Solutions to Problem Set 6/Problem 2 Physics 480 / Fall 1999

Professor Klaus Schulten / Prepared by Guochun Shi Problem2

(a) in region D_j

$$-\frac{\hbar^2}{2m}\bigtriangledown^2 \Psi(x,y) = E \ \Psi(x,y)$$

assume $\Psi(x, y) = X(x)Y(y)$

$$\implies -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) X(x) Y(y) = EX(x) Y(y)$$
$$\implies -\frac{\hbar^2}{2m} \left(Y X'' + Y'' X\right) = EX(x) Y(y)$$
$$\implies -\frac{\hbar^2}{2m} \left(\frac{X''}{X} + \frac{Y''}{Y}\right) = E$$

Since E is a constant, which requires

$$\begin{cases} -\frac{\hbar^2}{2m}\frac{X''}{X'} = E_1\\ -\frac{\hbar^2}{2m}\frac{Y'}{Y} = E_2 \end{cases}$$

where $E_1 + E_2 = E$. The equations above will lead to

$$\begin{cases} -\frac{\hbar^2}{2m}X'' = E_1X \\ -\frac{\hbar^2}{2m}Y'' = E_2Y \end{cases}$$

They are the same as 1-dimentional quantum well wave equation. Therefore we have

$$\begin{split} X(x) &= \begin{cases} \sqrt{\frac{2}{H_j}} sin(\frac{n_1\pi x}{H_j}) & 0 < x < H_j \\ 0 & \text{elsewhere} \end{cases} \\ Y(y) &= \begin{cases} \sqrt{\frac{2}{L_j}} sin(\frac{n_2\pi y}{L_j}) & 0 < y < L_j \\ 0 & \text{elsewhere} \end{cases} \\ \implies \Psi(x,y) &= \begin{cases} \sqrt{\frac{4}{H_jL_j}} sin(\frac{n_1\pi x}{H_j}) sin(\frac{n_2\pi y}{L_j}) & \begin{pmatrix} 0 < x < H_j \\ 0 < y < L_j \\ 0 & \text{elsewhere} \end{cases} \\ E &= E_1 + E_2 = \frac{\hbar^2 \pi^2 n_1^2}{2m H_j^2} + \frac{\hbar^2 \pi^2 n_2^2}{2m L_j^2} \end{split}$$

$$\Psi(x, y, t = 0) = \begin{cases} \sqrt{\frac{4}{H_1 L_1}} \sin(\frac{n_1 \pi x}{H_1}) \sin(\frac{n_2 \pi y}{L_1}) & \begin{pmatrix} 0 < x < H_1 \\ 0 < y < L_1 \end{pmatrix} \\ 0 & \text{elsewhere} \end{cases}$$

(c)

(b)

As we know

$$E = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_1^2}{H_j^2} + \frac{n_2^2}{L_j^2}\right)$$

In region D_1 for $n_1 = 2, n_2 = 1$

$$E = \frac{\hbar^2 \pi^2}{2m} \left(\frac{4}{64} + \frac{1}{400}\right) * 10^{20} = \frac{\hbar^2 \pi^2}{2m} * 0.065 * 10^{20}$$

for $n_1 = 3, n_2 = 1$

$$E = \frac{\hbar^2 \pi^2}{2m} \left(\frac{9}{64} + \frac{1}{400}\right) * 10^{20} = \frac{\hbar^2 \pi^2}{2m} * 0.143 * 10^{20}$$

In region D_2 (Ground state $n_2 = 1$)

$$E = \frac{\hbar^2 \pi^2}{2m} (\frac{n_2^2}{L_2^2}) = \frac{\hbar^2 \pi^2}{2m} (\frac{1}{3.75^2}) * 10^{20} = \frac{\hbar^2 \pi^2}{2m} * 0.071 * 10^{20}$$

The energy of the ground state in region D_2 does not vanish, which will prevent waves in D_1 propagate to D_3 . The energy of the initial state with $n_1 = 3, n_2 = 1$ is higher than the barrier which makes it easy to cross region D_2 , while the energy of $n_1 = 2, n_2 = 1$ is less than the barrier energy which makes it very hard to cross region D_2 .

In figure 4 we can get data of $P(D_3)$ of t, then we can obtain $K(t) \equiv \frac{dP(D_3)}{dt}$ by hand or using some software (e.g *xmgr* which is available in ews machines).

The data I use for $(n_1 = 2, n_2 = 1)$ is

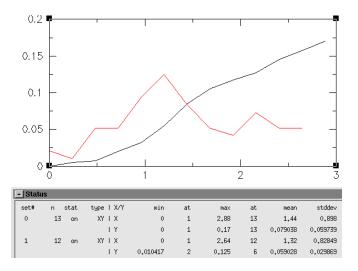


Figure 1: K(t) as a function of $t(n_1=2,n_2=1)$ The mean value of K(t) is $0.059028 \ast 10^{15} s^{-1}$

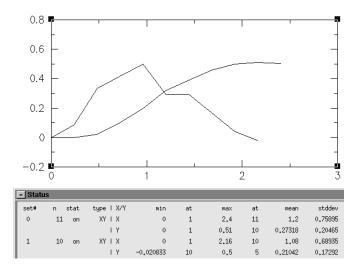


Figure 2: K(t) as a function of $t(n_1 = 3, n_2 = 1)$

$t(*10^{-15}s)$	$P(D_3)$
0	0
0.24	0.005
0.48	0.0075
0.72	0.020
0.96	0.0325
1.2	0.055
1.44	0.085
1.68	0.105
1.92	0.1175
2.16	0.1275
2.4	0.145
2.64	0.1575
2.88	0.170

The data I use for $(n_1 = 3, n_2 = 1)$ is

$t(*10^{-15}s)$	$P(D_3)$
0	0
0.24	0
0.48	0.02
0.72	0.10
0.96	0.20
1.2	0.32
1.44	0.39
1.68	0.46
1.92	0.50
2.16	0.51
2.4	0.505
2.64	0.51

In the figure 1 and figure 2 I reproduce the $P(D_3)$ as a function of t, then I draw K(t). Note the mean value of K(t) is $0.059028 * 10^{15} s^{-1}$ when $n_1 = 2, n_2 = 1$. This result will be used in next part

(d)

$$K = \nu \, \exp(-\frac{2}{\hbar} \int_{x_1 = H_1}^{x_2 = H_1 + H_2} \sqrt{2m(U - E)} dx_1)$$

U and E have been calculated in previous part

$$U = \frac{\hbar^2 \pi^2}{2m} * 0.071 * 10^{20}$$
$$E = \frac{\hbar^2 \pi^2}{2m} * 0.065 * 10^{20}$$

$$\implies U - E = \frac{\hbar^2 \pi^2}{2m} * 0.006 * 10^{20}$$

Since $\nu = \frac{n_1 \hbar \pi}{2m H_1^2}$, plug in everything, finally we will get

$$K = 8.11976 * 10^{13} (s^{-1})$$

In part (c) we have got $K = 5.9028 * 10^{13} s^{-1}$, the difference is :

$$\frac{8.11976 - 5.9028}{8.11976} * 100\% = 27.3\%$$