X2
1

+
∂2

∂X2
2

)
+

1
2
(
X2

1 + X2
2

)
+

1
i

(
X1

∂

∂X2
− X2

∂

∂X1

)
. (8.88)
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Employing the creation and annihilation operators

a†j =
1√
2

(
Xj −

∂

∂Xj

)
; aj =

1√
2

(
Xj +

∂

∂Xj

)
; j = 1, 2 (8.89)

and the identity

ω L̂3 =
1
i

(
a†1a2 − a†2a1

)
, (8.90)

which can readily be proven, one obtains

1
~ω

Ĥ = a†1a1 + a†2a2 + 11 +
1
i

(
a†1a2 − a†2a1

)
. (8.91)

We note that the operator a†1a2 − a†2a1 leaves the total number of vibrational quanta invariant,
since one phonon is annihilated and one created. We, therefore, attempt to express eigenstates in
terms of vibrational wave functions

Ψ(j,m;x1, x2) =

(
a†1

)j+m
√

(j +m)!

(
a†1

)j−m
√

(j −m)!
Ψ(0, 0;x1, x2) (8.92)

where Ψ(0, 0;x1, x2) is the wave function for the state with zero vibrational quanta for the x1- as
well as for the x2-oscillator. (8.92) represents a state with j + m quanta in the x1-oscillator and
j −m quanta in the x2-oscillator, the total vibrational energy being ~ω(2j + 1). In order to cover
all posible vibrational quantum numbers one needs to choose j, m as follows:

j = 0,
1
2
, 1,

3
2
, . . . , m = −j, −j + 1, . . . ,+j . (8.93)

The states (8.92) are not eigenstates of L̂3. Such eigenstates can be expressed, however, through a
combination of states

Ψ′(j,m′;x1, x2) =
j∑

m=−j
α

(j)
mm′ Ψ(j,m;x1, x2) . (8.94)

Since this state is a linear combination of states which all have vibrational energy (2j+1)~ω, (8.94)
is an eigenstate of the vibrational Hamiltonian, i.e., it holds(

a†1a1 + a†2a2 + 11
)

Ψ′(j,m′;x1, x2) = ( 2j + 1 ) Ψ′(j,m′;x1, x2) . (8.95)

We want to choose the coefficients α(j)
mm′ such that (8.94) is also an eigenstate of L̂3, i.e., such that

1
i

(
a†1a2 − a†2a1

)
Ψ′(j,m′;x1, x2) = 2m′Ψ′(j,m′;x1, x2) (8.96)

holds. If this property is, in fact, obeyed, (8.94) is an eigenstate of Ĥo

Ĥo Ψ′(j,m′;x1, x2) = ~ω
(

2j + 2m′ + 1
)

Ψ′(j,m′;x1, x2) . (8.97)
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In order to obtain coefficients α(j)
mm′ we can profitably employ the construction of angular momentum

states in terms of spin–1
2 states as presented in Sects. 5.9,5.10,5.11. If we identify

a†1, a1, a
†
2, a2︸ ︷︷ ︸

present notation

←→ b†+, b+, b
†
−, b−︸ ︷︷ ︸

notation in Sects. 5.9,5.10,5.11

(8.98)

then the states Ψ(j,m;x1, x2) defined in (8.92) correspond to the eigenstates |Ψ(j,m)〉 in Sect. 5.9.
According to the derivation given there, the states are eigenstates of the operator [we use for the
operator the notation of Sect. 5.10, cf. Eq.(5.288)]

Ĵ3 =
1
2

(
a†1a1 − a†2a2

)
(8.99)

with eigenvalue m. The connection with the present problem arises due to the fact that the operator
J2 in Sect. 5.10, which corresponds there to the angular momentum in the x2–direction, is in the
notation of the present section

Ĵ2 =
1
2i

(
a†1a2 − a†2a1

)
, (8.100)

i.e., except for a factor 1
2 , is identical to the operator L̂3 introduced in (8.84) above. This implies that

we can obtain eigenstates of L̂3 by rotation of the states Ψ(j,m;x1, x2). The required rotation must
transform the x3–axis into the x2–axis. According to Sect. 5.11 such transformation is provided
through

Ψ′(j,m′;x1, x2) = D
(j)
mm′(

π

2
,
π

2
, 0) Ψ(j,m;x1, x2) (8.101)

where D(j)
mm′(

π
2 ,

π
2 , 0) is a rotation matrix which describes the rotation around the x3–axis by π

2
and then around the new x2–axis by π

2 , i.e., a transformation moving the x3–axis into the x2–
axis. The first rotation contributes a factor exp(−imπ

2 ), the second rotation a factor d(j)
mm′(

π
2 ), the

latter representing the Wigner rotation matrix of Sect. 5.11. Using the explicit form of the Wigner
rotation matrix as given in (5.309) yields finally

Ψ′(j,m′;x1, x2) =
(

1
2

)2j ∑j
m=−j

∑j−m′
t=0

√
(j+m)!(j−m)!

(j+m′)!(j−m′)!(
j +m′

m+m′ − t

) (
j −m′
t

)
(−1)j−m

′−t (−i)m Ψ(j,m;x1, x2) . (8.102)

We have identified, thus, the eigenstates of (8.83) and confirmed the eigenvalues stated in (8.97).

8.5 Time-Dependent Perturbation Theory

We want to consider now a quantum system involving a charged particle in a bound state perturbed
by an external radiation field described through the Hamiltonian (8.55). We assume that the
scalar potential V in (8.55) confines the particle to stationary bound states; an example is the
Coulomb potential V (~r, t) = 1/4πr confining an electron with energy E < 0 to move in the well
known orbitals of the hydrogen atom. The external radiation field is accounted for by the vector
potential ~A(~r, t) introduced above. In the simplest case the radiation field consists of a single
planar electromagnetic wave described through the potential (8.31). Other radiation fields can
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be expanded through Fourier analysis in terms of such plane waves. We will see below that the
perturbation resulting from a ‘pure’ plane wave radiation field will serve us to describe also the
perturbation resulting from a radiation field made up of a superposition of many planar waves.
The Hamiltonian of the particle in the radiation field is then described through the Hamiltonian

H = Ho + VS (8.103)

Ho =
~̂p

2

2m
+ q V (8.104)

VS = − q

m
~̂p · ~A(~r, t) +

q2

2m
A2(~r, t) (8.105)

where ~A(~r, t) is given by (8.42). Here the so-called unperturbed system is governed by the Hamil-
tonian Ho with stationary states defined through the eigenvalue problem

Ho |n〉 = εn |n〉 , n = 0, 1, 2 . . . (8.106)

where we adopted the Dirac notation for the states of the quantum system. The states |n〉 are
thought to form a complete, orthonormal basis, i.e., we assume

〈n|m〉 = δnm (8.107)

and for the identity

11 =
∞∑
n=0

|n〉〈n| . (8.108)

We assume for the sake of simplicity that the eigenstates of Ho can be labeled through integers,
i.e., we discount the possibility of a continuum of eigenstates. However, this assumption can be
waved as our results below will not depend on it.

Estimate of the Magnitude of VS

We want to demonstrate now that the interaction VS(t), as given in (8.105) for the case of radiation-
induced transitions in atomic systems, can be considered a weak perturbation. In fact, one can
estimate that the perturbation, in this case, is much smaller than the eigenvalue differences near
typical atomic bound states, and that the first term in (8.105), i.e., the term ∼ ~̂p · ~A(~r, t), is much
larger than the second term, i.e., the term ∼ A2(~r, t). This result will allow us to neglect the
second term in (8.105) in further calculations and to expand the wave function in terms of powers
of VS(t) in a perturbation calculation.
For an electron charge q = −e and an electron mass m = me one can provide the estimate for the
first term of (8.105) as follows4. We first note, using (8.41)

∣∣∣∣ eme
~̂p · ~A

∣∣∣∣ ∼ e

me

∣∣∣∣2me
p2

2me

∣∣∣∣
1
2
√

8πNω~
ω V

. (8.109)

4The reader should note that the estimates are very crude since we are establishing an order of magnitude estimate
only.
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The virial theorem for the Coulomb problem provides the estimate for the case of a hydrogen atom∣∣∣∣ p2

2me

∣∣∣∣ ∼ 1
2
e2

ao
(8.110)

where ao is the Bohr radius. Assuming a single photon, i.e., Nω = 1, a volume V = λ3 where λ is
the wave length corresponding to a plane wave with frequency ω, i.e., λ = 2πc/λ, one obtains for
(8.109) using V = λ 4π2c2/ω2 ∣∣∣∣ eme

~̂p · ~A
∣∣∣∣ ∼ e2

4πao

∣∣∣∣ 2π ao
λ

~ω

mec2

∣∣∣∣ 1
2

(8.111)

For ~ω = 3 eV and a corresponding λ = 4000 Å one obtains, with ao ≈ 0.5 Å, and mec
2 ≈

500 keV ∣∣∣∣ 2π ao
λ

~ω

mec2

∣∣∣∣ ≈ 10−8 (8.112)

and with e2/ao ≈ 27 eV, altogether,∣∣∣∣ eme
~̂p · ~A

∣∣∣∣ ∼ 10 eV · 10−4 = 10−3 eV . (8.113)

This magnitude is much less than the differences of the typical eigenvalues of the lowest states of
the hydrogen atom which are of the order of 1 eV. Hence, the first term in (8.105) for radiation
fields can be considered a small perturbation.
We want to estimate now the second term in (8.105). Using again (8.41) one can state∣∣∣∣ e2

2me
A2

∣∣∣∣ ∼ e2

2me

1
ω2

8πNω~ω
V

(8.114)

For the same assumptions as above one obtains∣∣∣∣ e2

2me
A2

∣∣∣∣ ∼ e2

8πao
·
(
ao
λ

4~ω
mec2

)
. (8.115)

Employing for the second factor the estimate as stated in (8.112) yields∣∣∣∣ e2

2me
A2

∣∣∣∣ ∼ 10 eV · 10−8 = 10−7 eV . (8.116)

This term is obviously much smaller than the first term. Consequently, one can neglect this term as
long as the first term gives non-vanishing contributions, and as long as the photon densities Nω/V
are small. We can, hence, replace the perturbation (8.105) due to a radiation field by

VS = − q

m
~̂p · ~A(~r, t) . (8.117)

In case that such perturbation acts on an electron and is due to superpositions of planar waves
described through the vector potential (8.42) it holds

VS ≈
e

m

∑
~k,û

√
4πNk~
kV

α(~k, û) ~̂p · û exp
[
i(~k · ~r − ωt)

]
. (8.118)
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where we have replaced ω in (8.42) through k = |~k| = ω. The sum runs over all possible ~k vectors
and might actually be an integral, the sum over û involves the two possible polarizations of planar
electromagnetic waves. A factor α(~k, û) has been added to describe eliptically or circularly polarized
waves. Equation (8.118) is the form of the perturbation which, under ordinary circumstances,
describes the effect of a radiation field on an electron system and which will be assumed below to
describe radiative transitions.

Perturbation Expansion

The generic situation we attempt to describe entails a particle at time t = to in a state |0〉 and
a radiation field beginning to act at t = to on the particle promoting it into some of the other
states |n〉, n = 1, 2, . . .. The states |0〉, |n〉 are defined in (8.106–8.108) as the eigenstates of the
unperturbed Hamiltonian Ho. One seeks to predict the probability to observe the particle in one
of the states |n〉, n 6= 0 at some later time t ≥ to. For this purpose one needs to determine the
state |ΨS(t)〉 of the particle. This state obeys the Schrödinger equation

i~ ∂t|ΨS(t)〉 = [Ho + VS(t) ] |ΨS(t)〉 (8.119)

subject to the initial condition
|ΨS(to)〉 = |0〉 . (8.120)

The probability to find the particle in the state |n〉 at time t is then

p0→n(t) = |〈n|ΨS(t)〉|2 . (8.121)

In order to determine the wave function ΨS(t)〉 we choose the so-called Dirac representation defined
through

|ΨS(t)〉 = exp
[
− i
~

Ho(t − to)
]
|ΨD(t)〉 (8.122)

where
|ΨD(to)〉 = |0〉 . (8.123)

Using

i~ ∂texp
[
− i
~

Ho(t − to)
]

= Ho exp
[
− i
~

Ho(t − to)
]

(8.124)

and (8.119) one obtains

exp
[
− i
~

Ho(t − to)
]

(Ho + i~ ∂t ) |ΨD(t)〉

= [Ho + VS(t) ] exp
[
− i
~

Ho(t − to)
]
|ΨD(t)〉 (8.125)

from which follows

exp
[
− i
~

Ho(t − to)
]
i~ ∂t|ΨD(t)〉 = VS(t) exp

[
− i
~

Ho(t − to)
]
|ΨD(t)〉 . (8.126)

Multiplying the latter equation by the operator exp
[
i
~
Ho(t − to)

]
yields finally

i~∂t|ΨD(t)〉 = VD(t) |ΨD(t)〉 , |Ψ(to)〉 = |0〉 (8.127)
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where

VD(t) = exp
[
i

~

Ho(t − to)
]
VS(t) exp

[
− i
~

Ho(t − to)
]
. (8.128)

We note that the transition probability (8.121) expressed in terms of ΨD(t)〉 is

p0→n(t) = |〈n|exp
[
− i
~

Ho(t − to)
]
|ΨD(t)〉|2 . (8.129)

Due to the Hermitean property of the Hamiltonian Ho holds 〈n|Ho = εn〈n| and, consequently,

〈n|exp
[
− i
~

Ho(t − to)
]

= exp
[
− i
~

εn(t − to)
]
〈n| (8.130)

from which we conclude, using |exp[− i
~
εn(t − to)]| = 1,

p0→n(t) = |〈n |ΨD(t)〉|2 . (8.131)

In order to determine |ΨD(t)〉 described through (8.127) we assume the expansion

|ΨD(t)〉 =
∞∑
n=0

|Ψ(n)
D (t)〉 (8.132)

where |Ψ(n)
D (t)〉 accounts for the contribution due to n-fold products of VD(t) to |ΨD(t)〉. Accord-

ingly, we define |Ψ(n)
D (t)〉 through the evolution equations

i~∂t|Ψ(0)
D (t)〉 = 0 (8.133)

i~∂t|Ψ(1)
D (t)〉 = VD(t) |Ψ(0)

D (t)〉 (8.134)

i~∂t|Ψ(2)
D (t)〉 = VD(t) |Ψ(1)

D (t)〉 (8.135)
...

i~∂t|Ψ(n)
D (t)〉 = VD(t) |Ψ(n−1)

D (t)〉 (8.136)
...

together with the initial conditions

|ψD(to)〉 =
{
|0〉 for n = 0
0 for n = 1, 2. . . .

(8.137)

One can readily verify that (8.132–8.137) are consistent with (8.127, 8.128).
Equations (8.133–8.137) can be solved recursively. We will consider here only the two leading
contributions to |ΨD(t)〉. From (8.133, 8.137) follows

|Ψ(0)
D (t)〉 = |0〉 . (8.138)

Employing this result one obtains for (8.134, 8.137)

|Ψ(1)
D (t)〉 =

1
i~

∫ t

to

dt′ VD(t′) |0〉 . (8.139)
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This result, in turn, yields for (8.135, 8.137)

|Ψ(2)
D (t)〉 =

(
1
i~

)2 ∫ t

to

dt′
∫ t′

to

dt′′VD(t′)VD(t′′) |0〉 . (8.140)

Altogether we have provided the formal expansion for the transition amplitude

〈n|ΨD(t)〉 = 〈n|0〉 +
1
i~

∫ t

to

dt′ 〈n|VD(t′) |0〉 (8.141)

+
∞∑
m=0

(
1
i~

)2∫ t

to

dt′
∫ t′

to

dt′′〈n|VD(t′)|m〉〈m|VD(t′′) |0〉 + . . .

8.6 Perturbations due to Electromagnetic Radiation

We had identified in Eq. (8.118) above that the effect of a radiation field on an electronic system
is accounted for by perturbations with a so-called harmonic time dependence ∼ exp(−iωt). We
want to apply now the perturbation expansion derived to such perturbations. For the sake of
including the effect of superpositions of plane waves we will assume, however, that two planar
waves simulataneously interact with an electronic system, such that the combined radiation field
is decribed by the vector potential

~A(~r, t) = A1 û1 exp
[
i (~k1 · ~r − ω1 t)

]
incoming wave (8.142)

+ A2 û2 exp
[
i (~k2 · ~r ∓ ω2 t)

]
incoming or outgoing wave

combining an incoming and an incoming or outgoing wave. The coefficients A1, A2 are defined
through (8.41).
The resulting perturbation on an electron system, according to (8.118), is

VS =
[
V̂1 exp(−iω1t) + V̂2 exp(∓iω2t)

]
eλt , λ → 0+ , to → −∞ (8.143)

where V̂1 and V̂2 are time-independent operators defined as

V̂j =
e

m

√
8πNj~
ωjV︸ ︷︷ ︸

I

~̂p · ûj︸ ︷︷ ︸
II

ei
~k·~r

︸︷︷︸
III

. (8.144)

Here the factor I describes the strength of the radiation field (for the specified planar wave) as
determined through the photon density Nj/V and the factor II describes the polarization of the
planar wave; note that ûj , according to (8.34, 8.142), defines the direction of the ~E-field of the
radiation. The factor III in (8.144) describes the propagation of the planar wave, the direction of
the propagation being determined by k̂ = ~k/|~k|. We will demonstrate below that the the sign of
∓iωt determines if the energy of the planar wave is absorbed (“-” sign) or emitted (“+” sign) by
the quantum system. In (8.144) ~r is the position of the electron and ~̂p = (~/i)∇ is the momentum
operator of the electron. A factor exp(λt), λ → 0+ has been introduced which describes that at
time to → −∞ the perturbation is turned on gradually. This factor will serve mainly the purpose of
keeping in the following derivation all mathematical quantities properly behaved, i.e., non-singular.
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1st Order Processes

We employ now the perturbation (8.143) to the expansion (8.141). For the 1st order contribution
to the transition amplitude

〈n|Ψ(1)
D (t)〉 =

1
i~

∫ t

to

dt′ 〈n|VD(t′) |0〉 (8.145)

we obtain then, using (8.128), (8.130) and (for m = 0)

exp
[
− i
~

Ho(t − to)
]
|m〉 = exp

[
− i
~

εm(t − to)
]
|m〉 , (8.146)

for (8.145)

〈n|Ψ(1)
D (t)〉 = lim

λ→0+
lim

t→−∞

1
i~

∫ t

to

dt′ exp
[
i

~

(εn − εo − i~λ) t′
]
×

×
(
〈n|V̂1|0〉 e−iω1t′ + 〈n|V̂2|0〉 e∓iω2t′

)
. (8.147)

Carrying out the time integration and taking the limit limt→−∞ yields

〈n|Ψ(1)
D (t)〉 = lim

λ→0+
eλt

[
〈n|V̂1|0〉

exp
[
i
~
(εn − εo − ~ω1) t

]
εo + ~ω1 − εn + iλ~

+

+ 〈n|V̂2|0〉
exp

[
i
~
(εn − εo ∓ ~ω2) t

]
εo ± ~ω2 − εn + iλ~

]
. (8.148)

2nd Order Processes

We consider now the 2nd order contribution to the transition amplitude. According to (8.140,
8.141) this is

〈n|Ψ(2)
D (t)〉 = − 1

~
2

∞∑
m=0

∫ t

to

dt′
∫ t′

to

dt′′ 〈n|VD(t′) |m〉 〈m|VD(t′′) |0〉 . (8.149)

Using the definition of VD stated in (8.128) one obtains

〈k|VD(t) |`〉 = 〈k|VS(t)|`〉 exp
[
i

~

(εk − ε`)
]

(8.150)

and, employing the perturbation (8.143), yields

〈n|Ψ(2)
D (t)〉 = − 1

~
2

lim
λ→0+

lim
t→−∞

∞∑
m=0

∫ t

to

dt′
∫ t′

to

dt′′ (8.151){
〈n|V̂1 |m〉 〈m|V̂1 |0〉 exp

[
i

~

(εn − εm − ~ω1 − i~λ)t′
]

exp
[
i

~

(εm − εo − ~ω1 − i~λ)t′′
]

+ 〈n|V̂2 |m〉 〈m|V̂2 |0〉 exp
[
i

~

(εn − εm ∓ ~ω2 − i~λ)t′
]

exp
[
i

~

(εm − εo ∓ ~ω2 − i~λ)t′′
]
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+ 〈n|V̂1 |m〉 〈m|V̂2 |0〉 exp
[
i

~

(εn − εm − ~ω1 − i~λ)t′
]

exp
[
i

~

(εm − εo ∓ ~ω2 − i~λ)t′′
]

+ 〈n|V̂2 |m〉 〈m|V̂1 |0〉 exp
[
i

~

(εn − εm ∓ ~ω2 − i~λ)t′
]

exp
[
i

~

(εm − εo − ~ω1 − i~λ)t′′
] }

Carrying out the integrations and the limit limt→−∞ provides the result

〈n|Ψ(2)
D (t)〉 = − 1

~
2

lim
λ→0+

∞∑
m=0

(8.152){
〈n|V̂1 |m〉 〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

exp
[
i
~

(εn − εo − 2~ω1 − 2i~λ)t
]

εn − εo − 2~ω1 − 2i~λ

+
〈n|V̂2 |m〉 〈m|V̂2 |0〉
εm − εo ∓ ~ω2 − i~λ

exp
[
i
~

(εn − εo ∓ 2~ω2 − 2i~λ)t
]

εn − εo ∓ 2~ω2 − 2i~λ

+
〈n|V̂1 |m〉 〈m|V̂2 |0〉
εm − εo ∓ ~ω2 − i~λ

exp
[
i
~

(εn − εo − ~ω1 ∓ ~ω2 − 2i~λ)t
]

εn − εo − ~ω1 ∓ ~ω2 − 2i~λ

+
〈n|V̂2 |m〉 〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

exp
[
i
~

(εn − εo − ~ω1 ∓ ~ω2 − 2i~λ)t
]

εn − εo − ~ω1 ∓ ~ω2 − 2i~λ

}

1st Order Radiative Transitions

The 1st and 2nd order transition amplitudes (8.148) and (8.152), respectively, provide now the
transition probability p0→n(t) according to Eq. (8.131). We assume first that the first order transi-
tion amplitude 〈n|Ψ(1)

D (t)〉 is non-zero, in which case one can expect that it is larger than the 2nd
order contribution 〈n|Ψ(2)

D (t)〉 which we will neglect. We also assume for the final state n 6= 0 such
that 〈n|0〉 = 0 and

p0→n(t) = | 〈n|Ψ(1)
D (t)〉 |2 (8.153)

holds. Using (8.148) and

|z1 + z2|2 = |z1|2 + |z2|2 + 2Re(z1z
∗
2) (8.154)

yields

p0→n(t) = lim
λ→0+

e2λt

{
〈n|V̂1|0〉|2

(εo + ~ω1 − εn)2 + (λ~)2

+
〈n|V̂2|0〉|2

(εo ± ~ω1 − εn)2 + (λ~)2
(8.155)

+ 2 Re
〈n|V̂1|0〉〈0|V̂2|n〉 exp

[
i
~
(±~ω2 − ~ω1) t

]
(εo + ~ω1 − εn + iλ~) (εo ± ~ω2 − εn − iλ~)

}

We are actually interested in the transition rate, i.e., the time derivative of p0→n(t). For this rate
holds
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d

dt
p0→n(t) = lim

λ→0+
e2λt

{
2λ 〈n|V̂1|0〉|2

(εo + ~ω1 − εn)2 + (λ~)2
(8.156)

+
2λ 〈n|V̂2|0〉|2

(εo ± ~ω1 − εn)2 + (λ~)2
+
(

2λ +
d

dt

)
×

× 2 Re
〈n|V̂1|0〉〈0|V̂2|n〉 exp

[
i
~
(±~ω2 − ~ω1) t

]
(εo + ~ω1 − εn + iλ~) (εo ± ~ω2 − εn − iλ~)

}

The period of electromagnetic radiation absorbed by electronic systems in atoms is of the order
10−17 s, i.e., is much shorter than could be resolved in any observation; in fact, any attempt to do
so, due to the uncertainty relationship would introduce a considerable perturbation to the system.
The time average will be denoted by 〈 · · · 〉t. Hence, one should average the rate over many periods
of the radiation. The result of such average is, however, to cancel the third term in (8.156) such
that the 1st order contributions of the two planar waves of the perturbation simply add. For the
resulting expression the limit limλ→0+ can be taken. Using

lim
δ→0+

ε

x2 + ε2
= π δ(x) (8.157)

one can conclude for the average transition rate

k = 〈 d
dt
p0→n(t) 〉t =

2π
~

[
|〈n|V̂1|0〉|2 δ(εn − εo − ~ω1) (8.158)

+ |〈n|V̂2|0〉|2 δ(εn − εo ∓ ~ω2)
]

Obviously, the two terms apearing on the rhs. of this expression describe the individual effects of
the two planar wave contributions of the perturbation (8.142–8.144). The δ-functions appearing in
this expression reflect energy conservation: the incoming plane wave contribution of (8.143, 8.144),
due to the vector potential

A1 û1 exp
[
i (~k1 · ~r − ω1 t)

]
, (8.159)

leads to final states |n〉 with energy εn = εo + ~ω1. The second contribution to (8.158), describing
either an incoming or an outgoing plane wave due to the vector potential

A2 û2 exp
[
i (~k1 · ~r ∓ ω2 t)

]
, (8.160)

leads to final states |n〉 with energy εn = εo ± ~ω2. The result supports our definition of incoming
and outgoing waves in (8.31) and (8.142)
The matrix elements 〈n|V̂1|0〉 and 〈n|V̂2|0〉 in (8.158) play an essential role for the transition rates
of radiative transitions. First, these matrix elements determine the so-called selection rules for the
transition: the matrix elements vanish for many states |n〉 and |0〉 on the ground of symmetry and
geometrical properties. In case the matrix elements are non-zero, the matrix elements can vary
strongly for different states |n〉 of the system, a property, which is observed through the so-called
spectral intensities of transitions |0〉 → |n〉.
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2nd Order Radiative Transitions

We now consider situations where the first order transition amplitude in (8.153) vanishes such that
the leading contribution to the transition probability p0→n(t) arises from the 2nd order amplitude
(8.152), i.e., it holds

p0→n(t) = | 〈n|Ψ(2)
D (t)〉 |2 . (8.161)

To determine the transition rate we proceed again, as we did in the the case of 1st order transitions,
i.e., in Eqs. (8.153–8.158). We define

z1 =

( ∞∑
m=0

〈n|V̂1 |m〉 〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

)
×

×
exp
[
i
~

(εn − εo − 2~ω1 − 2i~λ)t
]

εn − εo − 2~ω1 − 2i~λ
(8.162)

and, similarly,

z2 =

( ∞∑
m=0

〈n|V̂2 |m〉 〈m|V̂2 |0〉
εm − εo ∓ ~ω2 − i~λ

)
×

×
exp
[
i
~

(εn − εo ∓ 2~ω2 − 2i~λ)t
]

εn − εo ∓ 2~ω2 − 2i~λ
(8.163)

z3 =

[ ∞∑
m=0

(
〈n|V̂2 |m〉〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

+
〈n|V̂2 |m〉〈m|V̂1 |0〉
εm − εo ∓ ~ω2 − i~λ

)]
× (8.164)

×
exp
[
i
~

(εn − εo − ~ω1 ∓ ~ω2 − 2i~λ)t
]

εn − εo − ~ω1 ∓ ~ω2 − 2i~λ
(8.165)

It holds

|z1 + z2 + z3|2 = |z1|2 + |z2|2 + |z3|2 +
3∑

j,k=1
j 6=k

zjz
∗
k (8.166)

In this expression the terms |zj |2 exhibit only a time dependence through a factor e2λt whereas the
terms zjz∗k for j 6= k have also time-dependent phase factors, e.g., exp[ i

~
(±ω2−ω1)]. Time average

〈 · · · 〉t of expression (8.166) over many periods of the radiation yields 〈exp[ i
~
(±ω2 − ω1)]〉t = 0

and, hence,
〈 |z1 + z2 + z3|2〉t = |z1|2 + |z2|2 + |z3|2 (8.167)

Taking now the limit limλ→0+ and using (8.157) yields, in analogy to (8.158),

k = 〈 d
dt
p0→n(t) 〉t

=
2π
~

∣∣∣∣∣
∞∑
m=0

〈n|V̂1 |m〉 〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

∣∣∣∣∣
2

δ(εm − εo − 2~ω1)︸ ︷︷ ︸
absorption of 2 photons ~ω1

(8.168)
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+
2π
~

∣∣∣∣∣
∞∑
m=0

〈n|V̂2 |m〉 〈m|V̂2 |0〉
εm − εo ∓ ~ω2 − i~λ

∣∣∣∣∣
2

δ(εm − εo ∓ 2~ω2)︸ ︷︷ ︸
absorption/emission of 2 photons ~ω2

+
2π
~

∣∣∣∣∣
∞∑
m=0

(
〈n|V̂2 |m〉〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

+

+
〈n|V̂2 |m〉〈m|V̂1 |0〉
εm − εo ∓ ~ω2 − i~λ

)∣∣∣∣∣
2

δ(εn − εo − ~ω1 ∓ ~ω2)︸ ︷︷ ︸
absorption of a photon ~ω1 and absorption/emission of a photon ~ω2

This transition rate is to be interpreted as follows. The first term, according to its δ-function factor,
describes processes which lead to final states |n〉 with energy εn = εo + 2~ω1 and, accordingly,
describe the absorption of two photons, each of energy ~ω1. Similarly, the second term describes
the processes leading to final states |n〉 with energy εn = εo ± 2~ω2 and, accordingly, describe
the absorption/emission of two photons, each of energy ~ω2. Similarly, the third term describes
processes in which a photon of energy ~ω1 is absorbed and a second photon of energy ~ω2 is
absorbed/emitted. The factors | · · · |2 in (8.168) describe the time sequence of the two photon
absorption/ emission processes. In case of the first term in (8.168) the interpretation is

∞∑
m=0

〈n|V̂1 |m〉︸ ︷︷ ︸
pert. |n〉 ← |m〉

1
εm − εo − ~ω1 − i~λ︸ ︷︷ ︸

virtually occupied state |m〉

〈m|V̂1 |0〉︸ ︷︷ ︸
pert. |m〉 ← |0〉

(8.169)

, i.e., the system is perturbed through absorption of a photon with energy ~ω1 from the initial
state |0〉 into a state |m〉; this state is only virtually excited, i.e., there is no energy conservation
necessary (in general, εm 6= εo + ~ω1) and the evolution of state |m〉 is described by a factor
1/(εm−εo−~ω1−i~λ); a second perturbation, through absorption of a photon, promotes the system
then to the state |n〉, which is stationary and energy is conserved, i.e., it must hold εn = εo + 2~ω1.
The expression sums over all possible virtually occupied states |m〉 and takes the absolute value of
this sum, i.e., interference between the contributions from all intermediate states |m〉 can arise. The
remaining two contributions in (8.168) describe similar histories of the excitation process. Most
remarkably, the third term in (8.168) describes two intermediate histories, namely absorption/
emission first of photon ~ω2 and then absorption of photon ~ω1 and, vice versa, first absorption of
photon ~ω1 and then absorption/ emission of photon ~ω2.

8.7 One-Photon Absorption and Emission in Atoms

We finally can apply the results derived to describe transition processes which involve the absorption
or emission of a single photon. For this purpose we will employ the transition rate as given in
Eq. (8.158) which accounts for such transitions.
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Absorption of a Plane Polarized Wave

We consider first the case of absorption of a monochromatic, plane polarized wave described through
the complex vector potential

~A(~r, t) =

√
8πN~
ωV

û exp
[ ı
~

(~k · ~r − ωt)
]
. (8.170)

We will employ only the real part of this potential, i.e., the vector potential actually assumed is

~A(~r, t) =

√
2πN~
ωV

û exp
[ ı
~

(~k · ~r − ωt)
]

+

√
2πN~
ωV

û exp
[ ı
~

(−~k · ~r + ωt)
]
. (8.171)

The perturbation on an atomic electron system is then according to (8.143, 8.144)

VS =
[
V̂1 exp(−iωt) + V̂2 exp(+iωt)

]
eλt , λ → 0+ , to → −∞ (8.172)

where

V̂1,2 =
e

m

√
2πN~
ωV

~̂p · û e±i~k·~r . (8.173)

Only the first term of (8.143) will contribute to the absorption process, the second term can be
discounted in case of absorption. The absorption rate, according to (8.158), is then

kabs =
2π
~

e2

m2
e

2πN~
ωV

∣∣∣ û · 〈n| ~̂p ei~k·~r |0〉 ∣∣∣2 δ(εn − εo − ~ω) (8.174)

Dipole Approximation We seek to evaluate the matrix element

~M = 〈n| ~̂p ei~k·~r |0〉 . (8.175)

The matrix element involves a spatial integral over the electronic wave functions associated with
states |n〉 and |0〉. For example, in case of a radiative transition from the 1s state of hydrogen to
one of its three 2p states, the wave functions are (n, `,m denote the relevant quantum numbers)

ψn=1,`=0,m=0(r, θ, φ) = 2

√
1
a3
o

e−r/ao Y00(θ, φ) 1s (8.176)

ψn=2,`=1,m(r, θ, φ) = −1
2

√
6
a3
o

r

ao
e−r/2ao Y1m(θ, φ) 2p (8.177)

and the integral is

~M =
~

√
6

ia4
o

∫ ∞
0

r2dr

∫ 1

−1
dcosθ

∫ 2π

0
dφ r e−r/2ao Y ∗1m(θ, φ) ×

×∇ei~k·~re−r/ao Y00(θ, φ) (8.178)

These wave functions make significant contributions to this integral only for r-values in the range
r < 10 ao. However, in this range one can expand

ei
~k·~r ≈ 1 + i~k · ~r + . . . (8.179)
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One can estimate that the absolute magnitude of the second term in (8.179) and other terms are
never larger than 20π ao/λ. Using |~k| = 2π/λ, the value of the wave length for the 1s → 2p
transition

λ =
2π~c

∆E2p−1s
= 1216 Å (8.180)

and ao = 0.529 Å one concludes that in the significant integration range in (8.178) holds ei~k·~r ≈
1 + O( 1

50) such that one can approximate

ei
~k·~r ≈ 1 . (8.181)

One refers to this approximation as the dipole approximation.

Transition Dipole Moment A further simplification of the matrix element (8.175) can then be
achieved and the differential operator ~̂p = ~

i∇ replaced by by the simpler multiplicative operator
~r. This simplification results from the identity

~̂p =
m

i~
[~r, Ho ] (8.182)

where Ho is the Hamiltonian given by (8.104) and, in case of the hydrogen atom, is

Ho =
(~̂p)2

2me
+ V (~r) , V (~r) = − e2

r
. (8.183)

For the commutator in (8.182) one finds

[~r, Ho ] = [~r,
~̂p

2

2me
] + [~r, V (~r) ]︸ ︷︷ ︸

= 0

=
1

2me

3∑
k=1

p̂k [~r, p̂k ] +
1

2me

3∑
k=1

[~r, p̂k ] pk (8.184)

Using ~r =
∑3

j=1 xj êj and the commutation property [xk, p̂j ] = i~ δkj one obtains

[~r, Ho ] =
i~

m

3∑
j,k=1

pk êj δjk =
i~

m

3∑
j,k=1

pk êk =
i~

m
~̂p (8.185)

from which follows (8.182).
We are now in a position to obtain an alternative expression for the matrix element (8.175). Using
(8.181) and (8.182) one obtains

~M ≈ m

i~
〈n| [~r, Ho] |0〉 =

m (εo − εn)
i~

〈n|~r |0〉 . (8.186)

Insertion into (8.174) yields

kabs =
4π2 e2N ω

V

∣∣∣ û · 〈n| ~̂r |0〉 ∣∣∣2 δ(εn − εo − ~ω) (8.187)
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where we used the fact that due to the δ-function factor in (8.174) one can replace εn − εo by ~ω.
The δ-function appearing in this expression, in practical situations, will actually be replaced by a
distribution function which reflects (1) the finite life time of the states |n〉, |0〉, and (2) the fact
that strictly monochromatic radiation cannot be prepared such that any radiation source provides
radiation with a frequency distribution.

Absorption of Thermal Radiation

We want to assume now that the hydrogen atom is placed in an evironment which is sufficiently hot,
i.e., a very hot oven, such that the thermal radiation present supplies a continuum of frequencies,
directions, and all polarizations of the radiation. We have demonstrated in our derivation of the
rate of one-photon processes (8.158) above that in first order the contributions of all components of
the radiation field add. We can, hence, obtain the transition rate in the present case by adding the
individual transition rates of all planar waves present in the oven. Instead of adding the components
of all possible ~k values we integrate over all ~k using the following rule∑

~k

∑
û

=⇒ V
∫ +∞

−∞

k2 dk

(2π)3

∫
dk̂
∑
û

(8.188)

Here
∫
dk̂ is the integral over all orientations of ~k. Integrating and summing accordingly over all

contributions as given by (8.187) and using k c = ω results in the total absorption rate

k
(tot)
abs =

e2Nω ω3

2π c3
~

∫
dk̂
∑
û

∣∣∣ û · 〈n| ~̂r |0〉 ∣∣∣2 (8.189)

where the factor 1/~ arose from the integral over the δ-function.
In order to carry out the integral

∫
dk̂ we note that û describes the possible polarizations of the

planar waves as defined in (8.31–8.35). k̂ and û, according to (8.33) are orthogonal to each other.
As a result, there are ony two linearly independent directions of û possible, say û1 and û2. The unit
vectors û1, û2 and k̂ can be chosen to point along the x1, x2, x3-axes of a right-handed cartesian
coordinate system. Let us assume that the wave functions describing states |n〉 and |0〉 have been
chosen real such that ~ρ = 〈n|~r|0〉 is a real, three-dimensional vector. The direction of this vector
in the û1, û2, k̂ frame is described by the angles ϑ, ϕ, the direction of û1 is described by the
angles ϑ1 = π/2, ϕ1 = 0 and of û2 by ϑ2 = π/2, ϕ2 = π/2. For the two angles α = ∠(û1, ~ρ) and
β = ∠(û2, ~ρ) holds then

cosα = cosϑ1 cosϑ + sinϑ1 sinϑ cos(ϕ1 − ϕ) = sinϑcosϕ (8.190)

and
cosβ = cosϑ2 cosϑ + sinϑ2 sinϑ cos(ϕ2 − ϕ) = sinϑsinϕ . (8.191)

Accordingly, one can express∑
û

| û · 〈n|~r |0〉 |2 = |ρ|2 ( cos2α + cos2β ) = sin2θ . (8.192)

and obtain ∫
dk̂
∑
û

∣∣∣ û · 〈n| ~̂r |0〉 ∣∣∣2 = |~ρ|2
∫ 2π

0

∫ 1

−1
dcosϑ (1 − cos2ϑ) =

8π
3

(8.193)
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This geometrical average, finally, can be inserted into (8.189) to yield the total absorption rate

k
(tot)
abs = Nω

4 e2 ω3

3 c3
~

| 〈n|~r|0〉 |2 , Nω photons before absorption. (8.194)

For absorption processes involving the electronic degrees of freedom of atoms and molecules this
radiation rate is typicaly of the order of 109 s−1. For practical evaluations we provide an expression
which eliminates the physical constants and allows one to determine numerical values readily. For
this purpose we use ω/c = 2π/λ and obtain

4 e2 ω3

3 c3
~

=
32π3

3
e2

ao~

ao
λ3

= 1.37× 1019 1
s
× ao
λ3

(8.195)

and

k
(tot)
abs = Nω 1.37× 1019 1

s
× ao
λ

| 〈n|~r|0〉 |2

λ2
, (8.196)

where

λ =
2π c ~
εn − εo

(8.197)

The last two factors in (8.194) combined are typically somewhat smaller than (1 Å/1000 Å)3 =
10−9. Accordingly, the absorption rate is of the order of 109 s−1 or 1/nanosecond.

Transition Dipole Moment The expression (8.194) for the absorption rate shows that the
essential property of a molecule which determines the absorption rate is the so-called transition
dipole moment |〈n|~r |0〉|. The transition dipole moment can vanish for many transitions between
stationary states of a quantum system, in particular, for atoms or symmetric molecules. The
value of |〈n|~r |0〉| determines the strength of an optical transition. The most intensely absorbing
molecules are long, linear molecules.

Emission of Radiation

We now consider the rate of emission of a photon. The radiation field is described, as for the
absorption process, by planar waves with vector potential (8.171) and perturbation (8.172, 8.173).
In case of emission only the second term V̂2 exp(+iωt) in (8.173) contributes. Otherwise, the
calculation of the emission rate proceeds as in the case of absorption. However, the resulting total
rate of emission bears a different dependence on the number of photons present in the environment.
This difference between emission and absorption is due to the quantum nature of the radiation field.
The quantum nature of radiation manifests itself in that the number of photons Nω msut be an
integer, i.e., Nω = 0, 1, 2 , . . .. This poses, however, a problem in case of emission by quantum
systems in complete darkness, i.e., for Nω = 0. In case of a classical radiation field one would
expect that emission cannot occur. However, a quantum mechanical treatment of the radiation field
leads to a total emission rate which is proportional to Nω + 1 where Nω is the number of photons
before emission. This dependence predicts, in agreement with observations, that emission occurs
even if no photon is present in the environment. The corresponding process is termed spontaneous
emission. However, there is also a contribution to the emission rate which is proportional to Nω
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which is termed induced emission since it can be induced through radiation provided, e.g., in lasers.
The total rate of emission, accordingly, is

k(tot)
em =

4 e2 ω3

3 c3
~

| 〈n|~r|0〉 |2 (spontaneous emission)

+ Nω
4 e2 ω3

3 c3
~

| 〈n|~r|0〉 |2 (induced emission)

= (Nω + 1 )
4 e2 ω3

3 c3
~

| 〈n|~r|0〉 |2 (8.198)

Nω photons before emission. (8.199)

Planck’s Radiation Law

The postulate of the Nω + 1 dependence of the rate of emission as given in (8.198) is consistent
with Planck’s radiation law which reflects the (boson) quantum nature of the radiation field. To
demonstrate this property we apply the transition rates (8.195) and (8.198) to determine the
stationary distribution of photons ~ω in an oven of temperature T . Let No and Nn denote the
number of atoms in state |0〉 and |n〉, respectively. For these numbers holds

Nn /No = exp[−(εn − εo)/kBT ] (8.200)

where kB is the Boltzmann constant. We assume εn − εo = ~ω. Under stationary conditions
the number of hydrogen atoms undergoing an absorption process |0〉 → |n〉 must be the same as
the number of atoms undergoing an emission process |n〉 → |0〉. Defining the rate of spontaneous
emission

ksp =
4 e2 ω3

3 c3
~

| 〈n|~r|0〉 |2 (8.201)

the rates of absorption and emission are Nωksp and (Nω+1)ksp, respectively. The number of atoms
undergoing absorption in unit time areNωkspNo and undergoing emission are (Nω+1)kspNn. Hence,
it must hold

Nω ksp N0 = (Nω + 1) ksp Nn (8.202)

It follows, using (8.200),

exp[−~ω/kBT ] =
Nω

Nω + 1
. (8.203)

This equation yields

Nω =
1

exp[~ω/kBT ] − 1
, (8.204)

i.e., the well-known Planck radiation formula.

8.8 Two-Photon Processes

In many important processes induced by interactions between radiation and matter two or more
photons participate. Examples are radiative transitions in which two photons are absorbed or
emitted or scattering of radiation by matter in which a photon is aborbed and another re-emitted.
In the following we discuss several examples.
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Two-Photon Absorption

The interaction of electrons with radiation, under ordinary circumstances, induce single photon
absorption processes as described by the transition rate Eq. (8.187). The transition requires that the
transition dipole moment 〈n|~r |0〉 does not vanish for two states |0〉 and |n〉. However, a transition
between the states |0〉 and |n〉 may be possible, even if 〈n|~r |0〉 vanishes, but then requires the
absorption of two photons. In this case one needs to choose the energy of the photons to obey

εn = εo + 2 ~ω . (8.205)

The respective radiative transition is of 2nd order as described by the transition rate (8.168) where
the first term describes the relevant contribution. The resulting rate of the transition depends on
N 2
ω . The intense radiation fields of lasers allow one to increase transition rates to levels which can

readily be observed in the laboratory.
The perturbation which accounts for the coupling of the electronic system and the radiation field is
the same as in case of 1st order absorption processes and given by (8.172, 8.173); however, in case
of absorption only V̂1 contributes. One obtains, dropping the index 1 characterizing the radiation,

k =
2π
~

(
e2

m2
e

2πNω~
ωV

)2
∣∣∣∣∣
∞∑
m=0

〈n|û · ~̂p ei~k·~r |m〉 〈m|û · ~̂p ei~k·~r |0〉
εm − εo − ~ω1 − i~λ

∣∣∣∣∣
2

×

× δ(εm − εo − 2~ω) . (8.206)

Employing the dipole approximation (8.181) and using (8.182) yields, finally,

k =
(
Nω
V

)2 8π3e4

~

∣∣∣∣∣
∞∑
m=0

(εn − εm) û · 〈n|~̂r |m〉 (εm − εo) û · 〈m|~̂r |0〉
~ω ( εm − εo − ~ω − i~λ )

∣∣∣∣∣
2

× δ(εm − εo − 2~ω) . (8.207)

Expression (8.207) for the rate of 2-photon transitions shows that the transition |0〉 → |n〉 becomes
possible through intermediate states |m〉 which become virtually excited through absorption of a
single photon. In applying (8.207) one is, however, faced with the dilemma of having to sum over
all intermediate states |m〉 of the system. If the sum in (8.207) does not converge rapidly, which is
not necessarily the case, then expression (8.207) does not provide a suitable avenue of computing
the rates of 2-photon transitions.

Scattering of Photons at Electrons – Kramers-Heisenberg Cross Section

We consider in the following the scattering of a photon at an electron governed by the Hamiltonian
Ho as given in (8.104) with stationary states |n〉 defined through (8.106). We assume that a planar
wave with wave vector ~k1 and polarization û1, as described through the vector potential

~A(~r, t) = Ao1 û1 cos(~k1 · ~r − ω1t) , (8.208)

has been prepared. The electron absorbs the radiation and emits immediately a second photon.
We wish to describe an observation in which a detector is placed at a solid angle element dΩ2 =
sinθ2 dθ2 dφ2 with respect to the origin of the coordinate system in which the electron is described.
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We assume that the experimental set-up also includes a polarizer which selects only radiation with
a certain polarization û2. Let us assume for the present that the emitted photon has a wave vector
~k2 with cartesian components

~k2 = k2

 sinθ2 cosφ2

sinθ2 sinφ2

cosθ2

 (8.209)

where the value of k2 has been fixed; however, later we will allow the quantum system to select
appropriate values. The vector potential describing the emitted plane wave is then

~A(~r, t) = Ao2 û2 cos(~k2 · ~r − ω2t) . (8.210)

The vector potential which describes both incoming wave and outgoing wave is a superposition of
the potentials in (8.208, 8.210). We know already from our description in Section 8.6 above that
the absorption of the radiation in (8.208) and the emission of the radiation in (8.210) is accounted
for by the following contributions of (8.208, 8.210)

~A(~r, t) = A+
o1 û1 exp[ i (~k1 · ~r − ω1t) ] + A−o2 û2 exp[ i (~k2 · ~r − ω2t) ] . (8.211)

The first term describes the absorption of a photon and, hence, the amplitude A+
o1 is given by

A+
o1 =

√
8πN1~

ω1V
(8.212)

where N1/V is the density of photons for the wave described by (8.208), i.e., the wave characterized
through ~k1, û1. The second term in (8.211) accounts for the emitted wave and, according to the
description of emission processes on page 229, the amplititude A−o2 defined in (8.211) is

A−o2 =

√
8π (N2 + 1) ~

ω1V
(8.213)

where N2/V is the density of photons characterized through ~k2, û2.
The perturbation which arises due to the vector potential (8.211) is stated in Eq. (8.105). In the
present case we consider only scattering processes which absorb radiation corresponding to the
vector potential (8.208) and emit radiation corresponding to the vector potential (8.210). The
relevant terms of the perturbation (8.105) using the vector potantial (8.211) are given by

VS(t) =
e

2me
~̂p ·
{
A+
o1û1exp[i(~k1 · ~r − ω1t)] + A−o2û2exp[−i(~k2 · ~r − ω2t)]

}
︸ ︷︷ ︸

contributes in 2nd order

+
e2

4me
A+
o1A

−
o2 û1 · û2 exp{i[(~k1 − ~k2) · ~r − (ω1 − ω2) t]}︸ ︷︷ ︸

contributes in 1st order

(8.214)

The effect of the perturbation on the state of the electronic system is as stated in the perturbation
expansion (8.141). This expansion yields, in the present case, for the components of the wave
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function accounting for absorption and re-emission of a photon

〈n|ΨD(t)〉 = 〈n|0〉 + (8.215)

+
1
i~

e2

4me
A+
o1A

−
o2 û1 · û2 〈n|0〉

∫ t

to

dt′ ei(εn−εo−~ω1+~ω2+i~λ)t′

+
∞∑
m=0

(
1
i~

)2 e2

4m2
e

A+
o1A

−
o2 ×

×
{
û1 · 〈n| ~̂p |m〉 û2 · 〈m| ~̂p |0〉 ×

×
∫ t

to

dt′
∫ t′

to

dt′′ei(εn−εm−~ω1+i~λ)t′ei(εm−εo+~ω2+i~λ)t′′

+ û2 · 〈n| ~̂p |m〉 û1 · 〈m| ~̂p |0〉 ×

×
∫ t

to

dt′
∫ t′

to

dt′′ei(εn−εm+~ω2+i~λ)t′ei(εm−εo−~ω1+i~λ)t′′
}

We have adopted the dipole approximation (8.181) in stating this result.
Only the second (1st order) and the third (2nd order) terms in (8.215) correspond to scattering
processes in which the radiation field ‘looses’ a photon ~ω1 and ‘gains’ a photon ~ω2. Hence, only
these two terms contribute to the scattering amplitude. Following closely the procedures adopted in
evaluating the rates of 1st order and 2nd order radiative transitions on page 222–225, i.e., evaluating
the time integrals in (8.215) and taking the limits limto→−∞ and limλ→0+ yields the transition rate

k =
2π
~

δ(εn − εo − ~ω1 + ~ω2)
∣∣∣∣ e2

4m2
e

A+
o1A

−
o2 û1 · û2 〈n|0〉 (8.216)

−
∑
m

e2

4me
A+
o1A

−
o2

(
〈n|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

εm − εo + ~ω2
+
〈n|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − ~ω1

) ∣∣∣∣∣
2

We now note that the quantum system has the freedom to interact with any component of the
radiation field to produce the emitted photon ~ω2. Accordingly, one needs to integrate the rate as
given by (8.216) over all available modes of the field, i.e., one needs to carry out the integration
V(2π)−3

∫
k2

2dk2 · · ·. Inserting also the values (8.212, 8.213) for the amplitudes A+
o1 and A−o2 results

in the Kramers-Heisenberg formula for the scattering rate

k =
N1c

V
r2
o

ω2

ω1
(N2 + 1) dΩ2

∣∣∣∣û1 · û2 〈n|0〉 (8.217)

− 1
me

∑
m

(
〈n|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

εm − εo + ~ω2
+
〈n|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − ~ω1

) ∣∣∣∣2
Here ro denotes the classical electron radius

ro =
e2

mec2
= 2.8 · 10−15 m . (8.218)
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The factor N1c/V can be interpreted as the flux of incoming photons. Accordingly, one can relate
(8.217) to the scattering cross section defined through

dσ =
rate of photons arriving in the the solid angle element dΩ2

flux of incoming photons
(8.219)

It holds then

dσ = r2
o

ω2

ω1
(N2 + 1) dΩ2

∣∣∣∣û1 · û2 〈n|0〉 (8.220)

− 1
me

∑
m

(
〈n|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

εm − εo + ~ω2
+
〈n|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − ~ω1

) ∣∣∣∣2
In the following we want to consider various applications of this formula.

Rayleigh Scattering

We turn first to an example of so-called elastic scattering, i.e., a process in which the electronic
state remains unaltered after the scattering. Rayleigh scattering is defined as the limit in which the
wave length of the scattered radiation is so long that none of the quantum states of the electronic
system can be excited; in fact, one assumes the even stronger condition

~ω1 << |εo − εm| , for all states |m〉 of the electronic system (8.221)

Using |n〉 = |0〉 and, consequently, ω1 = ω2, it follows

dσ = r2
o (N2 + 1) dΩ2 |û1 · û2 − S(~ω) |2 (8.222)

where

S(~ω) =
1
me

∑
m

(
〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

εm − εo + ~ω
+
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − ~ω

)
. (8.223)

Condition (8.221) suggests to expand S(~ω)

S(~ω) = S(0) + S′(0) ~ω +
1
2
S′′(0)(~ω)2 + . . . (8.224)

Using
1

εm − εo ± ~ω
=

1
εm − εo

∓ ~ω

(εm − εo)2
+

(~ω)2

(εm − εo)3
+ . . . (8.225)

one can readily determine

S(0) =
∑
m

(
〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

me (εm − εo)
+
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

me (εm − εo)

)
(8.226)

S′(0) =
∑
m

(
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

me (εm − εo)2
− 〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

me (εm − εo)2

)
(8.227)

S′′(0) = 2
∑
m

(
〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

me (εm − εo)3
+
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

me (εm − εo)3

)
(8.228)
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These three expressions can be simplified using the expression (8.182) for ~̂p and the expression
(8.108) for the identity operator.
We want to simplify first (8.226). For this purpose we replace ~̂p using (8.182)

〈0|û1 ·~̂p |m〉
me (εm − εo)

=
1
i~
〈0|û1 ·~r |m〉 ,

〈m|û1 ·~̂p |0〉
me (εm − εo)

= − 1
i~
〈m|û1 ·~r |0〉 (8.229)

This transforms (8.226) into

S(0) =
1
i~

∑
m

( 〈0|û1 ·~r |m〉〈m|û2 ·~̂p |0〉 − 〈0|û2 ·~̂p |m〉〈m|û1 ·~r |0〉 ) (8.230)

According to (8.108) this is

S(0) =
1
i~
〈0|û1 ·~r û2 ·~̂p − û2 ·~̂p û1 ·~r |0〉 . (8.231)

The commutator property [xj , p̂k] = i~ δjk yields finally

S(0) =
1
i~

3∑
j,k=1

(û1)j (û2)k 〈0|[xj , p̂k]|0〉 =
3∑

j,k=1

(û1)j(û2)k δjk = û1 ·û2 (8.232)

Obviously, this term cancels the û1 ·û2 term in (8.222).
We want to prove now that expression (8.227) vanishes. For this purpose we apply (8.229) both to
û1 · ~̂p and to û2 · ~̂p which results in

S′(0) =
me

~
2

∑
m

( 〈0|û2 ·~r |m〉〈m|û1 ·~r |0〉 − 〈0|û1 ·~r |m〉〈m|û2 ·~r |0〉 ) . (8.233)

Employing again (8.108) yields

S′(0) =
me

~
2
〈0| [û2 ·~r, û1 ·~r ] |0〉 = 0 (8.234)

where we used for the second identity the fact that û1 ·~r and û2 ·~r commute.
S′′(0) given in (8.228) provides then the first non-vanishing contribution to the scattering cross
section (8.222). Using again (8.229) both for the û1 · ~̂p and the to û2 · ~̂p terms in (8.228) we obtain

S′′(0) =
2me

~
2

∑
m

(
〈0|û1 ·~r |m〉〈m|û2 ·~r |0〉

εm − εo
+
〈0|û2 ·~r |m〉〈m|û1 ·~r |0〉

εm − εo

)
(8.235)

We can now combine eqs. (8.224, 8.232, 8.234, 8.235) and obtain the leading contribution to the
expression (8.222) of the cross section for Rayleigh scattering

dσ = r2
om

2
e ω

4 (N2 + 1) dΩ2 × (8.236)

×

∣∣∣∣∣∑
m

(
〈0|û∗1 ·~r |m〉〈m|û2 ·~r |0〉

εm − εo
+
〈0|û∗2 ·~r |m〉〈m|û1 ·~r |0〉

εm − εo

) ∣∣∣∣∣
2

We have applied here a modification which arises in case of complex polarization vectors û which
describe circular and elliptical polarizaed light.
Expression (8.236) is of great practical importance. It explains, for example, the blue color of
the sky and the polarization pattern in the sky which serves many animals, i.e., honey bees, as a
compass.
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Thomson Scattering

We consider again elastic scattering., i.e., |n〉 = |0〉 and ω1 = ω2 = ω in (8.220), however, assume
now that the scattered radiation has very short wave length such that

ω >> |εo − εm| , for all states |m〉 of the electronic system . (8.237)

The resulting scattering is called Thomson scattering. We want to assume, though, that the dipole
approximation is still valid which restricts the applicability of the following derivation to

k1 >>
1
ao

, ao Bohr radius . (8.238)

One obtains immediately from (8.220)

dσ = r2
o (N2 + 1) dΩ2 |û1 · û2|2 . (8.239)

We will show below that this expression decribes the non-relativistic limit of Compton scattering.
To evaluate |û1 · û2|2 we assume that ~k1 is oriented along the x3-axis and, hence, the emitted
radiation is decribed by the wave vector

~k2 = k1

 sinθ2 cosφ2

sinθ2 sinφ2

cosθ2

 (8.240)

We choose for the polarization of the incoming radiation the directions along the x1- and the x2-axes

û
(1)
1 =

 1
0
0

 , û
(2)
1 =

 0
1
0

 (8.241)

Similarly, we choose for the polarization of the emitted radiation two perpendicular directions û(1)
2

and û
(2)
2 which are also orthogonal to the direction of ~k2. The first choice is

û
(1)
2 =

~k2 × ~k1

|~k2 × ~k1|
=

 sinφ2

−cosφ2

0

 (8.242)

where the second identity follows readily from ~k1 = ê3 and from (8.240). Since û(2)
2 needs to be

orthogonal to ~k2 as well as to û(1)
2 the sole choice is

û
(2)
2 =

~k2 × û(1)
2

|~k2 × û(1)
2 |

=

 cosθ2 cosφ2

cosθ2 sinφ2

−sinθ2

 (8.243)

The resulting scattering cross sections for the various choices of polarizations are

dσ = r2
o (N2 + 1) dΩ2 ×



sin2φ2 for û1 = û
(1)
1 , û2 = û

(1)
2

cos2θ2 cos2φ2 for û1 = û
(1)
1 , û2 = û

(2)
2

cos2φ2 for û1 = û
(2)
1 , û2 = û

(1)
2

cos2θ2 sin2φ2 for û1 = û
(2)
1 , û2 = û

(2)
2

(8.244)
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In case that the incident radiation is not polarized the cross section needs to be averaged over
the two polarization directions û(1)

1 and û
(2)
1 . One obtains then for the scattering cross section of

unpolarized radiation

dσ = r2
o (N2 + 1) dΩ2 ×

 1
2 for û2 = û

(1)
2

1
2 cos2θ2 for û2 = û

(2)
2

(8.245)

The result implies that even though the incident radiation is unpolarized, the scattered radiation
is polarized to some degree. The radiation scattered at right angles is even completely polarized
along the û(1)

2 -direction.
In case that one measures the scattered radiation irrespective of its polarization, the resulting
scattering cross section is

dσtot =
r2
o

2
(N2 + 1) ( 1 + cos2θ2 ) dΩ2 . (8.246)

This expression is the non-relativistic limit of the cross section of Compton scattering. The Comp-
ton scattering cross section which is derived from a model which treats photons and electrons as
colliding relativistic particles is

dσ
(rel)
tot =

r2
o

2
(N2 + 1)

(
ω2

ω1

)2 ( ω1

ω2
+

ω2

ω1
− sin2θ2

)
dΩ2 (8.247)

where
ω−1

2 − ω−1
1 =

~

mec2
( 1 − cosθ2 ) (8.248)

One can readily show that in the non-relativistic limit, i.e., for c → ∞ the Compton scattering
cross section (8.247, 8.247) becomes identical with the Thomson scattering cross section (8.246).

Raman Scattering and Brillouin Scattering

We now consider ineleastic scattering described by the Kramers-Heisenberg formula. In the case
of such scattering an electron system absorbs and re-emits radiation without ending up in the
initial state. The energy deficit is used to excite the system. The excitation can be electronic,
but most often involves other degrees of freedom. For electronic systems in molecules or crystals
the degrees of freedom excited are nuclear motions, i.e., molecular vibrations or crystal vibrational
modes. Such scattering is called Raman scattering. If energy is absorbed by the system, one speaks
of Stokes scattering, if energy is released, one speaks of anti-Stokes scattering. In case that the
nuclear degrees of freedom excited absorb very little energy, as in the case of excitations of accustical
modes of crystals, or in case of translational motion of molecules in liquids, the scattering is termed
Brillouin scattering.
In the case that the scattering excites other than electronic degrees of freedom, the states |n〉 etc.
defined in (8.220) represent actually electronic as well as nuclear motions, e.g., in case of a diatomic
molecule |n〉 = |φ(elect.)n, φ(vibr.)n〉. Since the scattering is inelastic, the first term in (8.220)
vanishes and one obtains in case of Raman scattering

dσ = r2
o (N2 + 1)

ω2

ω1
dΩ2 | û2 ·R · û1 |2 (8.249)



238 Interaction of Radiation with Matter

where R represents a 3× 3-matrix with elements

Rjk =
1
me

∑
m

(
〈n| p̂j |m〉〈m| p̂k |0〉
εm − εo + ~ω2

+
〈n| p̂k |m〉〈m| p̂j |0〉
εm − εo − ~ω1

)
(8.250)

ω2 = ω1 − (εn − εo)/~ (8.251)

We define ~x ·R · ~y =
∑

j,k xjRjk yk.
In case that the incoming photon energy ~ω1 is chosen to match one of the electronic excitations,
e.g., ~ω1 ≈ εm − εo for a particular state |m〉, the Raman scattering cross section will be much
enhanced, a case called resonant Raman scattering. Of course, no singlularity developes in such
case due to the finite life time of the state |m〉. Nevertheless, the cross section for resonant Raman
scattering can be several orders of magnitude larger than that of ordinary Raman scattering, a
property which can be exploited to selectively probe suitable molecules of low concentration in
bulk matter.



Chapter 9

Many–Particle Systems

In this chapter we develop the quantummechanical description of non-relativistic many–particle-
systems. Systems to which this chapter applies appear in many disguises, as electrons in crystals,
molecules and atoms, as photons in the electromagmetic field, as vibrations and combination of
electrons and phonons in crystals, as protons and neutrons in nuclei and, finally, as quarks in
mesons and baryons. The latter systems require, however, relativistic descriptions.
The interaction among many identical particles gives rise to a host of fascinating phenomena, e.g.,
collective excitations in nuclei, atoms and molecules, superconductivity, the quantum Hall effect.
A description of the mentioned phenomena requires a sufficient account of the interactions among
the particles and of the associated many–particle motions. In the following we will introduce the
rudimentary tools, mainly those tools which are connected with effective single–particle descrip-
tions.

9.1 Permutation Symmetry of Bosons and Fermions

We seek to determine the stationary states of systems of many identical particles as described
through the stationary Schrödinger equation

H |Ψ〉 = E |Ψ〉 . (9.1)

Here |Ψ〉 represents the state of the system which in the following will be considered in a repre-
sentation defined by space–spin–coordinates ~xj = (~rj , σj). ~rj and σj denote position and spin,
respectively, of the j-th particle. The spin variable for electrons, for example, is σj = ±1

2 . We will
assume systems composed of N particles, i.e., the particle index j runs from 1 to N . The wave
function in the space–spin representation is then

Ψ(~x1, ~x2, . . . ~xN ) = 〈~x1, ~x2, . . . ~xN |Ψ〉 . (9.2)

Permutations

The essential aspect of the systems described is that the particles are assumed to be identical. This
has the consequence that one cannot distinguish between states which differ only in a permutation
of particles. In fact, quantum theory dictates that all such states are identical, i.e., are not counted
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repeatedly like degenerate states. However, not any state can be chosen as to represent the many–
particle system, rather only states which obey a certain transformation property under permutations
are acceptable. This property will be established now. In the following sections we will then
introduce the operators of second quantization which provide a means to ascertain that manipulation
of wave functions always leave the transformation property under permutations uncompromised.
The permutations we need to consider for a system of N particles are the elements of the group SN ,
the set of all permutations of N objects. The elements P ∈ SN can be represented conveniently
as 2 × N matrices, the top row representing the numbers 1 to N labelling the N particles under
consideration, and the second row showing the numbers 1 to N again, but in a different order,
number k under the entry j of the first row indicating that particle j is switched with particle k.
Examples for an eight particle system are

P1 =
(

1 2 3 4 5 6 7 8
1 2 4 5 6 3 8 7

)
; P2 =

(
1 2 3 4 5 6 7 8
1 2 3 5 4 6 7 8

)
. (9.3)

P2 which affects only two particles, i.e., particles 4 and 5, leaving all other particles unchanged, is
called a transposition. Transpositions denoted by T (j, k) are characterized by the two indices (j, k)
of the two particles transposed, i.e., (j, k) = (4, 5) in case of P2. We can then state P2 = T (4, 5).
We will not discuss here at any depth the properties of the permutation groups SN , even though
these properties, in particular, the representations in the space of N–particle wave functions are
extremely useful in dealing withN–particle systems. A reader interested in the quantum mechanical
description of N particle systems is strongly encouraged to study these representations. For the
following we will require only two properties of SN , namely implicitly the group property, and
explicitly the fact that any P ∈ SN can be given as a product of transpositions T (j, k). The latter
factorization has the essential property that the number of factors is either even or odd, i.e., a
given P can either only be presented by even numbers of transpositions or by odd numbers of
transpositions. One calls permutations of the first type even permutations and permutations of the
second type odd permutations. The group SN is then composed of two disjunct classes of even and
of odd permutations. For the permutations P1 and P2 given above holds

P1 = T (3, 4)T (4, 5)T (5, 6)T (6, 3)T (7, 8) ; P2 = T (4, 5) (9.4)

both permutations being obviously odd. The product P1P2 of even and odd permutations P1 and
P2 obey the following multiplication table:

P2 \ P1 even odd
even even odd
odd odd even

We finally determine the action of permutations P on the wave functions (9.2). Denoting by P (j)
the image of j, i.e., in notation (9.3) the j-th index in the second row, one can state

P Ψ(~x1, ~x2, . . . , ~xj , . . . , ~xN ) = Ψ(~xP (1), ~xP (2), . . . , . . . , ~xP (j), . . . , ~xP (N)) . (9.5)
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Permutation Symmetry

A second consequence of the identical character of the particles under consideration is that the
Hamiltonian must reflect the permutation symmetry. In fact, the Hamiltonian must be of the type

H =
N∑
j=1

F (~xj) +
1
2

N∑
j,k=1

G(~xj , ~xk) (9.6)

which describes one–particle interactions and two–particle interactions of the system. G(~xj , ~xk) is
symmetric in its two arguments. The terms of the Hamiltonian will be discussed further below.
Presently, it is essential that the functions F ( ) and G( , ) are the same for all particles and for all
pairs of particles, all particles being governed by the same interactions. From this property follows
that H is independent of any specific assignment of indices to the particles (note that (9.5) implies
that a permutation effectively changes the indices of the particles) and, hence, the Hamiltonian for
permuted indices PHP−1 is identical to H. From the latter results

[H,P ] = 0 . (9.7)

This property, in turn, implies that the permutation operators can be chosen in a diagonal repre-
sentation. In fact, it is a postulate of quantum mechanics that for any description of many–particle
systems the permutation operators must be diagonal. Since permutations do not necessarily com-
mute, a diagonal representation can only berealized in a simpler group. In fact, the representation
is either isomorphic to the group composed of only the ‘1’, i.e., 1 together with multiplication, or
the corresponding group of two elements 1,−1. The first case applies to bosons, i.e. particles with
integer spin values, the second group to fermions, i.e., particles with half–integer spin values. In
the latter case all even permutations are represented by ‘1’ and all odd permutations by ‘-1’. Ob-
viously, both groups, i.e., {1} (trivial) and {1,-1}, provide a representation of the group structure
represented by the multiplication table of even and odd permutations given above.
The boson and fermion property stated implies that for a system of N bosons holds

P |Ψ〉 = |Ψ〉 ∀P ∈ SN . (9.8)

For fermions holds
P |Ψ〉 = εP |Ψ〉 ∀P ∈ SN (9.9)

where

εP =
{

1 for P even
−1 for P odd

. (9.10)

We will construct now wave functions which exhibit the appropriate properties.

Fock-Space

Our derivation will start by placing each particle in a set of S orthonormal single particle states
〈~x|k〉 = φk(~x), k = 1, 2, . . . S where S denotes the number of available single particle states, usually
a very large number. The single particle states are assumed to be orthonormal, i.e., for the scalar
product holds

〈j|k〉 = δj k . (9.11)
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The scalar product involves spin as well as space coordinates and is explicitly given by

〈j|k〉 =
∫
d3r φ∗j (~r)φk(~r) · 〈σj |σk〉 (9.12)

where the second factor represents the scalar product between spin states. We first consider or-
thonormal many–particle wave functions, the so-called Fock-states, which do not yet obey the
symmetries (9.8, 9.9). In a second step we form linear combinations of Fock states with the desired
symmetries.
The Fock states represent N particles which are placed into S states |λ1〉, |λ2〉, . . . , |λN 〉, λj ∈
{1, 2, . . . S} of the type (9.11, 9.12), each particle j into a specific state |λj〉, i.e.,

〈~x1, ~x2, . . . ~xN |ΨFock(λ1, λ2, . . . , λN )〉 =
N∏
j=1

φλj (~xj) . (9.13)

These states form an orthonormal basis of N -particle states. It holds

〈ΨFock(λ′1, λ
′
2, . . . , λ

′
N )|ΨFock(λ1, λ2, . . . , λN )〉 =

N∏
j=1

δλ′j λj . (9.14)

Obviously, the states |ΨFock(λ1, λ2, . . . , λN )〉 do not exhibit the symmetries dictated by (9.8, 9.9).

Wave Functions with Boson Symmetry in the Occupation Number Representation

Wave functions with the proper symmetries can be obtained as linear combinations of Fock states.
A wave function which obeys the boson symmetry (9.8) is

〈~x1, ~x2, . . . ~xN |ΨB(n1, n2, . . . , nS)〉 = (9.15)

[∏S
j=1 (nj !)
N !

] 1
2 ∑

P∈Λ(λ1,...λN ) P 〈~x1, ~x2, . . . ~xN |ΨFock(λ1, λ2, . . . .λN )〉

Here the states (λ1, λ2, . . . .λN ) on the rhs. is a particular choice of placing N particles consistent
with the occupation numbers (n1, n2, . . . , nS). Λ(λ1, . . . , λN ) ⊂ SN is the set of all permutations
involving only particles j with different λj , e.g., T (j, k) ∈ Λ(λ1, . . . , λN ) only if λj 6= λk. The
integers nj are equal to the number of λk in (9.15) with λk = j, i.e. the nj specify how often
a single particle state |j〉 is occupied. The numbers nj , referred to as the occupation numbers,
characterize the wave function (9.15) completely and, therefore, are essential. The reader is well
advised to pause and grasp the definition of the nj .
An important detail of the definition (9.15) is that the sum over permutations does not involve
permutations among indices j, k, . . . with λj = λk = . . .. This detail is connected with the fact
that a two–particle state of the type ΨFock(λ, λ) in which two particles occupy the same single–
particle state |λ〉 does not allow transposition of particles; the reason is that such transposition
duplicates the state which would, hence, appear severalfold in (9.15).
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The wave functions (9.15) describe, for example, the photons of the electromagnetic field or the
phonons in a crystal. These states form an orthonormal basis, i.e., for two sets of occupation
numbers N = (n1, n2, . . . , nS) and N ′ = (n′1, n

′
2, . . . , n

′
S) holds

〈ΨB(N ′)|ΨB(N )〉 =
S∏
j=1

δnj n′j . (9.16)

Exercise 9.1.1:
(a) Show that the states (9.15) obey the boson symmetry (9.8).
(b) Show that for the states (9.15) holds (9.16).

Wave Functions with Fermion Symmetry in the Occupation Number Representation

One can construct similarly a wave function which obeys the fermion symmetry property (9.9).
Such wave function is

〈~x1, ~x2, . . . ~xN |ΨF(n1, n2, . . . , nS)〉 =

1√
N !

∑
P∈SN εP P 〈~x1, ~x2, . . . ~xN |ΨFock(λ1, λ2, . . . .λN )〉 (9.17)

Here the states (λ1, λ2, . . . .λN ) on the rhs. correspond to a particular choice of placing N par-
ticles consistent with the occupation numbers (n1, n2, . . . , nS). Using the identity governing the
determinant of N ×N–matrices A

det(A) =
∑
P∈SN

εP

N∏
j=1

Aj P (j) (9.18)

this wave function can also be expressed through the so-called Slater determinant

〈~x1, ~x2, . . . ~xN |ΨF(n1, n2, . . . , nS)〉 =

1√
N !

∣∣∣∣∣∣∣∣∣
φλ1(~x1) φλ2(~x1) . . . φλN (~x1)
φλ1(~x2) φλ2(~x2) . . . φλN (~x2)

...
...

...
...

φλ1(~xN ) φλ2(~xN ) . . . φλN (~xN )

∣∣∣∣∣∣∣∣∣ (9.19)

Here, the integers nj denote the occupancy of the single–particle state |j〉. The important property
holds that nj can only assume the two values nj = 0 or nj = 1. For any value nj > 1 two or more
of the columns of the Slater matrix are identical and the wave function vanishes.
The fermion states (9.17) describe, for example, electrons in an atom, a molecule or a crystal. These
states form an orthonormal basis, i.e., for two sets of occupation numbers N = (n1, n2, . . . , nS)
and N ′ = (n′1, n

′
2, . . . , n

′
S) holds

〈ΨF(N ′)|ΨF(N )〉 =
S∏
j=1

δnj n′j . (9.20)
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The representation of wave functions (9.15) and (9.17) is commonly referred to as the occupation
number representation since the wave functions are uniquely specified by the set of occupation
numbers N = (n1, n2, . . . , nS).

Exercise 9.1.2:
(a) Show that the states (9.17) obey the fermion symmetry (9.9).
(b) Show that the states (9.17) obey the orthonormality property (9.20).

9.2 Operators of 2nd Quantization

An important tool to describe mathematically systems of many bosons or fermions, guaranteeing
the correct permutation properties of the many–particle states, are the so-called operators of 2nd
quantization. These operators allow one to construct and manipulate many–particle wave functions
while preserving permutation symmetry.

Creation and Annihilation Operators for Bosons

We consider the operator aj defined through

aj ΨB(n1, . . . , nj , . . . , nS) =
{ √

nj ΨB(n1, . . . , nj − 1, . . . , nS) nj ≥ 1
0 nj = 0

. (9.21)

The factor √nj appears here on the rhs. since both the N -particle wave function
ΨB(n1, . . . , nj , . . . , nS) and the N −1-particle wave function ΨB(n1, . . . , nj−1, . . . , nS) are normal-
ized according to (9.15). For the adjoint operator a†j holds

a†jΨ
B(n1, . . . , nj , . . . , nS) =

√
nj + 1 ΨB(n1, . . . , nj + 1, . . . , nS) . (9.22)

The operators aj and a†j obey the commutation properties

[aj , ak] = 0 , [a†j , a
†
k] = 0 (9.23)

[aj , a
†
k] = δj k . (9.24)

The operators a†j and aj are referred to as the creation and annihilation operators of bosons for the
orthonormal single–particle states |j〉.
To prove that (9.22) follows from (9.21) we consider the matrix Aj corresponding to aj in the basis
of many–particle states (9.15). Employing the superindices N ′ and N introduced above and using
the orthonormality property (9.16) one obtains

(Aj)N ′N = 〈ΨB(N ′)| aj |ΨB(N )〉 =
√
nj δn′j nj−1

S∏
k=1
k 6=j

δn′knk . (9.25)
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Let A†j be the matrix adjoint to Aj . One obtains for its matrix elements(
A
†
j

)
N ′N

= 〈ΨB(N ′)| a†j |ΨB(N )〉 = (Aj)NN ′√
n′j δnj n′j−1

∏S
k=1
k 6=j

δnkn′k =
√
nj + 1 δn′j nj+1

∏S
k=1
k 6=j

δn′knk . (9.26)

From this result one can immediately conclude that (9.22) follows from (9.21) and vice versa.
We will prove the commutation properties (9.24), the properties (9.23) follow in an analogous way.
It holds for j = k

(aja
†
j − a†jaj)|Ψ(N )〉 = (nj + 1 − nj)|Ψ(N )〉 = |Ψ(N )〉 . (9.27)

Since this holds for any |Ψ(N )〉 it follows [aj , a
†
j ] = 11. For j 6= k follows similarly

(aja
†
k − a†kaj)|Ψ(N )〉 = (9.28)

(
√
nj(nk + 1) −

√
(nk + 1)nj)|Ψ(n1, . . . nj − 1 . . . nk + 1 . . . nS)〉 = 0 .

Equations (9.27, 9.29) yield the commutation relationship (9.24).
The creation operators a†j allow one to construct boson states ΨB(N )〉 from the vacuum state

|0〉 = |ΨB(n1 = 0, n2 = 0, . . . , nS = 0)〉 (9.29)

as follows

|ΨB(n1, n2, . . . , nS)〉 =
S∏
j=1

(
a†j

)nj√
nj !
|0〉 . (9.30)

Of particular interest is the operator
N̂j = a†jaj . (9.31)

This operator is diagonal in the occupation number representation, i.e., for basis states
|ΨB(n1, n2, . . . , nS)〉 = |ΨB(N )〉. One can readily show using (9.21, 9.22)

N̂j |ΨB(N )〉 = nj |ΨB(N )〉 , (9.32)

i.e., the eigenvalues of N̂j are the occupation numbers nj . One refers to N̂j as the occupation
number operator. The related operator

N̂ =
S∑
j=1

N̂j (9.33)

is called the particle number operator since, obviously,

N̂ |ΨB(n1, n2, . . . , nS)〉 =
S∑
j=1

nj |ΨB(n1, n2, . . . , nS)〉

= N |ΨB(n1, n2, . . . , nS)〉 . (9.34)
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In using the boson creation and annihilation operators, in general, one needs to apply only the
commutation propertes (9.23, 9.24) and the property aj |0〉 = 0. As long as one starts from a wave
function with the proper boson symmetry, e.g., from the vacuum state |0〉 or states |ΨB(N )〉, one
does not need to worry ever about proper symmetries of wave functions, since they are induced
through the algebra of a†j and aj .

Exercise 9.2.1: The commutation relationships (9.23, 9.24) and aj |0〉 = 0 imply that the the
properties (9.21, 9.22, 9.23) hold for the state defined through (9.29, 9.30). Prove this by induction,
showing that the property holds for nj = 0 and, in case it holds for nj , it also holds for nj + 1.
Exercise 9.2.2: Show that the boson operators a†j and aj satisfy

[aj , f(a†j)] =
∂f(a†j)

∂a†j

[a†j , f(aj)] = − ∂f(aj)
∂aj

where the operator function is assumed to have a convergent Taylor expansion

f(A) =
∞∑
n=0

1
n!
f (n)(0)An (9.35)

and where the derivative operation is defined through

∂f(A)
∂A

=
∞∑
n=1

1
(n− 1)!

f (n)(0)An−1 . (9.36)

Creation and Annihilation Operators for Fermions

We want to consider now creation and annihilation operators for fermions, i.e., operators which can
alter the occupancy of the wave function (9.17, 9.19) without affecting the fermion symmetry (9.9).
Before proceeding in this respect we need to account for the following property of the fermion wave
function which applies in the case nj , nj+1 = 1, i.e., in case that the single particle states |j〉 and
|j + 1〉 are both occupied,

〈~x1, ~x2, . . . ~xN |ΨF(n1, . . . nj , nj+1 . . . nS)〉 = (9.37)
−〈~x1, ~x2, . . . ~xN |ΨF(n1, . . . , nj+1, nj . . . nS)〉 . (9.38)

Obviously, the fermion wave function changes sign when one exchanges the order of the occupancy.
To prove this property we notice that the l.h.s. of (9.38) corresponds to

〈~x1, ~x2, . . . ~xN |ΨF(n1, . . . nj , nj+1 . . . nS)〉 =

1√
N !

∣∣∣∣∣∣∣∣∣
. . . φj(~x1) φj+1(~x1) . . .
. . . φj(~x2) φj+1(~x2) . . .
...

...
...

...
. . . φj(~xN ) φj+1(~xN ) . . .

∣∣∣∣∣∣∣∣∣ . (9.39)
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The r.h.s. of (9.38) reads

−〈~x1, ~x2, . . . ~xN |ΨF(n1, . . . , nj+1, nj . . . nS)〉 =

− 1√
N !

∣∣∣∣∣∣∣∣∣
. . . φj+1(~x1) φj(~x1) . . .
. . . φj+1(~x2) φj(~x2) . . .
...

...
...

...
. . . φj+1(~xN ) φj(~xN ) . . .

∣∣∣∣∣∣∣∣∣ . (9.40)

Because of the property of the determinant to change sign when two columns are interchanged, the
expressions (9.39) and (9.40) are identical.
Obviously, it is necessary to specify for a fermion wave function the order in which the single–
particle states |λj〉 are occupied. For this purpose one must adhere to a strict convention: the
labelling of single–particle states by indices j = 1, 2, . . . must be chosen once and for all at the
beginning of a calculation and these states must be occupied always in the order of increasing
indices. A proper example is the two particle fermion wave function

〈~x1, ~x2|ΨF(n1 = 0, n2 = 1, n3 = 0, n4 = 0, n5 = 1, n6 = n7 = . . . nS = 0)〉

= 1√
2

∣∣∣∣ φ2(~x1) φ5(~x1)
φ2(~x2) φ5(~x2)

∣∣∣∣ = 1√
2

[φ2(~x1)φ5(~x2) − φ5(~x1)φ2(~x2)] . (9.41)

Before we consider the definition of fermion creation and annihilation operators we need to take
notice of the fact that one also needs to define at which position in the wave function, i.e., at
which column of the Slater determinant (9.19), particles are being created or annihilated. One
adopts the convention that particles are created and annihilated by these operators always at the
first position of the wave function, i.e., at the first column of the Slater determinant (9.19). This
requires one, however, in order to be consistent with this convention, that occupancies are always
ordered according to a monotonous increase of the single–particle state index, to move the particle
to the first position (to be annihilated there) or to move it from the first position to its canonical
position (after it had been created at the first position). This change of position is connected with
a possible sign change (−1)qj where qj is defined for a given N = (n1, n2, . . . nS) as follows:

qj =
j−1∑
k=1

nk , (9.42)

i.e., qj is the number of states |k〉 with k < j which are occupied in a fermion wave function.
We will be adopting below the notational convention that q′j corresponds to occupancies N ′ =
(n′1, n

′
2, . . . n

′
S).

We are now ready to define the annihilation operator cj for fermions in the single–particle state |j〉
as follows

cj |ΨF(n1, n2, . . . nj . . . nS)〉 =
nj (−1)qj |ΨF(n1, n2, n3 . . . nj−1︸ ︷︷ ︸

qj states occupied

, nj → 0, nj+1 . . . nS)〉 (9.43)

In case that the single particle state |j〉 is not occupied, i.e., nj = 0, the rhs. vanishes.
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The operator c†j adjoint to cj exhibits the following property

c†j |ΨF(n1, n2, . . . nj . . . nS)〉 =

(−1)qj (1 − nj) |ΨF(n1, n2, n3 . . . nj−1︸ ︷︷ ︸
qj states occupied

, nj → 1, nj+1 . . . nS)〉 (9.44)

The operators thus defined obey the commutation properties

[cj , ck]+ = 0 ; [c†j , c
†
k]+ = 0 (9.45)

[cj , c
†
k]+ = δj k (9.46)

where we have used the definition of the so-called anti-commutators [A,B]+ = AB + BA.
We first show that (9.44) follows from the definition (9.43). Let Cj be the matrix corresponding to
the operator cj in the basis of fermion states (9.17, 9.19). The elements of Cj are then ( note that
nj only assumes values 0 or 1)

(Cj)N ′N = 〈ΨF(N ′)| cj |ΨF(N )〉 = nj (−1)qj δn′j nj−1

S∏
k=1
k 6=j

δn′knk . (9.47)

Let C†j be the matrix adjoint to Cj . One obtains for its matrix elements(
C
†
j

)
NN ′

= 〈ΨF(N ′)| c†j |Ψ
F(N )〉 = (Cj)N ′N

= n′j (−1)q
′
j δnj n′j−1

S∏
k=1
k 6=j

δnkn′k

= (−1)qj (1− nj) δn′j nj+1

S∏
k=1
k 6=j

δn′knk . (9.48)

From this follows (9.44). We have used here the definition q′j =
∑

k<j n
′
k along with q′j = qj ,

otherwise, the last factor on the rhs. of (9.48) vanishes.
We will prove now the anti-commutation property (9.46). The anti-commutation properties (9.45)
follow in an analogous way and will not be derived here. We consider (9.46) first for the case j = k.
It holds

c†jcj |Ψ
F(N )〉 = c†j(−1)qjnj |ΨF(n1 . . . nj → 0 . . . nS)〉 =

(−1)qj (1− nj + 1)(−1)qjnj |ΨF(N )〉 = njΨF(N )〉 (9.49)

The derivation involves realization of the fact that a non-zero result is obtained only in case nj = 1.
Similarly one obtains

cjc
†
j |ΨF(N )〉 = cj(−1)qj (1− nj) |ΨF(n1 . . . nj → 1 . . . nS)〉 =

(−1)qj (nj + 1))(−1)qj (1− nj) |ΨF(N )〉 = (1− nj) |ΨF(N )〉 (9.50)
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(9.49) and (9.50) yield
( cjc

†
j + c†jcj ) |ΨF(N )〉 = |ΨF(N )〉 . (9.51)

For j < k one obtains

cjc
†
k|Ψ

F(N )〉 = (−1)qj+qknj(1− nk)|ΨF(n1 . . . nj = 0 . . . nk = 1 . . . nS)〉
c†kcj |Ψ

F(N )〉 = (−1)qj+qk−1nj(1− nk)|ΨF(n1 . . . nj = 0 . . . nk = 1 . . . nS)〉

and, hence,
( cjc

†
k + c†kcj ) |ΨF(N )〉 = 0 . (9.52)

One can obtain similarly the same relationship in the case j > k. Since (9.51, 9.52) hold for any
|ΨF(N )〉 one can conclude (9.46).
Equation (9.49) shows that the operator

N̂j = c†jcj (9.53)

is diagonal in the occupation number representation, i.e., in the basis |ΨF(N )〉, with eigenvalues
equal to the occupation numbers nj

N̂j |ΨF(N )〉 = nj |ΨF(N )〉 (9.54)

N̂j , hence, is referred to as the occupation number operator. Correspondingly,

N̂ =
S∑
j=1

N̂j (9.55)

is called the particle number operator.
It is an interesting exercise to demonstrate that N̂j only has eigenvalues 0 or 1, for which purpose
one needs to envoke only the algebraic (anti-commutation) properties (9.46). The stated property
follows from the idempotence of N̂j which can be derived as follows

N̂2
j = c†jcjc

†
jcj = c†j (1− c†jcj)cj = c†jcj − c†jc

†
jcjcj = c

†
jcj = N̂j . (9.56)

Here we have made use of cjcj = 0 and c†jc
†
j = 0 which follows from nj ∈ {0, 1}.

We finally note that the creation operators c†j allow one to construct any fermion state |ΨF(N )〉
from the vacuum state |0〉 defined as above (see (9.29))

|ΨF(. . . nλ1 . . . nλ2 . . . nλN . . .)〉 = c†λ1
c†λ2
· · · c†λN |0〉 . (9.57)

On the l.h.s. of this equation we meant to indicate only those N occupation numbers nλj which
are non-vanishing. On the r.h.s. the creation operators must operate in the proper order, i.e., an
operator cj must be on the left of an operator ck for j < k.
In the following we will apply fermion operators c†j and cj only to electrons which carry spin 1

2 . We
will often separate the states |j〉, coordinates ~x and index j into a space part and a spin part, i.e.,

j → j, σ (σ = ± 1
2) ; 〈~x|j〉 → φj(~r) | 12σ〉 . (9.58)
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9.3 One– and Two–Particle Operators

Definition

Operators acting on N particle systems of the type

F̂ =
N∑
j=1

f̂(~xj) (9.59)

are called single–particle operators. The operators f̂(~x) which constitute F̂ are called the associated
generic single–particle operators1. Operators of the type

Ĝ =
1
2

N∑
j,k=1
j 6=k

ĝ(~xj , ~xk) (9.60)

correspondingly are called two–particle operators. The operators ĝ(~x, ~x′) which constitute Ĝ are
called the associated generic two–particle operators. These operators had been introduced already
in Eq. (9.6) above. The essential aspect of definition (9.59, 9.60) is that the sum over particles in
(9.59) and over pairs of particles in (9.60) involves generic operators – acting on ~xj and on ~xj , ~xk,
respectively – which are all identical. An operator

R̂ =
N∑
j=1

r̂j(~xj) (9.61)

is not a one particle operator as long as the N operators r̂j(~x), j = 1, 2, . . . , N are not all identical.
We seek to determine now how one–particle operators F̂ and two–particle operators Ĝ act on many–
boson and many–fermion states |ΨB(N )〉 and |ΨF(N )〉, respectively. The action of the operators
is obviously described through the many–particle state matrix elements

〈ΨB,F(N ′)|F̂ |ΨB,F(N )〉 ; 〈ΨB,F(N ′)|Ĝ|ΨB,F(N )〉 . (9.62)

These matrix elements can be obtained by chosing the operators and many-particle states in the
position representation, i.e., (9.59, 9.59) and (9.15, 9.17) and integrating over all particle space-spin
coordinates ~x1, ~x2, . . . ~xN . This procedure is most tedious and becomes essentially impossible in
the general case that many-particle basis functions are linear combinations of wave functions of the
type (9.15, 9.17).
Since the many–particle states are built-up from a basis |r〉, r = 1, 2, . . . S of single–particle spin-
orbital states (see page 241) and the operators are specified through the associated generic operators
f̂ and ĝ, one expects that the matrix elements can actually be expressed in terms of matrix elements
involving solely the generic operators and the single–particle states, namely,

〈r|f̂ |s〉 =
∫
d3r ψ∗r (~r, σr) f̂(~x)ψs(~r, σs) (9.63)

1This expression has been specified for the purpose of these notes to distinguish F̂ and f̂ and is not common
terminology. We adopt a similar expression to distinguish two–particle operators Ĝ and ĝ.



9.3: One– and Two–Particle Operators 251

〈r, s|ĝ|t, u〉 =
∫
d3r

∫
d3r′ ψ∗r (~r, σr)ψ

∗
s(~r
′, σs) ĝ(~x, ~x ′)ψt(~r, σt)ψu(~r ′, σu) . (9.64)

We like to note an important symmetry of the matrix element 〈r, s|ĝ|t, u〉 which follows directly
from the definition (9.64)

〈r, s|ĝ|t, u〉 = 〈s, r|ĝ|u, t〉 . (9.65)

This symmetry will be exploited repeatedly below. Notice, that the symmetry implies that one can
switch simultaneously the pairs of indices r, s and t, u, one cannot switch the indices of one pair
individually.
The aim of the present section is to express the matrix elements of single– and two–particle operators
in a basis of many–particle states (9.62) in terms of the matrix elements of single–particle states
(9.63, 9.64). We will show that the boson and fermion creation and annihilation operators serve
this purpose.

Examples of One– and Two–Particle Operators

An example for a single–particle operator is the kinetic energy operator

T̂ =
N∑
j=1

(
− ~

2

2m

)
∂2

∂~r 2
j

. (9.66)

Here we adopt the notation for the Laplacian

∂2

∂~r 2
=

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

. (9.67)

In this case the generic single–particle operator, according to (9.59), is t̂(~x) = (−~2/2m)(∂2/∂~r 2).
The matrix elements of this operator in a single–particle basis are

〈rσ|t̂|sσ′〉 = δσσ′

∫
d3r φ∗r(~r)

(
− ~

2

2m

)
∂2

∂~r 2
φs(~r) . (9.68)

Another single–particle operator is the one–particle density operator

ρ̂(~̃r
′
) =

N∑
j=1

δ(~̃r − ~rj) . (9.69)

In this case the generic operator is f̂(~x) = δ(~̃r − ~r). The matrix elements of the generic operator
in the one–particle basis are

〈rσ|f̂ |sσ′〉 = δσσ′

∫
d3r φ∗r(~r) δ(~̃r − ~r)φs(~r) = δσσ′ φ

∗
r(~̃r)φs(~̃r) δσσ′ (9.70)

Both operators, i.e., (9.66) and (9.69), are spin-independent as is evident from the factor δσσ′ .
An example for a two–particle operator is the Coulomb repulsion operator

V̂ =
1
2

N∑
j,k=1
j 6=k

q2

|~rj − ~rk|
(9.71)
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which is also spin-independent. In this case the generic operator is v̂(~x, ~x′) = q2/|~r1 − ~r2|. The
matrix elements of the generic operator in terms of single–particle states are

〈r, σ; s, σ′| t̂ |t, σ′′; u, σ′′′〉 =∫
d3r1

∫
d3r2 φ

∗
r(~r1)φ∗s(~r2) q2

|~r1 − ~r2|
φt(~r1)φu(~r2) δσσ′′δσ′σ′′′ (9.72)

As a final example of one– and two–particle operators we consider operators of total spin. The
operator

~S =
N∑
j=1

~Sj (9.73)

is a one-particle operator. Here, ~Sj is the spin operator for particle j with components (in the
spherical representation) Sj,+, Sj,−, Sj,3. The generic operator is given through the Pauli matrices,
i.e., ~̂s = 1

2~σ. The non-vanishing matrix elements of the spherical components of ~s are (α = +1
2 , β =

−1
2)

〈r, α|ŝ+|s, β〉 = δrs

〈r, β|ŝ−|s, α〉 = δrs

〈r, α|ŝ3|s, α〉 = + 1
2
δrs

〈r, β|ŝ3|s, β〉 = − 1
2
δrs (9.74)

The operator

S2 =

 N∑
j=1

~Sj

2

=
N∑

j,k=1

~Sj · ~Sk (9.75)

is a two–particle operator, however, not in the strict sense of our definition above since the restriction
j 6= k does not apply in the summation. However, one can obviously extract the term

∑
j S

2
j to be

left with a two–particle operator in the strict sense of our definition. The generic operator is

ŝ12 = ~S1 · ~S2 =
1
2
S1,+S2,− +

1
2
S1,−S2,+ + S1,3S2,3 (9.76)

the single–particle state matrix elements of which are

〈r, σ; s, σ′| ŝ12 |t, σ′′; u, σ′′′〉 = δrt δsu

(
1
2δ 1

2
σδ− 1

2
σ′′δ− 1

2
σ′δ 1

2
σ′′′ +

+ 1
2δ− 1

2
σδ 1

2
σ′′δ 1

2
σ′δ− 1

2
σ′′′ + 1

4 δσσ′′δσ′σ′′′ ( δσσ′ − δ−σσ′ )
)
. (9.77)

The operators (9.74) and (9.77) are orbital-independent as evidenced by the factors δrs and δrtδsu
in the respective formulas.
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Definition in Terms of Creation and Annihilation Operators

In order to express many–particle state matrix elements (9.62) through single–particle state matrix
elements (9.63, 9.64) one replaces the operators F̂ in (9.59) and Ĝ in (9.60) as follows

N∑
j=1

f̂(~xj) →

{ ∑S
r,s=1〈r|f̂ |s〉 a

†
ras bosons∑S

r,s=1〈r|f̂ |s〉 c
†
rcs fermions

(9.78)

1
2

N∑
j,k=1
j 6=k

ĝ(~xj , ~xk) →

{
1
2

∑S
r,s,t,u=1〈r, s|ĝ|t, u〉 a

†
ra
†
satau bosons

1
2

∑S
r,s,t,u=1〈r, s|ĝ|t, u〉 c

†
rc
†
scuct fermions

(9.79)

It is crucial to notice in the expression for the fermion two–particle operator that the order of the
annihilation operators in (9.79) is opposite to that in the matrix element 〈r, s|ĝ|t, u〉, namely cuct,
and not ctcu.
Expressions (9.78) and (9.79) have the following implication: The operators (9.78, 9.79) in the
basis of many–particle states |ΨB,F(N )〉 have the same values as the respective matrix elements
(9.62). In order to determine these matrix elements one needs to evaluate first the matrix elements
of the generic operators 〈r|f̂ |s〉 〈r, s|ĝ|t, u〉 as defined in (9.63) and (9.64), respectively, and then in
a second step the matrix elements

〈ΨB(N ′)|a†ras|ΨB(N )〉 , 〈ΨB(N ′)|a†ra†satau|ΨB(N )〉 bosons (9.80)

〈ΨF(N ′)|c†rcs|ΨF(N )〉 , 〈ΨF(N ′)|c†rc†sctcu|ΨF(N )〉 fermions (9.81)

For the latter matrix elements simple rules can be derived from the algebraic properties of the
boson and fermion operators (9.23, 9.24) and (9.45, 9.46), respectively. These rules will be provided
below only for the case of fermions. To show that the resulting values of the matrix elements (9.62)
are correct one needs to compare the result derived with conventional derivations of the matrix
elements2.

The Matrix Elements 〈ΨF(N ′)|c†rcs|ΨF(N )〉

We consider first the case r = s. The matrix elements are then actually those of the number
operator c†rcr which is diagonal in the occupation number representation, i.e.,

〈ΨF(N ′)|c†rcr|ΨF(N )〉 = nr

S∏
r=1

δn′r nr . (9.82)

In case of r 6= s one obtains

〈ΨF(N ′)|c†rcs|ΨF(N )〉 = (9.83)
〈cr ΨF(N ′)|cs ΨF(N )〉 = n′r(−1)q

′
r ns(−1)qs δn′r−1nrδn′s ns−1

∏
t=1
t6=r,s

δn′t nt

2We refer the reader to Condon and Shortley’s ‘Theory of Atomic Spectra’, pp.171 and pp.176 where the matrix
elements of fermion states can be found.
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From (9.82, 9.84) we can conclude that for diagonal elements holds

〈ΨF(N )|F̂ |ΨF(N )〉 =
S∑
r=1

nr 〈r|f̂ |r〉 (9.84)

The off-diagonal elements with n′r = nr except for r = s, t, in which case n′s = ns + 1 and
n′t = nt − 1 holds, are

〈ΨF(N ′)|F̂ |ΨF(N )〉 = (1− ns)(−1)q
′
s nt(−1)qt 〈s|f̂ |t〉 (9.85)

All other matrix elements vanish, i.e., those for which N ′ and N differ in more than two occupation
numbers. Comparision with the results in Condon&Shortley (pp. 171) shows that the operator
defined in (9.78) does yield the same results as the operator defined in (9.59) when the matrix
elements are determined between Slater determinant wave functions.

The Matrix Elements 〈ΨF(N ′)|c†rc†sctcu|ΨF(N )〉

Before we determine these matrix elements we will investigate which possible combination of indices

r, s, t, u need to be considered. Starting from the definition (9.79) and using
(
c†r
)2

= 0, c2
r = 0

we can write

Ĝ =
1
2

S∑
r,s,t,u
r 6=s, t6=u

〈rs|ĝ|tu〉c†rc†scuct (9.86)

For the combination of indices r, s, t, u in this sum three possibilities exist

Case 0 two of the four indices are different;

Case 1 three of the four indices are different;

Case 2 all four indices are different.

Accordingly, we split the sum in (9.86) into three contributions, namely, Ĝ = Ĝ0 + Ĝ1 + Ĝ2,
where each contribution corresponds to one of the three cases mentioned.
The first contribution Ĝ0 is

Ĝ0 =
1
2

S∑
r,s=1
a.i.d.

〈r s|ĝ|r s〉c†rc†scscr +
1
2

S∑
r,s=1
a.i.d.

〈r s|ĝ|s r〉c†rc†scrcs . (9.87)

Here and in the following we denote by ‘a.i.d.’ (all indices different) that only tuples
(r, s), (r, s, t), (r, s, t, u) are included in the summation for which all indices are different, i.e., for
which holds r 6= s, r 6= t etc. The anti-commutation property (9.45) yields together with the
definition of the occupation number operator (9.53)

Ĝ0 =
1
2

S∑
r,s=1
a.i.d.

(
〈r s|ĝ|r s〉 − 〈r s|ĝ|s r〉

)
N̂r N̂s . (9.88)
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Obviously, this contribution to the two–particle operator is diagonal in the occupation number
representation. As we will find, this part accounts for all diagonal contributions to Ĝ.
The second contribution Ĝ1 is

Ĝ1 = 1
2

∑S
r,s,t=1

a.i.d.

〈r s|ĝ|r t〉c†rc†sctcr

+ 1
2

∑S
r,s,t=1

a.i.d.

〈r s|ĝ|t s〉c†rc†scsct

+ 1
2

∑S
r,s,t=1

a.i.d.

〈r s|ĝ|s t〉c†rc†sctcs

+ 1
2

∑S
r,s,t=1

a.i.d.

〈r s|ĝ|t r〉c†rc†scrct . (9.89)

Commutation of ctcu according to (9.45), employing the symmetry property (9.65), relabelling
summation indices and using c†rc

†
sctcr = c†sc

†
rcrct = c†sctN̂r yields

Ĝ1 =
S∑

r,s,t=1
a.i.d.

(
〈r s|ĝ|r t〉 − 〈r s|ĝ|t r〉

)
c†sctN̂r . (9.90)

Since N̂r is diagonal, this contribution obviously behaves similarly to the off-diagonal part (9.84)
of the one–particle operator F̂ .
A similar series of transformations allows one to express Ĝ2 which can be written

Ĝ2 = 1
2

∑S
r,s,t,u
r>s,t>u

〈r s|ĝ|t u〉c†rc†scuct

+ 1
2

∑S
r,s,t,u
r>s,t<u

〈r s|ĝ|t u〉c†rc†scuct

+ 1
2

∑S
r,s,t,u
r<s,t>u

〈r s|ĝ|t u〉c†rc†scuct

+ 1
2

∑S
r,s,t,u
r<s,t<u

〈r s|ĝ|t u〉c†rc†scuct (9.91)

as follows

Ĝ2 =
S∑

r,s,t,u
r>s,t>u

(
〈r s|ĝ|t u〉 − 〈r s|ĝ|u t〉

)
c†rc
†
scuct . (9.92)

This contribution to Ĝ has non-vanishing matrix elements only when N ′ differs from N in four
occupation numbers nr, ns, nt, nu. A similar contribution does not arise for F̂ .
We can state now the matrix elements 〈ΨF(N ′)|Ĝ|ΨF(N )〉. For this purpose we consider three
cases which actually correspond to the three cases considered below Eq. (9.86).

Case 0 This case covers diagonal matrix elements, i.e., N ′ = N or n′r = nr for all r. Only Ĝ0,
given in (9.88), contributes in this case. One obtains

〈ΨF(N )|Ĝ|ΨF(N )〉 =
1
2

S∑
r,s

nrns

(
〈r, s|ĝ|r, s〉 − 〈r, s|ĝ|s, r〉

)
. (9.93)
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Case 1 This case covers off-diagonal elements with n′r = nr except for r = s, t for which holds
n′s = ns + 1 and n′t = nt− 1. Only Ĝ1, given in (9.90), contributes in this case. One obtains

〈ΨF(N ′)|Ĝ|ΨF(N )〉 =

(−1)q
′
s+qt(1− ns)nt

∑
r

r 6=s,t
nr

(
〈r, s|ĝ|r, t〉 − 〈r, s|ĝ|t, r〉

)
(9.94)

Case 2 This case covers off-diagonal elements with n′r = nr except for r = s, t, u, v for which holds
n′s = ns + 1, n′t = nt + 1, n′u = nu − 1, n′v = nv − 1. Only Ĝ2, given in (9.92), contributes
in this case. One obtains

〈ΨF(N ′)|Ĝ|ΨF(N )〉 = (9.95)

± (−1)q
′
s+q

′
r+qu+qv(1− ns)(1− nr)nunv

(
〈r, s|ĝ|u, v〉 − 〈r, s|ĝ|v, u〉

)
In the latter formula the ‘+’-sign applies for s < r, u < v or s > r, u > v, the ‘−’-sign applies
for s < r, u > v or s > r, u < v.

All matrix elements which are not covered by the three cases above vanish. In particular, for
non-vanishing matrix elements 〈ΨF(N ′)|Ĝ|ΨF(N )〉 at most four occupation numbers n′r and nr can
differ. Furthermore, particle number is conserved, i.e., it holds

∑S
r=1 n

′
r =

∑S
r=1 nr.

Exercise 9.3.1: Derive (9.90) from (9.89).
Exercise 9.3.2: Derive (9.92) from (9.91).
Exercise 9.3.3: Derive (9.95) from (9.92).
Exercise 9.3.4: Show that the matrix elements of F̂ and of Ĝ conserve particle number.
Exercise 9.3.5: Derive the non-vanishing matrix elements (9.62) for bosons.

Spin Operators

In this section we will briefly consider the spin operators ~̂S given in (9.73) and Ŝ2 given in (9.75)
which are, respectively, one–particle and two–particle operators. The matrix elements of the cor-
responding generic operators are (9.74) and (9.76). We like to express these operators through

fermion creation and annihilation operators. One obtains for the three components of ~̂S

Ŝ3 =
1
2

S∑
r=1

(
N̂rα − N̂rβ

)
Ŝ+ =

S∑
r=1

c†rαcrβ

Ŝ− =
S∑
r=1

c†rβcrα (9.96)
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For Ŝ2 one obtains

Ŝ2 =
1
2
N̂ +

1
4

S∑
r,s=1

(N̂rα − N̂rβ)(N̂sα − N̂sβ) −
S∑

r,s=1

c†rαc
†
sβcrβcsα . (9.97)

The summation in (9.96, 9.97) is over the orbital states, the spin part of the single–particle states
is represented by α = 1

2 and β = −1
2 .

Exercise 9.3.6: Derive (9.96) and (9.97).

9.4 Independent-Particle Models

In the remaining part of this chapter we will apply the technique of operators of 2nd quantization
to the description of many–fermion systems as they arise, e.g., in crystals, molecules, atoms and
nuclei. In all these systems the Hamiltonian is a sum of one– and two–particle operators

H =
S∑
r=1

〈r|t̂|s〉c†rcs +
1
2

S∑
r,s,t,u

〈r, s|v̂|u, v〉c†rc†scuct . (9.98)

In many cases the Hamiltonian is spin-independent and the equivalent notation

H =
S∑

r,s=1
σ

〈r|t̂|s〉c†rσcsσ +
1
2

S∑
r,s,t,u=1
σ,σ′

〈r, s|v̂|t, u〉c†rσc
†
sσ′cuσ′ctσ (9.99)

will be used. In the latter case the indices r, s, t, u refer only to the orbital part of the single–particle
basis.
If it were not for the two–particle contribution to the Hamiltonian, which represents the interactions
between particles, the description of many–particle systems, e.g., evaluation of their stationary
states and excitation energies, would be a simple exercise in linear algebra. Unfortunately, the
two–particle operator makes the description of many–particle systems a very hard problem. The
fortunate side of this is, however, that the two–particle operator representing interactions between
particles induces a variety of interesting phenomena.
Actually, the study of problems governed by Hamiltonians of the type (9.98, 9.99) has preoccupied
an important part of all intellectual efforts in Theoretical Physics during the past fifty years. In
fact, it is one of the main intellectual achievements of Physics among the Sciences to have addressed
systematically the study of systems composed of many strongly interacting components. The out-
come of these studies is that even when interactions between components (particles) are simple,
the concerted behaviour of interacting systems can deviate qualitatively from that of systems made
up of independent components. Examples is the laser action, superconductivity, but also ordinary
phenomena like freezing and evaporation. Often, the systems investigated involve a macroscopic
number of components such that statistical mechanical approaches are envoked. The great general-
ity of the concepts developed in the context of many–particle systems can be judged from the fact
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that today these concepts are providing insight into the functioning of biological brains, another
prototypical systems of many strongly interacting components, namely of neurons3.
Before continuing one may finally point out that the material world as we know it and as it
establishes the varieties of natural substances, ranging from nuclei to the molecules of living systems
, ultimately depend in a crucial way on the fermion character of its constituent building blocks,
electrons and nucleons. If it were’nt for the fermion nature, all material systems would condensate
into states which would depend little on particle number. The Aufbau principle, according to which
nuclei and atoms change their qualitative properties when they grow larger, would not exist. The
electronic properties of atoms with different numbers of electrons would differ little, Chemistry
essentially would know only one element and Life would not exist.

Exercise 9.4.1: Imagine that in a closed, water-filled jar all electrons of water turn their fermion
nature into a boson nature. What might happen?

Independent-Particle Hamiltonian

A many–fermion system governed by an independent-particle Hamiltonian, i.e., a Hamiltonian
without a two–particle operator contribution accounting for interactions among the particles, can
be described in a rather straightforward way. We will restrict our description in the following to
systems composed of an even number (2N) of particles and to spin-independent interactions. The
Hamiltonian of such system is

Ho =
S∑

r,s=1
σ

〈r|t̂|s〉c†rσcsσ (9.100)

We will denote the matrix elements of t̂ as 〈r|t̂|s〉 = trs.

Transformation to a New Set of Creation and Annihilation Operators

Our aim is to represent the Hamiltonian (9.100) in a form in which the factors c†rσcsσ become
occupation number operators. In such a representation Ho is diagonal and the stationary states
can be stated readily. To alter the representation of Ho we apply a unitary transformation U to
the single–particle states |r〉 to obtain a new basis of states |m), i.e., {|m),m = 1, 2, . . . S}, where

|m) =
S∑
r=1

Urm|r〉 . (9.101)

The unitary property of Urn
U†U = U U† = 11 (9.102)

or
S∑
r=1

U ∗rm Urn = δmn ,

S∑
m=1

UrmU∗sm = δrs (9.103)

3An account of some of these efforts can be found in Modelling Brain Function – The World of Attractor Neural
Networks by D.J. Amit (Cambridge University Press, New York, 1989)
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allows one to express conversely |r〉 in terms of |m)

|r〉 =
S∑

m=1

U∗rm|m) . (9.104)

One can, hence, expand

trs =
S∑
mn

t̃mnUrmU
∗
sn (9.105)

where

t̃mn = (m|t̂|n) =
S∑

r,s=1

trsU
∗
rmUsn =

(
U †t̂U

)
mn

(9.106)

which together with (9.100) yields
Ho = t̃mnd

†
mσdnσ (9.107)

where

d†nσ =
S∑
r=1

Urnc
†
rσ , dnσ =

S∑
r=1

U∗rncrσ (9.108)

These operators describe the creation and annihilation operators of fermions in states |n) which
are linear combinations (9.101) of states |r〉. The unitary property (9.103) allows one to express
[c.f. (9.104)]

c†rσ =
S∑

m=1

U∗rmd
†
mσ , csσ =

S∑
n=1

Usndnσ . (9.109)

The operators (9.108) obey the same anti-commutation properties (9.45, 9.46) as c†rσ and crσ,
namely,

[dmσ, dnσ′ ]+ = 0 ; [d†mσ, d
†
nσ′ ]+ = 0 (9.110)

[dmσ, d
†
nσ′ ]+ = δmn δσσ′ (9.111)

and, accordingly, they are Fermion creation and annihilation operators. In a basis of states

N∏
j=1

d†njσj |0〉 (9.112)

, i.e., of N -Fermion states in which single particle states |nj) as defined in (9.101) are occupied, the
operators d†nσ and dnσ, behave exactly like the operators c†rσ and crσ behave for states |ΨF (N )〉; for
example, the expressions drived above for the matrix elements of one- and two-particle operators
hold in an analogous way for d†nσ and dnσ.
We demonstrate here the anti-commutation property (9.111), the anti-commutation properties
(9.110) can be demonstrated similarly. The l.h.s. of (9.111) can be written, using (9.108) and
(9.46),

[dmσ, d
†
nσ′ ]+ =

∑
r,s

U∗rmUsn [crσ, c
†
sσ′ ]+ = δσσ′

∑
r

U∗rmUrn . (9.113)

The unitarity property
∑

r U
∗
rmUrn = δmn yields immediately identity (??).
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Diagonal Representation

The transformation (9.101) gives us the freedom to choose the matrix (9.106) diagonal, i.e.,

t̃mn = εn δmn . (9.114)

In this case Ho has the desired form

Ho =
S∑
n=1

εnd
†
nσdnσ (9.115)

and involves solely occupation number operators ̂̃Nnσ = d†nσdnσ. It is, hence, a simple matter to
state many–particle states in the new representation.
Before proceeding we like to address the issue how the new representation, i.e., transformation
matrices Urn and energy values εn, is obtained. The condition (9.114) together with (9.106) is
equivalent to

S∑
s=1

trsUsn = εnUrn ∀r, r = 1, 2, . . . S (9.116)

which follows from (9.106) and the unitary property of Urn. This equation poses the eigenvalue
problem for the hermitian matrix (trs). The corresponding eigenvalues εn, n = 1, 2, . . . S are
real, the associated ( properly normalized) eigenvectors Vn are the columns of (Urn), i.e., V T

n =
(U1n, U2n, . . . USn).
Eigenstates of (9.115) can be stated immediately since any many–particle wave function in the
occupation number representation is suitable. We apply for this purpose (9.57) to the case of 2N
particles. The 2N fermion state

2N∏
j=1

d†nj σj |0〉 where (nj , σj) 6= (nk, σk) for j 6= k (9.117)

are eigenstates of (9.115) with eigenvalues

E(n1, σ1; n2, σ2; . . . n2N , σ2N ; ) =
2N∑
j=1

εnj . (9.118)

Ground State

In case of an ordering εm < εn for m < n the state of lowest energy, the so-called ground state, is

|Φo〉 =
N∏
j=1

d†j αd
†
j β |0〉 . (9.119)

In this state the N lowest orbital eigenstates of trs are occupied each by an electron with spin
|α〉 = |12 ,

1
2〉 and |β〉 = |12 ,−

1
2〉. A non-degenerate orbital state which is occupied by two fermions,

i.e., a fermion in a spin state |12 ,
1
2〉 as well as a fermion in a spin state |12 , −

1
2〉 is called a closed
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shell. The ground state has only closed shells. We will demonstrate now that this property endows
the ground state with total spin zero.
In order to investigate the total spin of |Φo〉 we apply to this state the total spin operator Ŝ2 as
given by (9.97). The spin operator in the present representation of single-particle states is

Ŝ2 =
1
2
N̂ +

1
4

S∑
m,n=1

( ̂̃Nmα − ̂̃Nmβ)( ̂̃Nnα − ̂̃Nnβ) −
S∑

m,n=1

d†mαd
†
nβdmβdnα (9.120)

where the occupation number operators refer to the single-particle states |m). The action of the
operator (9.120) is particularly simple for closed shells. One can conclude immediately that the

second term in (9.97), namely, 1
4

∑S
m,n=1( ̂̃Nmα − ̂̃Nmβ)( ̂̃Nnα − ̂̃Nnβ) does not give any contribution

if either |m) or |n) are closed shells. Similarly, the third term −
∑S

m,n=1 c
†
mαc

†
nβcmβcnα does not

give a contribution if m 6= n and either |m) or |n) are closed shells. In case of m = n it gives a
contribution ‘1’ for each closed shell which cancels the contribution of the first term. Alltogether,
one can conclude that |Φo〉 is an eigenstate of Ŝ2 with eigenvalue zero, i.e., is a singlet state.

Excited States

We want to construct now excited states for the system governed by the independent-particle
Hamiltonian (9.100). Obviously, the states with energy closest to the ground state are those in
which a particle is promoted from the highest occupied state |N) to the lowest unoccupied state
|N + 1). There are four such states, namely,

|α, α〉〉 = d†N+1αdNα|Φo〉

|α, β〉〉 = d†N+1αdNβ|Φo〉

|β, α〉〉 = d†N+1βdNα|Φo〉

|β, β〉〉 = d†N+1βdNβ|Φo〉 (9.121)

All four states have the same excitation energy, i.e., energy above the ground state, of ∆E =
εN+1 − εN . However, the states differ in their spin character. The two states |α, β〉〉 and |β, α〉〉
are eigenstates of Ŝ2 given in (9.120), both with eigenvalues 2

Ŝ2|α, β〉〉 = 2 |α, β〉〉 ; Ŝ2||β, α〉〉 = 2 |β, α〉〉 . (9.122)

This property can be derived as follows: The two states are obviously diagonal with respect to the
following contribution to Ŝ2

Σ̂1 =
1
2
N̂ +

1
4

N−1∑
m,n=1

(N̂mα − N̂mβ)(N̂nα − N̂nβ) −
N−1∑
m,n=1

d†mαd
†
nβdmβdnα (9.123)

which acts only on the N − 1 closed shells (except for N̂) of the two states and has an eigenvalue
N + 0 − (N − 1) = 1 in both cases. The remaining contributions to Ŝ2 which act on partially
occupied orbitals |N〉 and |N + 1〉 are

Σ̂2 =
1
4

N+1∑
m,n=N

(N̂mα − N̂mβ)(N̂nα − N̂nβ) (9.124)



262 Many–Particle Systems

and

Σ̂3 = −
N+1∑
m,n=N

d†mαd
†
nβdmβdnα . (9.125)

Contributions to Ŝ2 acting on states |N + 2〉, |N + 3〉, . . . do not need to be considered since they
give vanishing contributions. The two states |α, β〉〉, |β, α〉〉 are, of course, also eigenstates of Σ̂2,
both with eigenvalues 1. The action of Σ̂3 on the two states produces , for example, for |α, β〉〉

Σ̂3|α, β〉〉 = −
N+1∑
m,n=N

d†mαd
†
nβdmβdnαd

†
N+1αdNβ|Φo〉 = 0 (9.126)

which follows from the occurence of squares of fermion operators which, of course, vanish. The
same result holds for |β, α〉〉. One can, hence, conclude that (9.122) is correct.
An eigenvalue ‘2’ of the spin operator Ŝ2 identifies the states |α, β〉〉 and |β, α〉〉 as triplet states.
The remaining states |α, α〉〉 and |β, β〉〉 are not eigenstates of Ŝ2, however, the linear combinations√

1/2(|α, α〉〉 ± |β, β〉〉 qualify as eigenstates, one with eigenvalue zero (singlet) and one with
eigenvalue ‘2’ (triplet).

Exercise 9.4.2: Construct four operators Ô`m

Ô`m =
∑
σ,σ′

γ`mσ,σ′d
†
N+1,σdNσ′ (9.127)

such that Ô`m|Φo〉 are triplet and singlet states, i.e., apropriate eigenstates of the operators Ŝ2 and
Ŝ3.

Example: 2N Independent Electrons on a Ring

In order to illustrate the procedure to obtain eigenstates of one-particle Hamiltonians (9.100)
outlined above we consider a system of 2N electrons which move in a set of atomic orbitals
|r〉, r = 1, 2, . . . 2N which are located on a ring. The system is assumed to posses a 2N–fold
symmetry axis and interactions connect only orbital states |r〉 → |r ± 1〉. We identify the states
|2N + 1〉 = |1〉 to avoid cumbersome summation limits, etc. The system is described by the
Hamiltonian

Ĥo = − t
2N∑
n=1
σ

(
c†n+1σcnσ + c†nσcn+1σ

)
. (9.128)

The cyclic property of the system is expressed through

c2N+1σ = c1σ ; c†2N+1σ = c†1σ (9.129)

The symmetry of the Hamiltonian suggests to choose a new representation defined through the
operators (r = 1, 2, . . . 2N)

drσ =
1√
2N

2N∑
n=1

e−irnπ/N cnσ (9.130)
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d†rσ =
1√
2N

2N∑
n=1

eirnπ/N c†nσ (9.131)

(9.130, 9.131) constitute a unitary transformation U defined through Urn = 1√
2N
eirnπ/N . The

unitarity property follows from

2N∑
r=1

eirsπ/N = 0 for 0 < s < 2N . , (9.132)

an identity which can be derived employing the well-known expression for a finite geometric series

m∑
s=1

as = a
1− am

1− a
. (9.133)

Application to the l.h.s. of (9.132) gives for r 6= 0, 2N, 4N, . . .

eisπ/N
1 − e2N isπ/N

1 − eisπ/N
(9.134)

which, indeed, vanishes for integer s. One can then express[.̧f. (9.109)]

cnσ =
1√
2N

2N∑
r=1

eirnπ/N drσ (9.135)

c†nσ =
1√
2N

2N∑
r=1

e−irnπ/N d†rσ (9.136)

and, thereby, one obtains the new representation of Ĥo

Ĥo = −t
2N∑
r,s=1
σ

t̃rs d
†
rσdsσ (9.137)

where

t̃rs = e−irπ/N
1

2N

2N∑
n=1

ei(s−r)nπ/N + eisπ/N
1

2N

2N∑
n=1

ei(r−s)nπ/N . (9.138)

Using (9.132) one can conclude

t̃rs =
(
eirπ/N + e−irπ/N

)
δrs (9.139)

from which follows

Ĥo =
2N∑
r=1
σ

(
−2t cos

rπ

N

)
d†rσdrσ . (9.140)

The Hamiltonian is now diagonal and the construction outlined above can be applied.



264 Many–Particle Systems

Exercise 9.4.3: Construct the ground state and the lowest energy excited state(s) for a sys-
tem of 2N electrons moving in a linear chain of single-electron orbitals |n〉, n = 1, 2, . . . 2N with
interactions between neighbouring (n, n± 1) orbitals and Hamiltonian

Ĥo = − t
2N−1∑
n=1
σ

(
c†n+1σcnσ + c†nσcn+1σ

)
. (9.141)

State the excitation energy ∆E.

9.5 Self-Consistent Field Theory

Observations of many-fermion systems show that properties of such systems often can be explained
to a surprisingly good degree on the basis of the assumption that the fermions move like independent
particles. The most famous example is the periodic table of the elements. The regularities of the
elements can be rationalized in terms of electrons moving in hydrogen atom-type orbitals, i.e.,
in states which are constructed according to the ‘Aufbauprinzip’ in a manner which neglects the
mutual repulsion between electrons. A similar principle accounts approximately for properties of
nuclei as described by the nuclear shell model. The properties of molecules can be understood
largely in terms of models which place electrons into so-called molecular orbitals in which the
electrons move as if they were not interacting with other electrons. Many electronic properties
of solids can be understood in a similar way, i.e., assuming that electrons move independently
from each other in so-called bands, e.g., valence bands or conduction bands. Of course, properties
of many-fermion properties deviant from such simple description is then of as much interest as
independent fermion descriptions are useful.
Since independent-particle behaviour is so universal one may wonder why the presence of particle-
particle interactions, i.e., the everpresent Coulomb repulsion between electrons, does not spoil it.
The reason is mainly connected with the fact that most many-fermion systems are found in their
ground state or removed from it through low energy excitations, and that independent-particle
behaviour surfaces mainly because it applies well to the ground state. There are two reasons
why this is so: first, if one places fermions into an independent-particle ground state of the type
(9.119) then perturbations due to pair interactions according to the Pauli exclusion principle can
only involve independent particle states not occupied in the ground state, i.e., those with energy
above that of the (energetically) highest occupied single-particle state. Hence, the fermion nature
restricts the possibility for perturbations on the system, in particular, if one can choose the single-
particle states such that the residual perturbations are small. We will present in this and the
following section a method which constructs such optimal single-fermion states. These states do
not altogether neglect the pair interactions, rather they assume that each particle experiences the
average interaction due to the fermions frozen into the ground state.
A second reason why independent-particle models can be successful is that the pair interaction for
electrons is the slowly decaying Coulomb interaction. The slow decay of the interaction makes the
motion of any one electron rather independent of the exact position of most other electrons, i.e.,
one expects that mean-field descriptions should be rather sufficient.
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In this section we will consider systems of 2N fermions described by the spin-independent Hamil-
tonian

H =
S∑

r,s=1
σ

〈r|t̂|s〉c†rσcsσ +
1
2

S∑
r,s,t,u=1
σ,σ′

〈r, s|v̂|t, u〉c†rσc
†
sσ′cuσ′ctσ (9.142)

and derive a single-particle operator which approximates this Hamiltonian.
In our formulas below we will adopt strictly the convention that indices r, s, t, u refer to the initial
basis of single-particle states |r〉, r = 1, 2, . . . , S on which (9.142) is based. We will adopt a second
set of single-particle states {|m̃〉,m = 1, 2, . . . S} the elements of which will be labelled by indices
m,n, p, q. The states |m̃〉 are connected with the states |r〉 through (m = 1, 2, . . . S)

|m̃〉 =
S∑
r=1

Urm |r〉 ; |r〉 =
S∑

m=1

U∗rm |m̃〉 . (9.143)

These S states are associated with the creation and annihilation operators

d†mσ =
S∑
r=1

Urmc
†
rσ

dmσ =
S∑
r=1

U∗rmcrσ (9.144)

defined as in (9.108). The states |m̃〉 serve to define a reference state of the system

|Φo(U)〉 =
N∏
j=1

d†j αd
†
j β |0〉 . (9.145)

which will play a pivotal role: it is this the state in which the fermions are assumed to be moving
and relative to which the mean interactions acting on individual fermions is determined.
U = (Urm) as defined in (9.143) with r,m = 1, 2, . . . S is a unitary matrix. If one restricts
m = 1, 2, . . . N , as in in (9.145), the corresponding U = (Urm) forms an S × N matrix and,
naturally, is not unitary.

Mean-Field Potential

The mean field for the reference state |Φo(U)〉 is defined in a straightforward way by averaging
the two-particle contribution to (9.142) over this reference state to turn the contribution into an
effective one-particle operator. This is done as follows:

V̂mf (|Φo(U)〉) =

1
2

S∑
r,s,t,u=1
σ,σ′

〈r, s|v̂|t, u〉
(
〈〈c†rσc

†
sσ′〉〉cuσ′ctσ + c†rσc

†
sσ′〈〈cuσ′ctσ〉〉

+ c†rσ〈〈c
†
sσ′cuσ′〉〉ctσ + c†sσ′〈〈c

†
rσctσ〉〉cuσ′

− c†rσ〈〈c
†
sσ′ctσ〉〉cuσ′ − c†sσ′〈〈c

†
rσcuσ′〉〉ctσ

)
(9.146)
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Here 〈〈 · · · 〉〉 denotes the average

〈〈O〉〉 = 〈Φo(U)| O |Φo(U)〉 . (9.147)

Since the reference state |Φo(U)〉 is defined in terms of the single-particle states |m̃〉 it is preferable
to switch the representation of (9.146) accordingly. Since the averages affect only two creation-
annihilation operators actually a mixed representation is most suitable

V̂mf (|Φo(U)〉) =
1
2

S∑
m,n,t,u=1

σ,σ′

〈m̃, ñ|v̂|t, u〉〈〈d†mσd
†
nσ′〉〉cuσ′ctσ

+
1
2

S∑
r,s,m,n=1

σ,σ′

〈r, s|v̂|m̃, ñ〉c†rσc
†
sσ′〈〈dmσ′dnσ〉〉

+
1
2

S∑
r,m,n,t=1

σ,σ′

〈r, m̃|v̂|t, ñ〉c†rσ〈〈d
†
mσ′dnσ′〉〉ctσ

+
1
2

S∑
m,s,n,u=1

σ,σ′

〈m̃, s|v̂|ñ, u〉c†sσ′〈〈d
†
mσdnσ〉〉cuσ′

− 1
2

S∑
r,m,n,u=1

σ,σ′

〈r, m̃|v̂|ñ, u〉c†rσ〈〈d
†
mσ′dnσ〉〉cuσ′

− 1
2

S∑
m,s,t,n=1

σ,σ′

〈m̃, s|v̂|t, ñ〉c†sσ′〈〈d
†
mσdnσ′〉〉ctσ (9.148)

where, for example,

〈r, m̃| v̂ |t, ñ〉 =
S∑
s,u

〈r, s| v̂ t, u〉U∗sm Uun . (9.149)

The remaining matrix elements appearing in (9.148) are obtained in a similar way by transforming
only two of the four single-particle states into the new representation.
For the averages 〈〈 · · · 〉〉 in (9.148) one obtains, by means of the rules (9.84),

〈〈d†mσd
†
nσ′〉〉 = 〈Φo(U)|d†mσd

†
nσ′ |Φo(U)〉 = 0

〈〈dmσdnσ′〉〉 = 〈Φo(U)|dmσdnσ′ |Φo(U)〉 = 0 (9.150)
〈〈d†mσdnσ′〉〉 = 〈Φo(U)|d†mσdnσ′ |Φo(U)〉

=
{
δmnδσσ′ m ≤ N
0 m > N

and, hence,

V̂mf (|Φo(U)〉) =
1
2

∑
m≤N

S∑
r,t=1
σ,σ′

〈r, m̃|v̂|t, ñ〉c†rσctσ δσ′σ′
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+
1
2

∑
m≤N

S∑
s,u=1
σ,σ′

〈m̃, s|v̂|ñ, u〉c†sσ′cuσ′ δσσ

− 1
2

∑
m≤N

S∑
r,u=1
σ

〈r, m̃|v̂|ñ, u〉c†rσcuσ

− 1
2

∑
m≤N

S∑
s,t=1
σ

〈m̃, s|v̂|t, ñ〉c†sσctσ . (9.151)

Carrying out the sum
∑

σ δσσ = 2 leads to a factor 2 for the first two terms. Exploiting the sym-
metry 〈r, s| v̂ |t, u〉 = 〈s, r| v̂ |u, t〉 and renaming dummy summation indices one can demonstrate
that term one and term two as well as term three and four are identical and one obtains

V̂mf (|Φo(U)〉) = 2
S∑

r,m,t=1
σ,σ′

〈r, m̃|v̂|t, ñ〉c†rσctσ δσ′σ′

−
S∑

r,m,u=1
σ,σ′

〈r, m̃|v̂|ñ, u〉c†rσcuσ′ (9.152)

By means of expression (9.149) for the matrix elements in the mixed representation one can state
the right hand side explicitly in terms of Urm. The one-particle operator (9.152) can then be written
in the form

V̂mf (|Φo(U)〉) =
∑
r,s
σ

〈r| v̂mf (|Φo(U)〉) |s〉 c†rσcsσ (9.153)

where

〈r| v̂mf (|Φo(U)〉) |s〉 =
∑
t,u

( 2 〈r, t| v̂ |s, u〉 − 〈r, t| v̂ |u, s〉 )

∑
m≤N

U∗tmUum

 (9.154)

The mean field approximation replaces then the Hamiltonian (9.142) by Ĥmf (U) defined through

Ĥmf (U) =
S∑

r,s=1
σ

(
〈r|t̂|s〉 + 〈r| v̂mf (|Φo(U)〉) |s〉

)
c†rσcsσ (9.155)

which is a function of the S ×N–matrix

U = (Urm)r=1,2,...S;m=1,2,...N (9.156)

which defines the reference state |Φo(U)〉. The mean field approximation, as introduced here, leaves
open the question how the reference state should be chosen. At this point this state is completely
arbitrary. We will address now a proper choice of the reference state.
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9.6 Self-Consistent Field Algorithm

The Self-Consistent Field (SCF) approximation, often also referred to as the Hartree-Fock approx-
imation, is based on the mean field approach and provides an algorithm to construct a reference
state |Φo(U)〉 for a 2N fermion system described by a spin-independent Hamiltonian (9.142). The
procedure determines the reference state as the ground state of the independent-particle Hamilto-
nian (9.155) following the method outlined in Section 9.4. This procedure, however, can achieve
this goal only iteratively, assuming in an intial step (1) a properly chosen reference state, deter-
mining in a step (2) the corresponding mean field Hamiltonian (9.155), and obtaining in a step (3)
the ground state of this one-particle Hamiltonian according to the construction in Section 9.4 and
defining this as the new reference state; steps (2) and (3) are being repeated M times until the
procedure converges, i.e., the reference state resulting from step 2M + 1 (within numerical error)
is equal to the reference state resulting from step 2M − 1. The state thus determined is referred to
as the self-consistent independent-particle ground state, the independent-particle nature stemming
from the fact that the functional form of the ground state, i.e., (9.119, 9.145), is exact only for an
independent-particle Hamiltonian. We will argue below that the self-consistent field ground state,
under conditions which often are realized, is the lowest energy independent-particle ground state
one can construct.
Let us state now the construction of the self-consistent field ground state in more detail.

SCF-Algorithm, Step 1: Choosing an Initial Reference State

One defines the Hamiltonian

Ĥ
(1)
mf =

S∑
r,s=1
σ

〈r|t̂|s〉c†rσcsσ (9.157)

and determines the associated diagonal representation defined through
S∑
s=1

〈r|t̂|s〉U (1)
sm = ε(1)

m U (1)
rm , r = 1, 2, . . . S , m = 1, 2, . . . S . (9.158)

where the labels m are ordered to obey the condition

ε(1)
m < ε(1)

n for m < n . (9.159)

One defines the reference state |Φo(U(1))〉 using the definition (9.145), i.e. U(1) is the S×N–matrix
of the first N column vectors of U (1)

rm , r = 1, 2, . . . S , m = 1, 2, . . . S.

SCF-Algorithm, Step 2M, M = 1, 2, . . .: Determine Mean Field Hamiltonian

In this step the mean field Hamiltonian

Ĥ
(M)
mf =

S∑
r,s=1
σ

(
〈r|t̂|s〉 + 〈r| v̂mf

(
|Φo(U(M))〉

)
|s〉
)
c†rσcsσ

=
S∑

r,s=1
σ

〈r|ĥ(M)
mf |s〉 c

†
rσcsσ (9.160)
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is evaluated, i.e., the S × S–matrix

〈r|h(M)
mf |s〉 = 〈r|t̂|s〉 +

S∑
t,u=1

( 2〈r, t| v̂ |s, u〉 − 〈r, t| v̂ |u, s〉 )

(
N∑
m=1

U
∗(M)
tm U (M)

um

)
(9.161)

is calculated.

SCF-Algorithm, Step 2M + 1, M = 1, 2, . . .: Diagonalize Mean Field Hamiltonian

In this step the eigenvalue problem

S∑
s=1

〈r|h(M)
mf |s〉U

(M+1)
sm = ε(M+1)

m U (M+1)
rm , r = 1, 2, . . . S , m = 1, 2, . . . S (9.162)

is solved adopting an ordering of the labels m which obeys the condition

ε(M+1)
m < ε(M+1)

n for m < n . (9.163)

The result yields the reference state |Φo(U(M+1))〉 using the definition (9.145), i.e. U(M+1) is the
S ×N–matrix of the first N column vectors of U (M+1)

rm , r = 1, 2, . . . S , m = 1, 2, . . . S.

SCF-Algorithm: Continuation and Convergence Condition

When step 2M+1 is completed, step 2M+2 is carried out, etc. The procedure is continued until it
is detected that the one-particle density differences |

∑N
m=1 U

∗(M+1)
rm U

(M+1)
um −

∑N
m=1 U

∗(M)
rm U

(M)
um |

for r, s = 1, 2 . . . S do not exceed a preset threshold, indicating that the state converged.

Exercise 9.6.1: Let P̂rs be the one-particle operator with the generic operator p̂rs = |r〉〈s|, i.e.,

〈t, σ|p̂rs|u, σ′〉 = δtrδsuδσσ′ . (9.164)

(a) Determine the expectation value of P̂rs for the state as defined in (9.145).
(b) How can the expectation values of the operator P̂rr be interpreted.
(c) Show that any spin-independent one-particle operator

F̂ =
S∑

r,s=1
σ

〈r|f̂ |s〉 c†rσcsσ (9.165)

can be written

F̂ =
S∑

r,s=1

〈r|f̂ |s〉 P̂rs (9.166)

(d) Define a similar two-particle operator P̂rstu.
(e) Consider the creation operators

g†qσ =
N∑
m=1

Vmq d
†
mσ (9.167)
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which are connected with d†mσ through a unitary N × N–matrix (Vqm). Note that this is not an
S × S–matrix! Show that the reference state defined through

N∏
q=1

g†qαg
†
qβ |0〉 (9.168)

has the same expectation values for P̂rs and P̂rstu as the reference state (9.145).
(f) Can one distinguish the states (9.145) and (9.168) through a physical observation?
Exercise 9.6.2: Determine the SCF ground state and its energy expectation value for a system
of two particles described through the Hamiltonian (S = 2)

H =
∑
σ

(
ε ( c†1σc1σ + c†2σc2σ ) − t ( c†1σc2σ + c†2σc1σ)

)
+ 2v ( c†1αc1αc

†
1βc1β + c†2αc2αc

†
2βc2β ) + v

∑
σ,σ′

( c†1σc1σc
†
2σ′c2σ′

+ c†2σc2σc
†
1σ′c1σ′ ) . (9.169)

9.7 Properties of the SCF Ground State

We want to investigate now the properties of the SCF ground state. We begin by summarizing the
result of the SCF algorithm.
We denote the representation which results from the SCF algorithm after its convergence as follows:

|m̃〉 =
S∑
r=1

U (SCF )
rm |r〉 . (9.170)

Here |r〉, r = 1, 2, . . . S denotes the initial single-particle states and
(
U

(SCF )
rm

)
is the unitary S×S–

transformation matrix obtained in (9.162,9.163). For this representation holds

〈m̃| t̂ |ñ〉 +
N∑
m′

(
2〈m̃m̃′| v̂ |ñm̃′〉 − 〈m̃m̃′| v̂ |m̃′ñ〉

)
= ε(SCF )

m δmn (9.171)

where the convention (9.163), i.e.,

ε(SCF )
m < ε(SCF )

n for m < n (9.172)

is obeyed. Equation (9.171) implies that for the mean field Hamiltonian holds

Ĥmf (U(SCF )) =
S∑

m=1
σ

ε(SCF )
m d†mσdmσ , (9.173)
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i.e., the mean-field Hamiltonian is diagonal in the SCF representation. Finally, the SCF ground
state is

‖SCF 〉 =
N∏
m=1

d†mαd
†
mβ|0〉 . (9.174)

The first property we consider is the total spin character of ‖SCF 〉. Since this state is composed
only of closed shells one can conclude following Section 9.4 that ‖SCF 〉 is a total singlet state.
We like to determine next the energy expectation value of ‖SCF 〉. Within the mean field approxi-
mation as described by (9.173) holds

〈SCF‖Ĥmf (U(SCF ))‖SCF 〉 = 2
N∑
r=1

ε(SCF )
m . (9.175)

However, one can also determine the expectation value of ‖SCF 〉 for the Hamiltonian (9.142), i.e.,
〈SCF‖Ĥ‖SCF 〉. Employing expressions (9.84) and (9.93) for the expectation values (diagonal
elements) of the one-particle and two-particle part of the Hamiltonian (9.142), exploiting the spin-
independence of (9.142), one obtains

〈SCF‖Ĥ‖SCF 〉 = (9.176)

2
N∑
m=1

〈m̃|t̂|m̃〉 +
N∑

m,m′=1

(
2〈m̃m̃′| v̂ |m̃m̃′〉 − 〈m̃m̃′| v̂ |m̃′m̃〉

)
.

Comparision with (9.171) yields

〈SCF‖Ĥ‖SCF 〉 = (9.177)

2
N∑
m=1

ε(SCF )
m −

N∑
m,m′=1

(
2〈m̃m̃′| v̂ |m̃m̃′〉 − 〈m̃m̃′| v̂ |m̃′m̃〉

)
.

The second term originates from the fact that in the mean field approximation one assumes that each
of the fermions is subject to an average pair interaction involving a 2N -particle reference state.
Since the system under consideration has only 2N particles altogether, the mean field potential
V̂mf (|Φo(U)〉) defined in (9.146) counts a particle twice, once as a member of the ground state,
and once as a probe particle being subject to the mean pair interaction. This over-counting leads
to the correction term in (9.177).

Exercise 9.7.1: Reformulate (9.171) in terms of matrix elements 〈r|t̂|s〉, 〈r, s|v̂|t, u〉 and U
(SCF )
rm .

Show that the resulting eigenvalue problem of the type (9.162) is non-linear in U
(SCF )
rm .

Exercise 9.7.2: Derive (9.177).
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9.8 Mean Field Theory for Macroscopic Systems

The SCF algorithm has been developed in Sections 9.4–9.7 for finite systems. In the present Section
we want to adapt the algorithm to systems containing a macroscopically large number of fermions.
We consider as an example the Hubbard model of an infinite linear lattice and apply the model to
describe magnetic instabilities in metals.

The Hubbard Model

The Hubbard model serves today the important role as the simplest manifestation of strongly
correlated electron systems which arise in many instances in molecular and solid state physics, for
example, in the two-dimensional copper oxide lattices of high temperature superconductors. The
one-dimensional Hubbard model is described by the Hamiltonian

Ĥ = −t
∑
rσ

(
c†r+1,σcrσ + c†rσcr+1,σ

)
+
v

2

∑
r
σσ′

c†rσc
†
rσ′crσ′crσ . (9.178)

Here the index r, r ∈ Z, describes the sites of a linear lattice. We assume that there are altogether
S = 2N0 lattice sites, labeled r = −N0 +1, . . . , N0 which are populated by 2N electrons (we choose
an even number of electrons for convenience). Both N0 and N are macroscopically large numbers.
The operator c†rσ (crσ) creates (destroys) an electron with spin σ (σ = α, β for ‘up’ and ‘down’
spins, respectively) in state |r〉 at lattice site r. t describes the coupling of state |r〉 to states
|r±1〉 at the two neighboring lattice sites; t is assumed to be a positive, real number. According to
(9.178) v contributes only in case that two electrons occupy the same lattice site, i.e., v represents
the ‘on-site’ Coulomb repulsion.
The first term on the r.h.s. of (9.178), is identical to that of the independent–particle Hamiltonian
H0 (9.128), i.e.,

Ĥo = −t
∑
rσ

(
c†r+1,σcrσ + c†rσcr+1,σ

)
. (9.179)

The potential energy term, i.e., the second term on ther.h.s. of (9.178), in the usual two–particle
operator form, reads

V̂ =
1
2

∑
r,s,t,u
σσ′

〈r, s|v̂|t, u〉 c†rσc
†
sσ′cuσ′ctσ . (9.180)

where
〈r, s|v̂|u, t〉 = v δruδstδrs . (9.181)

The Hubbard model, as stated through Hamiltonian (9.178), is characterized through the parame-
ters t, v of the Hubbard Hamiltonian (9.178) and through the so-called filling factor n

n =
2N
S

=
N

N0
. (9.182)

n can assume values 0 ≤ n ≤ 2. The case n = 1 is termed the half filled band case, referring to the
fact that in this case the band of single particle energies (9.192) derived below is filled half.
In spite of the simplicity of its Hamiltonian the Hubbard model, except in case of one-dimensional
systems, cannot be solved exactly. Due to the lack of an exact solution in dimensions higher than
one, approximation schemes like the self-consistent field approximation play an important role.
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Since we are dealing presently with a macroscopic system, boundary effects are assumed to be
negligible, a freedom which we employ to adopt so-called periodic boundary conditions like those
for the example “2N independent electrons on a ring” on page 262. Accordingly, we identify
|r + N0〉 = |r〉 and later let N0 go to infinity.

SCF Ground State for the Hubbard Model

We seek to determine the ground state of the Hubbard model stated by (9.178) within the framework
of the self-consistent field theory. For this purpose we apply the SCF theory presented in Section 9.6.
Accordingly, we assume that the SCF ground state is given by (9.174), i.e., by

||SCF 〉 =
N−1∏
m=0

d†mαd
†
mβ|0〉 , (9.183)

where the operators d†mσ are related to the original creation operators c†rσ through the unitary
transformation U defined in (9.144). The self-consistent field Hamiltonian Ĥmf which corresponds
to the Hubbard Hamiltonian (9.178) can be determined by applying (9.155, 9.154). Using (9.181,
9.179), one obtains for the mean field Hamiltonian

Ĥmf (U) = Ĥ0 + v
∑
r,σ

(
N−1∑
m=0

U∗rmUrm

)
c†rσcrσ . (9.184)

We are now ready to apply step 1 of the SCF algorithm and diagonalize term Ĥ0. This task has
been solved already on page 262. The unitary transformation which diagonalizes Ĥ0, in fact, is

Urm =
1√
2N0

exp (irmπ/N0) . (9.185)

According to (9.140), the operator Ĥ0 can be re-written in the diagonal form

Ĥ0 =
N0∑

m=−N0+1
σ

εm d†mσdmσ (9.186)

where
εm = −2t cos

mπ

N0
. (9.187)

The energy levels are labeled such that ε0 < ε±1 < . . . < ε±(N0−1) < εN0 holds as can be readily
verified.
We can now embark on step 2 of the SCF algorithm. Inserting (9.185) into (9.184) and using
(9.186) one obtains for the mean field Hamiltonian

Ĥ
(2)
mf =

N0∑
m=−N0+1

σ

εm d†mσdmσ + v
N

2N0

∑
rσ

c†rσcrσ . (9.188)
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Expressing c†rσ, crσ through d†mσ, dnσ according to (9.109) and using (9.185) one can prove

∑
rσ

c†rσcrσ =
N0∑

m=−N0+1
σ

d†mσdmσ . (9.189)

and, hence,

Ĥmf = Ĥ
(2)
mf =

N0∑
m=−N0+1

σ

(
εm +

vn

2

)
d†mσdmσ (9.190)

We have used in the latter expression the definition (9.182) of the filling factor n [c.f. (9.182)].
The Hamiltonian Ĥmf , as given in (9.190), is already diagonal, i.e., the self–consistency condition
is exactly met and the SCF algorithm converged after two steps. In other words, the ground state
of the Hubbard model in the self-consistent field approximation can be determined exactly. The
energy Emf of this state can be calculated readily by using (9.177) and

〈m̃m̃′|v̂|m̃m̃′〉 = 〈m̃m̃′|v̂|m̃′m̃〉 =
v

2N0

which holds in the present case. Emf is then

Emf = 2
N−1∑
m=0

(
εm +

vn

2

)
−N vn

2
= 2

N−1∑
m=0

(
εm +

vn

4

)
(9.191)

where εm is given in (9.187). Apparently, the electrons in the present description behave like
independent particles with energies ε̄m = εm + vn

4 .
So far we have not exploited the fact that N0 and N are macroscopically large quantities. When
N0 becomes macroscopically large the single particle discrete energy levels (9.187) form a quasi-
continuous energy band. Indeed, for km = mπ/N0 holds km ∈

{
−π + 1

N0
,−π + 2

N0
. . . , π

}
and, in

the limit N0 → ∞, holds k ≡ km ∈] − π, π]. The energy εm can be expressed as a function of a
continuous variable k ∈]− π, π], namely, through the so-called dispersion law

ε(k) = −2t cos k , − π ≤ k ≤ π . (9.192)

This dispersion law is presented in Fig. 9.1. One can see that −2t ≤ ε(k) ≤ 2t holds. The bottom
of the energy band corresponds to ε(0) = −2t and the width of the energy band is 4t. The ground
state of the system, i.e., the state with the lowest possible energy, can be obtained, according to the
Pauli principle, by filling up this energy band with electrons from the bottom of the band (which
corresponds to k = 0) to a maximum energy, called the Fermi energy, denoted by εF (see Fig. 9.1).

Alternative Description of the Mean Field Approximation

The state (9.183) is not the only candidate for the mean field ground state of the Hubbard model.
To demonstrate this we consider an alternative formulation of the mean field approximation for
Hamiltonian (9.178). Indeed, there exist several ways of formulating mean field approximations,
even for one and the same Hamiltonian. Usually, the results of different formulations agree quali-
tatively, but may differ quantitatively.
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Figure 9.1: The dispersion law ε(k) for independent electrons on an infinite one dimensional lattice.
εF = ε(±kF ) denotes the Fermi energy.

First, let us express the interaction term in (9.178) in terms of the occupation number opera-
tors N̂rσ = c†rσcrσ. The anti-commutation properties (9.45, 9.46) of the fermionic creation and
annihilation operators yield

c†rσc
†
rσ′crσ′crσ = −c†rσc

†
rσ′crσcrσ′ =

c†rσcrσc
†
rσ′crσ′ − c

†
rσcrσδσσ′ = N̂rσN̂rσ′ − N̂2

rσδσσ′ , (9.193)

where, in the last term on the right hand side, we have employed (9.56). Inserting (9.193) into
(9.178) and performing the summation over the spin indices results in

Ĥ = Ĥ0 + v
∑
r

N̂rαN̂rβ . (9.194)

For a given reference state, say the one given in (9.183), the operator N̂rσ can be written

N̂rσ = 〈Nrσ〉+ δ (Nrσ) , (9.195)

where 〈Nrσ〉 is the mean occupation number of the one particle state |rσ〉, i.e.,

〈Nrσ〉 = 〈SCF ||Nrσ||SCF 〉 , (9.196)

and where δ (Nrσ) = N̂rσ−〈Nrσ〉 describes the fluctuations of N̂rσ, i.e., the deviation of N̂rσ from its
mean value 〈Nrσ〉 for the corresponding reference state. The mean field approximation neglects the
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fluctuations to second order and the mean field Hamiltonian is obtained from (9.194) by dropping
all the terms which contain the fluctuations to second order. In this approximation one can express

N̂rαN̂rβ = (〈Nrα〉+ δ (Nrα)) (〈Nrβ〉+ δ (Nrβ))
≈ 〈Nrα〉〈Nrβ〉+ 〈Nrα〉δ (Nrβ) + 〈Nrβ〉δ (Nrα)

= 〈Nrα〉N̂rβ + 〈Nrβ〉N̂rα − 〈Nrα〉〈Nrβ〉 (9.197)

and the corresponding mean field Hamiltonian becomes

Ĥmf = Ĥ0 + v
∑
r

(
〈Nrα〉N̂rβ + 〈Nrβ〉N̂rα

)
− v

∑
r

〈Nrα〉〈Nrβ〉 . (9.198)

Let us assume that the ground state of the Hubbard model, in the mean field approximation, is
given by (9.183). Because of

〈Nrσ〉 = 〈c†rσcrσ〉 =
∑
m,m′

UrmU
∗
rm′〈d†mσdm′σ〉

=
N−1∑
m=0

UrmU
∗
rm =

N

2N0
=

n

2
,

holds

Ĥmf = Ĥ0 +
mv

2

∑
rσ

c†rσcrσ − 2N0
vn2

2

=
∑
mσ

(
εm +

nv

2

)
d†mσdmσ −N

vn

2
, (9.199)

which is identical to expression (9.191) for the ground state energy. Note that the procedure em-
ployed in (9.195), i.e., separating the occupation number operator into a mean value plus fluctuation
and neglecting the fluctuations in 2nd order, yields essentially the same mean field Hamiltonian
(9.198) as the one obtained by using the mean field potential (9.146).

Spin-Polarized Mean Field Ground State

We want to consider now a ground state for Ĥmf defined through

〈Nrσ〉 = nσ = const (9.200)

allowing, however, that nα and nβ assume different values. For such state the mean occupation
number nrσ is uniform at all lattice sites, but the mean number of particles with spin α can be
different from the mean number of particles with spin β. Therefore, the ground state of the system
can have a non-zero local spin and, consequently, non-vanishing magnetization. In case nα = nβ
the following construction will lead to a ground state which coincides with the non-magnetic ground
state (9.183) .
To determine a magnetic ground state we note

∑
r

N̂rσ =
∑
mm′

(∑
r

UrmU
∗
rm′

)
d†mσdm′σ =

∑
mm′

δmm′N̂mσ =
∑
m

N̂mσ ,
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from which we obtain
nσ =

1
2N0

∑
m

〈Nmσ〉 . (9.201)

The mean field Hamiltonian is then

Ĥmf =
∑
m

[
(εm + vnβ) N̂mα + (εm + vnα) N̂mβ

]
− 2N0vnαnβ . (9.202)

This Hamiltonian describes a system of non-interacting electrons with a spin-dependent dispersion
law

εmσ = εm + vn−σ . (9.203)

The actual values of nσ (σ = α, β) are determined by minimizing the energy density of the ground
state

Emf ≡
〈Hmf 〉
2N0

=
1

2N0

∑
m,σ

[εmσ〈Nmσ〉]− vnαnβ (9.204)

with respect to nα and nβ , subject to the constraint

n = nα + nβ . (9.205)

Such minimization is realized through the method of Lagrangian multipliers. According to this
method one minimizes

Ẽmf = Emf + µ (n− nα − nβ) , (9.206)

where µ is the Lagrangian multiplier considered an independent variable, i.e., Ẽmf is minimized
with respect to nα, nβ and µ. The additional term in (9.206) ascertains that condition (9.205) is
met.
At this point we exploit the fact that our system is macroscopically large, i.e., N0 ∼ 1023. In this
limit the discrete energy spectrum (9.203) is provided by the continuous function

εσ(k) = ε(k) + vn−σ , (9.207)

where ε(k) is given by (9.192). This last equation tells us that the electrons with spin α (β) are
accommodated by an energy sub–band εα(k) (εβ(k)) which is obtained from the dispersion law of
the non-interactive electrons ε(k) by an overall shift of vnβ (vnα). The ground state (corresponding
to the lowest possible energy) of the many electron system is obtained by filling these two energy
sub–bands with electrons up to the same maximum energy value, the so-called Fermi energy εF = µ
(see below), as is shown schematically in Figure 9.2a. Since εβ(k) − εα(k) = v(nα − nβ), one can
see that an uneven occupation by electrons of the two energy bands yields a relative shift of the
energy bands with respect to each other, e.g., if nα > nβ then εβ(k) > εα(k), such that the larger
nσ, the smaller is εσ(k) for a given k. Therefore, one can expect the system to lower its energy by
assuming nα 6= nβ and, hence, a spin–polarized ground state.
The values of nα and nβ are determined by minimizing the energy density (9.206). For this purpose
the sum in (9.206) needs to be evaluated. In the limit N0 → ∞ this sum can be expressed as an
integral. In fact, for any function f

(
mπ
N0

)
holds (compare with the definition of a definite integral

as the limit of the corresponding Riemann sum)

lim
N0→∞

1
2N0

N0∑
m=−N0+1

f

(
mπ

N0

)
=
∫ π

−π

dk

2π
f(k) . (9.208)
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(b) (a) 

Figure 9.2: (a) Relative position of the two energy sub–bands εα(k) and εβ(k) for ∆ = nα−nβ > 0.
The shaded areas represent the filled portions of these bands by electrons. (b) Graphical definition
of the limiting energies εα and εβ.

If the function f depends explicitly only on ε(k) one can state∫ π

−π

dk

2π
f (ε(k)) =

∫ ∞
−∞

ρ(ε)dεf(ε) (9.209)

where
ρ(ε) =

∫ π

−π

dk

2π
δ (ε− ε(k)) . (9.210)

Here δ(x) is the Dirac–delta function and ρ(ε), which is usually called the density of states, gives
the the number of available one particle states per site, unit energy and a given spin orientation of
the particle.
For a given dispersion law ε(k) the density of states ρ(ε) can be calculated by employing equation
(9.210). In our case ε(k) is given by (9.192) and, therefore, holds

ρ(ε) =
∫ π

−π

dk

2π
δ(ε+ 2t cos k) . (9.211)

In order to calculate the integral we recall the following property of the Dirac–delta function

δ [f(x)] =
∑
i

δ(x− xi)
|f ′(xi)|

, (9.212)

where xi are the simple roots of the function f(x). Since the equation f(k) ≡ 2t cos k + ε = 0 has
two simple roots, namely k1,2 = ±(π − arccos(ε/2t)), and noting

|f ′(k)| = |2t sin k| = 2t
√

1− cos2 k =
√

(2t)2 − ε2 ,

one obtains
δ(ε− ε(k)) =

δ(k + π − arccos(ε/2t)) + δ(k − π + arccos(ε/2t))√
(2t)2 − ε2

.

Inserting this last result into (9.211) and using∫ π

−π
dkδ(k ± (π − arccos(ε/2t))) = θ(2t− |ε|) ,
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where θ(x) is the step function, i.e., θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0, one arrives at the
following expression of the density of states

ρ(ε) =
θ(2t− |ε|)

π
√

(2t)2 − ε2
. (9.213)

The presence of the θ function in the above formula guaranties that the density of states vanishes
for |ε| > 2t, i.e., outside the energy band ε(k); if we assume that ε is restricted to the interval
]− 2t, 2t[ then the θ function in (9.213) can simply be replaced by 1.
We can employ the results obtained to express the ground state energy density (9.204) through an
integral expression. One obtains

Ẽmf =
∫ εα

−2t
ερ(ε)dε+

∫ εβ

−2t
ερ(ε)dε+ vnαnβ + µ(n− nα − nβ) , (9.214)

where εσ denotes the value of ε(k) which corresponds to the top of the filled portion of the energy
sub–band εσ(k) [c.f. Fig. 9.2], i.e.,

εF = εα + vnβ = εβ + vnα . (9.215)

nα and nβ in (9.214) are given by the sum (9.201). Replacing again the sum by an integral over
energy one can write

nσ =
∫ εσ

−2t
ρ(ε)dε (9.216)

Using (9.213) and carrying out the resulting integral yields

nσ =
1
π

arcsin(εσ/2t) . (9.217)

Since Ẽmf [c.f. (9.206)] depends only on continuous quantities, namely, on εα, εβ and µ, the necessary
conditions for a ground state of minimum energy are

∂Ẽmf
∂εα

= 0 ,
∂Ẽmf
∂εβ

= 0 ,
∂Ẽmf
∂µ

= 0 . (9.218)

The derivatives can be readily determined and the conditions (9.218) read

∂Ẽmf
∂εα

= εα + vnβ − µ = 0 , (9.219)

∂Ẽmf
∂εβ

= εβ + vnα − µ = 0 , (9.220)

and
∂Ẽmf
∂µ

= n− nα − nβ = 0 . (9.221)

Equations (9.219–9.221) and (9.216) allow one, in principle, to determine the unknown quantities
εα, εβ, µ, nα and nβ as a function of the parameters of the Hubbard model, namely, of t, v and n.
From (9.219, 9.220) µ can be readily obtained

µ =
1
2

(εα + εβ) +
vn

2
, (9.222)
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Comparision of (9.222) and (9.215) reveals that µ is indeed equal to the Fermi energy εF (see also
Figure 9.2b).
One still needs to determine εα and εβ . For this purpose we consider the magnetization of the mean
field ground state

∆ ≡ nα − nβ . (9.223)

∆ = 0 corresponds to the ground state (9.183) without magnetization. One can express ∆ as a
function of εα and εβ in two different ways. First, from (9.219–9.220) and (9.223 one obtains

∆ =
εα − εβ
v

, (9.224)

and second, from (9.217) and (9.223) follows

∆ =
∫ εα

εβ

ρ(ε)dε =
∫ v∆

0
ρ (εβ + ε) dε . (9.225)

Defining the function

f(∆) =
∫ v∆

0
ρ (εβ + ε) dε , (9.226)

one can obtain ∆ by solving (cf. (9.226)

∆ = f(∆) . (9.227)

Since f(0) = 0 one can infer that ∆ = 0 is always a solution (the so called paramagnetic solution)
of condition (9.227).
Equation (9.227) can be solved graphically. For this purpose one plots f(∆) versus ∆ as is shown
schematically in Figure 9.3. We assume in the following discussion that the implicit ∆ dependence
of εβ in f(∆) can be neglected.
From the definition (9.226) follows that f(∆) is a monotonically increasing function of ∆. Indeed,
the slope of f(∆) is positive for all ∆ ≥ 0, as reflected by the expression

d[f(∆)]
d∆

= vρ(εβ + ∆) =
v

π
√

(2t)2 − (v∆ + εβ)2
> 0 . (9.228)

Since the total number of states per site is finite, f(∆) converges to a maximum value as ∆ →
∆max = n. Accordingly, condition (9.227) will have a second, non trivial, so called ferromagnetic
solution, if, and only if, the slope of f(∆) at the origin is larger than 1 [c.f. Figure 9.3]. If the slope
of f(∆) at the origin is less than 1, condition (9.227) has only the trivial solution ∆ = 0.
The slope of f(∆) at the origin depends on the Hubbard model parameter v. For v above a critical
value vc, the Hubbard model has a ground state with ∆ 6= 0, i.e., a magnetic ground state. One
can determine vc by equating the slope of f(∆) at the origin to 1, i.e., through the condition
[c.f. (9.228)]

vcρ (εβ) = 1 , (9.229)

This cindition is known as the Stoner criterion and gives the critical value of v which determines
the onset of the ferromagnetic long range order. The Stoner criterion (9.229) has a wider range of
validity than one can infer from the present analysis of the Hubbard model.
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Figure 9.3: Graphical solution of the mean field equation ∆ = f(∆).

By parameterizing εα and εβ
εα = 2t sinx , εβ = 2t sin y , (9.230)

one obtains from (9.219, 9.220, 9.205) the following set of equations determining x, y and, hence,
εα, εβ

x+ y = π(n− 1) (9.231)

x− y = π
2t
v

(sinx− sin y) = π∆ . (9.232)

For a given 2t
v the values of x and y can be obtained numerically and other relevant quantities

mentioned above can be calculated.
We like to determine finally the dependence of vc

2t on the filling factor n. The corresponding
analytical expression provides the phase diagram of the ground state: when v approaches vc from
above, the magnetization ∆ of the ground state vanishes and remains zero for values v < vc.
Equation (9.232) states that x − y is proportional to ∆. Since ∆ vanishes near vc we set x = y+ δ
where δ is a small quantity. From (9.231) follows

y =
π

2
(n− 1)− δ

2
≈ π

2
(n− 1) . (9.233)

Employing the approximation sin(y + δ)− sin y ≈ δ cos y for small δ, (9.232) together with (9.233)
yield the desired expression

vc
2t

= π cos
[π

2
(n− 1)

]
. (9.234)

The resulting phase diagram of the ground state, i.e., the plot of vc2t vs. n, is presented in Figure 9.4.
As already mentioned, the ground state is characterized by the quantities (v, t, n). Accordingly, any



282 Many–Particle Systems

mean field ground state is represented by a point in the phase diagram. The magnetic nature of the
ground state of the system depends on whether the representative point lies inside the ferromagnetic
or inside the paramagnetic domain of the phase diagram.

Figure 9.4: Ground state phase diagram of the mean field Hamiltonian (9.202).

Concluding Remarks

At the end of our analysis of the mean field ground state of the one-dimensional Hubbard model,
it is natural to ask oneself if the results obtained reflect, at least qualitatively, the properties of
the real ground state of the Hubbard model. Well, the answer is no. The real ground state of
the one-dimensional Hubbard model is quite different in nature from the mean field ground state
discussed here. The reason is that the effect of quantum fluctuations, which are neglected in the
mean field theory, in one spatial dimension is very strong.
Nevertheless, the analysis presented above is not quite useless. First, once we specify a class of
possible states to which the real ground state might belong to, the method described above gives
a systematic way of singling out the state with the lowest possible energy which might be a good
candidate for the real ground state of the system. Second, since in one spatial dimension there are
many exact results available, the application of the mean field theory for these systems provides an
excellent testing opportunity of these theories by comparing their predicted results with the exact
ones. Third, the mean field theory of the one-dimensional Hubbard model can be extended in a
straightforward way to higher spatial dimensions. In general, the effect of quantum fluctuations is
getting less important as the dimensionality of the system is increased. For example, in three spatial
dimensions the theory presented above works fine in the case of the transitional–metal oxides such
as NiO and CoO. However, strong electron correlation effects , even in these materials, can lead to
serious modifications of the mean field ground state.
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In case of two spatial dimensions things are more complicated. On the one hand, the lack of exact
solutions, and on the other hand, the strong effect of quantum fluctuations of the strongly correlated
electron system described by the Hubbard Hamiltonian makes all the presently existing solutions
questionable. In fact, in the case of the copper oxide high temperature superconductors, which
involve strongly correlated quasi two-dimensional electron systems, a reliable microscopic theory is
still lacking. The available mean field theories cannot account for all the striking, unusual physical
properties of these materials.
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Chapter 10

Relativistic Quantum Mechanics

In this Chapter we will address the issue that the laws of physics must be formulated in a form
which is Lorentz–invariant, i.e., the description should not allow one to differentiate between frames
of reference which are moving relative to each other with a constant uniform velocity ~v. The
transformations beween such frames according to the Theory of Special Relativity are described
by Lorentz transformations. In case that ~v is oriented along the x1–axis, i.e., ~v = v1x̂1, these
transformations are

x1′ =
x1 − v1t√
1 −

(
v1
c

)2 , t′ =
t − v1

c2
x1√

1 −
(
v1
c

)2 , x′2 = x2 ; x′3 = x3 (10.1)

which connect space time coordinates (x1, x2, x3, t) in one frame with space time coordinates
(x′1, x

′
2, x
′
3, t
′) in another frame. Here c denotes the velocity of light. We will introduce below

Lorentz-invariant differential equations which take the place of the Schrödinger equation of a par-
ticle of mass m and charge q in an electromagnetic field [c.f. (refeq:ham2, 8.45)] described by an
electrical potential V (~r, t) and a vector potential ~A(~r, t)

i~
∂

∂t
ψ(~r, t) =

[
1

2m

(
~

i
∇ − q

c
~A(~r, t)

)2

+ qV (~r, t)
]
ψ(~r, t) (10.2)

The replacement of (10.2) by Lorentz–invariant equations will have two surprising and extremely
important consequences: some of the equations need to be formulated in a representation for which
the wave functions ψ(~r, t) are vectors of dimension larger one, the components representing the
spin attribute of particles and also representing together with a particle its anti-particle. We will
find that actually several Lorentz–invariant equations which replace (10.2) will result, any of these
equations being specific for certain classes of particles, e.g., spin–0 particles, spin–1

2 particles, etc.
As mentioned, some of the equations describe a particle together with its anti-particle. It is not
possible to uncouple the equations to describe only a single type particle without affecting nega-
tively the Lorentz invariance of the equations. Furthermore, the equations need to be interpreted
as actually describing many–particle-systems: the equivalence of mass and energy in relativistic
formulations of physics allows that energy converts into particles such that any particle described
will have ‘companions’ which assume at least a virtual existence.
Obviously, it will be necessary to begin this Chapter with an investigation of the group of Lorentz
transformations and their representation in the space of position ~r and time t. The representation

285



286 Relativistic Quantum Mechanics

in Sect. 10.1 will be extended in Sect. 10.4 to cover fields, i.e., wave functions ψ(~r, t) and vectors
with functions ψ(~r, t) as components. This will provide us with a general set of Lorentz–invariant
equations which for various particles take the place of the Schrödinger equation. Before introduc-
ing these general Lorentz–invariant field equations we will provide in Sects. 10.5, 10.7 a heuristic
derivation of the two most widely used and best known Lorentz–invariant field equations, namely
the Klein–Gordon (Sect. 10.5) and the Dirac (Sect. 10.7) equation.

10.1 Natural Representation of the Lorentz Group

In this Section we consider the natural representation of the Lorentz group L, i.e. the group of
Lorentz transformations (10.1). Rather than starting from (10.1), however, we will provide a more
basic definition of the transformations. We will find that this definition will lead us back to the
transformation law (10.1), but in a setting of representation theory methods as applied in Secti. 5
to the groups SO(3) and SU(2) of rotation transformations of space coordinates and of spin.
The elements L ∈ L act on 4–dimensional vectors of position– and time–coordinates. We will
denote these vectors as follows

xµ
def= (x0, x1, x2, x3) (10.3)

where x0 = ct describes the time coordinate and (x1, x2, x3) = ~r describes the space coordinates.
Note that the components of xµ all have the same dimension, namely that of length. We will,
henceforth, assume new units for time such that the velocity of light c becomes c = 1. This choice
implies dim(time) = dim(length).

Minkowski Space

Historically, the Lorentz transformations were formulated in a space in which the time component
of xµ was chosen as a purely imaginary number and the space components real. This space is
called the Minkowski space. The reason for this choice is that the transformations (10.1) leave the
quantity

s2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 (10.4)

invariant, i.e., for the transformed space-time–cordinates x′µ = (x′0, x′1, x′2, x′3) holds

(x0)2 − (x1)2 − (x2)2 − (x3)2 = (x′0)2 − (x′1)2 − (x′2)2 − (x′3)2 . (10.5)

One can interprete the quantity
√
−s2 as a distance in a 4–dimensional Euclidean space if one

chooses the time component purely imaginary. In such a space Lorentz transformations corre-
spond to 4-dimensional rotations. Rather than following this avenue we will introduce Lorentz
transformations within a setting which does not require real and imaginary coordinates.

The Group of Lorentz Transformations L = O(3,1)

The Lorentz transformations L describe the relationship between space-time coordinates xµ of two
reference frames which move relative to each other with uniform fixed velocity ~v and which might
be reoriented relative to each other by a rotation around a common origin. Denoting by xµ the
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coordinates in one reference frame and by x′µ the coordinates in the other reference frame, the
Lorentz transformations constitute a linear transformation which we denote by

x′
µ =

3∑
ν=0

Lµνxν . (10.6)

Here Lµν are the elements of a 4 × 4–matrix representing the Lorentz transformation. The upper
index closer to ‘L’ denotes the first index of the matrix and the lower index ν further away from
‘L’ denotes the second index. [ A more conventional notation would be Lµν , however, the latter
notation will be used for different quantities further below.] The following possibilities exist for the
positioning of the indices µ, ν = 0, 1, 2, 3:

4-vector: xµ, xµ ; 4× 4 tensor: Aµν , Aµν , Aµν , Aµν . (10.7)

The reason for the notation is two-fold. First, the notation in (10.6) allows us to introduce the
so-called summation conventon: any time the same index appears in an upper and a lower position,
summation over that index is assumed without explicitly noting it, i.e.,

yµx
µ︸ ︷︷ ︸

new

=
3∑

µ=0

yµx
µ

︸ ︷︷ ︸
old

; Aµνxν︸ ︷︷ ︸
new

=
3∑

ν=0

Aµνx
ν

︸ ︷︷ ︸
old

; AµνBν
ρ︸ ︷︷ ︸

new

=
3∑

ν=0

AµνB
ν
ρ︸ ︷︷ ︸

old

. (10.8)

The summation convention allows us to write (10.6) x′µ = Lµνx
ν . The second reason is that upper

and lower positions allow us to accomodate the expression (10.5) into scalar products. This will be
explained further below.
The Lorentz transformations are non-singular 4× 4–matrices with real coefficients, i.e., L ∈GL(4,
R), the latter set constituting a group. The Lorentz transformations form the subgroup of all
matrices which leave the expression (10.5) invariant. This condition can be written

xµgµνx
ν = x′

µ
gµνx

′ν (10.9)

where

( gµν ) =


1 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = g . (10.10)

Combining condition (10.9) and (10.6) yields

LµρgµνL
ν
σ x

ρxσ = gρσ x
ρxσ . (10.11)

Since this holds for any xµ it must be true

LµρgµνL
ν
σ = gρσ . (10.12)

This condition specifies the key property of Lorentz transformations. We will exploit this property
below to determine the general form of the Lorentz transformations. The subset of GL(4, R), the
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elements of which satisfy this condition, is called O(3,1). This set is identical with the set of all
Lorentz transformations L. We want to show now L = O(3,1) ⊂ GL(4, R) is a group.
To simplify the following proof of the key group properties we like to adopt the conventional matrix
notation for Lµν

L = (Lµν ) =


L0

0 L0
1 L0

2 L0
3

L1
0 L1

1 L1
2 L1

3

L2
0 L2

1 L2
2 L3

3

L3
0 L3

1 L3
2 L3

3

 . (10.13)

Using the definition (10.10) of g one can rewrite the invariance property (10.12)

LT gL = g . (10.14)

From this one can obtain using
g2 = 11 (10.15)

(gLTg)L = 11 and, hence, the inverse of L

L−1 = g LT g =


L0

0 −L1
0 −L2

0 −L3
0

−L0
1 L1

1 L2
1 L3

1

−L0
2 L1

2 L2
2 L3

2

−L0
3 L1

3 L2
3 L3

3

 . (10.16)

The corresponding expression for (LT )−1 is obviously

(LT )−1 = (L−1)T = g L g . (10.17)

To demonstrate the group property of O(3,1), i.e., of

O(3, 1) = {L,L ∈ GL(4,R), LTgL = g } , (10.18)

we note first that the identity matrix 11 is an element of O(3,1) since it satisfies (10.14). We consider
then L1,L2 ∈ O(3,1). For L3 = L1L2 holds

LT3 g L3 = LT2 LT1 g L1L2 = LT2 (LT1 gL1) L2 = LT2 g L2 = g , (10.19)

i.e., L3 ∈ O(3,1). One can also show that if L ∈ O(3,1), the associated inverse obeys (10.14), i.e.,
L−1 ∈ O(3,1). In fact, employing expressions (10.16, 10.17) one obtains

(L−1)T g L−1 = gLgggLTg = gLgLTg . (10.20)

Multiplying (10.14) from the right by gLT and using (10.15) one can derive LTgLgLT = LT and
multiplying this from the left by by g(LT )−1 yields

L g LT = g (10.21)

Using this result to simplify the r.h.s. of (10.20) results in the desired property

(L−1)T g L−1 = g , (10.22)

i.e., property (10.14) holds for the inverse of L. This stipulates that O(3,1) is, in fact, a group.
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Classification of Lorentz Transformations

We like to classify now the elements of L = O(3,1). For this purpose we consider first the value
of detL. A statement on this value can be made on account of property (10.14). Using detAB =
detAdetB and detAT = detA yields (detL)2 = 1 or

detL = ±1 . (10.23)

One can classify Lorentz transformations according to the value of the determinant into two distinct
classes.
A second class property follows from (10.14) which we employ in the formulation (10.12). Consid-
ering in (10.12) the case ρ = 0, σ = 0 yields(

L0
0

)2 − (
L1

0

)2 − (
L2

0

)2 − (
L3

0

)2 = 1 . (10.24)

or since (L1
0)2 + (L2

0)2 + (L3
0)2 ≥ 0 it holds (L0

0)2 ≥ 1. From this we can conclude

L0
0 ≥ 1 or L0

0 ≤ −1 , (10.25)

i.e., there exist two other distinct classes. Properties (10.23) and (10.25) can be stated as follows:
The set of all Lorentz transformations L is given as the union

L = L↑+ ∪ L
↓
+ ∪ L

↑
− ∪ L

↓
− (10.26)

where L↑+, L
↓
+, L

↑
−, L

↓
− are disjunct sets defined as follows

L↑+ = {L,L ∈ O(3, 1), detL = 1, L0
0 ≥ 1} ; (10.27)

L↓+ = {L,L ∈ O(3, 1), detL = 1, L0
0 ≤ −1} ; (10.28)

L↑− = {L,L ∈ O(3, 1), detL = −1, L0
0 ≥ 1} ; (10.29)

L↓− = {L,L ∈ O(3, 1), detL = −1, L0
0 ≤ −1} . (10.30)

It holds g ∈ L and −11 ∈ L as one can readily verify testing for property (10.14). One can also
verify that one can write

L↑− = gL↑+ = L↑+g ; (10.31)

L↓+ = −L↑+ ; (10.32)

L↓− = −gL↑+ = −L↑+g (10.33)

where we used the definition aM = {M1,∃M2,M2 ∈ M,M1 = aM2}. The above shows that
the set of proper Lorentz transformations L↑+ allows one to generate all Lorentz transformations,
except for the trivial factors g and −11. It is, hence, entirely suitable to investigate first only
Lorentz transformations in L↑+.
We start our investigation by demonstrating that L↑+ forms a group. Obviously, L↑+ contains 11.
We can also demonstrate that for A,B ∈ L↑+ holds C = AB ∈ L↑+. For this purpose we consider
the value of C0

0 = A0
µB

µ
0 =

∑3
j=1A

0
jB

j
0 + A0

0B
0

0. Schwartz’s inequality yields 3∑
j=1

A0
jB

j
0

2

≤
3∑
j=1

(
A0

j

)2 3∑
j=1

(
Bj

0

)2
. (10.34)
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From (10.12) follows (B0
0)2 −

∑3
j=1(Bj

0)2 = 1 or
∑3

j=1(Bj
0)2 = (B0

0)2 − 1. Similarly, one can
conclude from (10.21)

∑3
j=1(A0

j)2 = (A0
0)2 − 1. (10.34) provides then the estimate 3∑

j=1

A0
jB

j
0

2

≤
[

(A0
0)2 − 1

] [
(B0

0)2 − 1
]
< (A0

0)2 (B0
0)2 . (10.35)

One can conclude, therefore, |
∑3

j=1A
0
jB

j
0| < A0

0B
0

0. Since A0
0 ≥ 1 and B0

0 ≥ 1, obviously
A0

0B
0

0 ≥ 1. Using the above expression for C0
0 one can state C0

0 > 0. In fact, since the group
property of O(3,1) ascertains CTgC = g it must hold C0

0 ≥ 1.
The next group property of L↑+ to be demonstrated is the existence of the inverse. For the inverse of
any L ∈ L↑+ holds (10.16). This relationship shows (L−1)0

0 = L0
0, from which one can conclude

L−1 ∈ L↑+. We also note that the identity operator 11 has elements

11µν = δµν (10.36)

where we defined1

δµν =
{

1 for µ = ν
0 for µ 6= ν

(10.37)

It holds, 110
0 =≥ 1 and, hence, 11 ∈ L↑+. Since the associative property holds for matrix multipli-

cation we have verified that L↑+ is indeed a subgroup of SO(3,1).
L↑+ is called the subgroup of proper, orthochronous Lorentz transformations. In the following we
will consider solely this subgroup of SO(3,1).

Infinitesimal Lorentz transformations

The transformations in L↑+ have the property that they are continously connected to the identity 11,
i.e., these transformations can be parametrized such that a continuous variation of the parameters
connects any element of L↑+ with 11. This property will be exploited now in that we consider first
transformations in a small neighborhood of 11 which we parametrize by infinitesimal parameters.
We will then employ the Lie group properties to generate all transformations in L↑+.
Accordingly, we consider transformations

Lµν = δµν + εµν ; εµν small . (10.38)

For these transformations, obviously, holds L0
0 > 0 and the value of the determinant is close to

unity, i.e., if we enforce (10.14) actually L0
0 ≥ 1 and det L = 1 must hold. Property (10.14)

implies (
11 + εT

)
g ( 11 + ε ) = g (10.39)

where we have employed the matrix form ε defined as in (10.13). To order O(ε2) holds

εT g + g ε = 0 . (10.40)
1It should be noted that according to our present definition holds δµν = gµρδ

ρ
ν and, accordingly, δ00 = 1 and

δ11 = δ22 = δ33 = −1.
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Using (10.15) one can conclude
εT = −g εg (10.41)

which reads explicitly
ε00 ε10 ε20 ε30

ε01 ε11 ε21 ε31

ε02 ε12 ε22 ε32

ε03 ε13 ε23 ε33

 =


−ε00 ε01 ε02 ε03

ε10 −ε11 −ε12 −ε13

ε20 −ε21 −ε22 −ε23

ε30 −ε31 −ε32 −ε33

 . (10.42)

This relationship implies

εµµ = 0
ε0j = εj0 , j = 1, 2, 3
εjk = − εkj , j, k = 1, 2, 3 (10.43)

Inspection shows that the matrix ε has 6 independent elements and can be written

ε(ϑ1, ϑ2, ϑ3, w1, w2, w3) =


0 −w1 −w2 −w3

−w1 0 −ϑ3 ϑ2

−w2 ϑ3 0 −ϑ1

−w3 −ϑ2 ϑ1 0

 . (10.44)

This result allows us now to define six generators for the Lorentz transformations(k = 1, 2, 3)

Jk = ε(ϑk = 1, other five parameters zero) (10.45)

Kk = ε(wk = 1, other five parameters zero) . (10.46)

The generators are explicitly

J1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 ; J2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ; J3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 (10.47)

K1 =


0 −1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0

 ; K2 =


0 0 −1 0
0 0 0 0
−1 0 0 0

0 0 0 0

 ; K3 =


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0

 (10.48)

These commutators obey the following commutation relationships

[ Jk, J` ] = εk`m Jm (10.49)
[ Kk, K` ] = − εk`m Jm
[ Jk, K` ] = εk`m Km .

The operators also obey
~J · ~K = J1J1 + J2J2 + J3J3 = 0 (10.50)
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as can be readily verified.

Exercise 7.1:
Demonstrate the commutation relationships (10.49, 10.50).

The commutation relationships (10.49) define the Lie algebra associated with the Lie group L↑+.
The commutation relationships imply that the algebra of the generators Jk, Kk, k = 1, 2, 3 is closed.
Following the treatment of the rotation group SO(3) one can express the elements of L↑+ through
the exponential operators

L(~ϑ, ~w) = exp
(
~ϑ · ~J + ~w · ~K

)
; ~ϑ, ~w ∈ R3 (10.51)

where we have defined ~ϑ · ~J =
∑3

k=1 ϑkJk and ~w · ~K =
∑3

k=1wkKk. One can readily show,
following the algebra in Chapter 5, and using the relationship

Jk =
(

0 0
0 Lk

)
(10.52)

where the 3 × 3–matrices Lk are the generators of SO(3) defined in Chapter 5, that the transfor-
mations (10.51) for ~w = 0 correspond to rotations of the spatial coordinates, i.e.,

L(~ϑ, ~w = 0) =
(

0 0
0 R(~ϑ)

)
. (10.53)

Here R(~ϑ) are the 3× 3–rotation matrices constructed in Chapter 5. For the parameters ϑk of the
Lorentz transformations holds obviously

ϑk ∈ [0, 2π[ , k = 1, 2, 3 (10.54)

which, however, constitutes an overcomplete parametrization of the rotations (see Chapter 5).
We consider now the Lorentz transformations for ~ϑ = 0 which are referred to as ‘boosts’. A boost
in the x1–direction is L = exp(w1K1). To determine the explicit form of this transformation we
evaluate the exponential operator by Taylor expansion. In analogy to equation (5.35) it issufficient
to consider in the present case the 2× 2–matrix

L′ = exp
(
w1

(
0 −1
−1 0

))
=

∞∑
n=0

wn1
n!

(
0 −1
−1 0

)n
(10.55)

since

exp (w1K1) = exp

 L′
0 0
0 0

0 0
0 0

1 0
0 1

 . (10.56)

Using the idempotence property(
0 −1
−1 0

)2

=
(

1 0
0 1

)
= 11 (10.57)
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one can carry out the Taylor expansion above:

L′ =
∞∑
n=0

w2n
1

(2n)!
11 +

∞∑
n=0

w2n+1
1

(2n+ 1)!

(
0 −1
−1 0

)
(10.58)

= coshw1 11 + sinhw1

(
0 −1
−1 0

)
=
(

coshw1 −sinhw1

−sinhw1 coshw1

)
.

The conventional form (10.1) of the Lorentz transformations is obtained through the parameter
change

v1 =
sinhw1

coshw1
= tanhw1 (10.59)

Using cosh2w1 − sinh2w1 = 1 one can identify sinhw1 =
√

cosh2w1 − 1 and coshw1 =√
sinh2w1 + 1. Correspondingly, one obtains from (10.59)

v1 =

√
cosh2w1 − 1

coshw1
=

sinhw1√
sinh2w1 + 1

. (10.60)

These two equations yield

coshw1 = 1/
√

1− v2
1 ; sinhw1 = v1/

√
1− v2

1 , (10.61)

and (10.56, 10.59) can be written

exp (w1K1) =


1√

1− v2
1

−v1√
1− v2

1

0 0
−v1√
1− v2

1

1√
1− v2

1

0 0

0 0 1 0
0 0 0 1

 (10.62)

According to (10.3, 10.6, 10.51) the explicit transformation for space–time–coordinates is then

x′1 =
x1 − v1t√

1 − v2
1

, t′ =
t − v1x1√

1 − v2
1

, x′2 = x2 , x
′
3 = x3 (10.63)

which agrees with (10.1).
The range of the parameters wk can now be specified. vk defined in (10.59) for the case k = 1
corresponds to the relative velocity of two frames of reference. We expect that vk can only assume
values less than the velocity of light c which in the present units is c = 1. Accordingly, we can
state vk ∈ ]−1, 1[. This property is, in fact, consistent with (10.59). From (10.59) follows, however,
for wk

wk ∈ ]−∞, ∞[ . (10.64)

We note that the range of wk-values is not a compact set even though the range of vk-values is
compact. This property of the wk-values contrasts with the property of the parameters ϑk specifying
rotational angles which assume only values in a compact range.
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10.2 Scalars, 4–Vectors and Tensors

In this Section we define quantities according to their behaviour under Lorentz transformations.
Such quantities appear in the description of physical systems and statements about transformation
properties are often extremely helpful and usually provide important physical insight. We have
encountered examples in connection with rotational transformations, namely, scalars like r =√
x2

1 + x2
2 + x2

3, vectors like ~r = (x1, x2, x3)T , spherical harmonics Y`m(r̂), total angular momentum
states of composite systems like Y`m(`1, `2|r̂1, r̂2) and, finally, tensor operators Tkm. Some of these
quantities were actually defined with respect to representations of the rotation group in function
spaces, not in the so-called natural representation associated with the 3–dimensional Euclidean
space E3.
Presently, we have not yet defined representations of Lorentz transformations beyond the ‘natural’
representation acting in the 4–dimensional space of position– and time–coordinates. Hence, our
definition of quantities with special properties under Lorentz transformations presently is confined
to the natural representation. Nevertheless, we will encounter an impressive example of physical
properties.

Scalars The quantities with the simplest transformation behaviour are so-called scalars f ∈ R
which are invariant under transformations, i.e.,

f ′ = f . (10.65)

An example is s2 defined in (10.4), another example is the rest mass m of a particle. However, not
any physical property f ∈ R is a scalar. Counterexamples are the energy, the charge density, the
z–component x3 of a particle, the square of the electric field | ~E(~r, t)|2 or the scalar product ~r1 · ~r2

of two particle positions. We will see below how true scalars under Lorentz transformations can be
constructed.

4-Vectors The quantities with the transformation behaviour like that of the position–time vector
xµ defined in (10.3) are the so-called 4–vectors aµ. These quantites always come as four components
(a0, a1, a2, a3)T and transform according to

a′
µ = Lµνa

ν . (10.66)

Examples of 4-vectors beside xµ are the momentum 4-vector

pµ = (E, ~p) , E =
m√

1 − ~v 2
, ~p =

m~v√
1 − ~v 2

(10.67)

the transformation behaviour of which we will demonstrate further below. A third 4-vector is the
so-called current vector

Jµ = (ρ, ~J) (10.68)

where ρ(~r, t) and ~J(~r, t) are the charge density and the current density, respectively, of a system of
charges. Another example is the potential 4-vector

Aµ = (V, ~A) (10.69)

where V (~r, t) and ~A(~r, t) are the electrical and the vector potential of an electromagnetic field. The
4-vector character of Jµ and of Aµ will be demonstrated further below.
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Scalar Product 4-vectors allow one to construct scalar quantities. If aµ and bµ are 4-vectors
then

aµgµνb
ν (10.70)

is a scalar. This property follows from (10.66) together with (10.12)

a′
µ
gµνb

′ν = LµρgµνL
ν
σa

ρbσ = aρgρσb
σ (10.71)

Contravariant and Covariant 4-Vectors It is convenient to define a second class of 4-vectors.
The respective vectors aµ are associated with the 4-vectors aµ, the relationship being

aµ = gµνa
ν = (a0,−a1,−a2,−a3) (10.72)

where aν is a vector with transformation behaviour as stated in (10.66). One calls 4-vectors aµ
covariant and 4-vectors aµ contravariant. Covariant 4-vectors transform like

a′µ = gµνL
ν
ρg
ρσaσ (10.73)

where we defined
gµν = gµν . (10.74)

We like to point out that from definition (10.72) of the covariant 4-vector follows aµ = gµνaν . In
fact, one can employ the tensors gµν and gµν to raise and lower indices of Lµν as well. We do not
establish here the consistency of the ensuing notation. In any case one can express (10.73)

a′µ = Lµ
σaσ . (10.75)

Note that according to (10.17) Lµσ is the transformation inverse to Lσµ. In fact, one can express
[(L−1)T ]µν = (L−1)νµ and, accordingly, (10.17) can be written

(L−1)νµ = Lµ
ν . (10.76)

The 4-Vector ∂µ An important example of a covariant 4-vector is the differential operator

∂µ =
∂

∂xµ
=
(
∂

∂t
, ∇
)

(10.77)

The transformed differential operator will be denoted by

∂′µ
def=

∂

∂x′µ
. (10.78)

To prove the 4-vector property of ∂µ we will show that gµν∂ν transforms like a contravariant 4-
vector, i.e., gµν∂′ν = Lµρg

ρσ∂σ. We start from x′µ = Lµνx
ν . Multiplication (and summation) of

x′µ = Lµνx
ν by Lρσgρµ yields, using (10.12), gσνxν = Lρσgρµx

′µ and gµσgσν = δµν ,

xν = gνσLρσgρµx
′µ . (10.79)

This is the inverse Lorentz transformation consistent with (10.16). We have duplicated the expres-
sion for the inverse of Lµν to obtain the correct notation in terms of covariant, i.e., lower, and
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contravariant, i.e., upper, indices. (10.79) allows us to determine the connection between ∂µ and
∂′µ. Using the chain rule of differential calculus we obtain

∂′µ =
3∑

ν=0

∂xν

∂x′µ
∂

∂xν
= gνσLρσgρµ∂ν = Lµ

ν ∂ν (10.80)

Multiplication by gλµ (and summation over µ) together with gλµgρµ = δλρ yields

gλµ∂′µ = Lλσg
σν∂ν , (10.81)

i.e., ∂µ does indeed transform like a covariant vector.

d’Alembert Operator We want to construct now a scalar differential operator. For this purpose
we define first the contravariant differential operator

∂µ = gµν∂ν =
(
∂

∂t
, −∇

)
. (10.82)

Then the operator
∂µ∂

µ = ∂2
t − ∇2 (10.83)

is a scalar under Lorentz transformations. In fact, this operator is equal to the d’Alembert operator
which is known to be Lorentz-invariant.

Proof that pµ is a 4-vector We will demonstrate now that the momentum 4-vector pµ defined
in (10.67) transforms like (10.66). For this purpose we consider the scalar differential

(dτ)2 = dxµdxµ = (dt)2 − (d~r)2 (10.84)

It holds (
dτ

dt

)2

= 1 − (~v)2 (10.85)

from which follows
d

dτ
=

1√
1 − ~v 2

d

dt
. (10.86)

One can write
p0 = E =

m√
1 − ~v 2

=
m√

1 − ~v 2

dt

dt
. (10.87)

The remaining components of pµ can be written, e.g.,

p1 =
mv1

√
1 − ~v 2

=
m√

1 − ~v 2

dx1

dt
. (10.88)

One can express then the momentum vector

pµ =
m√

1 − ~v 2

dxµ

dt
= m

d

dτ
xµ . (10.89)
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The operator m d
dτ transforms like a scalar. Since xµ transforms like a contravariant 4-vector, the

r.h.s. of (10.89) alltogether transforms like a contravariant 4-vector, and, hence, pµ on the l.h.s. of
(10.89) must be a 4-vector.
The momentum 4-vector allows us to construct a scalar quantity, namely

pµpµ = pµgµνp
ν = E2 − ~p 2 (10.90)

Evaluation of the r.h.s. yields according to (10.67)

E2 − ~p 2 =
m2

1 − ~v 2
− m2~v 2

1 − ~v 2
= m2 (10.91)

or
pµpµ = m2 (10.92)

which, in fact, is a scalar. We like to rewrite the last result

E2 = ~p 2 + m2 (10.93)

or
E = ±

√
~p 2 + m2 . (10.94)

In the non-relativistic limit the rest energy m is the dominant contribution to E. Expansion in 1
m

should then be rapidly convergent. One obtains

E = ±m ± ~p 2

2m
∓ (~p 2)2

4m3
+ O

(
(~p 2)3

4m5

)
. (10.95)

This obviously describes the energy of a free particle with rest energy ±m, kinetic energy ± ~p 2

2m and
relativistic corrections.

10.3 Relativistic Electrodynamics

In the following we summarize the Lorentz-invariant formulation of electrodynamics and demon-
strate its connection to the conventional formulation as provided in Sect. 8.

Lorentz Gauge In our previous description of the electrodynamic field we had introduced the
scalar and vector potential V (~r, t) and ~A(~r, t), respectively, and had chosen the so-called Coulomb
gauge (8.12), i.e., ∇ · ~A = 0, for these potentials. This gauge is not Lorentz-invariant and we will
adopt here another gauge, namely,

∂tV (~r, t) + ∇ · ~A(~r, t) = 0 . (10.96)

The Lorentz-invariance of this gauge, the so-called Lorentz gauge, can be demonstrated readily
using the 4-vector notation (10.69) for the electrodynamic potential and the 4-vector derivative
(10.77) which allow one to express (10.96) in the form

∂µA
µ = 0 . (10.97)

We have proven already that ∂µ is a contravariant 4-vector. If we can show that Aµ defined in
(10.69) is, in fact, a contravariant 4-vector then the l.h.s. in (10.97) and, equivalently, in (10.96) is
a scalar and, hence, Lorentz-invariant. We will demonstrate now the 4-vector property of Aµ.
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Transformation Properties of Jµ and Aµ

The charge density ρ(~r, t) and current density ~J(~r, t) are known to obey the continuity property

∂tρ(~r, t) + ∇ · ~J(~r, t) = 0 (10.98)

which reflects the principle of charge conservation. This principle should hold in any frame of
reference. Equation (10.98) can be written, using (10.77) and (10.68),

∂µJ
µ(xµ) = 0 . (10.99)

Since this equation must be true in any frame of reference the right hand side must vanish in all
frames, i.e., must be a scalar. Consequently, also the l.h.s. of (10.99) must be a scalar. Since ∂µ
transforms like a covariant 4-vector, it follows that Jµ, in fact, has to transform like a contravariant
4-vector.
We want to derive now the differential equations which determine the 4-potential Aµ in the Lorentz
gauge (10.97) and, thereby, prove that Aµ is, in fact, a 4-vector. The respective equation for A0 = V
can be obtained from Eq. (8.13). Using ∇ · ∂t ~A(~r, t) = ∂t∇ · ~A(~r, t) together with (10.96), i.e.,
∇ · ~A(~r, t) = −∂tV (~r, t), one obtains

∂2
t V (~r, t) − ∇2V (~r, t) = 4πρ(~r, t) . (10.100)

Similarly, one obtains for ~A(~r, t) from (8.17) using the identity (8.18) and, according to (10.96),
∇ · ~A(~r, t) = −∂tV (~r, t)

∂2
t
~A(~r, t) − ∇2 ~A(~r, t) = 4π ~J(~r, t) . (10.101)

Combining equations (10.100, 10.101), using (10.83) and (10.69), yields

∂µ∂
µAν(xσ) = 4π Jν(xσ) . (10.102)

In this equation the r.h.s. transforms like a 4-vector. The l.h.s. must transform likewise. Since
∂µ∂

µ transforms like a scalar one can conclude that Aν(xσ) must transform like a 4-vector.

The Field Tensor

The electric and magnetic fields can be collected into an anti-symmetric 4×4 tensor

Fµν =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 . (10.103)

Alternatively, this can be stated

F k0 = −F 0k = Ek , Fmn = −εmn`B` , k, `,m, n = 1, 2, 3 (10.104)

where εmn` = εmn` is the totally anti-symmetric three-dimensional tensor defined in (5.32).
One can readily verify, using (8.6) and (8.9), that Fµν can be expressed through the potential Aµ

in (10.69) and ∂µ in (10.82) as follows

Fµν = ∂ µAν − ∂ νAµ . (10.105)
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The relationships (10.103, 10.104) establishe the transformation behaviour of ~E(~r, t) and ~B(~r, t).
In a new frame of reference holds

F ′µν = Lµα L
ν
β F

αβ (10.106)

In case that the Lorentz transformation Lµν is given by (10.62) or, equivalently, by (10.63), one
obtains

F ′µν =



0 −Ex −Ey−v1Bz√
1−v2

1

−Ez+v1By√
1−v2

1

Ex 0 −Bz−v1Ey√
1−v2

1

By+v1Ez√
1−v2

1

Ey−v1Bz√
1−v2

1

Bz−v1Ey√
1−v2

1

0 −Bx
Ez+v1By√

1−v2
1

−By+v1Ez√
1−v2

1

Bx 0


(10.107)

Comparision with

F ′µν =


0 −E′x −E′y −E′z
E′x 0 −B′z B′y
E′y B′z 0 −B′x
E′z −B′y B′x 0

 (10.108)

yields then the expressions for the transformed fields ~E′ and ~B′. The results can be put into the
more general form

~E′‖ = ~E‖ , ~E′⊥ =
~E⊥ + ~v × ~B√

1 − ~v 2
(10.109)

~B′‖ = ~B‖ , ~B′⊥ =
~B⊥ − ~v × ~E√

1 − ~v 2
(10.110)

where ~E‖, ~B‖ and ~E⊥, ~B⊥ are, respectively, the components of the fields parallel and perpendicular
to the velocity ~v which determines the Lorentz transformation. These equations show that under
Lorentz transformations electric and magnetic fields convert into one another.

Maxwell Equations in Lorentz-Invariant Form

One can express the Maxwell equations in terms of the tensor Fµν in Lorentz-invariant form. Noting

∂µF
µν = ∂µ∂

µAν − ∂µ∂
νAµ = ∂µ∂

µAν − ∂ν∂µA
µ = ∂µ∂

µAν , (10.111)

where we used (10.105) and (10.97), one can conclude from (10.102)

∂µF
µν = 4π Jν . (10.112)

One can readily prove that this equation is equivalent to the two inhomogeneous Maxwell equations
(8.1, 8.2). From the definition (10.105) of the tensor Fµν one can conclude the property

∂σFµν + ∂µF νσ + ∂νF σµ = 0 (10.113)

which can be shown to be equivalent to the two homogeneous Maxwell equations (8.3, 8.4).
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Lorentz Force

One important property of the electromagnetic field is the Lorentz force acting on charged particles
moving through the field. We want to express this force through the tensor Fµν . It holds for a
particle with 4-momentum pµ as given by (10.67) and charge q

dpµ

dτ
=

q

m
pν F

µν (10.114)

where d/dτ is given by (10.86). We want to demonstrate now that this equation is equivalent to
the equation of motion (8.5) where ~p = m~v/

√
1− v2.

To avoid confusion we will employ in the following for the energy of the particle the notation
E = m/

√
1− v2 [see (10.87)] and retain the definition ~E for the electric field. The µ = 0

component of (10.114) reads then, using (10.104),

dE
dτ

=
q

m
~p · ~E (10.115)

or with (10.86)
dE
dt

=
q

E
~p · ~E . (10.116)

From this one can conclude, employing (10.93),

1
2
dE2

dt
=

1
2
d~p 2

dt
= q ~p · ~E (10.117)

This equation follows, however, also from the equation of motion (8.5) taking the scalar product
with ~p

~p · d~p
dt

= q~p · ~E (10.118)

where we exploited the fact that according to ~p = m~v/
√

1− v2 holds ~p ‖ ~v.
For the spatial components, e.g., for µ = 1, (10.114) reads using (10.103)

dpx
dτ

=
q

m
( EEx + pyBz − pzBy ) . (10.119)

Employing again (10.86) and (10.67), i.e., E = m/
√

1− v2, yields

dpx
dt

= q
[
Ex + (~v × ~B)x

]
(10.120)

which is the x-component of the equation of motion (8.5). We have, hence, demonstrated that
(10.114) is, in fact, equivalent to (8.5). The term on the r.h.s. of (10.120) is referred to as the
Lorentz force. Equation (10.114), hence, provides an alternative description of the action of the
Lorentz force.
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10.4 Function Space Representation of Lorentz Group

In the following it will be required to decribe the transformation of wave functions under Lorentz
transformations. In this section we will investigate the transformation properties of scalar functions
ψ(xµ), ψ ∈ C∞(4). For such functions holds in the transformed frame

ψ′(Lµνxν) = ψ(xµ) (10.121)

which states that the function values ψ′(x′µ) at each point x′µ in the new frame are identical to the
function values ψ(xµ) in the old frame taken at the same space–time point xµ, i.e., taken at the pairs
of points (x′µ = Lµνx

ν , xµ). We need to emphasize that (10.121) covers solely the transformation
behaviour of scalar functions. Functions which represent 4-vectorsor other non-scalar entities, e.g.,
the charge-current density in case of Sect. 10.3 or the bi-spinor wave function of electron-positron
pairs in Sect. 10.7, obey a different transformation law.
We like to express now ψ′(x′µ) in terms of the old coordinates xµ. For this purpose one replaces
xµ in (10.121) by (L−1)µνx

ν and obtains

ψ′(xµ) = ψ((L−1)µνx
ν) . (10.122)

This result gives rise to the definition of the function space representation ρ(Lµν) of the Lorentz
group

(ρ(Lµν)ψ)(xµ) def= ψ((L−1)µνx
ν) . (10.123)

This definition corresponds closely to the function space representation (5.42) of SO(3). In analogy
to the situation for SO(3) we seek an expression for ρ(Lµν) in terms of an exponential operator and
transformation parameters ~ϑ, ~w, i.e., we seek an expression which corresponds to (10.51) for the
natural representation of the Lorentz group. The resulting expression should be a generalization of
the function space representation (5.48) of SO(3), in as far as SO(3,1) is a generalization (rotation
+ boosts) of the group SO(3). We will denote the intended representation by

L(~ϑ, ~w) def= ρ(Lµν(~ϑ, ~w)) = ρ
(
e
~ϑ· ~J + ~w· ~K

)
(10.124)

which we present in the form

L(~ϑ, ~w) = exp
(
~ϑ · ~J + ~w · ~K

)
. (10.125)

In this expression ~J = (J1,J2,J3) and ~K = (K1,K2,K3) are the generators of L(~ϑ, ~w) which
correspond to the generators Jk and Kk in (10.47), and which can be constructed following the
procedure adopted for the function space representation of SO(3). However, in the present case we
exclude the factor ‘−i’ [cf. (5.48) and (10.125)]. Accordingly, one can evaluate Jk as follows

Jk = lim
ϑk→0

1
ϑ1

[
ρ
(
eϑkJk

)
− 11

]
(10.126)

and Kk
Kk = lim

wk→0

1
w1

[
ρ
(
ewkKk

)
− 11

]
. (10.127)
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One obtains

J1 = x3∂2 − x2∂3 ; K1 = x0∂1 + x1∂0

J2 = x1∂3 − x3∂1 ; K2 = x0∂2 + x2∂0

J3 = x2∂1 − x1∂2 ; K3 = x0∂3 + x3∂0 (10.128)

which we like to demonstrate for J1 and K1.
In order to evaluate (10.126) for J1 we consider first

(
eϑ1J1

)−1
= e−ϑ1J1 =


1 0 0 0
0 1 0 0
0 0 cosϑ1 sinϑ1

0 0 −sinϑ1 cosϑ1

 (10.129)

which yields for small ϑ1

ρ
(
eϑ1J1

)
ψ(xµ) = ψ(x0, x1, cosϑ1 x

2 + sinϑ1 x
3, −sinϑ1 x

2 + cosϑ1 x
3)

= ψ(xµ) + ϑ1 (x3∂2 − x2∂3)ψ(xµ) + O(ϑ2
1) . (10.130)

This result, obviously, reproduces the expression for J1 in (10.128).
One can determine similarly K1 starting from

(
ew1K1

)−1
= e−w1K1 =


coshw1 sinhw1 0 0
sinhw1 coshw1 0 0

0 0 1 0
0 0 0 1

 . (10.131)

This yields for small w1

ρ
(
ew1K1

)
ψ(xµ) = ψ(coshw1 x

0 + sinhw1 x
1, sinhw1 x

0 + coshw1 x
1, x2, x3)

= ψ(xµ) + w1 (x1∂0 + x0∂1)ψ(xµ) + O(w2
1) (10.132)

and, obviously, the expression for K1 in (10.126).
The generators ~J , ~K obey the same Lie algebra (10.49) as the generators of the natural represen-
tation, i.e.

[Jk, J` ] = εk`m Jm
[Kk, K` ] = − εk`m Jm
[Jk, K` ] = εk`mKm . (10.133)

We demonstrate this for three cases, namely [J1,J2] = J3, [K1,K2] = −J3, and [J1,K2] = K3:

[J1, J2 ] = [x3∂2 − x2∂3, x
1∂3 − x3∂1]

= [x3∂2, x
1∂3] − [x2∂3, x

3∂1]
= −x1∂2 + x2∂1 = J3 , (10.134)
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[K1, K2 ] = [x0∂1 + x1∂0, x
0∂2 + x2∂0]

= [x0∂1, x
2∂0] − [x1∂0, x

0∂2]
= −x2∂1 + x1∂2 = −J3 , (10.135)

[J1, K2 ] = [x3∂2 − x2∂3, x
0∂2 + x2∂0]

= [x3∂2, x
2∂0] − [x2∂3, x

0∂2]
= x3∂0 + x0∂3 = K3 . (10.136)

One-Dimensional Function Space Representation

The exponential operator (10.125) in the case of a one-dimensional transformation of the type

L(w3) = exp
(
w3K3

)
, (10.137)

where K3 is given in (10.128), can be simplified considerably. For this purpose one expresses K3 in
terms of hyperbolic coordinates R,Ω which are connected with x0, x3 as follows

x0 = R coshΩ , x3 = R sinhΩ (10.138)

a relationship which can also be stated

R =
{

+
√

(x0)2 − (x3)2 if x0 ≥ 0
−
√

(x0)2 − (x3)2 if x0 < 0
(10.139)

and

tanhΩ =
x3

x0
, cothΩ =

x0

x3
. (10.140)

The transformation to hyperbolic coordinates closely resembles the transformation to radial coordi-
nates for the generators of SO(3) in the function space representation [cf. Eqs. (5.85-5.87)]. In both
cases the radial coordinate is the quantity conserved under the transformations, i.e.,

√
x2

1 + x2
2 + x2

3

in the case of SO(3) and
√

(x0)2 − (x3)2 in case of transformation (10.137).
In the following we consider solely the case x0 ≥ 0. The relationships (10.139, 10.140) allow one to
express the derivatives ∂0, ∂3 in terms of ∂

∂R ,
∂
∂Ω . We note

∂R

∂x0
=

x0

R
,

∂R

∂x3
= −x

0

R
(10.141)

and

∂Ω
∂x3

=
∂Ω

∂tanhΩ
∂tanhΩ
∂x3

= cosh2Ω
1
x0

∂Ω
∂x0

=
∂Ω

∂cothΩ
∂cothΩ
∂x0

= − sinh2Ω
1
x3

. (10.142)

The chain rule yields then

∂0 =
∂R

∂x0

∂

∂R
+

∂Ω
∂x0

∂

∂Ω
=

x0

R

∂

∂R
− sinh2Ω

1
x3

∂

∂Ω

∂3 =
∂R

∂x3

∂

∂R
+

∂Ω
∂x3

∂

∂Ω
= −x

3

R

∂

∂R
+ cosh2Ω

1
x0

∂

∂Ω
. (10.143)
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Inserting these results into the definition of K3 in (10.128) yields

K3 = x0∂3 + x3∂0 =
∂

∂Ω
. (10.144)

The action of the exponential operator (10.137) on a function f(Ω) ∈ C∞(1) is then that of a shift
operator

L(w3) f(Ω) = exp
(
w3 ∂

∂Ω

)
f(Ω) = f(Ω + w3) . (10.145)

10.5 Klein–Gordon Equation

In the following Sections we will provide a heuristic derivation of the two most widely used quan-
tum mechanical descriptions in the relativistic regime, namely the Klein–Gordon and the Dirac
equations. We will provide a ‘derivation’ of these two equations which stem from the historical de-
velopment of relativistic quantum mechanics. The historic route to these two equations, however,
is not very insightful, but certainly is short and, therefore, extremely useful. Further below we will
provide a more systematic, representation theoretic treatment.

Free Particle Case

A quantum mechanical description of a relativistic free particle results from applying the correspon-
dence principle, which allows one to replace classical observables by quantum mechanical operators
acting on wave functions. In the position representation the correspondence principle states

E =⇒ Ê = −~
i
∂t

~p =⇒ ~̂p =
~

i
∇ (10.146)

which, in 4-vector notation reads

pµ =⇒ p̂µ = i~(∂t,∇) = i~∂µ ; pµ =⇒ p̂µ = i(∂t,−∇) = i~∂µ . (10.147)

Applying the correspondence principle to (10.92) one obtains the wave equation

− ~2∂µ∂µ ψ(xν) = m2 ψ(xν) (10.148)

or (
~

2 ∂µ∂µ + m2
)
ψ(xν) = 0 . (10.149)

where ψ(xµ) is a scalar, complex-valued function. The latter property implies that upon change of
reference frame ψ(xµ) transforms according to (10.121, 10.122). The partial differential equation
(10.151) is called the Klein-Gordon equation.
In the following we will employ so-called natural units ~ = c = 1. In these units the quantities
energy, momentum, mass, (length)−1, and (time)−1 all have the same dimension. In natural units
the Klein–Gordon equation (10.151) reads(

∂µ∂
µ + m2

)
ψ(xµ) = 0 (10.150)
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or (
∂2
t − ∇2 + m2

)
ψ(xµ) = 0 . (10.151)

One can notice immeadiately that (10.150) is invariant under Lorentz transformations. This follows
from the fact that ∂µ∂µ and m2 are scalars, and that (as postulated) ψ(xµ) is a scalar. Under
Lorentz transformations the free particle Klein–Gordon equation (10.150) becomes(

∂′µ∂
′µ + m2

)
ψ′(x′µ) = 0 (10.152)

which has the same form as the Klein–Gordon equation in the original frame.

Current 4-Vector Associated with the Klein-Gordon Equation

As is well-known the Schrödinger equation of a free particle

i∂tψ(~r, t) = − 1
2m
∇2 ψ(~r, t) (10.153)

is associated with a conservation law for particle probability

∂tρS(~r, t) + ∇ ·~jS(~r, t) = 0 (10.154)

where
ρS(~r, t) = ψ∗(~r, t)ψ(~r, t) (10.155)

describes the positive definite probability to detect a particle at position ~r at time t and where

~jS(~r, t) =
1

2mi
[ψ∗(~r, t)∇ψ(~r, t) − ψ(~r, t)∇ψ∗(~r, t) ] (10.156)

describes the current density connected with motion of the particle probability distribution. To
derive this conservation law one rewrites the Schrödinger equation in the form (i∂t − 1

2m∇
2)ψ = 0

and considers

Im
[
ψ∗
(
i∂t −

1
2m
∇2

)
ψ

]
= 0 (10.157)

which is equivalent to (10.154).
In order to obtain the conservation law connected with the Klein–Gordon equation (10.150) one
considers

Im
[
ψ∗
(
∂µ∂

µ + m2
)
ψ
]

= 0 (10.158)

which yields

ψ∗∂2
t ψ − ψ∂2

t ψ
∗ − ψ∗∇2ψ + ψ∇2ψ∗ =

∂t (ψ∗∂tψ − ψ∂tψ
∗) + ∇ · (ψ∇ψ∗ − ψ∗∇ψ) = 0 (10.159)

which corresponds to
∂tρKG(~r, t) + ∇ ·~jKG(~r, t) = 0 (10.160)

where

ρKG(~r, t) =
i

2m
(ψ∗(~r, t)∂tψ(~r, t) − ψ(~r, t)∂tψ∗(~r, t) )

~jKG(~r, t) =
1

2mi
(ψ∗(~r, t)∇ψ(~r, t) − ψ(~r, t)∇ψ∗(~r, t) ) . (10.161)
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This conservation law differs in one important aspect from that of the Schrödinger equation (10.154),
namely, in that the expression for ρKG is not positive definite. When the Klein-Gordon equation
had been initially suggested this lack of positive definiteness worried physicists to a degree that the
Klein–Gordon equation was rejected and the search for a Lorentz–invariant quantum mechanical
wave equation continued. Today, the Klein-Gordon equation is considered as a suitable equation
to describe spin–0 particles, for example pions. The proper interpretation of ρKG(~r, t), it had been
realized later, is actually that of a charge density, not of particle probability.

Solution of the Free Particle Klein–Gordon Equation

Solutions of the free particle Klein–Gordon equation are

ψ(xµ) = N e−ipµx
µ

= N ei(~p0·~r−Eot) . (10.162)

Inserting this into the Klein–Gordon equation (10.151) yields(
E2
o − ~p 2

0 − m2
)
ψ(~r, t) = 0 (10.163)

which results in the expected [see (10.93] dispersion relationship connecting E0, ~p0, m

E2
0 = m2 + ~p 2

o . (10.164)

The corresponding energy is
Eo(~po, ±) = ±

√
m2 + ~p 2

o (10.165)

This result together with (10.162) shows that the solutions of the free particle Klein-Gordon equa-
tion (10.150) are actually determined by ~po and by the choice of sign ±. We denote this by
summarizing the solutions as follows(

∂µ∂
µ + m2

)
ψo(~p, λ|xµ) = 0 (10.166)

ψo(~p, λ|xµ) = Nλ,p e
i(~p·~r−λEo(~p)t) Eo(~p) =

√
m2 + ~p 2

o , λ = ±

The spectrum of the Klein–Gordon equation (10.150) is a continuum of positive energies E ≥ m,
corresponding to λ = +, and of negative energies E ≤ −m, corresponding to λ = −. The density
ρKG(~p, λ) associated with the corresponding wave functions ψo(~p, λ|xµ) according to (10.161) and
(10.166) is

ρKG(~p, λ) = λ
Eo(~p)
m

ψ∗o(~p, λ|xµ)ψo(~p, λ|xµ) (10.167)

which is positive for λ = + and negative for λ = −. The proper interpretation of the two cases is
that the Klein–Gordon equation describes particles as well as anti-particles; the anti-particles carry
a charge opposite to that of the associated particles, and the density ρKG(~p, λ) actually describes
charge density rather than probability.

Generating a Solution Through Lorentz Transformation

A particle at rest, i.e., with ~p = 0, according to (??) is decribed by the ~r–independent wave
function

ψo(~p = 0, λ|xµ) = N e−iλmt , λ = ± . (10.168)
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We want to demonstrate now that the wave functions for ~p 6= 0 in (??) can be obtained through
appropriate Lorentz transformation of (10.168). For this purpose we consider the wave function for
a particle moving with momentum velocity v in the direction of the x3–axis. Such wave function
should be generated by applying the Lorentz transformation in the function space representation
(10.145) choosing p

m = sinhw3. This yields, in fact, for the wave function (10.168), using (10.138)
to replace t = x0 by hyperbolic coordinates R,Ω,

L(w3)ψo(~p = 0, λ|xµ) = exp
(
w3 ∂

∂Ω

)
N e−iλmRcoshΩ

= N e−iλmRcosh(Ω+w3) . (10.169)

The addition theorem of hyperbolic functions cosh(Ω+w3) = coshΩ coshw3 + sinhΩ sinhw3 allows
us to rewrite the exponent on the r.h.s. of (10.169)

−iλ (m coshw3 ) (R coshΩ ) − iλ (m sinhw3 ) (R sinhΩ ) . (10.170)

The coordinate transformation (10.138) and the relationships (10.61) yield for this expression

−iλ m√
1 − v2

x0 − iλ
mv√

1 − v2
x3 . (10.171)

One can interpret then for λ = +, i.e., for positive energy solutions,

p = −mv/
√

1 − v2 (10.172)

as the momentum of the particle relative to the moving frame and

m√
1 − v2

=

√
m2

1 − v2
=

√
m2 +

m2v2

1 − v2
=
√
m2 + p2 = Eo(p) (10.173)

as the energy [c.f. (10.166)] of the particle. In case of λ = + one obtains finally

L(w3)ψo(~p = 0, λ = +|xµ) = N ei(px
3−Eo(p)x0

(10.174)

which agrees with the expression given in (10.166). In case of λ = −, i.e., for negative energy
solutions, one has to interprete

p = mv/
√

1 − v2 (10.175)

as the momentum of the particle and one obtains

L(w3)ψo(~p = 0, λ = −|xµ) = N ei(px
3 +Eo(p)x0

. (10.176)

10.6 Klein–Gordon Equation for Particles in an Electromagnetic
Field

We consider now the quantum mechanical wave equation for a spin–0 particle moving in an elec-
tromagnetic field described by the 4-vector potential

Aµ(xµ) = (V (~r, t), ~A(~r, t)) ; Aµ(xµ) = (V (~r, t),− ~A(~r, t)) (10.177)
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free classical free quantum
classical particle in quantum particle in
particle field (V, ~A) particle field (V, ~A)

energy E E − qV i∂t i∂t − qV

momentum ~p ~p − q ~A ~̂p = −i∇ ~̂p − q ~A = ~̂π

4-vector pµ pµ − qAµ i∂µ i∂µ − qAµ = πµ

Table 10.1:
Coupling of a particle of charge q to an electromagnetic field described by the 4-vector potential
Aµ = (V, ~A) or Aµ = (V,− ~A). According to the so-called minimum coupling principle the presence
of the field is accounted for by altering energy, momenta for classical particles and the respective
operators for quantum mechanical particles in the manner shown. See also Eq. (10.147).

To obtain the appropriate wave equation we follow the derivation of the free particle Klein–Gordon
equation above and apply again the correspondence principle to (10.93), albeit in a form, which
couples a particle of charge q to an electromagnetic field described through the potential Aµ(xν).
According to the principle of minimal coupling [see (10.69)] one replaces the quantum mechanical
operators, i.e., i∂t and −i∇ in (10.150), according to the rules shown in Table 10.1. For this purpose
one writes the Klein-Gordon equation (10.150)(

−gµν(i∂µ)(i∂ν) + m2
)
ψ(xµ) = 0 . (10.178)

According to the replacements in Table 10.1 this becomes

gµν(i∂µ − qAµ)(i∂ν − Aν)ψ(xµ) = m2 ψ(xµ) (10.179)

which can also be written
gµνπµπν − ;m2 )ψ(xµ) = 0 . (10.180)

In terms of space-time derivatives this reads

(i∂t − qV (~r, t))2 ψ(~r, t) =
[(
−i∇ − q ~A(~r, t)

)2
+ m2

]
ψ(~r, t) . (10.181)

Non-Relativistic Limit of Free Particle Klein–Gordon Equation

In order to consider further the interpretation of the positive and negative energy solutions of the
Klein–Gordon equation one can consider the non-relativistic limit. For this purpose we split-off a
factor exp(−imt) which describes the oscillations of the wave function due to the rest energy, and
focus on the remaining part of the wave function, i.e., we define

ψ(~r, t) = e−imt Ψ(~r, t) , (10.182)

and seek an equation for Ψ(~r, t). We will also assume, in keeping withnthe non-relativistic limit,
that the mass m of the particle, i.e., it’s rest energy, is much larger than all other energy terms, in
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particular, larger than |i∂tΨ/Ψ| and alrger than qV , i.e.,

| i∂tΨ
Ψ
| << m , |q V | << m . (10.183)

The term on the l.h.s. of (10.181) can then be approximated as follows:

(i∂t − qV )2e−imtΨ = (i∂t − qV ) (me−imtΨ + e−imti∂tΨ − qV e−imtΨ)
= m2e−imtΨ + me−imti∂tΨ − qV e−imtΨ

+me−imti∂tΨ − e−imt∂2Ψ − qV e−imti∂tΨ
−me−imtqVΨ − e−imti∂tqVΨ + q2V 2e−imtΨ

≈ m2e−imtΨ − 2mqV e−imtΨ − 2me−imti∂tΨ (10.184)

where we neglected all terms which did not contain factors m. The approximation is justified on
the ground of the inequalities (10.183). The Klein-Gordon equation (10.181) reads then

i ∂t Ψ(~r, t) =

[
[~̂p − q ~A(~r, t)]2

2m
+ qV (~r, t)

]
Ψ(~r, t) (10.185)

This is, however, identical to the Schrödinger equation (10.2) of a non-relativistic spin-0 particle
moving in an electromagnetic field.

Pionic Atoms

To apply the Klein–Gordon equation (10.181) to a physical system we consider pionic atoms, i.e.,
atoms in which one or more electrons are replaced by π− mesons. This application demonstrates
that the Klein–Gordon equation describes spin zero particles, e.g., spin-0 mesons.
To ‘manufacture’ pionic atoms, π− mesons are generated through inelastic proton–proton scattering

p + p −→ p + p + π− + π+ , (10.186)

then are slowed down, filtered out of the beam and finally fall as slow pions onto elements for which
a pionic variant is to be studied. The process of π− meson capture involves the so-called Auger
effect, the binding of a negative charge (typically an electron) while at the same time a lower shell
electron is being emitted

π− + atom −→ (atom − e− + π−) + e− . (10.187)

We want to investigate in the following a description of a stationary state of a pionic atom involving
a nucleus with charge +Ze and a π− meson. A stationary state of the Klein–Gordon equation is
described by a wave function

ψ(xµ) = ϕ(~r ) e−iεt . (10.188)

Inserting this into (10.181) yields (we assume now that the Klein–Gordon equation describes a
particle with mass mπ and charge −e) for qV (~r, t) = −Ze2

r and ~A(~r, t) ≡ 0[(
ε +

Ze2

r

)2

+ ∇2 − m2
π

]
ϕ(~r ) = 0 . (10.189)
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Because of the radial symmetry of the Coulomb potential we express this equation in terms of
spherical coordinates r, θ, φ. The Laplacian is

∇2 =
1
r
∂2
r r +

1
r2sin2θ

∂θsinθ∂θ +
1

r2sin2θ
∂2
φ =

1
r
∂2
r r −

L̂2

r2
. (10.190)

With this expression and after expanding (ε + Ze2

r )2 one obtains(
d2

dr2
− L̂2 − Z2e4

r2
+

2εZe2

r
+ ε2 − m2

π

)
r φ(~r) = 0 . (10.191)

The operator L̂2 in this equation suggests to choose a solution of the type

ϕ(~r ) =
R`(r)
r

Y`m(θ, φ) (10.192)

where the functions Y`m(θ, φ) are spherical harmonics, i.e., the eigenfunctions of the operator L̂2

in (10.191)
L̂2 Y`m(θ, φ) = ` (` + 1)Y`m(θ, φ) . (10.193)

(10.192) leads then to the ordinary differential equation(
d2

dr2
− `(`+ 1) − Z2e4

r2
+

2εZe2

r
+ ε2 − m2

π

)
R`(r) = 0 . (10.194)

Bound state solutions can be obtained readily noticing that this equation is essentially identical to
that posed by the Coulomb problem (potential −Ze2

r ) for the Schrödinger equation(
d2

dr2
− `(`+ 1)

r2
+

2mπZe
2

r
+ 2mπE

)
R`(r) = 0 (10.195)

The latter problem leads to the well-known spectrum

En = − mπ (Ze2)2

2n2
;n = 1, 2, . . . ; ` = 0, 1, . . . n− 1 . (10.196)

In this expression the number n′ defined through

n′ = n − ` − 1 (10.197)

counts the number of nodes of the wave function, i.e., this quantity definitely must be an integer.
The similarity of (10.194) and (10.195) can be made complete if one determines λ such that

λ(`) (λ(`) + 1) = ` (` + 1) − Z2e4 . (10.198)

The suitable choice is

λ(`) = −1
2

+

√
(` +

1
2

)2 − Z2e4 (10.199)
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and one can write (10.194)(
d2

dr2
− λ(`) (λ(`) + 1 )

r2
+

2εZe2

r
+ ε2 − m2

π

)
R`(r) = 0 . (10.200)

The bound state solutions of this equation should correspond to ε values which can be obtained
from (10.196) if one makes the replacement

E −→ ε2 − m2
π

2mπ
, ` −→ λ(`) , e2 −→ e2 ε

mπ
. (10.201)

One obtains
ε2 − m2

π

2mπ
= −

mπ Z
2e4 ε2

m2
π

2 (n′ + λ(`) + 1)2
. (10.202)

Solving this for ε (choosing the root which renders ε ≤ mπ, i.e., which corresponds to a bound
state) yields

ε =
mπ√

1 + Z2e4

(n′+λ(`)+1 )2

; n′ = 0, 1, . . . ; ` = 0, 1, . . . . (10.203)

Using (10.197, 10.199) and defining EKG = ε results in the spectrum

EKG(n, `,m) =

mπ√
1 + Z2e4

(n− `− 1
2

+
√

(`+ 1
2

)2−Z2e4)2

n = 1, 2, . . .
` = 0, 1, . . . , n− 1
m = −`,−`+ 1, . . . ,+`

(10.204)

In order to compare this result with the spectrum of the non-relativistic hydrogen-like atom we
expand in terms of the fine structure constant e2 to order O(ε8). Introducing α = Z2e4 and
β = `+ 1

2 (10.204) reads
1√

1 + α

(n−β+
√
β2−α)2

(10.205)

and one obtains the series of approximations

1√
1 + α

(n−β+
√
β2−α)2

≈ 1√
1 + α

(n− α
2β

+O(α2))2

≈ 1√
1 + α

n2− α
β
n+O(α2)

≈ 1√
1 + α

n2 + α2

βn3 + O(α3)

≈ 1
1 + α

2n2 + α2

2βn3 − α2

8n4 + O(α3)
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≈ 1 − α

2n2
− α2

2βn3
+

α2

8n4
+

α2

4n4
+ O(α3) . (10.206)

From this results for (10.204)

EKG(n, `,m) ≈ m − mZ2e4

2n2
− mZ4e8

2n3

[
1

`+ 1
2

− 3
4n

]
+O(Z6e12) . (10.207)

Here the first term represents the rest energy, the second term the non-relativistic energy, and the
third term gives the leading relativistic correction. The latter term agrees with observations of
pionic atoms, however, it does not agree with observations of the hydrogen spectrum. The latter
spectrum shows, for example, a splitting of the six n = 2, ` = 1 states into groups of two and four
degenerate states. In order to describe electron spectra one must employ the Lorentz-invariant
wave equation for spin-1

2 particles, i.e., the Dirac equation introduced below.
It must be pointed out here that ε does not denote energy, but in the present case rather the negative
of the energy. Also, the π− meson is a pseudoscalar particle, i.e., the wave function changes sign
under reflection.

10.7 The Dirac Equation

Historically, the Klein–Gordon equation had been rejected since it did not yield a positive-definite
probability density, a feature which is connected with the 2nd order time derivative in this equation.
This derivative, in turn, arises because the Klein–Gordon equation, through the correspondence
principle, is related to the equation E2 = m2 + ~p 2 of the classical theory which involves a term
E2. A more satisfactory Lorentz–invariant wave equation, i.e., one with a positive-definite density,
would have only a first order time derivative. However, because of the equivalence of space and
time coordinates in the Minkowski space such equation necessarily can only have then first order
derivatives with respect to spatial coordinates. It should feature then a differential operator of the
type D = iγµ∂µ.

Heuristic Derivation Starting from the Klein-Gordon Equation

An obvious starting point for a Lorentz-invariant wave equation with only a first order time deriva-
tive is E = ±

√
m2 + ~p 2. Application of the correspondence principle (10.146) leads to the wave

equation
i∂t Ψ(~r, t) = ±

√
m2 − ∇2 Ψ(~r, t) . (10.208)

These two equation can be combined(
i∂t +

√
m2 − ∇2

)(
i∂t −

√
m2 − ∇2

)
Ψ(~r, t) (10.209)

which, in fact, is identical to the two equations (10.208). Equations (10.208, 10.209), however,
are unsatisfactory since expansion of the square root operator involves all powers of the Laplace
operator, but not an operator i~γ · ∇ as suggested by the principle of relativity (equivalence of
space and time). Many attempts were made by theoretical physicists to ‘linearize’ the square root
operator in (10.208, 10.209), but for a long time to no avail. Finally, Dirac succeeded. His solution
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to the problem involved an ingenious step, namely, the realization that the linearization can be
carried out only if one assumes a 4-dimensional representation of the coefficients γµ.
Initially, it was assumed that the 4-dimensional space introduced by Dirac could be linked to 4-
vectors, i.e., quantities with the transformation law (10.66). However, this was not so. Instead,
the 4-dimensionsional representation discovered by Dirac involved new physical properties, spin-1

2
and anti-particles. The discovery by Dirac, achieved through a beautiful mathematical theory,
strengthens the believe of many theoretical physicists today that the properties of physical matter
ultimately derive from a, yet to be discovered, beautiful mathematical theory and that, therefore,
one route to important discoveries in physics is the creation of new mathematical descriptions of
nature, these descriptions ultimately merging with the true theory of matter.

Properties of the Dirac Matrices

Let us now trace Dirac’s steps in achieving the linearization of the ‘square root operator’ in (10.208).
Starting point is to boldly factorize, according to (10.209), the operator of the Klein–Gordon
equation

∂µ∂
µ + m2 = −(P + m ) (P − m ) (10.210)

where
P = iγµ∂µ . (10.211)

Obviously, this would lead to the two wave equations (P − m)Ψ = 0 and (P + m)Ψ = 0 which
have a first order time derivative and, therefore, are associated with a positive-definite particle
density. We seek to identify the coefficients γµ. Inserting (10.211) into (10.210) yields

−gµν∂µ∂ν − m2 = (iγµ∂µ + m)(iγµ∂µ − m)

= −γµγν∂µ∂ν − m2 = −1
2

( γµγν∂µ∂ν + γνγµ∂ν∂µ ) − m2

= −1
2

( γµγν + γνγµ ) ∂µ∂ν − m2 (10.212)

where we have changed ‘dummy’ summation indices, exploited ∂µ∂ν = ∂ν∂µ, but did not commute
the, so far, unspecified algebraic objects γµ and γν . Comparing the left-most and the right-most
side of the equations above one can conclude the following property of γµ

γµγν + γνγµ = [ γµ, γν ]+ = 2 gµν (10.213)

We want to determine now the simplest algebraic realization of γµ. It turns out that no 4-vector of
real or complex coefficients can satisfy these conditions. In fact, the quantities γ0, γ1, γ2, γ3 can
only be realized by d×d–matrices requiring that the wave function Ψ(xµ) is actually a d–dimensional
vector of functions ψ1(xµ), ψ2(xµ), . . . ψd(xµ).
For µ = ν condition (10.213) reads

(γµ)2 =
{

1 µ = 0
−1 µ = 1, 2, 3

. (10.214)

From this follows that γ0 has real eigenvalues ±1 and γj , j = 1, 2, 3 has imaginary eigenvalues ±i.
Accordingly, one can impose the condition

γ0 is hermitian ; γj , j = 1, 2, 3 are anti-hermitian . (10.215)
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For µ 6= ν (10.213) reads
γµγν = −γνγµ , (10.216)

i.e., the γµ are anti-commuting. From this one can conclude for the determinants of γµ

det(γµγν) = det(−γνγµ) = (−1)ddet(γνγµ) = (−1)ddet(γµγν) . (10.217)

Obviously, as long as det(γµ) 6= 0 the dimension d of the square matrices γµ must be even so that
(−1)d = 1.
For d = 2 there exist only three anti-commuting matrices, namely the Pauli matrices σ1, σ2, σ3 for
which, in fact, holds (

σj
)2 = 11 ; σjσk = −σkσj for j 6= k . (10.218)

The Pauli matrices allow one, however, to construct four matrices γµ for the next possible dimension
d = 4. A proper choice is

γ0 =
(

11 0
0 −11

)
; γj =

(
0 σj

−σj 0

)
, (10.219)

Using property (10.218) of the Pauli matrices one can readily prove that condition (10.213) is
satisfied. We will argue further below that the choice f γµ, except for similarity trasnformations, is
unique.

The Dirac Equation

Altogether we have shown that the Klein–Gordon equation can be factorized formally

( iγµ∂µ + m ) ( iγµ∂µ − m ) Ψ(xµ) = 0 (10.220)

where Ψ(xµ) represents a 4-dimensional wave function, rather than a scalar wave function. From
this equation one can conclude that also the following should hold

( iγµ∂µ − m ) Ψ(xµ) = 0 (10.221)

which is the celebrated Dirac equation.

The Adjoint Dirac Equation

The adjoint equation is

Ψ†(xµ)
(
i(γµ)†

←
∂µ + m

)
= 0 (10.222)

where we have defined Ψ† = (ψ∗1, ψ
∗
2, ψ

∗
3, ψ

∗
4) and where

←
∂µ denotes the differential operator ∂µ

operating to the left side, rather than to the right side. One can readily show using the hermitian
property of the Pauli matrices (γ0)† = γ0 and (γj)† = −γj for j = 1, 2, 3 which, in fact, is implied
by (10.215). This property can also be written

(γµ)† = γ0γµγ0 . (10.223)

Inserting this into (10.222) and multiplication from the right by γ0 yields the adjoint Dirac equation

Ψ†(xµ) γ0

(
iγµ

←
∂µ + m

)
= 0 . (10.224)
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Similarity Transformations of the Dirac Equation - Chiral Representation

The Dirac equation can be subject to any similarity transformation defined through a non-singular
4× 4–matrix S. Defining a new representation of the wave function Ψ̃(xµ)

Ψ̃(xµ) = SΨ(xµ) (10.225)

leads to the ‘new’ Dirac equation

( iγ̃µ∂µ − m ) Ψ̃(xµ) = 0 (10.226)

where
γ̃µ = S γµS−1 (10.227)

A representation often adopted beside the one given by (10.222, 10.219) is the socalled chiral
representation defined through

Ψ̃(xµ) = SΨ(xµ) ; S =
1√
2

(
11 11
11 −11

)
(10.228)

and

γ̃0 =
(

0 11
11 0

)
; γ̃j =

(
0 −σj
σj 0

)
, j = 1, 2, 3 . (10.229)

The similarity transformation (10.227) leaves the algebra of the Dirac matrices unaffected and
commutation property (10.213) still holds, i.e.,

[γ̃µ, γ̃ν ]+ = 2 gµν . (10.230)

Exercise 10.7.1: Derive (refeq:Dirac-intro20a) from (10.213), (10.227).

Schrödinger Form of the Dirac Equation

Another form in which the Dirac equation is used often results from multiplying (10.221) from the
left by γ0 (

i ∂t + i ~̂α · ∇ − β̂ m
)

Ψ(~r, t) = 0 (10.231)

where~̂α has the three components αj , j = 1, 2, 3 and

β̂ =
(

11 0
0 −11

)
; α̂j =

(
0 σj

σj 0

)
, j = 1, 2, 3 . (10.232)

This form of the Dirac equation is called the Schrödinger form since it can be written in analogy
to the time-dependent Schrödinger equation

i∂tΨ(xµ) = HoΨ(xµ) ; Ho = ~̂α · ~̂p + β̂ m . (10.233)

The eigenstates and eigenvalues ofH correspond to the stationary states and energies of the particles
described by the Dirac equation.
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Clifford Algebra and Dirac Matrices

The matrices defined through

dj = iγj , j = 1, 2, 3 ; d4 = γ0 (10.234)

satisfy the anti-commutation property

djdk + dkdj =
{

2 for j = k
0 for j 6= k

(10.235)

as can be readily verified from (10.213). The associative algebra generated by d1 . . . d4 is called a
Clifford algebra C4. The three Pauli matrices also obey the property (10.235) and, hence, form a
Clifford algebra C3. The representations of Clifford algebras Cm are well established. For example,
in case of C4, a representation of the dj ’s is

d1 =
(

0 1
1 0

)⊗(
1 0
0 1

)
; d2 =

(
1 0
0 −1

)⊗(
0 1
1 0

)
d3 =

(
0 i
−i 0

)⊗(
1 0
0 1

)
; d4 =

(
1 0
0 −1

)⊗(
0 i
−i 0

)
(10.236)

where ‘⊗’ denotes the Kronecker product between matrices, i.e., the matrix elements of C = A⊗B
are Cjk,`m = Aj`Bkm.
The Clifford algebra C4 entails a subgroup G4 of elements

± dj1dj2 · · · djs , j1 < j2 < · · · < js s ≤ 4 (10.237)

which are the ordered products of the operators ±11 and d1, d2, d3, d4. Obviously, any product
of the dj ’s can be brought to the form (10.237) by means of the property (10.235). There are
(including the different signs) 32 elements in G4 which we define as follows

Γ±1 = ±11
Γ±2 = ±d1 , Γ±3 = ±d2 , Γ±4 = ±d3 , Γ±5 = ±d4

Γ±6 = ±d1d2 , Γ±7 = ±d1d3 , Γ±8 = ±d1d4 , Γ±9 = ±d2d3

Γ±10 = ±d2d4 , Γ±11 = ±d3d4

Γ±12 = ±d1d2d3 , Γ±13 = ±d1d2d4 , Γ±14 = ±d1d3d4 , Γ±15 = ±d2d3d4

Γ±16 = ±d1d2d3d4 (10.238)

These elements form a group since obviously any product of two Γr’s can be expressed in terms
of a third Γr. The representations of this group are given by a set of 32 4 × 4–matrices which
are equivalent with respect to similarity transformations. Since the Γj are hermitian the similarity
transformations are actually given in terms of unitary transformations. One can conclude then that
also any set of 4 × 4–matrices obeying (10.235) can differ only with respect to unitary similarity
transformations. This property extends then to 4× 4–matrices which obey (10.213), i.e., to Dirac
matrices.
To complete the proof in this section the reader may consult Miller ‘Symmetry Groups and their
Application’ Chapter 9.6 and R.H.Good, Rev.Mod.Phys. 27, (1955), page 187. The reader may
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also want to establish the unitary transformation which connects the Dirac matrices in the form
(10.236) with the Dirac representation (10.219).

Exercise 7.2:
Demonstrate the anti-commutation relationships (10.218) of the Pauli matrices σj .
Exercise 7.3:
Demonstrate the anti-commutation relationships (10.218) of the Dirac matrices γµ.
Exercise 7.4:
Show that from (10.214) follows that γ0 has real eigenvalues ±1 and can be represented by a
hermitian matrix, and γj , j = 1, 2, 3 has imaginary eigenvalues ±i and can be represented by an
anti-hermitian matrix.

10.8 Lorentz Invariance of the Dirac Equation

We want to show now that the Dirac equation is invariant under Lorentz transformations, i.e., the
form of the Dirac equation is identical in equivalent frames of reference, i.e., in frames connected by
Lorentz transformations. The latter transformations imply that coordinates transform according
to (10.6), i.e., x′ = Lµνx

ν , and derivatives according to (10.80). Multiplication and summation
of (10.80) by Lµρ and using (10.76) yields ∂ρ = Lνρ∂

′
ν , a result one could have also obtained by

applying the chain rule to (10.6). We can, therefore, transform coordinates and derivatives of the
Dirac equation. However, we do not know yet how to transform the 4-dimensional wave function
Ψ and the Dirac matrices γµ.

Lorentz Transformation of the Bispinor State

Actually, we will approach the proof of the Lorentz invariance of the Dirac equation by testing
if there exists a transformation of the bispinor wave function Ψ and of the Dirac matrices γµ

which together with the transformations of coordinates and derivatives leaves the form of the Dirac
equation invariant, i.e., in a moving frame should hold(

iγ′
µ
∂′µ − m

)
Ψ′(x′µ) = 0 . (10.239)

Form invariance implies that the matrices γ′µ should have the same properties as γµ, namely,
(10.213, 10.215). Except for a similarity transformation, these properties determine the matrices
γ′µ uniquely, i.e., it must hold γ′µ = γµ. Hence, in a moving frame holds(

iγµ∂′µ − m
)

Ψ′(x′µ) = 0 . (10.240)

Infinitesimal Bispinor State Transformation

We want to show now that a suitable transformation of Ψ(xµ) does, in fact, exist. The transfor-
mation is assumed to be linear and of the form

Ψ′(x′µ) = S(Lµν) Ψ(xµ) ; x′µ = Lµνx
ν (10.241)
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where S(Lµν) is a non-singular 4 × 4–matrix, the coefficients of which depend on the matrix Lµν
defining the Lorentz transformation in such a way that S(Lµν) = 11 for Lµν = δµν holds. Ob-
viously, the transformation (10.241) implies a similarity transformation SγµS−1. One can, hence,
state that the Dirac equation (10.221) upon Lorentz transformation yields(

iS(Lηξ)γµS−1(Lηξ)Lνµ ∂′ν − m
)

Ψ′(x′µ) = 0 . (10.242)

The form invariance of the Dirac equation under this transformation implies then the condition

S(Lηξ)γµS−1(Lηξ)Lνµ = γν . (10.243)

We want to determine now the 4× 4–matrix S(Lηξ) which satisfies this condition.
The proper starting point for a constructiuon of S(Lηξ) is actually (10.243) in a form in which the
Lorentz transformation in the form Lµν is on the r.h.s. of the equation. For this purpose we exploit
(10.12) in the form LνµgνσL

σ
ρ = gµρ = gρµ. Multiplication of (10.243) from the left by Lσρgσν

yields
S(Lηξ)γµS−1(Lηξ) gρµ = Lσρgσνγσ . (10.244)

from which, using gρµγµ = γρ, follows

S(Lηξ)γρS−1(Lηξ) = Lσργσ . (10.245)

One can finally conclude multiplying both sides by gρµ

S(Lηξ)γµS−1(Lηξ) = Lνµγν . (10.246)

The construction of S(Lηξ) will proceed using the avenue of infinitesimal transformations. We had
introduced in (10.38) the infinitesimal Lorentz transformations in the form Lµν = δµν + εµν where
the infinitesimal operator εµν obeyed εT = −gεg. Multiplication of this property by g from the
right yields (εg)T = − εg, i.e., εg is an anti-symmetric matrix. The elements of εg are, however,
εµρg

ρν = εµν and, hence, in the expression of the infinitesimal transformation

Lµν = gµν + εµν (10.247)

the infinitesimal matrix εµν is anti-symmetric.
The infinitesimal transformation S(Lρσ) which corresponds to (10.247) can be expanded

S(εµν) = 11− i

4
σµνε

µν (10.248)

Here σµν denote 4 × 4–matrices operating in the 4-dimensional space of the wave functions Ψ.
S(εµν) should not change its value if one replaces in its argument εµν by −ενµ. It holds then

S(εµν) = 11− i

4
σµνε

µν = S(−ενµ) = 11 +
i

4
σµνε

νµ (10.249)

from which we can conclude σµνεµν = −σµνενµ = −σνµεµν , i.e., it must hold

σµν = −σνµ . (10.250)
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One can readily show expanding SS−1 = 11 to first order in εµν that for the inverse infinitesimal
transformation holds

S−1(εµν) = 11 +
i

4
σµνε

µν (10.251)

Inserting (10.248, 10.251) into (10.246) results then in a condition for the generators σµν

− i
4

(σαβγµ − γµσαβ ) εαβ = ενµγν . (10.252)

Since six of the coefficients εαβ can be chosen independently, this condition can actually be expressed
through six independent conditions. For this purpose one needs to express formally the r.h.s. of
(10.252) also as a sum over both indices of εαβ . Furthermore, the expression on the r.h.s., like the
expression on the l.h.s., must be symmetric with respect to interchange of the indices α and β. For
this purpose we express

ενµγν =
1
2
εαµγα +

1
2
εβµγβ =

1
2
εαβ δµβγα +

1
2
εαβ δµαγβ

=
1
2
εαβ ( δµβγα − δµαγβ ) . (10.253)

Comparing this with the l.h.s. of (10.252) results in the condition for each α, β

[σαβ , γµ ]− = 2i ( δµβγα − δµαγβ ) . (10.254)

The proper σαβ must be anti-symmetric in the indices α, β and operate in the same space as the
Dirac matrices. In fact, a solution of condition (10.254) is

σαβ =
i

2
[ γα, γβ ]− (10.255)

which can be demonstrated using the properties (10.213, 10.216) of the Dirac matrices.

Exercise 7.5:
Show that the σαβ defined through (10.255) satisfy condition (10.254).

Algebra of Generators of Bispinor Transformation

We want to construct the bispinor Lorentz transformation by exponentiating the generators σµν .
For this purpose we need to verify that the algebra of the generators involving addition and mul-
tiplication is closed. For this purpose we inspect the properties of the generators in a particular
representation, namely, the chiral representation introduced above in Eqs. (10.228, 10.229). In this
representation the Dirac matrices γ̃µ = (γ̃0,−~̃γ) are

γ̃0 =
(

0 11
11 0

)
; γ̃j =

(
0 σj

−σj 0

)
, j = 1, 2, 3 . (10.256)

One can readily verify that the non-vanishing generators σ̃µν are given by (note σ̃µν = −σ̃νµ, i.e.
only six generators need to be determined)

σ̃0j =
i

2
[γ̃0, γ̃j ] =

(
−iσj 0

0 iσj

)
; σ̃jk = [γ̃j , γ̃k] = εjk`

(
σ` 0
0 σ`

)
. (10.257)
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Obviously, the algebra of these generators is closed under addition and multiplication, since both
operations convert block-diagonal operators(

A 0
0 B

)
(10.258)

again into block-diagonal operators, and since the algebra of the Pauli matrices is closed.
We can finally note that the closedness of the algebra of the generators σµν is not affected by
similarity transformations and that, therefore, any representation of the generators, in particular,
the representation (10.255) yields a closed algebra.

Finite Bispinor Transformation

The closedness of the algebra of the generators σµν defined through (10.248) allows us to write the
transformation S for any, i.e., not necessarily infinitesimal, εµν in the exponential form

S = exp
(
− i

4
σµνε

µν

)
. (10.259)

We had stated before that the transformation S is actually determined through the Lorentz trans-
formation Lµν . One should, therefore, be able to state S in terms of the same parameters ~w and
~ϑ as the Lorentz transformation in (10.51). In fact, one can express the tensor εµν through ~w and
~ϑ using εµν = εµρg

ρν and the expression (10.44)

εµν =


0 −w1 −w2 −w3

w1 0 ϑ3 −ϑ2

w2 −ϑ3 0 ϑ1

w3 ϑ2 −ϑ1 0

 (10.260)

Inserting this into (10.259) yields the desired connection between the Lorentz transformation (10.51)
and S.
In order to construct an explicit expression of S in terms of ~w and ~ϑ we employ again the chiral
representation. In this representation holds

− i
4 σ̃µνε

µν = − i
2

(σ̃01ε
01 + σ̃02ε

02 + σ̃03ε
03 + σ̃12ε

12 + σ̃13ε
13 + σ̃23ε

23)

=
1
2

(
(~w − i~ϑ) · ~σ 0

0 −(~w + i~ϑ) · ~σ

)
. (10.261)

We note that this operator is block-diagonal. Since such operator does not change its block-diagonal
form upon exponentiation the bispinor transformation (10.259) becomes in the chiral representation

S̃(~w, ~ϑ) =

(
e

1
2

(~w− i~ϑ)·~σ 0
0 e−

1
2

(~w+ i~ϑ)·~σ

)
(10.262)

This expression allows one to transform according to (10.241) bispinor wave functions from one
frame of reference into another frame of reference.
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Current 4-Vector Associated with Dirac Equation

We like to derive now an expression for the current 4-vector jµ associated with the Dirac equation
which satisfies the conservation law

∂µj
µ = 0 . (10.263)

Starting point are the Dirac equation in the form (10.221) and the adjoint Dirac equation (10.224).
Multiplying (10.221) from the left by Ψ†(xµ)γ0, (10.224) from the right by Ψ(xµ), and addition
yields

Ψ†(xµ)γ0

(
iγµ∂µ + iγµ

←
∂µ

)
Ψ(xµ) = 0 . (10.264)

The last result can be written
∂µ Ψ†(xν)γ0γµΨ(xν) = 0 , (10.265)

i.e., the conservation law (10.263) does hold, in fact, for

jµ(xµ) = (ρ, ~j) = Ψ†(xµ)γ0γµΨ(xµ) . (10.266)

The time-like component ρ of jµ

ρ(xµ) = Ψ†(xµ)Ψ(xµ) =
4∑
s=1

|ψs(xµ)|2 (10.267)

has the desired property of being positive definite.
The conservation law (10.263) allows one to conclude that jµ must transform like a contravariant
4-vector as the notation implies. The reason is that the r.h.s. of (10.263) obviously is a scalar
under Lorentz transformations and that the left hand side must then also transform like a scalar.
Since ∂µ transforms like a covariant 4-vector, jµ must transform like a contravariant 4-vector. This
transformation behaviour can also be deduced from the transformation properties of the bispinor
wave function Ψ(xµ). For this purpose we prove first the relationship

S−1 = γ0 S†γ0 . (10.268)

We will prove this property in the chiral representation. Obviously, the property applies then in
any representation of S.
For our proof we note first

S̃−1(~w, ~ϑ) = S̃(−~w,−~ϑ) =

(
e−

1
2

(~w− i~ϑ)·~σ 0
0 e

1
2

(~w+ i~ϑ)·~σ

)
(10.269)

One can readily show that the same operator is obtained evaluating

γ̃0S̃†(~w, ~ϑ)γ̃0 =
(

0 11
11 0

) (
e

1
2

(~w+ i~ϑ)·~σ 0
0 e−

1
2

(~w− i~ϑ)·~σ

) (
0 11
11 0

)
. (10.270)

We conclude that (10.268) holds for the bispinor Lorentz transformation.
We will now determine the relationship between the flux

j′
µ = Ψ′†(x′µ)γ0γµΨ′(x′) (10.271)



322 Relativistic Quantum Mechanics

in a moving frame of reference and the flux jµ in a frame at rest. Note that we have assumed
in (10.271) that the Dirac matrices are independent of the frame of reference. One obtains using
(10.268)

j′
µ = Ψ†(xµ)S†γ0γµSΨ(xµ) = Ψ†(xµ)γ0S−1γµSΨ(xµ) . (10.272)

With S−1(Lηξ) = S((L−1)ηξ) one can restate (10.246)

S−1(Lηξ)γµS(Lηξ) = (L−1)νµγν = (L−1)ν
µ
γν = Lµνγν . (10.273)

where we have employed (10.76). Combining this with (10.272) results in the expected transfor-
mation behaviour

j′
µ = Lµνj

ν . (10.274)

10.9 Solutions of the Free Particle Dirac Equation

We want to determine now the wave functions of free particles described by the Dirac equation.
Like in non-relativistic quantum mechanics the free particle wave function plays a central role, not
only as the most simple demonstration of the theory, but also as providing a basis in which the wave
functions of interacting particle systems can be expanded and characterized. The solutions provide
also a complete, orthonormal basis and allows one to quantize the Dirac field Ψ(xµ) much like the
classical electromagnetic field is quantized through creation and annihilation operators representing
free electromagnetic waves of fixed momentum and frequency.
In case of non-relativistic quantum mechanics the free particle wave function has a single component
ψ(~r, t) and is determined through the momentum ~p ∈ R

3. In relativistic quantum mechanics a
Dirac particle can also be characterized through a momentum, however, the wave function has four
components which invite further characterization of the free particle state. In the following we
want to provide this characterization, specific for the Dirac free particle.
We will start from the Dirac equation in the Schrödinger form (10.231, 10.232, 10.233)

i∂tΨ(xµ) = HoΨ(xµ) . (10.275)

The free particle wave function is an eigenfunction of Ho, a property which leads to the energy–
momentum (dispersion) relationship of the Dirac particle. The additional degrees of freedom de-
scribed by the four components of the bispinor wave function require, as just mentioned, additional
characterizations, i.e., the identification of observables and their quantum mechanical operators, of
which the wave functions are eigenfunctions as well. As it turns out, only two degrees of freedom
of the bispinor four degrees of freedom are independent [c.f. (10.282, 10.283)]. The independent
degrees of freedom allow one to choose the states of the free Dirac particle as eigenstates of the
4-momentum operator p̂µ and of the helicity operator Γ ∼ ~σ · ~̂p/|~̂p| introduced below. These opera-
tors, as is required for the mentioned property, commute with each other. The operators commute
also with Ho in (10.233).
Like for the free particle wave functions of the non-relativistic Schrödinger and the Klein–Gordon
equations one expects that the space–time dependence is governed by a factor exp[i(~p · ~r − εt)].
As pointed out, the Dirac particles are described by 4-dimensional, bispinor wave functions and we
need to determine corresponding components of the wave function. For this purpose we consider
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the following form of the free Dirac particle wave function

Ψ(xµ) =
(
φ(xµ)
χ(xµ)

)
=
(
φo
χo

)
ei(~p·~r− εt) (10.276)

where ~p and ε together represent four real constants, later to be identified with momentum and
energy, and φo, χo each represent a constant, two-dimensional spinor state. Inserting (10.276) into
(10.231, 10.232) leads to the 4-dimensional eigenvalue problem(

m ~σ · ~p
~σ · ~p −m

) (
φo
χo

)
= ε

(
φo
χo

)
. (10.277)

To solve this problem we write (10.277) explicitly

(ε − m) 11φo − ~σ · ~pχo = 0
−~σ · ~p φo + (ε + m) 11χo = 0 . (10.278)

Multiplication of the 1st equation by (ε +m)11 and of the second equation by −~σ ·~p and subtraction
of the results yields the 2-dimensional equation[

(ε2 − m2) 11 − (~σ · ~p)2
]
φo = 0 . (10.279)

According to the property (5.234) of Pauli matrices holds (~σ ·~p)2 = ~p 211. One can, hence, conclude
from (10.279) the well-known relativistic dispersion relationship

ε2 = m2 + ~p 2 (10.280)

which has a positive and a negative solution

ε = ±E(~p) , E(~p) =
√
m2 + ~p 2 . (10.281)

Obviously, the Dirac equation, like the Klein–Gordon equation, reproduce the classical relativistic
energy–momentum relationships (10.93, 10.94)
Equation (10.278) provides us with information about the components of the bispinor wave function
(10.276), namely φo and χo are related as follows

φ0 =
~σ · ~p
ε−m

χ0 (10.282)

χo =
~σ · ~p
ε + m

φ0 , (10.283)

where ε is defined in (10.281). These two relationships are consistent with each other. In fact, one
finds using (5.234) and (10.280)

~σ · ~p
ε+m

φ0 =
(~σ · ~p)2

(ε+m) (ε+m)
χ0 =

~p 2

ε2 −m2
χ0 = χ0 . (10.284)

The relationships (10.282, 10.283) imply that the bispinor part of the wave function allows only
two degrees of freedom to be chosen independently. We want to show now that these degrees of
freedom correspond to a spin-like property, the socalled helicity of the particle.
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For our further characterization we will deal with the positive and negative energy solutions [cf.
(10.281)] separately. For the positive energy solution, i.e., the solution for ε = +E(~p), we present
φo through the normalized vector

φo =
(
u1

u2

)
= u ∈ C2 , u†u = |u1|2 + |u2|2 = 1 . (10.285)

The corresponding free Dirac particle is then described through the wave function

Ψ(~p,+|xµ) = N+(~p)

(
u

~σ·~p
E(~p) +m u

)
ei(~p·~r− εt) , ε = +E(~p) . (10.286)

Here N+(~p) is a constant which will be chosen to satisfy the normalization condition

Ψ†(~p,+) γ0 Ψ†(~p,+) = 1 , (10.287)

the form of which will be justified further below. Similarly, we present the negative energy solution,
i.e., the solution for ε = −E(~p), through χo given by

χo =
(
u1

u2

)
= u ∈ C2 , u†u = |u1|2 + |u2|2 = 1 . (10.288)

corresponding to the wave function

Ψ(~p,−|xµ) = N−(~p)

(
−~σ·~p

E(~p) +m u
u

)
ei(~p·~r− εt) , ε = −E(~p) . (10.289)

Here N−(~p) is a constant which will be chosen to satisfy the normalization condition

Ψ†(~p,+) γ0 Ψ†(~p,+) = −1 , (10.290)

which differs from the normalization condition (10.287) in the minus sign on the r.h.s. The form
of this condition and of (10.287) will be justified now.
First, we demonstrate that the product Ψ†(~p,±)γ0Ψ(~p,±), i.e., the l.h.s. of (10.287, 10.290), is
invariant under Lorentz transformations. One can see this as follows: Let Ψ(~p,±) denote the
solution of a free particle moving with momentum ~p in the laboratory frame, and let Ψ(0,±)
denote the corresponding solution of a particle in its rest frame. The connection between the
solutions, according to (10.241), is Ψ(~p,±) = SΨ(0,±) , where S is given by (10.259). Hence,

Ψ†(~p,±) γ0 Ψ(~p,±) =
(

Ψ†(0,±)S†
)
γ0 SΨ(0,±)

= Ψ†(0,±)
(
γ0 S−1 γ0

)
γ0 SΨ(0,±)

= Ψ†(0,±) γ0 Ψ(0,±). (10.291)

Note that we have used that, according to (10.268), S−1 = γ0S†γ0 and, hence, S† = γ0S−1γ0.
We want to demonstrate now that the signs on the r.h.s. of (10.287, 10.290) should differ. For this
purpose we consider first the positive energy solution. Employing (10.286) for ~p = 0 yields, using
γ0 as given in (10.219) and u†u = 1 [c.f. (10.285)],

Ψ†(0,+) γ0 Ψ(0,+) = |N+(0)|2 (u†, 0) γ0

(
u
0

)
= |N+(0)|2 . (10.292)
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The same calculation for the negative energy wave function as given in (10.289) yields

Ψ†(0,−) γ0 Ψ(0,−) = |N−(0)|2 (0, u†) γ0

(
0
u

)
= − |N−(0)|2 . (10.293)

Obviously, this requires the choice of a negative side on the r.h.s. of (10.290) to assign a positive
value to |N−(0)|2. We can also conclude from our derivation

N±(0) = 1 . (10.294)

We want to determine now N±(~p) for arbitrary ~p. We consider first the positive energy solution.
Condition (10.287) written explicitly using (10.286) is

N 2
+(~p)

(
(u∗)T ,

[
~σ · ~p

E(~p) + m
u∗
]T)

γo

(
u

~σ·~p
E(~p) +m u

)
= 1 (10.295)

Evaluating the l.h.s. using γ0 as given in (10.219) yields

N 2
+(~p)

[
u†u − u†

(~σ · ~p)2

(E(~p) + m)2
u
]

= 1 . (10.296)

Replacing (~σ · ~p)2 by ~p 2 [c.f. (5.234)] and using the normalization of u in (10.285) results in

N 2
+(~p)

[
1 − ~p 2

(E(~p) + m)2

]
= 1 (10.297)

from which follows

N+(~p) =

√
(m + E(~p) )2

(m + E(~p) )2 − ~p 2
. (10.298)

Noting

(m + E(~p) )2 − ~p 2 = m2 − ~p 2 + 2mE(~p) + E2(~p) = 2(m + E(~p))m (10.299)

the normalization coefficient (10.298) becomes

N+(~p) =

√
m + E(~p)

2m
. (10.300)

This result completes the expression for the wave function (10.286).

Exercise 7.6: Show that the normalization condition

N ′2+ (~p)

(
(u∗)T ,

[
~σ · ~p

E(~p) + m
u∗
]T) ( u

~σ·~p
E(~p) +m u

)
= 1 (10.301)

yields the normalization coefficient

N ′+(~p) =

√
m + E(~p)

2 E(~p)
. (10.302)
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We consider now the negative energy solution. Condition (10.290) written explicitly using (10.289)
is

N 2
−(~p)

([
−~σ · ~p

E(~p) + m
u∗
]T
, (u∗)T

)
γo

(
−~σ·~p

E(~p) +m u
u

)
= −1 (10.303)

Evaluating the l.h.s. yields

N 2
−(~p)

[
u†

(~σ · ~p)2

(E(~p) + m)2
u − u†u

]
= −1 . (10.304)

This condition is, however, identical to the condition (10.296) for the normalization constant N+(~p)
of the positive energy solution. We can, hence, conclude

N−(~p) =

√
m + E(~p)

2m
(10.305)

and, thereby, have completed the determination for the wave function (10.289).
The wave functions (10.286, 10.289, 10.300) have been constructed to satisfy the free particle Dirac
equation (10.275). Inserting (10.286) into (10.275) yields

Ho Ψ(~p, λ|xµ) = λE(~p) Ψ(~p, λ|xµ) , (10.306)

i.e., the wave functions constructed represent eigenstates of Ho. The wave functions are also
eigenstates of the momentum operator i∂µ, i.e.,

i∂µΨ(~p, λ|xµ) = pµ Ψ(~p, λ|xµ) (10.307)

where pµ = (ε,−~p). This can be verified expressing the space–time factor of Ψ(~p, λ|xµ) in 4-vector
notation, i.e., exp[i(~p · ~r − εt)] = exp(ipµxµ).

Helicity

The free Dirac particle wave functions (10.286, 10.289) are not completely specified, the two com-
ponents of u indicate another degree of freedom which needs to be defined. This degree of freedom
describes a spin–1

2 attribute. This attribute is the so-called helicity, defined as the component of
the particle spin along the direction of motion. The corresponding operator which measures this
observable is

Λ =
1
2
σ ·

~̂p

|~̂p|
. (10.308)

Note that ~̂p represents here an operator, not a constant vector. Rather than considering the
observable (10.307) we investigate first the observable due to the simpler operator ~σ · ~̂p. We
want to show that this operator commutes with Ho and ~̂p to ascertain that the free particle wave
function can be simultaneously an eigenvector of all three operators. The commutation property
[~σ · ~̂p, p̂j ] = 0 , j = 1, 2, 3 is fairly obvious. The property [~σ · ~̂p,Ho] = 0 follows from (10.233) and
from the two identities(

11 0
0 −11

)(
~σ 0
0 ~σ

)
· ~̂p −

(
~σ 0
0 ~σ

)
· ~̂p
(

11 0
0 −11

)
= 0 (10.309)
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and (
0 ~σ
~σ 0

)
· ~̂p
(
~σ 0
0 ~σ

)
· ~̂p −

(
~σ 0
0 ~σ

)
· ~̂p
(

0 ~σ
~σ 0

)
· ~̂p

=

(
0 (~σ · ~̂p)2

(~σ · ~̂p)2 0

)
−

(
0 (~σ · ~̂p)2

(~σ · ~̂p)2 0

)
= 0 . (10.310)

We have shown altogether that the operators ~̂p,Ho and ~σ·~̂p commute with each other and, hence, can
be simultaneously diagonal. States which are simultaneously eigenvectors of these three operators
are also simulteneously eigenvectors of the three operators ~̂p, Ho and Λ defined in (10.308) above.
The condition that the wave functions (10.286) are eigenfunctions of Λ as well will specify now the
vectors u.
Since helicity is defined relative to the direction of motion of a particle the characterization of u
as an eigenvector of the helicity operator, in principle, is independent of the direction of motion
of the particle. We consider first the simplest case that particles move along the x3–direction, i.e.,
~p = (0, 0, p3). In this case Λ = 1

2σ
3.

We assume first particles with positive energy, i.e., ε = +E(~p). According to the definition (5.224)
of σ3 the two u vectors (1, 0)T and (0, 1)T are eigenstates of 1

2σ
3 with eigenvalues ±1

2 . Therefore,
the wave functions which are eigenstates of the helicity operator, are

Ψ(pê3,+,+1
2 |~r, t) = Np


(

1
0

)
p

m+Ep

(
1
0

)
 ei(px

3−Ept)

Ψ(pê3,+,−1
2 |~r, t) = Np


(

0
1

)
−p

m+Ep

(
0
1

)
 ei(px

3−Ept) (10.311)

where ê3 denotes the unit vector in the x3-direction and where

Ep =
√
m2 + p2 ; Np =

√
m + Ep

2m
. (10.312)

We assume now particles with negative energy, i.e., ε = −E(~p). The wave functions which are
eigenfunctions of the helicity operator are in this case

Ψ(pê3,−,+1
2 |~r, t) = Np


−p

m+Ep

(
1
0

)
(

1
0

)
 ei(px

3 +Ept)

Ψ(pê3,−,−1
2 |~r, t) = Np


p

m+Ep

(
0
1

)
(

0
1

)
 ei(px

3 +Ept) (10.313)

where Ep and Np are defined in (10.312).
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To obtain free particle wave functions for arbitrary directions of ~p one can employ the wave functions
(10.311, 10.313) except that the states (1, 0)T and (0, 1)T have to be replaced by eigenstates u±(~p)
of the spin operator along the direction of ~p. These eigenstates are obtained through a rotational
transformation (5.222, 5.223) as follows

u(~p,+
1
2

) = exp
(
− i

2
~ϑ(~p) · ~σ

) (
1
0

)
, (10.314)

u(~p,−1
2

) = exp
(
− i

2
~ϑ(~p) · ~σ

) (
0
1

)
(10.315)

where
~ϑ(~p) =

ê3 × ~p
|~p|

∠(ê3, ~p) (10.316)

describes a rotation which aligns the x3–axis with the direction of ~p. [One can also express the
rotation through Euler angles α, β, γ , in which case the transformation is given by (5.220).] The
corresponding free particle wave functions are then

Ψ(~p,+,+1
2 |~r, t) = Np

(
u(~p,+1

2)
p

m+Ep
u(~p,+1

2)

)
ei(~p·~r−Ept) (10.317)

Ψ(~p,+,−1
2 |~r, t) = Np

(
u(~p,−1

2)
−p

m+Ep
u(~p,−1

2)

)
ei(~p·~r−Ept) (10.318)

Ψ(~p,−,+1
2 |~r, t) = N√

( −p
m+Ep

u(~p,+1
2)

u(~p,+1
2)

)
ei(~p·~r+Ept) (10.319)

Ψ(~p,−,−1
2 |~r, t) = Np

(
p

m+Ep
u(~p,−1

2)

u(~p,−1
2)

)
ei(~p·~r+Ept) (10.320)

where Ep and N are again given by (10.312).

Generating Solutions Through Lorentz Transformation

The solutions (10.311, 10.312) can be obtained also by means of the Lorentz transformation (10.262)
for the bispinor wave function and the transformation (10.123). For this purpose one starts from
the solutions of the Dirac equation in the chiral representation (10.226, 10.229), denoted by ,̃ for
an ~r–independent wave function, i.e., a wave function which represents free particles at rest. The
corresponding wave functions are determined through(

iγ̃0∂t − m
)

Ψ̃(t) = 0 . (10.321)

and are

Ψ̃(p = 0, +, 1
2 |t) = 1√

2


1
0
1
0

 e−imt ,
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Ψ̃(p = 0, +, −1
2 |t) = 1√

2


0
1
0
1

 e−imt ,

Ψ̃(p = 0, −, 1
2 |t) = 1√

2


1
0
−1
0

 e+imt ,

Ψ̃(p = 0, −, −1
2 |t) = 1√

2


0
1
0
−1

 e+imt . (10.322)

The reader can readily verify that transformation of these solutions to the Dirac representationsas
defined in (10.228) yields the corresponding solutions (10.311, 10.313) in the p → 0 limit. This
correspondence justifies the characterization ±,±1

2 of the wave functions stated in (10.322).
The solutions (10.322) can be written in spinor form

1√
2

(
φo
χo

)
e∓imt , φo , χo ∈

{(
1
0

)
,

(
0
1

)}
(10.323)

Transformation (10.262) for a boost in the x3–direction, i.e., for ~w = (0, 0, w3), yields for the
exponential space–time dependence according to (10.174, 10.176)

∓imt → i ( p3x
3 ∓ Et ) (10.324)

and for the bispinor part according to (10.262)(
φo
χo

)
→

(
e

1
2
w3σ3

0
0 e−

1
2
w3σ3

) (
φo
χo

)
=

(
e

1
2
w3σ3

φo

e−
1
2
w3σ3

χo

)
. (10.325)

One should note that φo, χo are eigenstates of σ3 with eigenvalues ±1. Applying (10.324, 10.325)
to (10.323) should yield the solutions for non-vanishing momentum p in the x3–direction. For the
resulting wave functions in the chiral representation one can use then a notation corresponding to
that adopted in (10.311)

Ψ̃(p(w3)ê3, +, +1
2 |~r, t) =

1√
2

 e
1
2
w3

(
1
0

)
e−

1
2
w3

(
1
0

)
 ei(px

3−Ept)

Ψ̃(p(w3)ê3, +, −1
2 |~r, t) =

1√
2

 e−
1
2
w3

(
0
1

)
e

1
2
w3

(
0
1

)
 ei(px

3−Ept)
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Ψ̃(p(w3)ê3, −, +1
2 |~r, t) =

1√
2

 e
1
2
w3

(
1
0

)
−e−

1
2
w3

(
1
0

)
 ei(px

3 +Ept)

Ψ̃(p(w3)ê3, −, −1
2 |~r, t) =

1√
2

 e−
1
2
w3

(
0
1

)
− e

1
2
w3

(
0
1

)
 ei(px

3 +Ept) (10.326)

where according to (10.61) p(w3) = m sinhw3. Transformation to the Dirac representation by
means of (10.228) yields

Ψ(p(w3)ê3, +, +1
2 |~r, t) =

 coshw3
2

(
1
0

)
sinhw3

2

(
1
0

)
 ei(px

3−Ept)

Ψ(p(w3)ê3, +, −1
2 |~r, t) =

 coshw3
2

(
0
1

)
− sinhw3

2

(
0
1

)
 ei(px

3−Ept)

Ψ(p(w3)ê3, −, +1
2 |~r, t) =

 sinhw3
2

(
1
0

)
coshw3

2

(
1
0

)
 ei(px

3 +Ept)

Ψ(p(w3)ê3, −, −1
2 |~r, t) =

 − sinhw3
2

(
0
1

)
coshw3

2

(
0
1

)
 ei(px

3 +Ept) (10.327)

Employing the hyperbolic function properties

cosh
x

2
=

√
coshx + 1

2
, sinh

x

2
=

√
coshx − 1

2
, (10.328)

the relationship (10.61) between the parameter w3 and boost velocity v3, and the expression (10.311)
for Ep one obtains

coshw3
2 =

1√
2

√√√√√ 1
1 − v2

3

+ 1 =
1√
2

√√√√√1 +
v2

3

1 − v2
3

+ 1

=

√√√√√
√
m2 + m2v2

3

1− v2
3

+ m

2m
=

√
Ep + m

2m
(10.329)
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and similarly

sinh
w3

2
=

√
Ep − m

2m
=

p√
2m (Ep + m)

(10.330)

Inserting expressions (10.329, 10.330) into (10.327), indeed, reproduces the positive energy wave
functions (10.311) as well as the negative energy solutions (10.313) for −p. The change of sign for
the latter solutions had to be expected as it was already noted for the negative energy solutions of
the Klein–Gordon equation (10.168–10.176).

Invariance of Dirac Equation Revisited

At this point we like to provide a variation of the derivation of (10.243), the essential property
stating the Lorentz–invariance of the Dirac equation. Actually, we will derive this equation only
for infinitesimal transformations, which however, is sufficient since (1) it must hold then for any
finite transformation, and since (2) the calculations following (10.243) considered solely the limit
of infinitesimal transformations anyway.
The reason why we provide another derivation of (10.243) is to familiarize ourselves with a formu-
lation of Lorentz transformations of the bispinor wave finction Ψ(xµ) which treats the spinor and
the space-time part of the wave function on the same footing. Such description will be essential for
the formal description of Lorentz invariant wave equations for arbitray spin further below.
In the new derivation we consider the particle described by the wave function transformed, but not
the observer. This transformation, refered to as the active transformation, expresses the system in
the old coordinates. The transformation is

Ψ′(xµ) = S(Lηξ) ρ(Lηξ) Ψ(xµ) (10.331)

where S(Lηξ) denotes again the transformation acting on the bispinor character of the wave function
Ψ(xµ) and where ρ(Lηξ) denotes the transformation acting on the space-time character of the
wave function Ψ(xµ). ρ(Lηξ) has been defined in (10.123) above and characterized there. Such
transformation had been applied by us, of course, when we generated the solutions Ψ(~p, λ,Λ|xµ)
from the solutions describing particles at rest Ψ(~p = 0, λ,Λ|t). We expect, in general, that if Ψ(xµ)
is a solution of the Dirac equation that Ψ′(xµ) as given in (10.331) is a solution as well. Making
this expectation a postulate allows one to derive the condition (10.243) and, thereby, the proper
transformation S(Lηξ).
To show this we rewrite the Dirac equation (10.221) using (10.331)(

i S(Lηξ)γµS−1(Lηξ) ρ(Lηξ)∂µρ−1(Lηξ) − m
)

Ψ′(xµ) = 0 (10.332)

Here we have made use of the fact that S(Lηξ) commutes with ∂µ and ρ(Lηξ) commutes with γµ.
The fact that any such Ψ′(xµ) is a solution of the Dirac equation allows us to conclude

S(Lηξ)γµS−1(Lηξ) ρ(Lηξ)∂µρ−1(Lηξ) = γν∂ν (10.333)

which is satisfied in case that the following conditions are met

ρ(Lηξ)∂µρ−1(Lηξ) = Lνµ ∂ν ;
S(Lηξ)γµS−1(Lηξ)Lνµ = γν . (10.334)
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We will demonstrate now that the first condition is satisfied by ρ(Lηξ). The second condition is
identical to (10.243) and, of course, it is met by S(Lηξ) as given in the chiral representation by
(10.262).
As mentioned already we will show condition (10.334) for infinitesimal Lorentz transformations
Lηξ. We will proceed by employing the generators (10.128) to express ρ(Lηξ) in its infinitesimal
form and evaluate the expression(

11 + ε~ϑ · ~J + ε~w · ~K
)
∂µ

(
11 − ε~ϑ · ~J − ε~w · ~K

)
= ∂µ + εMν

µ∂ν + O(ε2) (10.335)

The result will show that the matrix Mν
µ is identical to the generators of Lνµ for the six choices ~ϑ =

(1, 0, 0), ~w = (0, 0, 0), ~ϑ = (0, 1, 0), ~w = (0, 0, 0), . . . , ϑ = (0, 0, 0), ~w = (0, 0, 1) . Inspection of
(10.335) shows that we need to demonstrate

[J`, ∂µ] = (J`)νµ∂ν ; [K`, ∂µ] = (K`)νµ∂ν . (10.336)

We will proceed with this task considering all six cases:

[J1, ∂µ] = [x3∂2 − x2∂3, ∂µ] =


0 µ = 0
0 µ = 1
∂3 µ = 2
−∂2 µ = 3

(10.337)

[J2, ∂µ] = [x1∂3 − x3∂1, ∂µ] =


0 µ = 0

−∂3 µ = 1
0 µ = 2
∂1 µ = 3

(10.338)

[J3, ∂µ] = [x2∂1 − x1∂2, ∂µ] =


0 µ = 0
∂2 µ = 1
−∂1 µ = 2

0 µ = 3

(10.339)

[K1, ∂µ] = [x0∂1 + x1∂0, ∂µ] =


−∂1 µ = 0
−∂0 µ = 1

0 µ = 2
0 µ = 3

(10.340)

[K2, ∂µ] = [x0∂2 + x2∂0, ∂µ] =


−∂2 µ = 0

0 µ = 1
−∂0 µ = 2

0 µ = 3

(10.341)

[K3, ∂µ] = [x0∂3 + x3∂0, ∂µ] =


−∂3 µ = 0

0 µ = 1
0 µ = 2

−∂0 µ = 3

(10.342)

One can readily convince oneself that these results are consistent with (10.336). We have demon-
strated, therefore, that any solution Ψ(xµ) transformed according to (10.331) is again a solution of
the Dirac equation, i.e., the Dirac equation is invariant under active Lorentz transformations.
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10.10 Dirac Particles in Electromagnetic Field

We like to provide now a description for particles governed by the Dirac equation which includes
the coupling to an electromagnetic field in the minimum coupling description. Following the re-
spective procedure developed for the Klein-Gordon equation in Sect. 10.6 we assume that the field
is described through the 4-vector potential Aµ and, accordingly, we replace in the Dirac equation
the momentum operator p̂µ = i∂µ by i∂µ − qAµ where q is the charge of the respective particles
(see Table 10.1 in Sect 10.6 above). Equivalently, we replace the operator ∂µ by ∂µ + iqAµ. The
Dirac equation (10.221) reads then

[ iγµ(∂µ + iqAµ) − m ] Ψ(xν) = 0 (10.343)

One may also include the electromagnetic field in the Dirac equation given in the Schrödinger form
(10.233) by replacing i∂t by (see Table 10.1) i∂t − qV and ~̂p by

~̂π = ~̂p − q ~A . (10.344)

The Dirac equation in the Schrödinger form reads then

i∂tΨ(xµ) =
(
~̂α · ~̂π + qV + β̂ m

)
Ψ(xµ) (10.345)

where ~̂α and β̂ are defined in (10.232).

Non-Relativistic Limit

We want to consider now the Dirac equation (10.345) in the so-called non-relativistic limit in which
all energies are much smaller than m, e.g., for the scalar field V in (10.345) holds

|qV | << m . (10.346)

For this purpose we choose the decomposition

Ψ(xµ) =
(
φ(xµ)
χ(xµ)

)
. (10.347)

Using the notation ~σ = (σ1, σ2, σ3)T one obtains then

i∂tφ = ~σ · ~̂π χ + qV φ + mφ (10.348)
i∂tχ = ~σ · ~̂π φ + qV χ − mχ . (10.349)

We want to focus on the stationary positive energy solution. This solution exhibits a time-
dependence exp[−i(m + ε)t] where for ε holds in the non-relativistic limit |ε| << m. Accordingly,
we define

φ(xµ) = e−imt Φ(xµ) (10.350)
χ(xµ) = e−imtX (xµ) (10.351)
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and assume that for the time-derivative of Φ and X holds∣∣∣∣∂tΦΦ

∣∣∣∣ << m ,

∣∣∣∣∂tXX
∣∣∣∣ << m . (10.352)

Using (10.350, 10.351) in (10.348, 10.349) yields

i∂tΦ = ~σ · ~̂πX + qV Φ (10.353)
i∂tX = ~σ · ~̂πΦ + qV X − 2mX . (10.354)

The properties (10.346, 10.352) allow one to approximate (10.354)

0 ≈ ~σ · ~̂π Φ − 2m X . (10.355)

and, accordingly, one can replace X in (10.353) by

X ≈ ~σ · ~̂π
2m

Φ (10.356)

to obtain a closed equation for Φ

i∂tΦ ≈

(
~σ · ~̂π

)2

2m
Φ + qV Φ . (10.357)

Equation (10.356), due to the m−1 factor, identifies X as the small component of the bi-spinor
wave function which, henceforth, does not need to be considered anymore.
Equation (10.357) for Φ can be reformulated by expansion of (~σ · ~̂π)2. For this purpose we employ
the identity (5.230), derived in Sect. 5.7, which in the present case states

(~σ · ~̂π)2 = ~̂π
2

+ i ~σ · (~̂π × ~̂π) . (10.358)

For the components of ~̂π × ~̂π holds(
~̂π × ~̂π

)
`

= εjk` (πjπk − πkπj ) = εjk` [πj , π`] . (10.359)

We want to evaluate the latter commutator. One obtains

[πj , πk] = [
1
i
∂j + qAj ,

1
i
∂k + qAk]

= [
1
i
∂j ,

1
i
∂k]︸ ︷︷ ︸

= 0

+ q [Aj ,
1
i
∂k] + q [

1
i
∂j , Ak] + q2 [Aj , Ak]︸ ︷︷ ︸

= 0

=
q

i
[Aj , ∂k] +

q

i
[∂j , Ak] . (10.360)

For an arbitrary function f(~r) holds

( [Aj , ∂k] + [∂j , Ak] ) f = ( ∂jAk − Ak∂j + Aj∂k − ∂kAj ) f . (10.361)
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Using

∂jAk f = ((∂jAk)) f + Ak∂j f

∂kAj f = ((∂kAj)) f + Aj∂k f

where ((∂j · · ·)) denotes confinement of the differential operator to within the brackets ((· · ·)), one
obtains

( [Aj , ∂k] + [∂j , Ak] ) f = [ ((∂jAk)) − ((∂kAj)) ] f (10.362)

or, using (10.360) and Aµ = (V, − ~A),

[πj , πk] =
q

i
(( ∂jAk − ∂kAj )) = −q

i

(
∇× ~A

)
`
εjk` = −q

i
B` εjk` (10.363)

where we employed ~B(~r, t) = ∇ × ~A(~r, t) [see (8.6)]. Equations (10.344, 10.358, 10.359, 10.363)
allow us to write (10.357) in the final form

i∂tΦ(~r, t) ≈

[
[~̂p − q ~A(~r, t)]2

2m
− q

2m
~σ · ~B(~r, t) + q V (~r, t)

]
Φ(~r, t) (10.364)

which is referred to as the Pauli equation.
Comparision of (10.364) governing a two-dimensional wave function Φ ∈ C2 with the corresponding
non-relativistic Schrödinger equation (10.2) governing a one-dimensional wave function ψ ∈ C,
reveals a stunning feature: the Pauli equation does justice to its two-dimensional character; while
agreeing in all other respects with the non-relativistic Schrödinger equation (10.2) it introduces the
extra term q~σ · ~B Φ which describes the well-known interaction of a spin-1

2 particle with a magnetic
field ~B. In other words, the spin-1

2 which emerged in the Lorentz-invariant theory as an algebraic
necessity, does not leave the theory again when one takes the non-relativistic limit, but rather
remains as a steady “guest” of non-relativistic physics with the proper interaction term.
Let us consider briefly the consequences of the interaction of a spin-1

2 with the magnetic field. For
this purpose we disregard the spatial degrees of freedom and assume the Schrödinger equation

i∂tΦ(t) = q ~σ · ~B Φ(t) . (10.365)

The formal solution of this equation is

Φ(t) = e−iqt
~B·~σ Φ(0) . (10.366)

Comparision of this expression with (5.222, 5.223) shows that the propagator in (10.366) can be
interpreted as a rotation around the field ~B by an angle qtB, i.e., the interaction q~σ · ~B induces a
precession of the spin-1

2 around the magnetic field.

Dirac Particle in Coulomb Field - Spectrum

We want to describe now the spectrum of a relativistic electron (q = −e) in the Coulomb field of
a nucleus with charge Ze. The respective bispinor wave function Ψ(xµ) ∈ C4 is described as the
stationary solution of the Dirac equation (10.343) for the vector potential

Aµ = (−Ze
2

r
, 0, 0, 0) . (10.367)
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For the purpose of the solution we assume the chiral representation, i.e, we solve

[ iγ̃µ(∂µ + iqAµ) − m ] Ψ̃(xµ) = 0 (10.368)

where Ψ̃(xµ) and γ̃µ are defined in (10.228) and in (10.229), respectively. Employing πµ as defined
in Table 10.1 one can write (10.368)

( γ̃µ πµ − m ) Ψ̃(xµ) = 0 . (10.369)

For our solution we will adopt presently a strategy which follows closely that for the spectrum of
pionic atoms in Sect. 10.6. For this purpose we ‘square’ the Dirac equation, multiplying (10.369)
from the left by γνπν + m. This yields

[ iγ̃µ(∂µ + iqAµ) + m ] [ iγ̃µ(∂µ + iqAµ) − m ] Ψ̃(xµ)
= (γ̃µπ̂µ γ̃ν π̂ν − m2) Ψ̃(xµ) = 0 . (10.370)

Any solution of (10.368) is also a solution of (10.370), but the converse is not necessarily true.
However, once a solution Ψ̃(xµ) of (10.370) is obtained then

[ iγ̃µ(∂µ + iqAµ) + m ] Ψ̃(xµ) (10.371)

is a solution of (10.369). This follows from

[ iγ̃µ(∂µ + iqAµ) + m ] [ iγ̃µ(∂µ + iqAµ) − m ]
= [ iγ̃µ(∂µ + iqAµ) − m ] [ iγ̃µ(∂µ + iqAµ) + m ] (10.372)

according to which follows from (10.370)

[ iγ̃µ(∂µ + iqAµ) − m ] [ iγ̃µ(∂µ + iqAµ) + m ] Ψ̃(xµ) = 0 (10.373)

such that we can conclude that (10.371), indeed, is a solution of (10.369).
Equation (10.370) resembles closely the Klein-Gordon equation (10.180), but differs from it in an
essential way. The difference arises from the term γ̃µπ̂µ γ̃

ν π̂ν in (10.370) for which holds

γ̃µπ̂µ γ̃
ν π̂ν =

3∑
µ=0

(γ̃µ)2 π̂2
µ +

∑
µ,ν=1
µ 6=ν

γ̃µγ̃ν π̂µπ̂ν . (10.374)

The first term on the r.h.s. can be rewritten using, according to (10.230), (γ̃0)2 = 11 and (γ̃j)2 =
−11, j = 1, 2, 3,

3∑
µ=0

(γ̃µ)2 π̂2
µ = π̂2

0 − ~̂π
2
. (10.375)

Following the algebra that connected Eqs. (5.231), (5.232) in Sect. 5.7 one can write the second
term in (10.374), noting from (10.230) γ̃µγ̃ν = − γ̃ν γ̃µ, µ 6= ν and altering ‘dummy’ summation
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indices, ∑
µ,ν=1
µ 6=ν

γ̃µγ̃ν π̂µπ̂ν =
1
2

∑
µ,ν=1
µ 6=ν

( γ̃µγ̃ν π̂µπ̂ν + γ̃ν γ̃µπ̂ν π̂µ )

=
1
4

∑
µ,ν=1
µ 6=ν

( γ̃µγ̃ν π̂µπ̂ν − γ̃ν γ̃µπ̂µπ̂ν + γ̃ν γ̃µπ̂ν π̂µ − γ̃µγ̃ν π̂ν π̂µ )

=
1
4

∑
µ,ν=1
µ 6=ν

[γ̃µ, γ̃ν ] [π̂µ, π̂ν ] (10.376)

This expression can be simplified due to the special form (10.367) of Aµ, i.e., due to ~A = 0. Since

[π̂µ, π̂ν ] = 0 for µ, ν = 1, 2, 3 (10.377)

which follows readily from the definition (10.344), it holds

1
4

∑
µ,ν=1
µ 6=ν

[γ̃µ, γ̃ν ] [π̂µ, π̂ν ]

=
1
4

3∑
j=1

[γ̃0, γ̃j ] [π̂0, π̂j ] +
1
4

3∑
j=1

[γ̃j , γ̃0] [π̂j , π̂0]

=
1
2

3∑
j=1

[γ̃0, γ̃j ] [π̂0, π̂j ] . (10.378)

According to the definition (10.229), the commutators [γ̃0, γ̃j ] are

[γ̃0, γ̃j ] =
(

0 11
11 0

)(
0 −σj
σj 0

)
−
(

0 −σj
σj 0

)(
0 11
11 0

)
= 2

(
σj 0
0 −σj

)
(10.379)

The commutators [π̂0, π̂j ] in (10.378) can be evaluated using (10.367) and the definition (10.344)

[π̂0, π̂j ] = (−i∂t + qA0, −i∂j ] = − [ (∂t + iqA0) ∂j − ∂j (∂t + iqA0) ] f
= i ((∂jqA0)) f (10.380)

where f = f(~r, t) is a suitable test function and where ((· · ·)) denotes the range to which the
derivative is limited. Altogether, one can summarize (10.376–10.380)∑

µ,ν=1
µ 6=ν

γ̃µγ̃ν π̂µπ̂ν = i

(
~σ 0
0 −~σ

)
· ((∇qA0)) (10.381)

According to (10.367) holds

∇qA0 = r̂
Ze2

r2
. (10.382)
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where r̂ = ~r/|~r| is a unit vector. Combining this result with (10.381), (10.374), (10.375) the
‘squared’ Dirac equation (10.368) reads[

−
(
∂t − i

Ze2

r

)2

+ ∇2 + i

(
~σ · r̂ 0

0 −~σ · r̂

)
Ze2

r2
− m2

]
Ψ(xµ) = 0 (10.383)

We seek stationary solutions of this equation. Such solutions are of the form

Ψ̃(xµ) = Φ̃(~r) e−iεt . (10.384)

ε can be interpreted as the energy of the stationary state and, hence, it is this quantity that we
want to determine. Insertion of (10.384) into (10.383) yields the purely spatial four-dimensional
differential equation[(

ε +
Ze2

r

)2

+ ∇2 + i

(
~σ · r̂ 0

0 −~σ · r̂

)
Ze2

r2
− m2

]
Φ(~r) = 0 . (10.385)

We split the wave function into two spin-1
2 components

Ψ̃(~r) =
(
φ̃+(~r)
φ̃−(~r)

)
(10.386)

and obtain for the separate components φ±(~r)[(
ε +

Ze2

r

)2

+ ∇2 ± i ~σ · r̂ Ze
2

r2
− m2

]
φ±(~r) = 0 . (10.387)

The expression (10.189) for the Laplacian and expansion of the term (· · ·)2 result in the two-
dimensional equation[

∂2
r −

L̂2 − Z2e4 ∓ i~σ · r̂ Ze2

r2
+

2Ze2ε

r
+ ε2 − m2

]
r φ±(~r) = 0 . (10.388)

Except for the term i~σ · r̂ this equation is identical to that posed by the one-dimensional Klein-
Gordon equation for pionic atoms (10.191) solved in Sect. 10.6. In the latter case, a solution of
the form ∼ Y`m(r̂) can be obtained. The term i~σ · r̂, however, is genuinely two-dimensional and, in
fact, couples the orbital angular momentum of the electron to its spin- 1

2
. Accordingly, we express

the solution of (10.388) in terms of states introduced in Sect. 6.5 which describe the coupling of
orbital angular momentum and spin

{(Yjm(j − 1
2
, 1

2
|r̂),Yjm(j + 1

2
, 1

2
|r̂) ) ,

j = 1
2
, 3

2
. . . ; m = −j, −j + 1, . . .+ j } (10.389)

According to the results in Sect. 6.5 the operator i~σ · r̂ is block-diagonal in this basis such that only
the states for identical j, m values are coupled, i.e., only the two states {Yjm(j − 1

2
, 1

2
|r̂), Yjm(j +

1
2
, 1

2
|r̂)} as given in (6.147, 6.148). We note that these states are also eigenstates of the angular
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momentum operator L̂2 [cf. (6.151]. We select, therefore, a specific pair of total spin-orbital angular
momentum quantum numbers j, m and expand

φ±(~r) =
h±(r)
r
Yjm(j − 1

2
, 1

2
|r̂) +

g±(r)
r
Yjm(j + 1

2
, 1

2
|r̂) (10.390)

Using
~σ · r̂Yjm(j ± 1

2
, 1

2
|r̂) = −Yjm(j ∓ 1

2
, 1

2
|r̂) (10.391)

derived in Sect. 6.5 [c.f. (6.186)], property (6.151), which states that the states Yjm(j ± 1
2
, 1

2
|r̂) are

eigenfunctions of L̂2, together with the orthonormality of these two states leads to the coupled
differential equation[(

∂2
r +

2Ze2ε

r
+ ε2 − m

) ( 1 0

0 1

)
(10.392)

− 1
r2

(
(j − 1

2
)(j + 1

2
) − Z2e4 ±iZe2

±i Ze2 (j + 1
2
)(j + 3

2
) − Z2e4

)](
h±(r)
g±(r)

)
= 0 .

We seek to bring (10.392) into diagonal form. Any similarity transformation leaves the first term in
(10.392), involving the 2× 2 unit matrix, unaltered. However, such transformation can be chosen
as to diagonalize the second term. Since, in the present treatment, we want to determine solely the
spectrum, not the wave functions, we require only the eigenvalues of the matrices

B± =

(
(j − 1

2
)(j + 1

2
) − Z2e4 ±iZe2

±i Ze2 (j + 1
2
)(j + 3

2
) − Z2e4

)
, (10.393)

but do not explicitly consider further the wavefunctions. Obviously, the eigenvalues are independent
of m. The two eigenvalues of both matrices are identical and can be written in the form

λ1(j) [λ1(j) + 1] and λ2(j) [λ2(j) + 1] (10.394)

where

λ1(j) =
√

(j + 1
2
)2 − Z2e4 (10.395)

λ2(j) =
√

(j + 1
2
)2 − Z2e4 − 1 (10.396)

Equation (10.392) reads then in the diagonal representation(
∂2
r −

λ1,2(j)[λ1,2(j) + 1)
r2

+
2εZe2

r
+ ε2 − m2

)
f1,2(r) = 0 (10.397)

This equation is identical to the Klein-Gordon equation for pionic atoms written in the form
(10.200), except for the slight difference in the expression of λ1,2(j) as given by (10.395, 10.396)
and (10.199), namely, the missing additive term − 1

2
, the values of the argument of λ1,2(j) being

j = 1
2
, 3

2
, . . . rather than ` = 0, 1, . . . as in the case of pionic atoms, and except for the fact that

we have two sets of values for λ1,2(j), namely, λ1(j) and λ2(j).. We can, hence, conclude that the
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spectrum of (10.397) is again given by eq. (10.203), albeit with some modifications. Using (10.395,
10.396) we obtain, accordingly,

ε1 =
m√

1 + Z2e4

(n′ + 1 +
√

(j+ 1
2

)2−Z2e4)2

; (10.398)

ε2 =
m√

1 + Z2e4

(n′ +
√

(j+ 1
2

)2−Z2e4)2

; (10.399)

n′ = 0, 1, 2, . . . , j = 1
2
, 3

2
, . . . , m = −j,−j + 1, . . . , j

where ε1 corresponds to λ1(j) as given in (10.395) and ε2 corresponds to λ2(j) as given in (10.396).
For a given value of n′ the energies ε1 and ε2 for identical j-values correspond to mixtures of states
with orbital angular momentum ` = j − 1

2
and ` = j + 1

2
. The magnitude of the relativistic effect

is determined by Z2e4. Expanding the energies in terms of this parameter allows one to identify
the relationship between the energies ε1 and ε2 and the non-relativistic spectrum. One obtains in
case of (10.398, 10.399)

ε1 ≈ m − mZ2e4

2 (n′ + j + 3
2
)2

+ O(Z4e8) (10.400)

ε2 ≈ m − mZ2e4

2 (n′ + j + 1
2
)2

+ O(Z4e8) (10.401)

n′ = 0, 1, 2, . . . , j = 1
2
, 3

2
, . . . , m = −j,−j + 1, . . . , j .

These expressions can be equated with the non-relativistic spectrum. Obviously, the second term on
the r.h.s. of these equations describe the binding energy. In case of non-relativistic hydrogen-type
atoms, including spin- 1

2
, the stationary states have binding energies

E = −mZ
2e4

2n2
,
n = 1, 2, . . . ` = 0, 1, . . . , n− 1
m = −`,−`+ 1, . . . , ` ms = ± 1

2

. (10.402)

In this expression n is the so-called main quantum number. It is given by n = n′ + ` + 1 where `
is the orbital angular momentum quantum number and n′ = 0, 1, . . . counts the nodes of the wave
function. One can equate (10.402) with (10.400) and (10.401) if one attributes to the respective
states the angular momentum quantum numbers ` = j + 1

2
and ` = j − 1

2
. One may also state

this in the following way: (10.400) corresponds to a non-relativistic state with quantum numbers
n, ` and spin-orbital angular momentum j = `− 1

2
; (10.401) corresponds to a non-relativistic state

with quantum numbers n, ` and spin-orbital angular momentum j = `+ 1
2
. These considerations

are summarized in the following equations

ED(n, `, j = `− 1
2
,m) =

m√
1 + Z2e4

(n− `+
√

(`+1)2−Z2e4)2

; (10.403)

ED(n, `, j = `+ 1
2
,m) =

m√
1 + Z2e4

(n− `− 1 +
√
`2−Z2e4)2

; (10.404)

n = 1, 2, . . . ; ` = 0, 1, . . . , n− 1 ; m = −j,−j + 1, . . . , j
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main orbital spin- non-rel. rel.
spectr. quantum angular orbital binding binding

notation number mom. ang. mom. energy / eV energy / eV
n ` j Eq. (10.402) Eq. (10.405 )

1s 1
2

1 0 1
2 -13.60583 -13.60601

2s 1
2

2 0 1
2 -3.40146 -3.40151

2p 1
2

2 1 1
2 ⇑ ⇑

2p 3
2

2 1 3
2 ⇑ - 3.40147

3s 1
2

3 0 1
2 -1.51176 -1.551178

3p 1
2

3 1 1
2 ⇑ ⇑

3p 3
2

3 1 3
2 ⇑ - 1.551177

3d 3
2

3 2 3
2 ⇑ ⇑

3d 5
2

3 2 5
2 ⇑ - 1.551176

Table 10.2:
Binding energies for the hydrogen (Z = 1) atom. Degeneracies are denoted by ⇑. The energies
were evaluated with m = 511.0041 keV and e2 = 1/137.036 by means of Eqs. (10.402, 10.405).

One can combine the expressions (10.403, 10.404) finally into the single formula

ED(n, `, j,m) =

m√
1 + Z2e4

(n− j− 1
2

+
√

(j+ 1
2

)2−Z2e4)2

n = 1, 2, . . .
` = 0, 1, . . . , n− 1

j =
{

1
2

for ` = 0
`± 1

2
otherwise

m = −j,−j + 1, . . . , j
(10.405)

In order to demonstrate relativistic effects in the spectrum of the hydrogen atom we compare
in Table 10.2 the non-relativistic [cf. (10.402)] and the relativistic [cf. (10.405)] spectrum of the
hydrogen atom. The table entries demonstrate that the energies as given by the expression (10.405)
in terms of the non-relativistic quantum numbers n, ` relate closely to the corresponding non-
relativistic states, in fact, the non-relativistic and relativistic energies are hardly discernible. The
reason is that the mean kinetic energy of the electron in the hydrogen atom, is in the range of
10 eV, i.e., much less than the rest mass of the electron (511 keV). However, in case of heavier
nuclei the kinetic energy of bound electrons in the ground state scales with the nuclear charge Z
like Z2 such that in case Z = 100 the kinetic energy is of the order of the rest mass and relativistic
effects become important. This is clearly demonstrated by the comparision of non-relativistic and
relativistic spectra of a hydrogen-type atom with Z = 100 in Table 10.3.
Of particular interest is the effect of spin-orbit coupling which removes, for example, the non-
relativistic degeneracy for the six 2p states of the hydrogen atom: in the present, i.e., relativistic,
case these six states are split into energetically different 2p 1

2
and 2p 3

2
states. The 2p 1

2
states with

j = 1
2 involve two degenerate states corresponding to Y 1

2
m(1, 1

2
|r̂) for m = ± 1

2
, the 2p 3

2
states with

j = 3
2

involve four degenerate states corresponding to Y 3
2
m(1, 1

2
|r̂) for m = ± 1

2
, ± 3

2
.
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main orbital spin- non-rel. rel.
spectr. quantum angular orbital binding binding

notation number mom. ang. mom. energy / keV energy / keV
n ` j Eq. (10.402) Eq. (10.405 )

1s 1
2

1 0 1
2 -136.1 -161.6

2s 1
2

2 0 1
2 -34.0 -42.1

2p 1
2

2 1 1
2 ⇑ ⇑

2p 3
2

2 1 3
2 ⇑ - 35.2

3s 1
2

3 0 1
2 -15.1 -17.9

3p 1
2

3 1 1
2 ⇑ ⇑

3p 3
2

3 1 3
2 ⇑ - 15.8

3d 3
2

3 2 3
2 ⇑ ⇑

3d 5
2

3 2 5
2 ⇑ - 15.3

Table 10.3:
Binding energies for the hydrogen-type (Z = 100) atom. Degeneracies are denoted by ⇑. The
energies were evaluated with m = 511.0041 keV and e2 = 1/137.036 by means of Eqs. (10.402,
10.405).

In order to investigate further the deviation between relativistic and non-relativistic spectra of
hydrogen-type atoms we expand the expression (10.405) to order O(Z4e8). Introducing α = Z2e4

and β = j + 1
2 (10.405) reads

1√
1 + α

(n−β+
√
β2−α)2

(10.406)

The expansion (10.206) provides in the present case

ED(n, `, j,m) ≈ m − mZ2e4

2n2
− mZ4e8

2n3

[
1

j + 1
2

− 3
4n

]
+ O(Z6e12) . (10.407)

This expression allows one, for example, to estimate the difference between the energies of the
states 2p 3

2
and 2p 1

2
(cf. Tables 10.2,10.3). It holds for n = 2 and j = 3

2 ,
1
2

E (2p 3
2
)− E (2p 1

2
) ≈ −mZ

4e8

2 · 23

[
1
2
− 1

]
=

mZ4e8

32
. (10.408)

Radial Dirac Equation

We want to determine now the wave functions for the stationary states of a Dirac particle in a
4-vector potential

Aµ = (V (r), 0, 0, 0) (10.409)

where V (r) is spherically symmetric. An example for such potential is the Coulomb potential
V (r) = −Ze2/r considered further below. We assume for the wave function the stationary state
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form

Ψ(xµ) = e−iεt
(

Φ(~r)
X (~r)

)
, (10.410)

where Φ(~r), X (~r) ∈ C
2 describe the spatial and spin- 1

2
degrees of freedom, but are time-

independent. The Dirac equation reads then, according to (10.232, 10.345),

~σ · ~̂p X + mΦ + V (r) Φ = εΦ (10.411)
~σ · ~̂p Φ − mX + V (r)X = εX (10.412)

In this equation a coupling between the wave functions Φ(~r) and X (~r) arises due to the term ~σ · ~̂p.
This term has been discussed in detail in Sect. 6.5 [see, in particular, pp. 168]: the term is a scalar
(rank zero tensor) in the space of the spin-angular momentum states Yjm(j ± 1

2
, 1

2
|r̂) introduced in

Sect. 6.5, i.e., the term is block-diagonal in the space spanned by the states Yjm(j± 1
2
, 1

2
|r̂) and does

not couple states with different j,m-values; ~σ · ~̂p has odd parity and it holds [c.f. (6.197, 6.198)]

~σ · ~̂p f(r)Yjm(j + 1
2
, 1

2
|r̂) = i

[
∂r +

j + 3
2

r

]
f(r)Yjm(j − 1

2
, 1

2
|r̂)

(10.413)

~σ · ~̂p g(r)Yjm(j − 1
2
, 1

2
|r̂) = i

[
∂r +

1
2 − j
r

]
g(r)Yjm(j + 1

2
, 1

2
|r̂) .

(10.414)

These equations can be brought into a more symmetric form using

∂r +
1
r

=
1
r
∂r r

which allows one to write (10.413, 10.414)

~σ · ~̂p rf(r)Yjm(j + 1
2
, 1

2
|r̂) = i

[
∂r +

j + 1
2

r

]
r f(r)Yjm(j − 1

2
, 1

2
|r̂)

(10.415)

~σ · ~̂p rg(r)Yjm(j − 1
2
, 1

2
|r̂) = i

[
∂r −

j + 1
2

r

]
r g(r)Yjm(j + 1

2
, 1

2
|r̂) .

(10.416)

The differential equations (10.411, 10.412) are four-dimensional with ~r-dependent wave functions.
The arguments above allow one to eliminate the angular dependence by expanding Φ(~r) and X (~r)
in terms of Yjm(j + 1

2
, 1

2
|r̂) and Yjm(j − 1

2
, 1

2
|r̂), i.e.,

 Φ(~r)

X (~r)

 =


a(r)
r
Yjm(j + 1

2
, 1

2
|r̂) +

b(r)
r
Yjm(j − 1

2
, 1

2
|r̂)

c(r)
r
Yjm(j + 1

2
, 1

2
|r̂) +

d(r)
r
Yjm(j − 1

2
, 1

2
|r̂)

 . (10.417)
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In general, such expansion must include states with all possible j,m values. Presently, we consider
the case that only states for one specific j,m pair contribute. Inserting (10.417) into (10.411,
10.412), using (10.415, 10.416), the orthonormality property (6.157), and multiplying by r results
in the following two independent pairs of coupled differential equations

i

[
∂r −

j + 1
2

r

]
d(r) + [ m + V (r) − ε ] a(r) = 0

i

[
∂r +

j + 1
2

r

]
a(r) + [−m + V (r) − ε ] d(r) = 0 (10.418)

and

i

[
∂r +

j + 1
2

r

]
c(r) + [ m + V (r) − ε ] b(r) = 0

i

[
∂r −

j + 1
2

r

]
b(r) + [−m + V (r) − ε ] c(r) = 0 . (10.419)

Obviously, only a(r), d(r) are coupled and b(r), c(r) are coupled. Accordingly, there exist two
independent solutions (10.417) of the form Φ(~r)

X (~r)

 =

 i
f1(r)
r
Yjm(j + 1

2
, 1

2
|r̂)

− g1(r)
r
Yjm(j − 1

2
, 1

2
|r̂)

 (10.420)

(
Φ(~r)

X (~r)

)
=

 i
f2(r)
r
Yjm(j − 1

2
, 1

2
|r̂)

− g2(r)
r
Yjm(j + 1

2
, 1

2
|r̂)

 (10.421)

where the factors i and −1 have been introduced for convenience. According to (10.418) holds for
f1(r), g1(r) [

∂r −
j + 1

2

r

]
g1(r) + [ ε − m − V (r) ] f1(r) = 0

[
∂r +

j + 1
2

r

]
f1(r) − [ ε + m − V (r) ] g1(r) = 0 (10.422)

and for f2(r), g2(r) [
∂r +

j + 1
2

r

]
g2(r) + [ ε − m − V (r) ] f2(r) = 0

[
∂r −

j + 1
2

r

]
f2(r) − [ ε + m − V (r) ] g2(r) = 0 (10.423)
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Equations (10.422) and (10.423) are identical, except for the opposite sign of the term (j + 1
2
); the

equations determine, together with the appropriate boundary conditions at r = 0 and r → ∞,
the radial wave functions for Dirac particles in the potential (10.409).

Dirac Particle in Coulomb Field - Wave Functions

We want to determine now the wave functions of the stationary states of hydrogen-type atoms
which correspond to the energy levels (10.405). We assume the 4-vector potential of pure Coulomb
type (10.367) which is spherically symmetric such that equations (10.422, 10.423) apply for V (r) =
−Ze2/r. Equation (10.422) determines solutions of the form (10.420). In the non-relativistic limit,
Φ in (10.420) is the large component and X is the small component. Hence, (10.422) corresponds
to states

Ψ(xµ) ≈

 i
f1(r)
r
Yjm(j + 1

2
, 1

2
|r̂)

0

 , (10.424)

i.e., to states with angular momentum ` = j + 1
2 . According to the discussion of the spectrum

(10.405) of the relativistic hydrogen atom the corresponding states have quantum numbers n =
1, 2, . . . , ` = 0, 1, . . . , n − 1. Hence, (10.422) describes the states 2p 1

2
, 3p 1

2
, 3d 3

2
, etc. Similarly,

(10.423), determining wave functions of the type (10.421), i.e., in the non-relativistic limit wave
functions

Ψ(xµ) ≈

 i
f2(r)
r
Yjm(j − 1

2
, 1

2
|r̂)

0

 , (10.425)

covers states with angular momentum ` = j − 1
2 and, correspodingly the states

1s 1
2
, 2s 1

2
, 2p 3

2
, 3s 1

2
, 3p 3

2
, 3d 5

2
, etc.

We consider first the solution of (10.422). The solution of (10.422) follows in this case from the same
procedure as that adopted for the radial wave function of the non-relativistic hydrogen-type atom.
According to this procedure, one demonstrates first that the wave function at r → 0 behaves as rγ

for some suitable γ, one demonstrates then that the wave functions for r →∞ behaves as exp(−µr)
for some suitable µ, and obtains finally a polynomial function p(r) such that rγexp(−µr)p(r) solves
(10.422); enforcing the polynomial to be of finite order leads to discrete eigenvalues ε, namely, the
ones given in (10.405).

Behaviour at r → 0

We consider first the behaviour of the solutions f1(r) and g1(r) of (10.422) near r = 0. We note
that (10.422), for small r, can be written[

∂r −
j + 1

2

r

]
g1(r) +

Ze2

r
f1(r) = 0

[
∂r +

j + 1
2

r

]
f1(r) − Ze2

r
g1(r) = 0 . (10.426)
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Setting
f1(r) ∼

→ 0
a rγ , g1(r) ∼

→ 0
b rγ (10.427)

yields

γ b rγ−1 − (j + 1
2) b rγ−1 + Ze2 a rγ−1 = 0

γ a rγ−1 + (j + 1
2) a rγ−1 − Ze2 b rγ−1 = 0 . (10.428)

or (
γ + (j + 1

2) −Ze2

Ze2 γ − (j + 1
2)

) (
a
b

)
= 0 . (10.429)

This equation poses an eigenvalue problem (eigenvalue −γ) for proper γ values. One obtains

γ = ±
√

(j + 1
2)2 − Z2e4. The assumed r-dependence in (10.427) makes only the positive solution

possible. We have, hence, determined that the solutions f1(r) and g1(r), for small r, assume the
r-dependence in (10.427) with

γ =

√
(j +

1
2

)2 − Z2e4 . (10.430)

Note that the exponent in (10.427), in case j+ 1
2)2 < Ze2, becomes imaginary. Such r-dependence

would make the expectation value of the potential∫
r2dr ρ(~r)

1
r

(10.431)

infinite since, according to (10.266, 10.267, 10.420), for the particle density holds then

ρ(~r) ∼ |rγ−1|2 =
1
r2
. (10.432)

Behaviour at r → ∞

For very large r values (10.422) becomes

∂r g1(r) = − ( ε − m, ) f1(r)

∂r f1(r) = ( ε + m ) g1(r) (10.433)

Iterating this equation once yields

∂2
r g1(r) = (m2 − ε2 ) g1(r)

∂2
r f1(r) = (m2 − ε2 ) f1(r) (10.434)

The solutions of these equations are f1, g1 ∼ exp(±
√
m2 − ε2 r). Only the exponentially decaying

solution is admissable and, hence, we conclude

f1(r) ∼
→∞

e−µr , g1(r) ∼
→∞

e−µr , µ =
√
m2 − ε2 (10.435)
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For bound states holds ε < m and, hence, µ is real. Let us consider then for the solution of (10.434)

f1(r) =
√
m+ ε a e−µ r , g1(r) = −

√
m− ε a e−µr . (10.436)

Insertion into (10.434) results in

(m− ε)
√
m+ ε a − (m− ε)

√
m+ ε a = 0

(m+ ε)
√
m− ε a − (m+ ε)

√
m− ε a = 0 (10.437)

which is obviously correct.

Solution of the Radial Dirac Equation for a Coulomb Potential

To solve (10.422) for the Coulomb potential V (r) = −Ze2/r We assume a form for the solution
which is adopted to the asymptotic solution (10.436). Accordingly, we set

f1(r) =
√
m+ ε e−µr f̃1(r) (10.438)

g1(r) = −
√
m− ε e−µr g̃1(r) (10.439)

where µ is given in (10.435 ). Equation (10.422 ) leads to

−
√
m− ε [∂r −

j + 1
2

r
] g̃1 +

√
m+ ε

Ze2

r
f̃1 +

(m− ε)
√
m+ ε g̃1 − (m− ε)

√
m+ ε f̃1 = 0 (10.440)

√
m+ ε [∂r +

j + 1
2

r
] f̃1 +

√
m− ε Ze

2

r
g̃1 −

(m+ ε)
√
m− εf̃1 + (m+ ε)

√
m− εg̃1 = 0 (10.441)

The last two terms on the l.h.s. of both (10.440) and (10.441) correspond to (10.437) where they
cancelled in case f̃1 = g̃1 = a. In the present case the functions f̃1 and g̃1 cannot be chosen
identical due to the terms in the differential equations contributing for finite r. However, without
loss of generality we can choose

f̃1(r) = φ1(r) + φ2(r) , g̃1(r) = φ1(r) − φ2(r) (10.442)

which leads to a partial cancellation of the asymptotically dominant terms. We also introduce the
new variable

ρ = 2µ r . (10.443)

From this results after a little algebra

[∂ρ −
j + 1

2

ρ
] (φ1 − φ2) −

√
m+ ε

m− ε
Ze2

ρ
(φ1 + φ2) + φ2 = 0 (10.444)

[∂ρ +
j + 1

2

ρ
] (φ1 + φ2) +

√
m− ε
m+ ε

Ze2

ρ
(φ1 − φ2) − φ2 = 0 . (10.445)
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Addition and subtraction of these equations leads finally to the following two coupled differential
equations for φ1 and φ2

∂ρφ1 +
j + 1

2

ρ
φ2 −

εZe2

√
m2 − ε2 ρ

φ1 −
mZe2

√
m2 − ε2 ρ

φ2 = 0 (10.446)

∂ρφ2 +
j + 1

2

ρ
φ1 +

mZe2

√
m2 − ε2 ρ

φ1 +
εZe2

√
m2 − ε2 ρ

φ2 − φ2 = 0 (10.447)

We seek solutions of (10.446 , 10.447) of the form

φ1(ρ) = ργ
n′∑
s=0

αs ρ
2 (10.448)

φ2(ρ) = ργ
n′∑
s=0

βs ρ
2 (10.449)

for γ given in (10.430) which conform to the proper r → 0 behaviour determined above [c.f.
(10.426–10.430)]. Inserting (10.448, 10.449) into (10.446, 10.447) leads to

∑
s

[
(s+ γ)αs + (j + 1

2)βs −
εZe2

√
m2 − ε2

αs

− mZe2

√
m2 − ε2

βs

]
ρs+γ−1 = 0 (10.450)

∑
s

[
(s+ γ)β2 + (j + 1

2)αs +
mZe2

√
m2 − ε2

αs

+
εZe2

√
m2 − ε2

βs − βs−1

]
= 0 (10.451)

From (10.450) follows

αs
βs

=
mZe2√
m2−ε2 − (j + 1

2)

s + γ − εZe2√
m2−ε2

. (10.452)

From (10.451) follows

βs−1 =
(
s + γ +

εZe2

√
m2 − ε2

)
βs +

m2Z2e4

m2−ε2 − (j + 1
2)2

s + γ − εZe2√
m2−ε2

βs

=
(s+ γ)2 + Z2e4 − (j + 1

2)2

s + γ − εZe2√
m2−ε2

βs . (10.453)

Using (10.430) one can write this

βs =
s + γ − εZe2√

m2−ε2

s (s + 2γ)
βs−1 . (10.454)
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Defining

so =
εZe2

√
m2 − ε2

− γ (10.455)

one obtains

βs =
s− so

s(s+ 2γ)
βs−1

=
(s− 1− so)(s− so)

(s− 1)s (s− 1 + 2γ)(s+ 2γ)
βs−2

...

=
(1− so)(2− so) . . . (s− so)

s! (2γ + 1)(2γ + 2) · · · (2γ + s)
β0 (10.456)

From (10.452) follows

αs =
j + 1

2 −
mZe2√
m2−ε2

so

(−so)(1− so)(2− so) . . . (s− so)
s! (2γ + 1)(2γ + 2) · · · (2γ + s)

β0 (10.457)

One can relate the polynomials φ1(ρ) and φ2(ρ) defined through (10.448, 10.449) and (10.456,
10.457) with the confluent hypergeometric functions

F (a, c;x) = 1 +
a

c
x +

a(a+ 1)
c(c+ 1)

x2

2!
+ . . . (10.458)

or, equivalently, with the associated Laguerre polynomials

L(α)
n = F (−n, α+ 1, x) . (10.459)

It holds

φ1(ρ) = β0

j + 1
2 −

mZe2√
m2−ε2

so
ργ F (−so, 2γ + 1; ρ) (10.460)

φ2(ρ) = β0 ρ
γ F (1− so, 2γ + 1; ρ) . (10.461)

In order that the wave functions remain normalizable the power series (10.448, 10.449) must be of
finite order. This requires that all coefficients αs and βs must vanish for s ≥ n′ for some n′ ∈ N.
The expressions (10.456) and (10.457) for βs and αs imply that so must then be an integer, i.e.,
so = n′. According to the definitions (10.430, 10.455) this confinement of so implies discrete values
for ε, namely,

ε(n′) =
m√

1 + Z2e4

(n′+
√

(j+ 1
2

)2−Z2e4)2

, n′ = 0, 1, 2, . . . (10.462)

This expression agrees with the spectrum of relativistic hydrogen-type atoms derived above and
given by (10.405). Comparision with (10.405) allows one to identify n′ = n− j + 1

2 which, in fact,
is an integer. For example, for the states 2p 1

2
, 3p 1

2
, 3d 3

2
holds n′ = 1, 2, 1. We can, hence, conclude

that the polynomials in (10.461 for ε values given by (10.405) and the ensuing so values ( 10.455)
are finite.



350 Relativistic Quantum Mechanics

Altogether we have determined the stationary states of the type (10.421) with radial wave functions
f1(r), g1(r) determined by (10.438, 10.439), (10.442), and (10.460, 10.461). The coefficients β0 in
(10.460, 10.461) are to be chosen to satisfy a normalization condition and to assign an overall
phase. Due to the form (10.410) of the stationary state wave function the density ρ(xµ) of the
states under consideration, given by expression (10.267), is time-independent. The normalization
integral is then ∫ ∞

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφ (|Φ(~r)|2 + |X (~r)|2) = 1 (10.463)

where Φ and X , as in (10.421), are two-dimensional vectors determined through the explicit form
of the spin-orbital angular momentum states Yjm(j± 1

2 ,
1
2 |r̂) in (6.147, 6.148). The orthonormality

properties (6.157, 6.158) of the latter states absorb the angular integral in (10.463) and yield [note
the 1/r factor in (10.421)] ∫ ∞

0
dr (|f1(r)|2 + |g1(r)|2) = 1 (10.464)

The evaluation of the integrals, which involve the confluent hypergeometric functions in (10.460,
10.461), can follow the procedure adopted for the wave functions of the non-relativistic hydrogen
atom and will not be carried out here.
The wave functions (10.421) correspond to non-relativistic states with orbital angular momentum
` = j + 1

2 . They are described through quantum numbers n, j, ` = j + 1
2 ,m. The complete wave

function is given by the following set of formulas

Ψ(n, j, ` = j + 1
2 ,m|x

µ) = e−iεt

(
iF1(r)Yj,m(j + 1

2 ,
1
2 |r̂)

G1(r)Yj,m(j − 1
2 ,

1
2 |r̂)

)
(10.465)

F1(r) = F−(κ|r) , G1(r) = F+(κ|r) , κ = j + 1
2 (10.466)

where2

F±(κ|r) = ∓N (2µr)γ−1e−µr
{[

(n′ + γ)m
ε

− κ

]
F (−n′, 2γ + 1; 2µr)

± n′F (1− n′, 2γ + 1; 2µr)
}

(10.467)

N =
(2µ)

3
2

Γ(2γ + 1)

√√√√ m∓ ε)Γ(2γ + n′ + 1)

4m (n′+γ)m
ε

(
(n′+γ)m

ε − κ
)
n′!

(10.468)

and

µ =
√

(m− ε)(m+ ε)

γ =
√

(j + 1
2
)2 − Z2e4

n′ = n − j − 1
2

ε =
m√

1 + Z2e4

(n′+γ)2

. (10.469)

2This formula has been adapted from ”Relativistic Quantum Mechanics” by W. Greiner, (Springer, Berlin, 1990),
Sect. 9.6.
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We want to consider now the stationary states of the type (10.421) which, in the non-relativistic
limit, become

Ψ(xµ) ≈ e−1εt

 i
f2(r)
r
Yjm(j − 1

2
, 1

2
|r̂)

0

 . (10.470)

Obviously, this wavefunction has an orbital angular momentum quantum number ` = j − 1
2 and,

accordingly, describes the complementary set of states 1s 1
2
, 2s 1

2
, 2p 3

2
, 3s 1

2
, 3p 3

2
, 3d 5

2
, etc. not not

covered by the wave functions given by (10.465–10.469). The radial wave functions f2(r) and g2(r)
in (10.421) are governed by the radial Dirac equation (10.423) which differs from the radial Dirac
equation for f1(r) and g1(r) solely by the sign of the terms (j + 1

2)/r. One can verify, tracing all
steps which lead from (10.422) to (10.469) that the following wave functions result

Ψ(n, j, ` = j − 1
2 ,m|x

µ) = e−iεt

(
iF2(r)Yj,m(j − 1

2 ,
1
2 |r̂)

G2(r)Yj,m(j + 1
2 ,

1
2 |r̂)

)
(10.471)

F2(r) = F−(κ|r) , G2(r) = F+(κ|r) , κ = − j − 1
2 (10.472)

where F±(κ|r) are as given in (10.467–10.469). We have, hence, obtained closed expressions for the
wave functions of all the stationary bound states of relativistic hydrogen-type atoms.
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Chapter 11

Spinor Formulation of Relativistic
Quantum Mechanics

11.1 The Lorentz Transformation of the Dirac Bispinor

We will provide in the following a new formulation of the Dirac equation in the chiral representation
defined through (10.225–10.229). Starting point is the Lorentz transformation S̃(~w, ~ϑ) for the
bispinor wave function Ψ̃ in the chiral representation as given by (10.262). This transformation
can be written

S̃(~z) =
(
a(~z) 0

0 b(~z)

)
(11.1)

a(~z) = exp
(

1
2
~z · ~σ

)
(11.2)

b(~z) = exp
(
−1

2
~z ∗ · ~σ

)
(11.3)

~z = ~w − i ~ϑ . (11.4)

We have altered here slightly our notation of S̃(~w, ~ϑ), expressing its dependence on ~w, ~ϑ through
a complex variable ~z, ~z ∈ C3.
Because of its block-diagonal form each of the diagonal components of S̃(~z), i.e., a(~z) and b(~z),
must be two-dimensional irreducible representations of the Lorentz group. This fact is remarkable
since it implies that the representations provided through a(~z) and b(~z) are of lower dimension then
the four-dimensional natural representation1 L(~w, ~ϑ)µν . The lower dimensionality of a(~z) and b(~z)
implies, in a sense, that the corresponding representation of the Lorentz group is more basic than
the natural representation and may serve as a building block for all representations, in particular,
may be exploited to express the Lorentz-invariant equations of relativistic quantum mechanics.
This is, indeed, what will be achieved in the following.
We will proceed by building as much as possible on the results obtained sofar in the chiral repre-
sentation of the Dirac equation. We will characterize the space on which the transformations a(~z)

1We will see below that the representations a(~z) and b(~z) are, in fact, isomorphic to the natural representation,

i.e., different L(~w, ~ϑ)µν correspond to different a(~z) and b(~z).
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and b(~z) act, the so-called spinor space, will establish the map between L(~w, ~ϑ)µν and a(~z), b(~z),
express 4-vectors Aµ, Aν , the operator ∂µ and the Pauli matrices ~σ in the new representation and,
finally, formulate the Dirac equation, neutrino equation, and the Klein–Gordon equation in the
spinor representation.

A First Characterization of the Bispinor States

We note that in case ~w = 0 the Dirac transformations are pure rotations. In this case a(~z) and
b(~z) are identical and read

a(i ~ϑ) = b(i ~ϑ) = exp
(
−1

2
~ϑ · ~σ

)
, θ ∈ R3 . (11.5)

The transformations in this case, i.e., for ~z = i~ϑ, ~ϑ ∈ R3, are elements of SU(2) and correspond, in

fact, to the rotational transformations of spin-1
2 states as described by D

( 1
2

)

mm′(~ϑ), usually expressed
as product of rotations and of functions of Euler angles α, β, γ (see Chapter 5). For ~ϑ = (0, β, 0)T

the transformations are

a(i β ê2) = b(i β ê2) =
(
d

( 1
2

)

mm′(β)
)

=
(

cosβ2 − sinβ2
sinβ2 cosβ2

)
. (11.6)

as given by (5.243). This characterization allows one to draw conclusions regarding the state space
in which a(~z) and b(~z) operate, namely, a space of vectors

(
state1
state2

)
for which holds(

state 1 ∼ |12 ,+
1
2〉

state 2 ∼ |12 ,−
1
2〉

)
~z = i~ϑ, ~ϑ ∈ R3 (11.7)

where “∼” stands for “transforms like”. Here |12 ,±
1
2〉 represents the familiar spin–1

2 states.
Since a(~z) acts on the first two components of the solution Ψ̃ of the Dirac equation, and since b(~z)
acts on the third and fourth component of Ψ̃ one can characterize Ψ̃

Ψ̃1(xµ) ∼ |12 ,+
1
2〉

Ψ̃2(xµ) ∼ |12 ,−
1
2〉

Ψ̃3(xµ) ∼ |12 ,+
1
2〉

Ψ̃4(xµ) ∼ |12 ,−
1
2〉

 ~z = i~ϑ, ~ϑ ∈ R3 . (11.8)

We like to stress that there exists, however, a distinct difference in the transformation behaviour of
Ψ̃1(xµ), Ψ̃2(xµ) and Ψ̃3(xµ), Ψ̃4(xµ) in case ~z = ~w + i~ϑ for ~w 6= 0. In this case holds a(~z) 6= b(~z)
and Ψ̃1(xµ), Ψ̃2(xµ) transform according to a(~z) whereas Ψ̃3(xµ), Ψ̃4(xµ) transform according to
b(~z).

Relationship Between a(~z) and b(~z)

The transformation b(~z) can be related to the conjugate complex of the transformation a(~z), i.e.,
to

a∗(~z) = exp
(

1
2
~z ∗ · ~σ ∗

)
(11.9)
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where ~σ ∗ = (σ∗1, σ
∗
2, σ
∗
3). One can readily verify [c.f. (5.224)]

σ1 = σ∗1 , σ2 = −σ∗2 , σ3 = σ∗3 . (11.10)

From this one can derive
b(~z) = ε a∗(~z) ε−1 (11.11)

where

ε =
(

0 1
−1 0

)
, ε−1 =

(
0 −1
1 0

)
. (11.12)

To prove (11.11) one first demonstrates that for ε and ε−1 as given in (11.12) does, in fact, hold
ε ε−1 = 11. One notices then, using εf(a)ε−1 = f(εaε−1),

ε a∗(~z)ε−1 = exp
[

1
2
~z ∗
(
ε~σ ∗ε−1

) ]
. (11.13)

Explicit matrix multiplication using (5.224, 11.10, 11.12) yields

εσ1ε
−1 = −σ1 = −σ∗1

εσ2ε
−1 = σ2 = −σ∗2 (11.14)

εσ3ε
−1 = −σ3 = −σ∗3 ,

or in short
ε~σε−1 = −~σ ∗ . (11.15)

Similarly, one can show
ε−1~σε = −~σ ∗ , (11.16)

a result to be used further below. Hence, one can express

ε a∗(~z) ε−1 = exp
(
−1

2
~z ∗ · ~σ

)
= b(~z) . (11.17)

We conclude, therefore, that the transformation (11.1) can be written in the form

S̃(~z) =
(
a(~z) 0

0 ε a∗(~z) ε−1

)
(11.18)

with a(~z) given by (11.2, 11.4) and ε, ε−1 given by (11.12). This demonstrates that a(~z) is the
transformation which characterizes both components of S̃(~z).

Spatial Inversion

One may question from the form of S̃(~z) why the Dirac equation needs to be four-dimensional,
featuring the components Ψ̃1(xµ), Ψ̃2(xµ) as well as Ψ̃3(xµ), Ψ̃4(xµ) even though these pairs of
components transform independently of each other. The answer lies in the necessity that application
of spatial inversion should transform a solution of the Dirac equation into another possible solution
of the Dirac equation. The effect of inversion on Lorentz transformations is, however, that they
alter ~w into −~w, but leave rotation angles ~ϑ unaltered.
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Let P denote the representation of spatial inversion in the space of the wave functions Ψ̃. Obviously,
P2 = 11, i.e., P−1 = P. The transformation S̃(~z) in the transformed space is then

P S̃(~w + i~ϑ)P = S̃(−~w + i~ϑ) =
(
b(~z) 0

0 a(~z)

)
, (11.19)

i.e., the transformations a(~z) and b(~z) become interchanged. This implies

P


Ψ̃1

Ψ̃2

Ψ̃3

Ψ̃4

 =


Ψ̃3

Ψ̃4

Ψ̃1

Ψ̃2

 . (11.20)

Obviously, the space spanned by only two of the components of Ψ̃ is not invariant under spatial
inversion and, hence, does not suffice for particles like the electron which obey inversion symmetry.
However, for particles like the neutrinos which do not obey inversion symmetry two components
of the wave function are sufficient. In fact, the Lorentz invariant equation for neutrinos is only
2–dimensional.

11.2 Relationship Between the Lie Groups SL(2,C) and SO(3,1)

We have pointed out that a(i~ϑ), ~ϑ ∈ R3, which describes pure rotations, is an element of SU(2).
However, a(~w + i~ϑ) for ~w 6= 0 is an element of

SL(2,C) = {M, M is a complex 2× 2–matrix,det(M) = 1 } . (11.21)

One can verify this by evaluating the determinant of a(~z)

det( a(~z) ) = det
(
e

1
2
~z·~σ
)

= etr( 1
2
~z·~σ) = 1 (11.22)

which follows from the fact that for any complex, non-singular matrix M holds2

det
(
eM
)

= etr(M) (11.23)

and from [c.f. (5.224)]
tr(σj ) = 0 , j = 1, 2, 3 . (11.24)

Exercise 11.2.1: Show that SL(2,C) defined in (11.21) together with matrix multiplication as
the binary operation forms a group.

2The proof of this important property is straightforward in case of hermitian M (see Chapter 5). For the general
case the proof, based on the Jordan–Chevalley theorem, can be found in G.G.A. Bäuerle and E.A. de Kerf Lie
Algebras, Part (Elsevier, Amsterdam, 1990), Exercise 1.10.3.
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Mapping Aµ onto matrices M(Aµ)

We want to establish now the relationship between SL(2,C) and the group L↑+ of proper, or-
thochronous Lorentz transformations. Starting point is a bijective map between R4 and the set of
two-dimensional hermitian matrices defined through

M(Aµ) = σµA
µ (11.25)

where

σµ =


(

1 0
0 1

)
︸ ︷︷ ︸

σ0

,

(
0 1
1 0

)
︸ ︷︷ ︸

σ1

,

(
0 −i
i 0

)
︸ ︷︷ ︸

σ2

,

(
1 0
0 −1

)
︸ ︷︷ ︸

σ3

 . (11.26)

The quantity σµ thus defined does not transform like a covariant 4–vector. In fact, one wishes
that the definition (11.25) of the matrix M(Aµ) is independent of the frame of reference, i.e., in a
transformed frame should hold

σµA
µ Lρν

−→
σµA

′µ . (11.27)

Straightforward transformation into another frame of reference would replace σµ by σ′µ. Using
Aµ = (L−1)µνA′ν one would expect in a transformed frame to hold

σµA
µ L

ρ
ν

−→
σ′µ (L−1)µν A′ν . (11.28)

Consistency of (11.28) and (11.27) requires then

Lν
µσ′µ = σν (11.29)

where we used (10.76). Noting that for covariant vectors according to (10.75) holds a′ν = Lν
µaµ

one realizes that σµ transforms inversely to covariant 4–vectors. We will prove below [cf. (11.135)]
this transformation behaviour.
M(Aµ) according to (11.25) can also be written

M(Aµ) =
(
A0 + A3 A1 − iA2

A1 + iA2 A0 − A3

)
. (11.30)

Since the components of Aµ are real, the matrix M(Aµ) is hermitian as can be seen from inspection
of (11.26) or from the fact that the matrices σ0, σ1, σ2, σ3 are hermitian. The function M(Aµ) is
bijective, in fact, one can provide a simple expression for the inverse of M(Aµ)

M ′ = M(Aµ) ↔ Aµ =
1
2

tr
(
M ′ σµ

)
. (11.31)

Exercise 11.2.2: Show that σ0, σ1, σ2, σ3 provide a linear–independent basis for the space of
hermitian 2×2–matrices. Argue why M(Aµ) = σµA

µ provides a bijective map. Demonstrate that
(11.31) holds.

The following important property holds for M(Aµ)

det (M(Aµ) ) = AµAµ (11.32)

which follows directly from (11.30).
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Transforming the matrices M(Aµ)

We define now a transformation of the matrix M(Aµ) in the space of hermitian 2× 2–matrices

M
a−→ M ′ = aM a† , a ∈ SL(2,C) . (11.33)

This transformation conserves the hermitian property of M since

(M ′)† = ( aM a† )† = (a†)†M †a† = aM a† = M ′ (11.34)

where we used the properties M † = M and (a†)† = a. Due to det(a) = 1 the transformation
(11.33) conserves the determinant of M . In fact, it holds for the matrix M ′ defined through (11.33)

det(M ′) = det( aM a† ) = det(a) det(a†) det(M)
= [det(a)]2 det(M) = det(M) . (11.35)

We now apply the transformation (11.33) to M(Aµ) describing the action of the transformation in
terms of transformations of Aµ. In fact, for any a ∈ SL(2,C) and for any Aµ there exists an A′µ

such that

M(A′µ) = aM(Aµ) a† . (11.36)

The suitable A′µ can readily be constructed using (11.31). Accordingly, any a ∈ SL(2,C) defines
the transformation [c.f. (11.31)]

Aµ
a−→ A′µ =

1
2

tr
(
aM(Aµ) a†σµ

)
. (11.37)

Because of (11.32, 11.35) holds for this transformation

A′µA′µ = AµAµ (11.38)

which implies that (11.37) defines actually a Lorentz transformation. The linear character of the
transformation becomes apparent expressing A′µ as given in (11.37) using (11.25)

A′µ =
1
2

tr
(
a σνa

†σµ

)
Aν (11.39)

which allows us to express finally

A′µ = L(a)µν Aν ; L(a)µν =
1
2

tr
(
a σνa

†σµ

)
. (11.40)

Exercise 11.2.3: Show that L(a)µν defined in (11.40) is an element of L↑+.



11.2: Lie Groups SL(2,C) and SO(3,1) 359

L(a)µν provides a homomorphism

We want to demonstrate now that the map between SL(2, C) and SO(3,1) defined through L(a)µν
[cf. (11.40)] respects the group property of SL(2, C) and of SO(3,1), i.e.,

L̄µρ = L(a1)µν L(a2)µρ︸ ︷︷ ︸
product

in SO(3,1)

= L( a1 a2︸ ︷︷ ︸
product

in SL(2,C)

)µρ (11.41)

For this purpose one writes using tr(AB) = tr(BA)

L(a1)µν L(a2)µρ =
∑
ν

1
2

tr
(
a1σνa

†
1σµ

) 1
2

tr
(
a2σρa

†
2σν

)
=

∑
ν

1
2

tr
(
σνa

†
1σµa1

) 1
2

tr
(
a2σρa

†
2σν

)
. (11.42)

Defining
Γ = a†1σµa1 , Γ′ = a2σρa

†
2 (11.43)

and using the definition of L̄µρ in (11.41) results in

L̄µρ =
1
4

∑
ν,α,β
γ,δ

(σν)αβΓβα Γγδ(σν)δγ =
1
4

∑
α,β
γ,δ

AαβγδΓβα Γγδ (11.44)

where
Aαβγδ =

∑
ν

(σν)αβ(σν)δγ . (11.45)

One can demonstrate through direct evaluation

Aαβγδ =


2 α = β = γ = δ = 1
2 α = β = γ = δ = 2
2 α = γ = 1 , β = δ = 2
2 α = γ = 2 , β = δ = 1
0 else

(11.46)

which yields

L̄µρ =
1
2
(

Γ11Γ′11 + Γ22Γ′22 + Γ12Γ′21 + Γ21Γ′12

)
=

1
2

tr
(

ΓΓ′
)

=
1
2

tr
(
a†1σµa1 a2σρa

†
2

)
=

1
2

tr
(
σµa1a2σρa

†
2a
†
1

)
=

1
2

tr
(
a1a2σρ(a1a2)†σµ

)
= L(a1a2)µρ . (11.47)

This completes the proof of the homomorphic property of L(a)µν .
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Generators for SL(2, C) which correspond to ~K, ~J

The transformations a ∈ SL(2,C) as complex 2 × 2–matrices are defined through four complex
or, correspondingly, eight real numbers. Because of the condition det(a) = 1 only six independent
real numbers actually suffice for the definition of a. One expects then that six generators Gj and
six real coordinates fj can be defined which allow one to represent a in the form

a = exp

 6∑
j=1

fjGj

 . (11.48)

We want to determine now the generators of the transformation a(~z) as defined in (11.2) which
correspond to the generators K1,K2,K3, J1, J2, J3 of the Lorentz transformations Lµν in the natural
representations, i.e., correspond to the generators given by (10.47, 10.48). To this end we consider
infinitesimal transformations and keep only terms of zero order and first order in the small variables.
To obtain the generator of a(~z) corresponding to the generator K1, denoted below as κ1, we write
(11.36)

M(LµνAν) = aM(Aµ) a† (11.49)

assuming (note that gµν is just the familiar Kronecker δµν)

Lµν = gµν + ε (K1)µ ν (11.50)
a = 11 + ε κ1 . (11.51)

Insertion of (K1)µν as given in (10.48) yields for the l.h.s. of (11.49), noting the linearity of M(Aµ),

M(Aµ + ε (K1)µ ν Aν) = M(Aµ) + εM( (−A1,−A0, 0, 0) )
= M(Aµ) − ε σ0A

1 − ε σ1A
0 (11.52)

where we employed (11.25) in the last step. For the r.h.s. of (11.49) we obtain using (11.51)

( 11 + ε κ1 )M(Aµ) ( 11 + ε κ†1 )

= M(Aµ) + ε (κ1M(Aµ) + M(Aµ)κ†1 ) + O(ε2)

= M(Aµ) + ε (κ1σµ + σµκ
†
1 )Aµ + O(ε2) . (11.53)

Equating (11.52) and (11.53) results in the condition

σ0A
1 − σ1A

0 = (κ1σµ + σµ κ
†
1 )Aµ . (11.54)

This reads for the four cases Aµ = (1, 0, 0, 0), Aµ = (0, 1, 0, 0), Aµ = (0, 0, 1, 0), Aµ = (0, 0, 0, 1)

−σ1 = κ1σ0 + σ0κ
†
1 = κ1 + κ†1 (11.55)

σ0 = κ1σ1 + σ1κ
†
1 (11.56)

0 = κ1σ2 + σ2κ
†
1 (11.57)

0 = κ1σ3 + σ3κ
†
1 . (11.58)

One can verify readily that

κ1 = −1
2
σ1 (11.59)
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obeys these conditions. Similarly, one can show that the generators κ2, κ3 of a(~z) corresponding to
K2,K3 and λ1, λ2, λ3 corresponding to J1, J2, J3 are given by

κ = −1
2
~σ , ~λ =

i

2
~σ . (11.60)

We can, hence, state that the following two transformations are equivalent

L(~w, ~ϑ) = e~w·
~K + ~ϑ· ~J︸ ︷︷ ︸

∈ SO(3,1)
acts on 4–vectors Aµ

, a(~w − i~ϑ) = e−
1
2

(~w − i~ϑ)·~σ︸ ︷︷ ︸
∈ SL(2,C)

acts on spinors φα ∈ C2

(characterized below)

(11.61)

This identifies the transformations a(~z = ~w − i~ϑ) as representations of Lorentz transformations, ~w
describing boosts and ~ϑ describing rotations.

Exercise 11.2.4: Show that the generators (11.60) of a ∈ SL(2,C) correspond to the generators
~K and ~J of Lµν .

11.3 Spinors

Definition of contravariant spinors

We will now further characterize the states on which the transformation a(~z) and its conjugate
complex a∗(~z) act, the so-called contravariant spinors. We consider first the transformation a(~z)
which acts on a 2-dimensional space of states denoted by

φα =
(
φ1

φ2

)
∈ C2 . (11.62)

According to our earlier discussion holds

φ1 transforms under rotations (~z = i~ϑ) like a spin–1
2 state |12 ,+

1
2〉

φ2 transforms under rotations (~z = i~ϑ) like a spin–1
2 state |12 ,−

1
2〉 .

We denote the general (~z = ~w + i~ϑ) transformation by

φ′α = aαβ φ
β def= aα1φ

1 + aα2φ
2 , α = 1, 2 (11.63)

where we extended the summation convention of 4-vectors to spinors. Here

a(~z) = ( aαβ ) =
(
a1

1 a1
2

a2
1 a2

2

)
(11.64)

describes the matrix a(~z).
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Definition of a scalar product

The question arises if for the states φα there exists a scalar product which is invariant under
Lorentz transformations, i.e., invariant under transformations a(~z). Such a scalar product does,
indeed, exist and it plays a role for spinors which is as central as the role of the scalar product
AµAµ is for 4–vectors. To arrive at a suitable scalar product we consider first only rotational
transformations a(i~ϑ). In this case spinors φα transform like spin–1

2 states and an invariant, which
can be constructed from products φ1χ2, etc., is the singlet state. In the notation developed in
Chapter 5 holds for the singlet state

|1
2
,

1

2
; 0, 0〉 =

∑
m=±1

2

(0, 0|1
2
,m;

1

2
,−m) |1

2
,m〉1|

1

2
,−m〉2 (11.65)

where | · · ·〉1 describes the spin state of “particle 1” and | · · ·〉2 describes the spin state of “particle
2” and (0, 0|12 ,±

1
2 ; 1

2 ,∓
1
2) stands for the Clebsch–Gordon coefficient. Using (0, 0|12 ,±

1
2 ; 1

2 ,∓
1
2) =

±1/
√

2 and equating the spin states of “particle 1” with the spinor φα, those of “particle 2” with
the spinor χβ one can state that the quantity

Σ =
1√
2

(
φ1 χ2 − φ2 χ1

)
(11.66)

should constitute a singlet spin state, i.e., should remain invariant under transformations a(i~ϑ). In
fact, as we will demonstrate below such states are invariant under general Lorentz transformations
a(~z).

Definition of covariant spinors

Expression (11.66) is a bilinear form, invariant and as such has the necessary properties of a scalar3

product. However, this scalar product is anti-symmetric, i.e., exchange of φα and χβ alters the
sign of the expression. The existence of a scalar product gives rise to the definition of a dual
representation of the states φα denoted by φα. The corresponding states are defined through

φ1 χ2 − φ2 χ1 = φ1χ1 + φ2χ2 (11.67)

It obviously holds

χα =
(
χ1

χ2

)
=
(
χ2

−χ1

)
. (11.68)

We will refer to φα, χβ, . . . as contravariant spinors and to φα, χβ , . . . as covariant spinors. The
relationship between the two can be expressed(

φ1

φ2

)
= ε

(
φ1

φ2

)
(11.69)

ε =
(

0 1
−1 0

)
(11.70)

3‘Scalar’ implies invariance under rotations and is conventionally generalized to invariance under other symmetry
trasnformations.
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as can be verified from (11.68). The inverse of (11.69, 11.70) is(
φ1

φ2

)
= ε−1

(
φ1

φ2

)
(11.71)

ε−1 =
(

0 −1
1 0

)
. (11.72)

Exercise 11.3.1: Show that for any non-singular complex 2× 2–matrix M holds

εM ε−1 = det(M)
(
M−1

)T
The matrices ε, ε−1 connecting contravariant and covariant spinors play the role of the metric
tensors gµν , gµν of the Minkowski space [cf. (10.10, 10.74)]. Accordingly, we will express (11.69,
11.70) and (11.71, 11.72) in a notation analogous to that chosen for contravariant and covariant
4–vectors [cf. (10.72)]

φα = εαβ φ
β (11.73)

φα = εαβ φβ (11.74)

εαβ =
(
ε11 ε12

ε21 ε22

)
=
(

0 1
−1 0

)
(11.75)

εαβ =
(
ε11 ε12

ε21 ε22

)
=
(

0 −1
1 0

)
(11.76)

The scalar product (11.67) will be expressed as

φαχα = φ1χ1 + φ2χ2 = φ1 χ2 − φ2 χ1 . (11.77)

For this scalar product holds
φαχα = −χαφα . (11.78)

The transformation behaviour of φα according to (11.63, 11.73, 11.75) is given by

φ′α = εαβ a
β
γ ε

γδ φδ (11.79)

as can be readily verified.

Proof that φαχα is Lorentz invariant

We want to verify now that the scalar product (11.77) is Lorentz invariant. In the transformed
frame holds

φ′αχ′α = aαβ εαγa
γ
δε
δκ φβχκ . (11.80)

One can write in matrix notation

aαβ εαγa
γ
δε
δκ =

[ (
ε a ε−1

)T
a
]
κβ

. (11.81)
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Using (11.2) and (11.14) one can write

ε a ε−1 = ε e
1
2
~z·~σε−1 = e

1
2
~z·ε~σε−1

= e−
1
2
~z·~σ ∗ (11.82)

and with f(A)T = f(AT ) for polynomial f(A)(
ε a ε−1

)T = e−
1
2
~z·(~σ ∗)T = e−

1
2
~z·~σ = a−1 (11.83)

Here we have employed the hermitian property of ~σ, i.e., ~σ† = (~σ ∗)T = ~σ. Insertion of (11.83)
into (11.81) yields

aαβ εαγa
γ
δε
δκ =

[ (
ε a ε−1

)T
a
]
κβ

=
[
a−1a

]
κβ

= δκβ (11.84)

and, hence, from (11.80)
φ′αχ′α = φβχβ . (11.85)

The complex conjugate spinors

We consider now the conjugate complex spinors

(φα)∗ =
( (

φ1
)∗(

φ2
)∗ ) . (11.86)

A concise notation of the conjugate complex spinors is provided by

(φα)∗ = φα̇ =

(
φ1̇

φ2̇

)
(11.87)

which we will employ from now on. Obviously, it holds φk̇ = (φk)∗, k = 1, 2. The transformation
behaviour of φα̇ is

φ′α̇ = (aαβ)∗ φβ̇ (11.88)

which one verifies taking the conjugate complex of (11.63). As discussed above, a∗(~z) provides
a representation of the Lorentz group which is distinct from that provided by a(~z). Hence, the
conjugate complex spinors φα̇ need to be considered separately from the spinors φα. We denote

(aαβ)∗ = aα̇β̇ (11.89)

such that (11.88) reads

φ′α̇ = aα̇β̇φ
β̇ (11.90)

extending the summation convention to ‘dotted’ indices.
We also define covariant versions of φα̇

φα̇ = (φα)∗ . (11.91)
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The relationship between contravariant and covariant conjugate complex spinors can be expressed
in analogy to (11.73, 11.76)

φα̇ = εα̇β̇ φ
β̇ (11.92)

φα̇ = εα̇β̇ φβ̇ (11.93)
εα̇β̇ = εαβ (11.94)

εα̇β̇ = εαβ (11.95)

where εαβ and εαβ are the real matrices defined in (11.75, 11.75). For the spinors φα̇ and χα̇ thus
defined holds that the scalar product

φα̇χα̇ = φ1̇χ1̇ + φ2̇χ2̇ (11.96)

is Lorentz invariant, a property which is rather evident.
The transformation behaviour of φα̇ is

φ′α̇ = εα̇β̇a
β̇
γ̇ε
γ̇δ̇φδ̇ . (11.97)

The transformation, in matrix notation, is governed by the operator ε a∗(~z) ε−1 which arises in
the Lorentz transformation (11.18) of the bispinor wave function Ψ̃, ε a∗(~z) ε−1 accounting for the
transformation behaviour of the third and fourth spinor component of Ψ̃. A comparision of (11.18)
and (11.97) implies then that φα̇ transforms like Ψ̃3, Ψ̃4, i.e., one can state

φ1̇ transforms under rotations (~z = i~ϑ) like a spin–1
2 state |12 ,+

1
2〉

φ2̇ transforms under rotations (~z = i~ϑ) like a spin–1
2 state |12 ,−

1
2〉 .

The transformation behaviour of Ψ̃ (note that we do not include presently the space-time depen-
dence of the wave function)

Ψ̃′ = S̃(~z) Ψ̃ =

 a(~z)
(Ψ̃1

Ψ̃2

)
εa∗(~z)ε−1

(Ψ̃3

Ψ̃4

)
 (11.98)

obviously implies that the solution of the Dirac equation in the chiral representation can be written
in spinor form 

Ψ̃1(xµ)
Ψ̃2(xµ)
Ψ̃3(xµ)
Ψ̃4(xµ)

 =


φ1(xµ)
φ2(xµ)
χ1̇(xµ)
χ2̇(xµ)

 =
(
φα(xµ)
χβ̇(xµ)

)
. (11.99)

11.4 Spinor Tensors

We generalize now our definition of spinors φα to tensors. A tensor

tα1α2···αkβ̇1β̇2···β̇` (11.100)
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is a quantity which under Lorentz transformations behaves as

t′α1α2···αkβ̇1β̇2···β̇` =
k∏

m=1

aαmγm
∏̀
n=1

aβ̇n δ̇n t
γ1···γk δ̇1···δ̇` . (11.101)

An example is the tensor tαβ̇ which will play an important role in the spinor presentation of the
Dirac equation. This tensor transforms according to

t′αβ̇ = aαγa
β̇
δ̇ t
γδ̇ (11.102)

This reads in matrix notation, using conventional matrix indices j, k, `,m,

t′jk =
(
a t a†

)
jk

=
∑
`,m

aj`a
∗
kmt`m . (11.103)

Similarly, the transformation bevaviour of a tensor tαβ reads in spinor and matrix notation

t′αβ = aαγ a
β
δ t
γδ , t′jk =

(
a t aT

)
jk

=
∑
`,m

aj`akmt`m (11.104)

Indices on tensors can also be lowered employing the formula

tα
β̇ = εαγt

γβ̇ (11.105)

and generalizations thereof.
An example of a tensor is εαβ and εαβ . This tensor is actually invariant under Lorentz transforma-
tions, i.e., it holds

ε′αβ = εαβ , ε′αβ = εαβ (11.106)

Exercise 11.4.1: Prove equation (11.106).

The 4–vector Aµ in spinor form

We want to provide now the spinor form of the 4-vector Aµ, i.e., we want to express Aµ through a
spinor tensor. This task implies that we seek a tensor, the elements of which are linear functions
of Aµ. An obvious candidate is [cf. (11.25] M(Aµ) = σµA

µ. We had demonstrated that M(Aµ)
transforms according to

M ′ = M(LµνAν) = aM(Aµ) a† (11.107)

which reads in spinor notation [cf. (11.102, 11.103)

A′αβ̇ = aαγa
β̇
δ̇A

γδ̇ . (11.108)

Obviously, this transformation behaviour is in harmony with the tensor notation adopted, i.e., with
contravariant indices αβ̇. According to (11.25) the tensor is explicitly

Aαβ̇ =

(
A11̇ A12̇

A21̇ A22̇

)
=
(
A0 + A3 A1 − iA2

A1 + iA2 A0 − A3

)
. (11.109)
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One can express Aαβ̇ also through Aµ

Aαβ̇ =
(
A0 − A3 −A1 + iA2

−A1 − iA2 A0 + A3

)
. (11.110)

The 4-vectors Aµ, Aµ can also be associated with tensors

Aαβ̇ = εαγεβ̇δ̇A
γδ̇ . (11.111)

This tensor reads in matrix notation(
A11̇ A12̇

A21̇ A22̇

)
=

(
0 1
−1 0

) (
A11̇ A12̇

A21̇ A22̇

) (
0 −1
1 0

)

=

(
A22̇ −A21̇

−A12̇ A11̇

)
. (11.112)

Hence, employing (11.109, 11.110) one obtains

Aαβ̇ =
(

A0 − A3 −A1 − iA2

−A1 + iA2 A0 + A3

)
(11.113)

Aαβ̇ =
(

A0 + A3 A1 + iA2

A1 − iA2 A0 − A3

)
. (11.114)

We finally note that the 4–vector scalar product AµBµ reads in spinor notation

AµBµ =
1
2
Aαβ̇Bαβ̇ . (11.115)

Exercise 11.4.2: Prove that (11.115) is correct.

∂µ in spinor notation

The relationship between 4–vectors Aµ, Aµ and tensors tαβ̇ can be applied to the partial differential
operator ∂µ. Using (11.110) one can state

∂αβ̇ =
(

∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)
. (11.116)

Similarly, (11.114) yields

∂αβ̇ =
(

∂0 + ∂3 ∂1 + i∂2

∂1 − i∂2 ∂0 − ∂3

)
. (11.117)
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σµ in Tensor Notation

We want to develop now the tensor notation for σµ (11.26) and its contravariant analogue σµ

σµ =
((

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
σµ =

((
1 0
0 1

)
,

(
0 −1
−1 0

)
,

(
0 i
−i 0

)
,

(
−1 0

0 1

))
(11.118)

For this purpose we consider first the transformation behaviour of σµ and σµ. We will obtain the
transformation behaviour of σµ, σµ building on the known transformation behaviour of γ̃µ. This is
possible since γ̃µ can be expressed through σµ, σµ. Comparision of (10.229) and (11.118) yields

γ̃µ =
(

0 σµ

σµ 0

)
. (11.119)

Using (11.15) one can write
σµ = ε (σµ)∗ ε−1 (11.120)

and, hence,

γ̃µ =
(

0 σµ

ε (σµ)∗ ε−1 0

)
. (11.121)

One expects then that the transformation properties of σµ should follow from the transformation
properties established already for γµ [c.f. (10.243)]. Note that (10.243) holds independently of the
representation chosen, i.e., holds also in the chiral representation.
To obtain the transformation properties of σµ we employ then (10.243) in the chiral representation
expressing S(Lηξ) by (11.18) and γµ by (11.121). Equation (10.243) reads then(

a 0
0 εa∗ε−1

)(
0 σµ

ε(σµ)∗ε−1 0

)(
a−1 0
0 εa∗ε−1

)
Lνµ =(

0 σν

ε(σν)∗ε−1 0

)
. (11.122)

The l.h.s. of this equation is(
0 aσµε−1(a∗)−1ε

εa∗(σµ)∗ε−1a−1 0

)
Lνµ (11.123)

and, hence, one can conclude

aσµε−1(a∗)−1ε Lνµ = σν (11.124)
εa∗(σµ)∗ε−1a−1 Lνµ = ε(σν)∗ε−1 . (11.125)

Equation (11.125) is equivalent to

a∗(σµ)∗ε−1a−1ε Lνµ = (σν)∗ (11.126)

which is the complex conjugate of (11.124), i.e., (11.125) is equivalent to (11.124). Hence, (11.124)
constitutes the essential transformation property of σµ and will be considered further.
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One can rewrite (11.124) using (11.16, 11.2)

ε−1(a∗)−1ε = ε−1e−
1
2
~z ∗·~σ ∗ε = e−

1
2
~z ∗·ε−1~σ ∗ε = e

1
2
~z ∗·~σ . (11.127)

Exploiting the hermitian property of ~σ, e.g., (~σ ∗)T = ~σ yields using (11.2)

ε−1(a∗)−1ε = e
1
2
~z ∗·(~σ ∗)T =

[
e

1
2
~z ∗·~σ ∗

]T
= [a∗]T . (11.128)

One can express, therefore, equation (11.124)

a σµ [a∗]T Lνµ = σν . (11.129)

We want to demonstrate now that the expression aσµ[a∗]T is to be interpreted as the transform
of σµ under Lorentz transformations. In fact, under rotations the Pauli matrices transform like
(j = 1, 2, 3)

σj −→ a(i~ϑ)σj
(
a(i~ϑ)

)†
= a(i~ϑ)σj

(
a∗(i~ϑ)

)T
. (11.130)

We argue in analogy to the logic applied in going from (11.107) to (11.108) that the same trans-
formation behaviour applies then for general Lorentz transformations, i.e., transformations (11.2,
11.4) with ~w 6= 0. One can, hence, state that σµ in a new reference frame is

σ′µ = a σµ a† (11.131)

where a is given by (11.2, 11.4). This transformation behaviour, according to (11.102, 11.103)
identifies σµ as a tensor of type tαβ̇ . It holds according to (11.118)(

(σµ)11̇ (σµ)12̇

(σµ)21̇ (σµ)22̇

)
=

(
1 0
0 1

)
︸ ︷︷ ︸

µ= 0

,

(
0 −1
−1 0

)
︸ ︷︷ ︸

µ= 1

,

(
0 i
−i 0

)
︸ ︷︷ ︸

µ= 2

,

(
−1 0

0 1

)
︸ ︷︷ ︸

µ= 3

,

 (11.132)

and (
(σµ)11̇ (σµ)12̇

(σµ)21̇ (σµ)22̇

)
=

(
1 0
0 1

)
︸ ︷︷ ︸

µ= 0

,

(
0 1
1 0

)
︸ ︷︷ ︸

µ= 1

,

(
0 −i
i 0

)
︸ ︷︷ ︸

µ= 2

,

(
1 0
0 −1

)
︸ ︷︷ ︸

µ= 3

,

 . (11.133)

Combining (11.129, 11.131) one can express the transformation behaviour of σµ in the succinct
form

Lνµ σ
′µ = σν . (11.134)
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Inverting contravariant and covariant indices one can also state

Lν
µ σ′µ = σν . (11.135)

This is the property surmised already above [cf. (11.29)]. We can summarize that σµ and σµ
transform like a 4–vector, however, the transformation is inverse to that of ordinary 4–vectors.
Each of the 4×4 = 16 matrix elements in (11.132) and (11.133) is characterized through a 4-vector
index µ, µ = 0, 1, 2, 3 as well as through two spinor indices αβ̇. We want to express now σµ and
σµ also with respect to the 4–vector index µ in spinor form employing (11.114). This yields

σαβ̇ =
(

σ0 + σ3 σ1 + iσ2

σ1 − iσ2 σ0 − σ3

)
= 2


(

1 0
0 0

) (
0 1
0 0

)
(

0 0
1 0

) (
0 0
0 1

)
 (11.136)

where on the rhs. the submatrices correspond to tαβ̇ spinors. We can, in fact, state

(
σαβ̇

)γδ̇
=


(

(σ11̇)11̇ (σ11̇)12̇

(σ11̇)21̇ (σ11̇)22̇

) (
(σ12̇)11̇ (σ12̇)12̇

(σ12̇)21̇ (σ12̇)22̇

)
(

(σ21̇)11̇ (σ21̇)12̇

(σ21̇)21̇ (σ21̇)22̇

) (
(σ22̇)11̇ (σ22̇)12̇

(σ22̇)21̇ (σ22̇)22̇

)
 . (11.137)

Equating this with the r.h.s. of (11.136) results in the succinct expression

1
2

(
σαβ̇

)γδ̇
= δαγδβ̇δ̇ . (11.138)

Note that all elements of σαβ̇ are real and that there are only four non-vanishing elements.
In (11.138) the ‘inner’ covariant spinor indices, i.e., α, β̇, account for the 4–vector index µ, whereas
the ‘outer’ contravariant spinor indices. i.e., γ, δ̇, account for the elements of the individual Pauli
matrices. We will now consider the representation of σµ, σµ in which the contravariant indices are
moved ‘inside’, i.e., account for the 4-vector µ, and the covariant indices are moved outside. The
desired change of representation(σµ)αβ̇ −→ (σµ)αβ̇ corresponds to a transformation of the basis of
spin states (

f
g

)
−→

(
g
−f

)
= ε

(
f
g

)
(11.139)

and, hence, corresponds to the transformation(
(σµ)11̇ (σµ)12̇

(σµ)21̇ (σµ)22̇

)
=
(

0 1
−1 0

)(
(σµ)11̇ (σµ)12̇

(σµ)21̇ (σµ)22̇

)(
0 −1
1 0

)
(11.140)

where we employed the expressions (11.12) for ε and ε−1. Using (11.110) to express σαβ̇ in terms
of σµ yields together with (5.224)

σαβ̇ =
(

σ0 − σ3 σ1 + iσ2

−σ1 − iσ2 σ0 + σ3

)
= 2


(

0 0
0 1

) (
0 0
−1 0

)
(

0 −1
0 0

) (
1 0
0 1

)
 (11.141)
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and, employing then transformation (11.140) to transform each of the four submatrices, which in
(11.137) are in a basis (· · ·)αβ̇ to a basis (· · ·)αβ̇ results in

(
σαβ̇

)
γδ̇

=


(

(σ11̇)11̇ (σ11̇)12̇

(σ11̇)21̇ (σ11̇)22̇

) (
(σ12̇)11̇ (σ12̇)12̇

(σ12̇)21̇ (σ12̇)22̇

)
(

(σ21̇)11̇ (σ21̇)12̇

(σ21̇)21̇ (σ21̇)22̇

) (
(σ22̇)11̇ (σ22̇)12̇

(σ22̇)21̇ (σ22̇)22̇

)


= 2


(

1 0
0 0

) (
0 1
0 0

)
(

0 0
1 0

) (
0 0
0 1

)
 . (11.142)

This can be expressed
1
2

(
σαβ̇

)
γδ̇

= δαγδβ̇δ̇ . (11.143)

Combined with (11.138) one can conclude that the following property holds

1
2

(
σαβ̇

)γδ̇
=

1
2

(
σαβ̇

)
γδ̇

= δαγδβ̇δ̇ . (11.144)

The Dirac Matrices γµ in spinor notation

We want to express now the Dirac matrices γ̃µ in spinor form. For this purpose we start from the
expression (11.121) of γ̃µ. This expression implies that the element of γ̃µ given by ε σµε−1 is in the
basis |αβ̇ whereas the element of γ̃µ given by σµ is in the basis |αβ̇. Accordingly, we write

γ̃µ =

(
0 (σµ)αβ̇

((σµ)αβ̇)∗ 0

)
. (11.145)

Let Aµ be a covariant 4–vector. One can write then the scalar product using (11.115)

γ̃µAµ =

(
0 (σµ)αβ̇Aµ

((σµ)αβ̇)∗Aµ 0

)

=

(
0 1

2(σγδ̇)
αβ̇Aγδ̇

1
2((σγδ̇)αβ̇)∗Aγδ̇ 0

)
. (11.146)

Exploiting the property (11.144) results in the simple relationship

γ̃µAµ =

(
0 Aαβ̇

Aαβ̇ 0

)
. (11.147)



372 Spinor Formulation

11.5 Lorentz Invariant Field Equations in Spinor Form

Dirac Equation

(11.147) allows us to rewrite the Dirac equation in the chiral representation (10.226)

i γµ∂µΨ̃(xµ) =

(
0 i ∂αβ̇

i ∂αβ̇ 0

)
Ψ̃(xµ) = m Ψ̃(xµ) . (11.148)

Employing Ψ̃(xµ) in the form (11.99) yields the Dirac equation in spinor form

i ∂αβ̇ χβ̇ = mφα (11.149)
i ∂αβ̇ φ

α = mχβ̇ . (11.150)

The simplicity of this equation is striking.



Chapter 12

Symmetries in Physics: Isospin and
the Eightfold Way

by Melih Sener and Klaus Schulten

Symmetries and their consequences are central to physics. In this chapter we will discuss a particular
set of symmetries that have played a seminal role in the development of elementary particle and
nuclear physics. These are the isospin symmetry of nuclear interactions and its natural extension,
the so-called Eightfold Way.
The organization of this chapter is as follows: In the next section we will discuss the relation
between symmetries of a quantum mechanical system and the degeneracies between its energy
levels. We will particularly use the example of spherically symmetric potentials. In the following
section we will introduce the concept of isospin as an approximate SU(2) symmetry, which identifies
the proton and the neutron as different states of the same particle. We will also introduce the quark
model as a natural framework to represent the observed symmetries. We will apply these concepts
to an analysis of nucleon-nucleon and nucleon-meson scattering. In the final section, we will discuss
the SU(3) symmetry of three quark flavors. The algebraic structure and the representations of
SU(3) will be discussed in parallel to SU(2) and particle families will be identified in terms of
representations of the underlying symmetry group.

12.1 Symmetry and Degeneracies

The degeneracies of energy levels of a quantum mechanical system are related to its symmetries.
Let us assume a continuous symmetry obeyed by a quantum mechanical system. The action of the
symmetry operations on quantum mechanical states are given by elements of a corresponding Lie
group, i.e.,

O = exp

(∑
k

αkSk

)
. (12.1)

Then the generators, Sk, will commute with the Hamiltonian of the system,

[H,Sk] = 0. (12.2)

373
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The action of any symmetry generator, Sk, on an energy eigenstate, ψE,λ1,...,λn , leaves the energy
of the state invariant

H exp(iαkSk) ψE,λ1,...,λn = E exp(iαkSk) ψE,λ1,...,λn . (12.3)

If the newly obtained state is linearly independent of the original one, this implies a degeneracy in
the spectrum. We will investigate this shortly in more detail in the case of systems with spherical
symmetry, where the symmetry generators, Sk, can be identified with the angular momentum
operators, Jk, as studied in chapter 7.
Lie groups play an essential role in the discussion of mass degeneracies in particle physics. In order
to illustrate this, we first consider a particular example of the implications of symmetry, namely
motion in a spherically symmetric potential described by the group SO(3) (or its double covering
SU(2) as discussed in section 5.12).
In chapter 7 the dynamics of a particle moving in three dimensions under the influence of a spher-
ically symmetric potential, V (r), has been discussed. The spherical symmetry implies the commu-
tation of the Hamiltonian with angular momentum operators (7.8)

[Ĥ, Jk] = 0 , k = 1, 2, 3 . (12.4)

The stationary Schrödinger equation, (7.18), can then be reduced to a one-dimensional radial
equation, (7.24), which yields a set of eigenstates of the form

ψE,`,m(~r) = vE,`,m(r)Y`m(θ, φ), (12.5)

with m = −l, . · · · , l and the corresponding energy levels are independent of m. Therefore, each
energy level is (2l + 1)-fold degenerate. This degeneracy follows from the fact that any rotation,
as represented by an element of SO(3), (7.39), generates a state which has the same energy as the
original one.

Presence of additional symmetries may further increase the degeneracy of the system. As an
example of this we will consider the Coulomb problem with the Hamiltonian

H =
~p2

2m
− k

r
. (12.6)

From elementary quantum mechanics we know the spectrum of the hydrogen atom. The energy
levels are

En = − mk2

2~2n2
, (12.7)

where the orbital angular momentum, l, is allowed to take values in 0, . . . , n− 1. The energy levels
are totally independent of l. For example, the states 3s, 3p and 3d all have the same energy. We
want to understand this extra degeneracy in terms of the extra symmetry of the hydrogen atom
given by an additional set of symmetry generators introduced below.
Classically, the additional symmetry generators of the Coulomb problem are the three components
of the so-called eccentricity vector discovered by Hamilton

~ε =
1
m
~p× ~J − k~r

r
. (12.8)
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The vector ~ε points along the symmetry axis of the elliptical orbit and its length equals the eccen-
tricity of the orbit. The vector in (12.8) is not a hermitian operator. The corresponding quantum
mechanical hermitian operator can be defined by

ε1 =
1

2m
(p2J3 − p3J2 + J3p2 − J2p3)− kx1

r
, (12.9)

ε1 =
1

2m
(J3p2 − J2p3 + i~p1)− kx1

r
, (12.10)

ε2 =
1

2m
(J1p3 − J3p1 + i~p2)− kx2

r
, (12.11)

ε3 =
1

2m
(J2p1 − J1p2 + i~p3)− kx3

r
, (12.12)

(12.13)

It can be verified explicitly that its components commute with the Hamiltonian.
In order to understand the aforementioned extra degeneracy, we will compute the hydrogen spec-
trum using the additional symmetry. For this purpose we first note that

~J · ~ε = 0. (12.14)

This follows from ~a · (~a×~b) = (~a×~b) · ~a = 0, which is valid even when ~a and ~b do not commute.
We will also need the following identity [4]

~ε2 =
2H
m

(
~J2 + ~2

)
+ k2, (12.15)

which can be proved after very considerable algebra.
In the following we consider the bound states, which have a negative energy E. Therefore, in the
subspace of the Hilbert space corresponding to a certain energy we can replace H by E. Now we
scale the eccentricity vector as follows

~K =
√
− m

2E
~ε. (12.16)

Through some algebra [4] the following commutation relations can be verified

[Ki, Jj ] = i~εijkKk, (12.17)
[Ki,Kj ] = i~εijkJk, (12.18)

which complement the familiar angular momentum algebra of section 5.3.
We introduce the following new operators

~A =
1
2

( ~J + ~K), (12.19)

~B =
1
2

( ~J − ~K), (12.20)

which can be shown to satisfy

[Ai, Aj ] = i~εijkAk, (12.21)
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[Bi, Bj ] = i~εijkBk, (12.22)
[Ai, Bj ] = 0, (12.23)[
~A,H

]
= 0, (12.24)[

~B,H
]

= 0. (12.25)

So far we have shown that the symmetry generators form an algebra, which is identical to the the
direct sum of the Lie algebra of of two SO(3) (or SU(2)) algebras. By comparing to the rotation
algebra introduced in chapter 5, we can read off the eigenvalues of ~A2 and ~B2 from (12.21) and
(12.22):

~A2 = a(a+ 1)~2 , a = 0,
1
2
, 1, . . . , (12.26)

~B2 = b(b+ 1)~2 , b = 0,
1
2
, 1, . . . . (12.27)

Following (12.14) we note that
~A2 − ~B2 = ~J · ~ε = 0. (12.28)

This implies that a = b. In order to arrive at the spectrum a final bit algebra is needed

~A2 + ~B2 = ~J2 + ~K2 (12.29)

= ~J2 − m

2E
~ε2 (12.30)

= −mk
2

4E
− 1

2
~

2, (12.31)

where we have used (12.15). Using this equation the energy eigenvalues can be written in terms
of the eigenvalues of ~A2 and ~B2 operators. Noticing that ~A2 and ~B2 have the same eigenvalues
because of (12.28), the energy eigenvalues are found to be

E = − mk2

2~2(2a+ 1)2
, a = 0,

1
2
, 1, . . . . (12.32)

A comparison with (12.7) tells us that (2a+ 1) = n. Furthermore the bound on the orbital angular
momentum, l, can be seen to follow from the triangle inequality as applied to ~J = ~A+ ~B, namely
that ∣∣∣ ~J∣∣∣ >

∣∣∣ ~A∣∣∣− ∣∣∣ ~B∣∣∣ = 0 (12.33)∣∣∣ ~J∣∣∣ <
∣∣∣ ~A∣∣∣+

∣∣∣ ~B∣∣∣ = 2
∣∣∣ ~A∣∣∣ (12.34)

It follows that l has to have values in {0 = |a− b|, 1, . . . , a+ b = n− 1}. This illustrates the effect
of additional symmetries to the degeneracy structure of a quantum mechanical system.

In contrast to the discussion above about extra symmetries, a lack of symmetry implies a lack of
degeneracy in the energy levels of a quantum mechanical system. The most extreme case of this is
the quantum analogue of a classically chaotic system. Chaos is described classically as exponential
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sensitivity to initial conditions, in the sense that nearby trajectories in the phase space diverge from
each other over time. However, another manifestation of chaos is the lack of independent operators
commuting with the Hamiltonian.
A typical example of this so called quantum chaos is the quantum billiard problem, which is a
particle in box problem in two dimensions with a boundary which can be chosen arbitrarily. If the
chosen boundary is ‘irregular’ in a suitably defined sense, the classical trajectories will diverge from
each other after successive bounces from the boundary. For a more detailed discussion of quantum
chaos in billiard systems we refer the reader to [7] and the references therein.
In the case of billiards and other examples of quantum chaos one common observation is the almost
nonexistence of degeneracies and the fact that the energy levels are more evenly spaced. This is
known as level repulsion.

In the next section we will proceed with the discussion of a symmetry, which was discovered by
observing degeneracies in the particle spectrum.

12.2 Isospin and the SU(2) flavor symmetry

The concept of isospin goes back to Heisenberg, who, after the discovery of the neutron in 1932,
suggested that the proton and the neutron can be regarded as two states of a single particle. This
was motivated by the observation that their masses are approximately equal: mp = 938.28MeV/c2,
mp = 939.57MeV/c2. Following the mass-energy equivalence of special relativity

E = mc2, (12.35)

this mass equivalence can be viewed as an energy degeneracy of the underlying interactions.
This (approximate) degeneracy led into the idea of the existence of an (approximate) symmetry
obeyed by the underlying nuclear interactions, namely, that the proton and the neutron behave
identically under the so-called strong interactions and that their difference is solely in their charge
content. (Strong interactions bind the atomic nucleus together.)
If the proton and the neutron are to be viewed as two linearly independent states of the same
particle, it is natural to represent them in terms of a two component vector, analogous to the
spin-up and spin-down states of a spin-1

2 system

p =
(

1
0

)
, n =

(
0
1

)
. (12.36)

In analogy to the concept of spin regarding the rotations in 3-space as discussed in chapter 5, the
isospin symmetry is also governed by an SU(2) group ‘rotating’ components in (12.36) into each
other in abstract isospin space. This enables us to utilize what we already know about the SU(2)
symmetry group from the study of angular momentum. For example, we will be able to use the
familiar Clebsch-Gordan coefficients to combine the isospin of two particles the same way we added
spin in chapter 6.
It is important to place the isospin concept in its proper historical context. Originally it was
believed that isospin was an exact symmetry of strong interactions and that it was violated by
electromagnetic and weak interactions. (Weak interactions are responsible, for example, for the
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beta decay). The mass difference between the neutron and the proton could then be attributed to
the charge content of the latter. If the mass difference (or the energy difference) were to be to be
purely electrostatic in nature, the proton had to be heavier. However, the proton is the lighter of
the two. If it were otherwise the proton would be unstable by decaying into the neutron, spelling
disaster for the stability of matter.
Isospin symmetry is not an exact symmetry of strong interactions, albeit it is a good approximate
one. Therefore it remains a useful concept. Further than that, as we shall see below, it can be seen
as part of a larger (and more approximate) symmetry which is of great utility to classify observed
particle families.

We can describe isospin multiplets the same way we have described the angular momentum and spin
multiplets. Denoting the total isospin, I, and its third component, I3, as good quantum numbers,
we can re-write (12.36) as a multiplet with I = 1

2

p =
∣∣∣∣I =

1
2
, I3 =

1
2

〉
, n =

∣∣∣∣I =
1
2
, I3 = −1

2

〉
. (12.37)

As an example of a multiplet with I = 1 we have the three pions or π-mesons

π+ = |1, 1〉 , π0 = |1, 0〉 , π− = |1,−1〉 , (12.38)

which have all nearly identical masses. (mπ± = 139.6MeV/c2, mπ0 = 135.0MeV/c2). Shortly we
will see how to describe both the pion and nucleon states as composites of more fundamental I = 1

2
states.
In the framework of the quark of model, the fundamental representation of the isospin symmetry
corresponds to the doublet that contains the so-called up and down quarks

u =
∣∣∣∣12 , 1

2

〉
, d =

∣∣∣∣12 ,−1
2

〉
. (12.39)

All other isomultiplets, including the proton and the neutron, are made up of these two quarks.
They can be constructed with the same rules that have been used for angular momentum addition
in chapter 6. For example, the three pions in (12.38) are ud̄, uū and dū states, respectively. They
form an isotriplet:

π+ = |1, 1〉 =
∣∣∣∣12 , 1

2

〉
1

∣∣∣∣12 , 1
2

〉
2

, (12.40)

π0 = |1, 0〉 =
1√
2

(∣∣∣∣12 , 1
2

〉
1

∣∣∣∣12 ,−1
2

〉
2

+
∣∣∣∣12 , 1

2

〉
1

∣∣∣∣12 ,−1
2

〉
2

)
, (12.41)

π− = |1,−1〉 =
∣∣∣∣12 ,−1

2

〉
1

∣∣∣∣12 ,−1
2

〉
2

. (12.42)

(12.43)

Similarly, the proton and the neutron can be written as totally symmetric uud and udd states. For
a precise description of the two nucleons as composite states, including the spin and color quantum
numbers of their constituent quarks, we refer the reader to [1], sec. 2.11.
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The mass of the up and down quarks are not identical but they are both of the order of a few
MeV/c2’s which is minuscule compared to the typical energy scale of hadrons (i.e. strongly inter-
acting particles) which is about a GeV/c2. This is why isospin is such a good symmetry and why
isomultiplets have nearly identical masses.
As it later turned out, the up and down quarks are not the only quark ‘species’ - or flavors as
they are commonly called. In the late 1940’s and early 1950’s, a number strange particles have
been found which presumably contained a third quark species: the strange quark. It shall be noted
here that the quark model was not invented until 1960’s, but at the time the empirical concepts
like isospin and strangeness quantum numbers were in use. The value of the strangeness quantum
number is taken, by accidental convention, to be −1 for the strange quark. The up and down
quarks have strangeness zero. All other composite states have their strangeness given by the sum
of the strangeness content of their constituents.
Before proceeding further, we shall setup some terminology: baryons are qqq states, such as proton
and the neutron, whereas mesons are qq̄ states, the pions being examples thereof. By convention
baryons have baryon number 1, and quarks have baryon number 1

3 . All antiparticles have their
quantum numbers reversed. Naturally, mesons have baryon number 0. The names, baryon and
meson, originally refer to the relative weight of particles, baryons generally are heavy, mesons have
intermediate mass ranges, where leptons (electron, muon, the neutrinos etc.) are light. If taken
literally, this remains only an inaccurate naming convention today, as some mesons discovered later
are heavier than some baryons and so on.
The relation between electric charge and isospin are given by the Gell-Mann–Nishijima relation
which was first derived empirically

Q = I3 +
1
2

(B + S), (12.44)

where B is the baryon number and S is the strangeness. In the next section we will be able to
view the Gell-Mann–Nishijima relation in the light of the representation theory for the flavor SU(3)
symmetry.

Now let us consider another example of combining the isospins of two particles. The reader may
know that the deuteron, a hydrogen isotope, consists of a proton and a neutron. Therefore it has
to have isospin, I3 = 0. We will now try to describe its wave function in terms of its constituent
nucleons. Following (12.37) and in analogy to (12.43), this will be mathematically identical to
adding two spins. The possibilities are that of an isosinglet

|0, 0〉 =
1√
2

(|p > |n > −|n > |p >) (12.45)

and that of an isotriplet

|1, 1〉 = |p > |p >, (12.46)

|1, 0〉 =
1√
2

(|p > |n > +|n > |p >), (12.47)

|1,−1〉 = |n > |n > . (12.48)

Is the deuteron an isosinglet state or an isotriplet? If it were an isotriplet (|1, 0〉) we should have
seen nn and pp bound states of comparable energy in nature (because of isospin symmetry), but
such states do not exist. Therefore the deuteron has to be an isosinglet state (|0, 0〉).
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As an exercise on the implications of isospin symmetry we will consider nucleon-nucleon scattering.
We will eventually be able to compute ratios of scattering cross-sections between different processes.
For example, consider

(I) p+ p→ d+ π+

(II) p+ n→ d+ π0 (12.49)

The only assumption that we put in will be that the interaction is of the form V = α I(1) · I(2). The
dot product here refers to the abstract isospin space. The cross-section, σ, is proportional to |M|2,
where M is the scattering amplitude given by

M = 〈 final | α I(1) · I(2) | initial 〉 . (12.50)

The initial and final states can be denoted in more detail as

| initial 〉 =
∣∣∣ I(i), I

(i)
3 , γ(i)

〉
, (12.51)

| final 〉 =
∣∣∣ I(f), I

(f)
3 , γ(f)

〉
, (12.52)

where γ(i) and γ(f) denote degrees of freedom other than isospin, such as the spatial dependence
of the wave function and spin.

Exercise. Consider the generalization of tensor operators discussed in section 6.7 to the case of
isospin. Show that I(1)·I(2) is an ‘isotensor’ of rank zero. Refer to exercise 6.7.5 for the spin-analogue
of the same problem.

Exercise. Show that the expectation of I(1) · I(2) is 1
4 in an isotriplet state and −3

4 in an isosinglet
state.

Using (12.38) and the fact that the deuteron is an isosinglet we know that the isospins of the final
states in (I) and (II) are |1, 1〉 and |1, 0〉, respectively. According to (12.45) and (12.48) the initial
states in (I) and (II) have isospin values |1, 1〉 and (1/

√
2)(|1, 0〉+ |0, 0〉). We will now employ the

(isospin analogue) of the Wigner-Eckart theorem (6.259) discussed in detail in sections 6.7 and 6.8
to compute the ratio of the scattering amplitudes MI and MII. For completeness let us start by
restating the Wigner-Eckart theorem (6.259) in the present context:

〈I(f)I
(f)
3 , γ(f)|T00|I(i)I

(i)
3 , γ(i)〉 = (12.53)

(I(f)I
(f)
3 |00I(i)I

(i)
3 ) (−1)I

(f)−I(i) 1√
2I(i)+1

〈I(f), γ(f)||T0||I(i), γ(i)〉. (12.54)

Here T00 ≡ V = α I(1) · I(2), which is an isoscalar, as discussed in the exercise above.
(I(f)I

(f)
3 |00I(i)I

(i)
3 ) is a Clebsch-Gordon coefficient and 〈I(f), γ(f)||T0||I(i), γ(i)〉 is a reduced ma-

trix element defined in the same sense as in section 6.8.
Now let us re-write more carefully the scattering amplitudes for the two processes in the light of
what we have just learned

MI =
〈
I(f) = 1, I(f)

3 = 1, γ(f)
∣∣∣T00

∣∣∣ I(i) = 1, I(i)
3 = 1, γ(i)

〉
(12.55)
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= (11|0011)
1√
3
〈I(f) = 1, γ(f) ||T00|| I(i) = 1, γ(i)〉 (12.56)

MII =
1√
2

〈
I(f) = 1, I(f)

3 = 0, γ(f)
∣∣∣T00

∣∣∣ I(i) = 1, I(i)
3 = 0, γ(i)

〉
(12.57)

+
1√
2

〈
I(f) = 1, I(f)

3 = 0, γ(f)
∣∣∣T00

∣∣∣ I(i) = 0, I(i)
3 = 0, γ(i)

〉
(12.58)

= (10|0010)
1√
3
〈I(f) = 1, γ(f) ||T00|| I(i) = 1, γ(i)〉 (12.59)

+0. (12.60)
(12.61)

Note that the second term inMII vanishes due to the isospin conservation, which is also manifested
by a vanishing Clebsch-Gordon prefactor. The relevant Clebsch-Gordon coefficients are easily
evaluated:

(11|0011) = (10|0010) = 1. (12.62)

We can now write the ratio of the scattering amplitudes:

MI

MII
=

1
(1/
√

2)
, (12.63)

where common dynamical factors (which would not be as easy to compute) have dropped out
thanks to the Wigner-Eckart theorem. It follows

σI

σII
= 2, (12.64)

which is in approximate agreement with the observed ratio. [2]

As a further example, we will consider pion-nucleon scattering. We want to compute the ratio of
total cross-sections assuming a similar interaction as in the previous example

σ(π+ + p → anything )
σ(π− + p → anything )

.

The possibilities are

(a) π+ + p → π+ + p ,
(b) π− + p → π− + p ,
(c) π− + p → π0 + n .

(12.65)

There are more exotic possibilities, involving, for example, particles with strangeness, but these are
not dominant at relatively low energies.
Once again we need the isospins for the initial and final states, which are obtained by a standard
Clebsch-Gordan expansion

π+ + p : |1, 1〉
∣∣1

2 ,
1
2

〉
=
∣∣3

2 ,
3
2

〉
,

π− + p : |1,−1〉
∣∣1

2 ,
1
2

〉
= 1√

3

∣∣3
2 ,−

1
2

〉
−
√

2
3

∣∣1
2 ,−

1
2

〉
,

π0 + n : |1, 0〉
∣∣1

2 ,−
1
2

〉
=
√

2
3

∣∣3
2 ,−

1
2

〉
+ 1√

3

∣∣1
2 ,−

1
2

〉
.

(12.66)
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As in the example of nucleon-meson scattering we define the relevant matrix elements

M 3
2

=
〈

3
2 ,m

∣∣ V ∣∣ 3
2 ,m

〉
,

M 1
2

=
〈

1
2 ,m

∣∣ V ∣∣ 1
2 ,m

〉
,

(12.67)

which are independent of m. A computation similar to the previous example of nucleon-nucleon
scattering yields (apart from common prefactors) the following amplitudes for the reactions in
(12.65)

Ma =M 3
2

Mb = 1
3M 3

2
+ 2

3M 1
2

Mc =
√

2
3 M 3

2
−
√

2
3 M 1

2

(12.68)

Guided by empirical data we will further assume that M 3
2
>>M 1

2
, which leads to the following

ratios for the cross-sections

σa : σb : σc = 9 : 1 : 2. (12.69)

As the total cross-section is the sum of individual processes we obtain

σ(π+ + p )
σ(π− + p )

=
σa

σb + σc
= 3 (12.70)

again in approximate agreement with the observed value. [2]

12.3 The Eightfold Way and the flavor SU(3) symmetry

The discovery of the concept of strangeness, mentioned in the previous section, was motivated
by the existence of particles that are produced strongly but decay only weakly. For instance,
K+, which can be produced by π− + p → K+ + Σ−, has a lifetime which is comparable to that
of π+ albeit being more than three times heavier. Hence Gell-Mann and independently Nishijima
postulated the existence of a separate quantum number, S, called strangeness, such that S(K+) = 1,
S(Σ−) = −1 and S(π) = S(N) = 0, etc. It was assumed that strong interactions conserved S (at
least approximately), while weak interactions did not. Hence the strangeness changing strong
decays of K+ (or Σ−) were forbidden, giving it a higher than usual lifetime.
The classification of the newly found particles as members of some higher multiplet structure
was less obvious then the case of isospin, however. Strange partners of the familiar nucleons, for
example, are up to 40% heavier, making an identification of the underlying symmetry and the
multiplet structure less straightforward.
In the light of the quark model, it appears an obvious generalization to add another component for
an extra quark to the isospin vector space

u =

 1
0
0

 , d =

 0
1
0

 , s =

 0
0
1

 . (12.71)
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In this case the transformations that ‘rotate’ the components of (12.71) into each other, while
preserving the norm, have to be elements of the group SU(3) (which we will investigate closely
very soon). However, history followed the reverse of this path. First particle multiplets were
identified as representations of the SU(3) group, the same way nucleons and pions were identified
as representations of the isospin SU(2) symmetry. Then came the question of what the fundamental
representation, as in (12.71), should correspond to, giving rise to the quark model. As quarks were
never directly observed, for a period they were considered as useful bookkeeping devices without
physical content.
In this perspective the flavor SU(3) symmetry may appear to be mainly of historical interest.
However SU(3) symmetry appears in another and much more fundamental context in strong in-
teraction physics. The quarks posses another quantum number, called color, which again form
representations of an SU(3) group. This is believed to be an exact symmetry of strong interac-
tions, in fact modern theory of strong interactions is a ‘gauge theory’ of this color group, called
quantum chromodynamics. (The reader is referred to section 8.3 for a brief discussion of gauge
transformations). Flavor SU(Nf ) symmetry on the other hand, where Nf is the number quark
flavors, becomes increasingly inaccurate for Nf > 3. The reason is that the other known quarks,
namely charm, bottom (beauty) and top (truth) are significantly heavier than the hadronic energy
scale. (The ‘bare’ mass of the charm quark is already heavier than the two nucleons, which set the
hadronic energy scale. The bottom and top are even heavier. [2] )

Before discussing the significance and the physical implications of the quark model, we will establish
some mathematical preliminaries about the group SU(3). In many respects it will resemble the
more familiar group SU(2) discussed in some detail in chapter 5, but there are a number of subtle
differences. The reader shall note that most of what is being said trivially generalizes to other
unitary groups, SU(N), but we will stick to N = 3 in the following. The reader is also invited to
revisit section 5.1 whenever necessary, in reference to Lie groups, Lie algebras and related concepts.

Given a complex vector, ak, of three dimensions, we want to find those transformations

ak → Uklal (12.72)

that preserve the norm,
∑

k a
∗
kak, of a. It is seen that such a matrix U has to satisfy the following

unitary relation

U † = U−1. (12.73)

To verify that all such matrices form a group, we observe that

(UV )† = V †U † = V −1U−1 = (UV )−1, (12.74)

for any two unitary matrices U and V . This group of 3 × 3 unitary matrices is denoted by U(3).
The unitarity relation imposes 9 constraints on the total of 18 real degrees of freedom of a 3 × 3
complex matrix. Hence the group U(3) has 9 dimensions. Multiplying U by a phase, eiφ, still leaves
the norm invariant. Therefore U(3) can be decomposed into a direct product U(1)× SU(3) where
SU(3) consists of 3× 3 unitary matrices of unit determinant. Because of this additional constraint
SU(3) has 8 dimensions. Since arbitrary phase factors are of no physical interest, it is the group
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SU(3) and not U(3) that is of main interest. The reader is invited to compare the structure of
SU(3) to that of SU(2) discussed in section 5.7.

As discussed in section 5.1, any unitary matrix, U , can be written in the form

U = eiH (12.75)

where H is a hermitian matrix. Therefore we will express elements of SU(3) as

U = ei
∑
k αkλk (12.76)

where λk are 8 linearly independent matrices forming the basis of the Lie algebra of SU(3). (We
shall at times refer to the Lie algebra with the name of the group, the meaning being apparent from
the context.) The unit determinant condition requires that all λk are traceless, since det(eA) = etrA.
An explicit basis is constructed in analogy to the Pauli algebra of spin operators

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 ,

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 ,

λ8 = 1√
3

 1 0 0
0 1 0
0 0 −2

 .

(12.77)

The generators, λk, obey the following relation

tr(λjλk) = 2δjk, (12.78)

which can be verified explicitly as matrix identities.
The Lie algebra structure is given by the commutators of λk

[λj , λk] = 2ifjklλl, (12.79)

where fjkl are the antisymmetric structure constants similar to the εjkl of SU(2) given in (5.32).
We can also introduce the constants, δjkl, via the anticommutator relation

[λj , λk]+ =
4
3
δjk + 2δjklλl, (12.80)

This is the fundamental or defining representation of SU(3). As in the case of SU(2) higher
dimensional representations obeying the same structure can be found. The fundamental relation
to be preserved is (12.79), regardless of the dimension of the representation.
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As it turns out the set of generators in (12.77) is not the most useful basis in the study of SU(3).
In the case of SU(2) the identification of ‘ladder’ operators {J+, J−} proved useful, which satisfied
an ‘eigenvalue equation’

[J0, J±] = ±~J±. (12.81)

In chapter 5, these relations have been used to construct the angular momentum spectrum as well
as the function space representation of the rotation algebra, namely spherical harmonics. The
generators of SU(3) can be arranged into a very similar form to that of SU(2). We first introduce
the F-spin operators

Fi =
1
2
λi. (12.82)

With another change of basis we arrive at the ‘standard’ form of the generators of the Lie algebra
of SU(3)

T± = F1 ± iF2, (12.83)
T0 = F3, (12.84)
V± = F4 ± iF5, (12.85)
U± = F6 ± iF7, (12.86)

Y =
2√
3
F8. (12.87)

Exercise. Using the convention in (12.71) show that T0 is the isospin operator, I3.

Exercise. Derive the Gell-Mann–Nishijima relation (12.44), starting with the observation that
Y = B+S. (Recall that the strange quark has S = −1 by convention). Y is called the hypercharge.

In the basis (12.87) the commutation relations between the generators can be expressed in a succinct
manner. First, we have

[Y, T0] = 0, (12.88)

which defines (not uniquely) a maximal set of mutually commuting operators {Y, T0} and

[Y, T±] = 0, (12.89)
[Y, U±] = ±U±, (12.90)
[Y, V±] = ±V±, (12.91)

[T0, T±] = ±T±, (12.92)

[T0, U±] = ∓1
2
U±, (12.93)

[T0, V±] = ±1
2
V±, (12.94)
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which relate the remaining generators {T±, V±, U±} to this maximal set by ‘eigenvalue equations’
and

[T+, T−] = 2T0, (12.95)

[U+, U−] =
3
2
Y − T0 = 2U0, (12.96)

[V+, V−] =
3
2
Y + T0 = 2V0, (12.97)

which relate commutators of generators with opposite eigenvalues to the maximal set {Y, T0}. Note
that, U0 and V0 are linear combinations of T0 and Y . Finally, we have

[T+, V−] = −U−, (12.98)
[T+, U+] = V+, (12.99)
[U+, V−] = T−, (12.100)
[T+, V+] = 0, (12.101)
[T+, U−] = 0, (12.102)
[U+, V+] = 0. (12.103)

Any remaining commutators follow from hermiticity.
The same way the angular momentum ladder operators have been used to construct the represen-
tations of SU(2), we will use these commutation relations to construct representations of SU(3).
In the case of SU(2) the representations lay on a line on the J0 axis. However, since there are two
mutually commuting generators in SU(3) as given in (12.88), the representations will now lie in a
T0 − Y -plane. The maximum number of mutually commuting generators of a Lie algebra is called
its rank. Thus, SU(2) has rank 1, while SU(3) has rank 2.
When the basis of a Lie algebra is expressed in such a way to satisfy the form of the eigenvalue
relations as given above, it is said to be in Cartan-Weyl form. This form is essential for easy labeling
of the representations of the group, as the relation between the states in a given representation
can be conveniently expressed in terms of ladder operators. A formal definition and a detailed
discussion of the Cartan-Weyl form is beyond the scope of this chapter. The interested reader is
instead referred to a very readable account given in chapter 12 of [4].

Another important property of SU(2) is the existence of an operator (namely the total angular
momentum, J2) which commutes with all of the generators. An operator which commutes with all
generators of a Lie group is called a Casimir operator. As in the case of J2 and SU(2), Casimir
operators can be used to label irreducible representations of the Lie algebra, similar to the way it
was done in section 5.5. We can construct two such independent Casimir operators for the group
SU(3).

C1 =
∑
k

λ2
k = −2i

3

∑
jkl

fjklλjλkλl, (12.104)

C2 =
∑
jkl

djklλjλkλl (12.105)

In general the number of independent Casimir operators of a Lie group is equal to its rank.
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The utility of Casimir operators arises from the fact that all states in a given representation assume
the same value for a Casimir operator. This is because the states in a given representation are
connected by the action of the generators of the Lie algebra and such generators commute with
the Casimir operators. This property can be used to label representations in terms of the values
of the Casimir operators. For example, it was shown in section 5.5 how to label the irreducible
representations of the angular momentum algebra SU(2) in terms of the value of the total angular
momentum.

Now we will construct explicit representations of SU(3). Because of (12.88) we can label states by
the eigenvalues of T0 and Y operators, |t3, y〉:

T0 |t3, y〉 = t3 |t3, y〉 , (12.106)
Y |t3, y〉 = y |t3, y〉 . (12.107)

From the commutation relations we have presented above (the Cartan-Weyl form) we can write
down the effect of various generators on the state |t3, y〉. For example, we have

U0 |t3, y〉 = (
3
4
y − 1

2
t3) |t3, y〉 , (12.108)

V0 |t3, y〉 = (
3
4
y +

1
2
t3) |t3, y〉 . (12.109)

The same way that J± |m〉 is proportional to |m± 1〉 in the case of the angular momentum algebra,
we have

T± |t3, y〉 = α

∣∣∣∣t3 ± 1
2
, y

〉
, (12.110)

U± |t3, y〉 = β

∣∣∣∣t3 ± 1
2
, y ± 1

〉
, (12.111)

V± |t3, y〉 = γ

∣∣∣∣t3 ∓ 1
2
, y ± 1

〉
. (12.112)

The effect of these operators to the states in the y − t3 plane have been outlined in Fig. (12.1).
The representations of SU(3) are constructed analogous to those of SU(2) by identifying the ‘bound-
ary’ states annihilated by raising (or lowering) operators. All other states of the representation
are then constructed by successive application of ladder operators T±, U±, V±. The representations
for hexagons with sides of length p and q in the T0 − Y -plane. Such a representation is labeled as
D(p, q) and it has a dimensionality of 1

2(p + 1)(q + 1)(p + q + 2). Figure (12.2) shows the repre-
sentation D(2, 1) as an example. The details of this procedure is beyond the scope of this chapter.
The interested reader is referred to [4], especially chapters 7 and 8.
As another example for the representations of SU(3), the pion family forms part of an octet corre-
sponding to the D(1, 1) representation. The representations D(1, 0) and D(0, 1) correspond to the
triplets of quarks and antiquarks, respectively. (See Fig. (12.3).) All other representations can be
constructed by combining these two conjugate representations. For example the pion octet (or any
other meson octet) is therefore realized as states of a quark - antiquark pair. A notation suggestive
of the dimensionality of the representation can be used to identify representations. For example,
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Figure 12.1: The effect of SU(3) ladder operators on the y − t3 plane.
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Figure 12.2: D(2, 1) representation of SU(3). The states in the inner triangle are doubly degenerate.
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D(1, 0) and D(0, 1) are denoted by [3] and [3̄], respectively. The octet D(1, 1) is written as [8] etc.
This way the quark-antiquark states can be represented as follows

[3]⊗ [3̄] = [8]⊕ [1] (12.113)

The additional singlet state corresponds to the η′ meson. This expansion can be compared, for
example, to the case of adding two spin triplet states, in the case of SU(2), where we would write

[3]⊗ [3] = [1]⊕ [3]⊕ [5]. (12.114)
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Figure 12.3: D(1, 0) or the fundamental representation of flavor SU(3) symmetry.

The three quarks in the fundamental representation can now be written as

u =
∣∣∣∣12 , 1

3

〉
, (12.115)

d =
∣∣∣∣−1

2
,
1
3

〉
, (12.116)

s =
∣∣∣∣0,−2

3

〉
. (12.117)

The Gell-Mann–Nishijima relation can then be succinctly expressed as

Q =
1
2
y + t3, (12.118)
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from which the quark charges follow

Qu =
2
3
, (12.119)

Qd = −1
3
, (12.120)

Qs = −1
3
. (12.121)

���

�

��

S +S - S 0

L 0

X - X 0

Figure 12.4: The baryon octet as a D(1, 1) representation of SU(3).
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