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Prof. Klaus Schulten / Prepared by Pinaki Sengupta & Ioan Kosztin

Problem 1: Energies of the Bound States of the Morse Potential
in the Semiclassical Approximation

The Bohr–Sommerfeld quantization condition can be expressed as follows

∫ yr(E)

y`(E)
dy

√
2m
~2

[E − D(e−2ay − 2 e−ay)] = π (n +
1
2
) (1)

where y`(E) and yr(E) are the left and right classical turning points, re-
spectively. The latter are determined trough the roots of

E − D(e−2ay − 2 e−ay) = 0 (2)

where E < 0 and
y`(E) < yr(E) . (3)

In order to determine the integral in (1) we simplify by transforming to
dimensionless variables y′ = a y

∫ ayr(E)

ay`(E)
dy
√
ε − e−2ay + 2 e−ay = π (n +

1
2
)

√
~2a2

2mD
(4)

ε =
E

D
. (5)

Let us define the new variable x = e−y. It holds then dy = −dx/x and
the Bohr–Sommerfeld condition reads∫ x`(E)

xr(E)

dx

x

√
ε − x2 + 2x = π (n +

1
2
)

√
~2a2

2mD
. (6)

The left and right turning points correspond to x`(ε) and xr(ε), respectively,
and are defined through

x`(ε) = exp [− y`(E)] , xr(ε) = exp [− yr(E)] . (7)
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Note that the following property holds

x`(ε) > xr(ε) (8)

which is consistent with (3). According to (2) holds

ε − x2
`,r + 2x`,r = 0 . (9)

The two solutions of this equation are

x`(ε) = 1 +
√
ε + 1 , x`(ε) = 1 − √

ε + 1 (10)

From this one can derive the following properties

1 − x`√
ε+ 1

= − 1 ,
1 − xr√
ε+ 1

= 1 (11)

as well as
x` + ε

x`

√
ε+ 1

= 1 ,
xr + ε

xr

√
ε+ 1

= − 1 . (12)

The integral in (6) can be evaluated analytically. Consulting an integral
table one obtains (note ε < 0 and 1 + ε > 0, see previous problem)∫

dx

x

√
ε − x2 + 2x =

√
ε − x2 + 2x − √−ε arcsin

(
ε+ x

x
√
ε+ 1

)

+ arcsin
(

1 − x√
ε+ 1

)
. (13)

Noting properties (9, 11, 12) one can state (6) immediately in the form

(√−ε + 1
)
π = π

(
n +

1
2

) √
~2a2

2mD
. (14)

This can be expressed using (5)

E = −D

(
1 −

√
~2a2

2mD
(n+

1
2
)

)2

(15)

which is indeed identical to the exact solution. An upper limit for n follows
from the derivation.
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Problem 2: Electron at Surface of a Semiconductor

(a) We can see that the classical turning points for the electron with energy
En will be at x = 0 and x = En/eE . Using these in the Born-Sommerfeld
condition, we get

S(En) = 2
∫ En/eE

0
dx

√
2m
~2

(En − eEx) =
(
n+

1
2

)
2π . (16)

Making the substitutions

y =
2m
~2

(En − eEx) , dy = −2meE
~2

dx, (17)

we get

S(En) = 2
~

2

2meE
∫ 2mEn

~2

0
dy

√
y

=
2~2

3meE
(

2mEn

~2

) 3
2

=
2
3

(2mEn)
3
2

meE~ =
(
n+

1
2

)
2π (18)

which, when solved for En, gives the semiclassical energy levels

E(semi)
n =

~
2

2m

[
3πmeE
~2

(
n+

1
2

)] 2
3

, n = 0, 1, 2, . . . (19)

(b) The Schrödinger equation for this problem is given by

− ~
2

2m
d2φE

dx2
+ eExφE = E φE . (20)

For x < 0,
φE(x) = 0 . (21)

For x ≥ 0, employing new variable

ξ =
(

2meE
~2

) 1
3
(
x− E

eE
)
, (22)
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we obtain
d2

dx2
=
(

2meE
~2

) 2
3 d2

dξ2
, (23)

so that (20) can be written as

−d
2φE(ξ)
dξ2

+ ξφE(ξ) = 0 . (24)

The solution of the differential equation, which is finite everywhere, is the
so-called Airy function

Ai(ξ) =
1√
π

∫ ∞

0
du cos

(
1
3
u3 + uξ

)
. (25)

Thus, for x > 0, we have

φE(x) = const×Ai

[(
2meE
~2

) 1
3
(
x− E

eE
)]

. (26)

And, at the boundary x = 0, we have

φE(0) = 0 . (27)

(c) From (26) and (27), we have

Ai

[
−
(

2m
e2E2 ~2

) 1
3

E

]
= 0 . (28)

If xn is n-th zero of the Airy function Ai(−x), n = 0, 1, 2, ..., the n-th exact
quantum mechanical eigen energy is

E(qm)
n =

(
e2E2

~
2

2m

)
xn (29)

One can see the Airy function Ai (−x) in Fig 1. First, we estimate 10
zeros for Ai[-x] by reading from the plot

x = {2.2, 4.0, 5.8, 7.0, 8.0, 9.1, 10.0, 11.0, 12.0, 13.0} . (30)
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Figure 1: Airy function Ai (−x).

Now we use the Mathematica built-in function FindRoot to evaluate the
exact solution for the zeros of the Airy function near the estimated points
in (30). It gives the following result

x = {2.33811, 4.08795, 5.52056, 6.78671, 7.94413, (31)
9.02265, 10.0402, 11.0085, 11.936, 12.8288} .

The exact eigen energies E(qm)
n can be calculated from (29), and can be

compared with the semiclassical result in (19). Evaluate the percentage
error by

error [n] =
E

(qm)
n − E

(semi)
n

E
(qm)
n

. (32)

Then one can get the percentage error of semiclassical energy levels as a
function of quantum number n, which is shown in Fig. 2. From the figure, it
is shown that the larger the quantum number is, the better the semi-classical
approximation can be.

(d) The wave function φEn(x) can be written as

φEn(x) = CnAi

[(
2meE
~2

) 1
3
(
x− En

eE
)]

(33)
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Figure 2: percentage error of semiclassical energy levels as a function of quantum
number n.

where Cn is

Cn =

{ ∫ ∞

0
dxAi2

[(
2meE
~2

) 1
3
(
x− En

eE
)] }− 1

2

. (34)

Hence, we can use (34) and (33) to plot the wave function for n = 0, 2, 4, 6, 8,
by using both the semiclassical energies obtained in (a) and the exact ener-
gies obtained in (c). The wave functions are shown in Fig. 3.

Fig. 3 clearly demonstrates for the exact solution that the wave functions
have the characteristics we require: they are zero at the origin, and decay to
zero once they are past the potential boundary. Also, the n-th wave has n
inflection points, as we expect. For the semiclassical plot, the wave functions
are not quite vanishing at the origin due to the error of semiclassical eigen
energies.

(e) The classical turning points x′ for the electron is

x′ =
En

eE . (35)

The probabilities for the electron to penetrate into the classically forbid-
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Figure 3: Plot of the even-n wave functions along with the potential well. The
energy of each wave function will be indicated by a dashed line. Note that the scale
of the wave function here is rescaled. All the wave functions have been multiplied
by a factor of 0.2 simply to fit the potential plot.
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Figure 4: The probabilities for the electron to penetrate into the classically for-
bidden region as a function of quantum number n
.

den region is

Pn = C2
n

∫ ∞

x′
n

dxAi2
[(

2meE
~2

) 1
3
(
x− En

eE
)]

(36)

which is shown in the Fig. 4. One can see that the larger the quantum
numbers are, the less the electron can penetrate into the classical forbidden
region.

The mean values of x is

x̄n = C2
n

∫ ∞

0
dxxAi2

[(
2meE
~2

) 1
3
(
x− En

eE
)]

(37)

which is shown in the Fig. 5.

1 Mathematica notebook

(c)
Input the following parameters in units (eV, Angstrom, second):
(1) e – charge of electron (electron unit);
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Figure 5: The mean values of x as a function of quantum number n
.

(2) Ef – electric field (eV/Angstrom);
(3) m – mass (eV secˆ2 / Angstromˆ2);
(4) hbar– Planck constant (eV sec).

In[1]:= e=1;
Ef=500 1000/10ˆ8;
m= 5.11 10ˆ5 / (3 10ˆ8 10ˆ10)ˆ2;
hbar=6.5822 10ˆ(-16);

In[2]:= f=e Ef
Out[2]= 1

---
200

In[3]:=
Plot[f x,{x,0,300},AxesLabel->{"x (angstrom)","U(x)=eEx

(eV)"},
PlotRange -> All]
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Out[3]= -Graphics-

In[4]:= Plot[AiryAi[-e],{e,0,15},
AxesLabel->{"x","Ai(-x)"},
PlotRange->All]

2 4 6 8 10 12 14
x

-0.4

-0.2

0.2

0.4

Ai(-x)

Out[4]= -Graphics-

From the solution for part (b) of this problem, we can use
the equations (b-11) and (b-12), which leads to solve the
zeroes of the Airy function.
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In the following, we read 10 zeroes for Ai[-e] from the plot:

In[5]:= guesses = {2.2,4.0,5.8,7.0,8.0,9.1,10.0,11.0,12.0,13.0};

In[6]:= epsilon = Table[0.0,{n,1,Length[guesses]}];

In[7]:= Clear[j];
For[j = 1, j <= Length[guesses], j++,

epsilon[[j]]=e /. FindRoot[AiryAi[-e]==0,
{e,guesses[[j]]}];

Print["epsilon",j-1," = ",epsilon[[j]]]
]

epsilon0 = 2.33811
epsilon1 = 4.08795
epsilon2 = 5.52056
epsilon3 = 6.78671
epsilon4 = 7.94413
epsilon5 = 9.02265
epsilon6 = 10.0402
epsilon7 = 11.0085
epsilon8 = 11.936
epsilon9 = 12.8288

In[8]:= ff = N[ (2 m f / hbarˆ2)ˆ(1/3)]

Out[8]= 0.109432

In[9]:= epsilon1= f epsilon / ff

Out[9]= {0.106829, 0.18678, 0.252236, 0.310087, 0.36297, 0.412248,

0.458739, 0.502983, 0.545361, 0.586151}

In[10]:= epsilon2 = Table[N[(hbarˆ2 /2/m) ((3 Pi m f/hbarˆ2)
(n+.5))ˆ(2/3)],
{n,0,9}]

Out[10]= {0.0809031, 0.168285, 0.236562, 0.296049, 0.350048,

0.400154, 0.447295, 0.492069, 0.53489, 0.57606}

In[11]:= error= (epsilon1 -epsilon2)/epsilon1

Out[11]= {0.242685, 0.0990181, 0.0621408, 0.0452706, 0.0356029,

0.0293372, 0.0249466, 0.021699, 0.0191995, 0.0172164}
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In[12]:= p=Table[{n-1, 100 error[[n]]},{n,10}];
perr=ListPlot[p,
AxesLabel->{"n","error (%)"},
PlotRange->{0,25}, Prolog->{{GrayLevel[.5],
Line[p]},AbsolutePointSize[5]},
Ticks->{{1,2,3,4,5,6,7,8,9}, {0,5,10,15,20,25}}]
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25

error (%)

Out[12]= -Graphics-

(d)
Plot the potential well for comparison

In[13]:= Pplot=Plot[f x, {x,0,130},
DisplayFunction->Identity];

For semiclassical solution:
Define the constant epsilon3 as

In[14]:= epsilon3 = epsilon2 ff/f

Out[14]= {1.77068, 3.68317, 5.17751, 6.47947, 7.6613, 8.75795,

9.78971, 10.7697, 11.7068, 12.6079}

Find out the normalized factor by evaluating

In[15]:= norm = Table[NIntegrate[AiryAi[ff x-epsilon3[[n]]]ˆ2,
{x,0, Infinity}], {n,1,10}]

Out[15]= {4.25429, 5.7794, 6.75948, 7.51678, 8.14637, 8.69137,

9.17551, 9.61335, 10.0146, 10.386}
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In[16]:= WFF1=Plot[epsilon2[[1]]+
.2 AiryAi[ff x-epsilon3[[1]]]/Sqrt[norm[[1]]],

{x,0,130}, DisplayFunction->Identity];
WFF3=Plot[epsilon2[[3]]+

.2 AiryAi[ff x-epsilon3[[3]]]/Sqrt[norm[[3]]],
{x,0,130}, DisplayFunction->Identity];

WFF5=Plot[epsilon2[[5]]+
.2 AiryAi[ff x-epsilon3[[5]]]/Sqrt[norm[[5]]],

{x,0,130}, DisplayFunction->Identity];
WFF7=Plot[epsilon2[[7]]+

.2 AiryAi[ff x-epsilon3[[7]]]/Sqrt[norm[[7]]],
{x,0,130}, DisplayFunction->Identity];

WFF9=Plot[epsilon2[[9]]+
.2 AiryAi[ff x-epsilon3[[9]]]/Sqrt[norm[[9]]],

{x,0,130}, DisplayFunction->Identity];

The following commands will create a plot of the even-n
wavefunctions within the potential well. The energy of
each wavefunction will be indicated by a dashed line.
Note that the scale of the wavefunction here is rescaled
- since we are plotting the wavefunction on the same scale
as the potential. All wavefunctions have been multiplied
by a factor of 0.2 simply to fit into the potential plot.

In[17]:= Show[WFF1,WFF3,WFF5,WFF7,WFF9,Pplot,
Graphics[{Dashing[{0.03,0.07}],

Line[{{0,epsilon2[[1]]},{130,epsilon2[[1]]}}]}],
Graphics[{Dashing[{0.03,0.07}],

Line[{{0,epsilon2[[3]]},{130,epsilon2[[3]]}}]}],
Graphics[{Dashing[{0.03,0.07}],

Line[{{0,epsilon2[[5]]},{130,epsilon2[[5]]}}]}],
Graphics[{Dashing[{0.03,0.07}],

Line[{{0,epsilon2[[7]]},{130,epsilon2[[7]]}}]}],
Graphics[{Dashing[{0.03,0.07}],

Line[{{0,epsilon2[[9]]},{130,epsilon2[[9]]}}]}],
DisplayFunction->$DisplayFunction,
AxesLabel->{"x (angstrom)","U(x) (eV)"},
PlotRange->All,
PlotLabel->"Even wavefunctions"]
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Out[17]= -Graphics-

For exact solution:
Find out the normalized factor by evaluating

In[18]:= norm1 = Table[NIntegrate[AiryAi[ff x-epsilon[[n]]]ˆ2,
{x,0, Infinity}], {n,1,10}]

Out[18]= {4.49316, 5.89395, 6.84056, 7.58139, 8.20092, 8.73904,

9.21812, 9.65206, 10.0502, 10.4191}

Generating the exact energy level and its wavefunction
(multiply by 0.2 to fit the scale)

In[19]:= WF1=Plot[epsilon1[[1]]+
.2 AiryAi[ff x-epsilon[[1]]]/Sqrt[norm1[[1]]],

{x,0,130}, DisplayFunction->Identity];
WF3=Plot[epsilon1[[3]]+
.2 AiryAi[ff x-epsilon[[3]]]/Sqrt[norm1[[3]]],

{x,0,130}, DisplayFunction->Identity];
WF5=Plot[epsilon1[[5]]+
.2 AiryAi[ff x-epsilon[[5]]]/Sqrt[norm1[[5]]],

{x,0,130}, DisplayFunction->Identity];
WF7=Plot[epsilon1[[7]]+
.2 AiryAi[ff x-epsilon[[7]]]/Sqrt[norm1[[7]]],

{x,0,130}, DisplayFunction->Identity];
WF9=Plot[epsilon1[[9]]+
.2 AiryAi[ff x-epsilon[[9]]]/Sqrt[norm1[[9]]],

{x,0,130}, DisplayFunction->Identity];
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In[20]:= Show[WF1,WF3,WF5,WF7,WF9,Pplot,
Graphics[{Dashing[{0.03,0.07}],

Line[{{0,epsilon1[[1]]},{130,epsilon1[[1]]}}]}],
Graphics[{Dashing[{0.03,0.07}],

Line[{{0,epsilon1[[3]]},{130,epsilon1[[3]]}}]}],
Graphics[{Dashing[{0.03,0.07}],

Line[{{0,epsilon1[[5]]},{130,epsilon1[[5]]}}]}],
Graphics[{Dashing[{0.03,0.07}],

Line[{{0,epsilon1[[7]]},{130,epsilon1[[7]]}}]}],
Graphics[{Dashing[{0.03,0.07}],

Line[{{0,epsilon1[[9]]},{130,epsilon1[[9]]}}]}],
DisplayFunction->$DisplayFunction,
AxesLabel->{"x (angstrom)","U(x) (eV)"},
PlotRange->All,
PlotLabel->"Even wavefunctions"]
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Out[20]= -Graphics-

(e)
the classical turning points for the electron

In[21]:= cross=epsilon1/f

Out[21]= {21.3658, 37.356, 50.4473, 62.0174, 72.5941, 82.4496,

91.7478, 100.597, 109.072, 117.23}

The probabilities for the electron to penetrate into the
classically forbidden region

In[22]:= penetr = Table[NIntegrate[AiryAi[ff x-epsilon[[n]]]ˆ2
/norm1[[n]],{x,cross[[n]], Infinity}], {n,1,10}]
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Out[22]= {0.136237, 0.103859, 0.0894863, 0.080742, 0.0746424,

0.0700462, 0.0664058, 0.0634203, 0.060908, 0.0587515}

which can be shown

In[23]:= p1=Table[{n-1, 100 penetr[[n]]},{n,10}];
ppen=ListPlot[p1,
AxesLabel->{"n","penetration (%)"},
PlotRange->{0,15},
Prolog->{{GrayLevel[.5],
Line[p1]},AbsolutePointSize[5]},
Ticks->{{1,2,3,4,5,6,7,8,9}, {0,2,4,6,8,10,12,14}}]
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Out[23]= -Graphics-

the mean values of x

In[24]:= xave = Table[NIntegrate[x AiryAi[ff x-epsilon[[n]]]ˆ2
/norm1[[n]],{x,0, Infinity}], {n,1,10}]

Out[24]= {14.2439, 24.904, 33.6315, 41.345, 48.396, 54.9664,
61.1652,

67.0645, 72.7148, 78.1535}

which is shown in the following figure

In[25]:= p2=Table[{n-1, xave[[n]]},{n,10}];
ListPlot[p2,
AxesLabel->{"n","xave (angstrom)"},
PlotRange->{0,80},
Prolog->{{GrayLevel[.5],
Line[p2]},AbsolutePointSize[5]},
Ticks->{{1,2,3,4,5,6,7,8,9},
{0,10,20,30,40,50,60,70,80}}]
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Out[25]= -Graphics-

Problem 3: Semiclassical Tunneling

(a)Using the formula

j =
i~

2m
[ψ(x)∇ψ∗(x) − ψ∗(x)∇ψ(x) ] (38)

for the current and the explicit form of ψ(x) in the region I

ψI(x) =
d√
k(x)

exp(i
∫ a

x
k(x

′
)dx

′
) +

d∗√
k(x)

exp(−i
∫ a

x
k(x

′
)dx

′
) (39)

one obtains jx = 0, which means that the incident and reflected currents
have equal values and opposite directions.
(b) We assumed that the wave function in region I is of the type

ψI(x) =
c√
k(x)

sin
(∫ a

x
k(x′)dx′ + γ

)
(40)

where c and γ are some constants and k(x) =
√

2m(E − U(x))/~2. A par-
ticle in the classically forbidden region II will have a wave function of the
type
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ψgen
II (x) =

c1√|k(x)| exp
(∫ x

a
|k(x′)|dx′

)
+

c2√|k(x)| exp
(
−
∫ x

a
|k(x′)|dx′

)
.

(41)
Since we assumed that the probability for tunneling is very small we put
c1 = 0, otherwise the wave function will be exponentially large for points
far from x = a and a smoothly continued wave function in region III will
not be small.

ψII(x) =
c2√|k(x)| exp

(
−
∫ x

a
|k(x′)|dx′

)
. (42)

So we have now to find equations which relate c, γ and c2. For this
purpose we will approximate U(x) near x = a as

U(x) ≈ Ua(x) = E + Fa(x− a), Fa > 0 (43)

and solve exactly the corresponding Schrödinger equation:

d2ψI,II(x)
dx2

− 2m
~2

Fa(x− a)ψI,II(x) = 0. (44)

Introducing a new dimensionless variable z

z =
(

2mFa

~2

)(1/3)

(x− a) (45)

we rewrite (44) as

d2ψI,II(z)
dz2

− zψI,II(z) = 0. (46)

The combination

λ =
(

2mFa

~2

)(1/3)

(47)

has dimension one over length and its reciprocal value plays a role of a
characteristic length in this problem.

Equation (46) has generally two types of solutions called regular and
irregular Airy functions. We consider here only the regular Airy function
Ai (z) because the irregular Airy function Bi (z) diverges as z → ∞. Ai (z)
is usually written in the form
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Ai(z) =
1
π

∫ ∞

0
cos (

u3

3
+ uz ) du. (48)

The solution of (44) is given by

ψI,II(x) = Const Ai [ λ (x− a) ] . (49)

We assume that (43) holds in a sufficiently broad interval x ∈ [a− ε, a+ ε]
such that

λ ε � 1. (50)

We require (50) because the argument in (49) is essentially λε at the end
points of the interval and we want to use the asymptotic forms of Ai (z) for
z → ∞

Ai(z) ≈ 1
2
π−1/2z−1/4e−

2
3
(z)3/2

(51)

and for z → −∞

Ai(z) ≈ π−1/2(−z)−1/4sin(
2
3
(−z)3/2 +

π

4
) (52)

We give here for later reference the asymptotic forms of Bi(z) for z → ∞

Bi(z) ≈ π−1/2z−1/4e
2
3
(z)3/2

(53)

and for z → −∞

Bi(z) ≈ π−1/2(−z)−1/4cos(
2
3
(−z)3/2 +

π

4
) (54)

For the semiclassical approximate wave functions (40) and (42) one ob-
tains in the framework of (43)

k(x) ≈
√

2m
~2

(E − E − Fa(x− a) ) =
√

−λ3 (x− a). (55)

One now uses (55) to take the definite integrals in (40) and (42) and obtain
correspondingly

ψI(x) = c λ−1/2 [λ (a− x) ]−1/4 sin
(

2
3

[λ (a− x) ]3/2 + γ

)
(56)
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and

ψII(x) = c2 λ
−1/2 [λ (a− x) ]−1/4 exp

(
−2

3
[λ (x− a) ]3/2

)
. (57)

At this point we have obtained the exact solution of (44) in some interval
around x = a and want to connect it with the semiclassical wave functions
in the corresponding extended regions. So we consider the asymptotic be-
havior of the exact solution and impose the necessary conditions so that the
continuation is smooth.

Equations (45), (49), (51) and (57) are consistent if

1
2
π−1/2 Const = c2 λ

−1/2. (58)

Similarly, equations (45), (49), (52) and (56) lead to

π−1/2 Const = c λ−1/2 (59)

and

γ =
π

4
. (60)

From equations (58) and (59) one finally finds the relation between the
normalization constants of the wave functions in the regions I and II.

c2 = c/2 (61)

(c) The general semiclassical wave function of a particle of mass m and
energy E moving in the classically allowed region III is given by

ψI(x) =
d′√
k(x)

exp
(
i

∫ a

x
k(x

′
) dx

′
)

+
f ′√
k(x)

exp
(
−i
∫ a

x
k(x

′
) dx

′
)
(62)

where the first term corresponds to a particle moving in the positive direc-
tion and the second term — to a particle moving in the negative direction,
k(x) was defined earlier. Since we consider particles (incident and reflected)
moving in the region I we have to assume that in the region III there
are no particles moving in the negative direction, some particles could be
moving in the positive direction due to tunneling from region I. Hence the
normalization coefficient f ′ must be zero.
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(d) The plots of Ai(z) and Bi(z) produced by Mathematica are given in Fig. 1
and Fig. 1 . We used the built-in functions AiryAi[z] and AiryBi[z]. Note
the asymptotic behavior of these functions.
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Figure 6: The regular Airy function Ai(z)

-20 -15 -10 -5 5
z

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Bi(z)

Figure 7: The irregular Airy function Bi(z)

(e) We approximate U(x) near x = b as

U(x) ≈ Ub(x) = E + Fb(b− x), Fb > 0 (63)

and write the corresponding Schrödinger equation for U(x) = Ub(x)

d2ψII,III (x)
dx2

− 2m
~2

Fb(b− x)ψI,II(x) = 0. (64)
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A substitution similar to the one made before

z =
(

2mFb

~2

)(1/3)

(b− x) (65)

allows us to rewrite (64) as

d2ψII,III(z)
dz2

− zψII,III(z) = 0. (66)

We define as before the parameter

λ =
(

2mFb

~2

)(1/3)

(67)

The regular and the irregular Airy functions — Ai(z) and Bi(z) are linearly
independent and the general solution of (66) is a linear combination of these
two functions. Thus, the general solution of (64) is

ψII,III(x) = c
′′
Ai[ λ (b− x) ] + c

′′′
Bi[ λ (b− x) ] (68)

It is important to emphasize once again that this solution is valid for points
close to x = b, where the approximation (63) is valid. We want to connect
(68) to the function

ψIII(x) =
g√
k(x)

exp(i
∫ x

b
k(x′)dx′ + i

π

4
) (69)

which is valid in region III. Following the procedure from part (b) we
assume that (63) is valid in a sufficiently broad interval x ∈ [b− ε, b+ ε] such
that

λ ε � 1. (70)

Using (55) and the Euler formula eiφ = cos(φ) + i sin(φ) we rewrite (69)

ψIII(x) =
g
[
cos
(

2
3 [λ (x− b) ]3/2 + π

4

)
+ i sin

(
2
3 [λ (x− b) ]3/2 + π

4

) ]
λ1/2 [λ (x− b) ]1/4

.

(71)
A comparison between this equation and the asymptotic forms of Ai(z) and
Bi(z) for z → −∞ confirms that (68) has, indeed, the form
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ψII,III (x) = g { Bi [ λ (b− x) ] + iAi [ λ (b− x) ] } (72)

(f)Both terms in (72) have exponential behavior for x far enough from x = b,
as x→ a. The first one is growing and second one is decaying. The rates of
change are related to the parameter λ, which as we assumed above is large.
So in region II we will neglect the exponentially small second term in (72)

ψII,III (x) = gBi [ λ (b− x) ], in region II, (73)

The equation (73) is smoothly connected to a general solution for the wave
function in region II

ψII(x) =
g√|k(x)| exp

(∫ b

x
|k(x′)|dx′

)
. (74)

It is now easy to verify that in order that equations (42) and (74) be con-
sistent everywhere in the region II the following relation should hold

c2 exp
(
−
∫ x

a
|k(x′)|dx′

)
= g exp

(∫ b

x
|k(x′)|dx′

)
, x ∈ [a, b]. (75)

Taking into account (61) one finds from (75) the necessary condition

g =
c

2
exp

(
−
∫ b

a
|k(x)| dx

)
. (76)

(g)In order to calculate the current of the incident particles at x→ −∞ we
use that U(x→ ±∞) = 0 and write (39) as

ψI(x→ −∞) =
c

2i
√

2mE/~2

[
exp

(
i

∫ a

x
k(x

′
)dx

′
)
− exp

(
−i
∫ a

x
k(x

′
)dx

′
)]

(77)
The first term in this expression corresponds to incoming particles. We
apply (38) to obtain

ji(x→ −∞) =
|c|2~2

8

√
2mE (78)

Similarly from (69) and (38) one obtains
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jt(x→ +∞) =
|g|2~2

8

√
2mE. (79)

One uses the definition of the transition coefficient T = jt/ji and (76) to
obtain

T = exp(−2
∫ b

a
|k(x)|dx). (80)

(h)We consider now a potential

U(x) =




0, for x < −a
U0 − αx2, for − a < x < a, a =

√
U0/α

0, for a < x

(81)

and want to calculate the transition coefficient for particles om mass m and
energy E, scattered by such a potential. We find first the turning points
for which U(x) = E, x = ±x0(E);x0(E) =

√
(U0 − E)/α. We then have to

calculate the integral

I(E) =
1
~

∫ x0

−x0

√
2m(E − U0 + αx2) dx. (82)

Substituting z =
√
α/(U0 − E)x one brings I(E) to the form

I(E) =

√
2m(U0 −E)2

α~2

∫ 1

−1

√
1 − z2) dz. (83)

Using that α = 2mU0
2/~2 one finds I(E) = (1−E/U0)π/2. Thus the sought

transition coefficient is

T (E) = exp
[
−π

(
1 − E

U0

)]
. (84)

A plot of this function is given in Fig. 1.
It should be pointed out that (84) is valid for values of the energy E

for which
∣∣∣dU(x)

dx

∣∣∣ at x = ±x0(E) is sufficiently large. This condition can be
traced back to equations (50) and (70) where we needed λ be sufficiently
large. Hence, for energies close to the pick of the potential (81) the formula
(84) is not valid. Indeed, an exact calculation shows that T (E) exhibits
oscillatory behavior for E close to Umax.
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Figure 8: The transition coefficient for the potential as a function of E/U0. Semi-
classical approximation.

2 Mathematica notebook

(i) Regular Airy Function:
With this command we plot the regular Airy function A[z].

In[26]:= Plot[ AiryAi[x],{x,-20,5}, AxesLabel->{"z", "Ai(z)"},
PlotRange->{ {-20,5},{-.5,1} }];
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(ii) Irregular Airy Function:
Here we plot the irregular Airy function B[z]

In[27]:= Plot[ AiryBi[x],{x,-20,5}, AxesLabel->{"z", "Bi(z)"},
PlotRange->{ {-20,5},{-.5,1} }];
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(iii) The Transition Coefficient :
A plot of the analytically calculated transition coefficient. T[E/U].

In[28]:= U=1;
Plot[ Exp [ -P i ( 1 - E / U ) ], {E, 0, 1},
AxesLabel->{"E/U", "T(E/U)"}];
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