
Problem Set 5
Physics 480 / Fall 1999
Professor Klaus Schulten

Problem 1: Energies of the Bound States of the Morse Potential
in the Semiclassical Approximation

Prove that the semiclassical approximation (Bohr-Sommerfeld quantization
condition) applied to the Morse potential

U(y) = D [ e−2ay − 2 e−ay ] . (1)

reproduces the exact energy values
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Problem 2: Electron at Surface of a Semiconductor

The structure of a metal-oxide semiconductor (MOS) device is usually a
metal plate insulated from the surface of the semiconductor by silicon diox-
ide. From the metal layer, an electrostatic field can be applied in a direction
normal to the interface between the semiconductor and oxide insulator. The
potential of an electron atop the interface can be approximated by the one-
dimensional function

U(x) =
{
∞ , for x < 0 (insulator)
eEx , for x ≥ 0 (semiconductor)

(3)

where e is the charge of the electron; E is the added electric field, which is
chosen typically 500 KeV/cm; x is the distance away from the interface.

(a) Determine the energies associated with the stationary states character-
ized in the semiclassical approximation by the Bohr-Sommerfeld condition.

(b) Show that the exact stationary states of an electron with energy E for
x ≥ 0 are given by

φE(x) = const× Ai [ 3
√

2meE/~2 (x− E

eE
)] (4)

where Ai is the Airy function.

The stationary states must also obey the boundary condition

φE(0) = 0 . (5)



Figure 1: There are three sets of materials in the surface layer of MOS transistor.
By adding an electric field E , the electron in the semiconductor region is in a linear
potential well.

(c) Employ the Mathematica built-in function AiryAi[x] to test the ac-
curacy of the semiclassical energies E(semi)

n determined in (a). For that
purpose, first plot the Airy function Ai(x), estimate from the plot the first
ten solutions xn of Ai(x) = 0, and use the Mathematica built-in function
FindRoot to evaluate the exact solution for the zeros of the Airy function.
Calculate the corresponding energies of the stationary states, compare the
resulting energies with those obtained in (a). Plot the percentage error as
a function of quantum numbers.

(d) Plot φEn(x) as defined in (??) for n = 0, 2, 4, 6, 8 using both the semi-
classical energies obtained in (a) and the exact energies obtained in (c).

(e) Calculate for an electron in a stationary state with n = 0, 1, 2, . . . 9 (i)
the probabilities to penetrate into the classically forbidden region and (ii)
the mean values of x . Plot the results as a function of the quantum numbers
n.

Problem 3: Semiclassical Tunneling

Consider the scattering of a particle of mass m and energy E by a potential
barrier U(x). We consider a barrier which is localized, i.e., U(x→ ±∞) = 0
and assume that there exist a region where E is less than U(x).
In the classical case a particle moving in region I cannot move past the
barrier. In quantum mechanics, however, there exist a finite probability
that such a particle will tunnel through the barrier. We want to calculate
this probability in the semiclassical approximation.
We consider the situation that particles come from the left and that the top



Figure 2: A localized potential barrier. The points x = a and x = b are the
turning points, i.e., U(a) = U(b) = E. We define the regions: I = {x, x < a},
II = {x, a ≤ x ≤ b}, III = {x, b < x}.

of the barrier is much higher than the energy of the particles. We expect
then that most of the particles will be reflected and only a very small fraction
will tunnel through the barrier. Accordingly, the wave function to the left
of the barrier will be
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where k(x) =
√

2m(E − U(x))/~2 , x = a is the left turning point, i.e.,
U(a) = E, d is an arbitrary constant and the asterix ∗ denotes the operation
of complex conjugation.

(a) Show that for wave function (??) the reflected current is equal to the
incident current.

For d = c
2i exp(iπ/4) wave function (??) can be written
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Below you will see that this peculiar choice of d is convenient.

(b) Using the definition of regions I and II in the caption of Fig.1 prove



that the form of the wave function in region II is
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For this purpose follow the derivation presented in class. Approximate U(x)
near x = a as U(x) ≈ Ua(x) = E+Fa(x−a). A solution of the corresponding
Schrödinger equation for U(x) = Ua(x) is
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where Ai(z) is the regular Airy function. You will need to use the asymptotic
properties of Ai(±z) given in (??) and (??) below to show that ψI,II(x)
smoothly connects to (??) as well as to (??).

(c) Argue why the wave function in region III has the form
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For later convenience we will substitute d′ = g exp(iπ/4) and rewrite (??)
as
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In order to connect wave function (??) to (??) and thereby determine the
constant g we will apply a similar type of argument as applied for the con-
nection of (??) and (??). For this purpose we consider the wave function
near the right turning point x = b. We approximate U(x) ≈ Ub(x) =
E+Fb(b−x), Fb > 0. A solution of the corresponding Schrödinger equation
for U(x) = Ub(x) is
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It is important to note here that there exists another solution of the Schrödinger
equation for U(x) = Ub(x), namely the irregular Airy function which is lin-
early independent of (??)
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(d) Use Mathematica to plot Ai(z) and Bi(z). The built-in functions are
called AiryAi[z] and AiryBi[z] respectively. The asymptotic behavior of
Bi(z) is given in (??) and (??) below.

(e) Why is
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also a solution of the Schrödinger equation? Show that (??) smoothly con-
nects to (??) for x→∞.

(f) Prove that for the choice
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one can smoothly connect (??) to (??). (Note that in region II the contri-
bution of Ai(z) to (??) can be neglected.) Now we have expressed the wave
function in I, II and III in terms of a single multiplicative constant c.

(g) Show that the transmission coefficient T = jt/ji, where jt is the current
of the transmitted particles and ji is the current of the incident particles, is
given by

T = exp
(
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(h) Calculate the transmission coefficient T = T (E) as a function of the
energy E of incoming particles of mass m, scattered by a potential

U(x) =


0, for x < −a
U0 − αx2, for − a < x < a, a =

√
U0/α

0, for a < x

(17)

where U0 and α are constants. Plot T (E/U0) using Mathematica for α = 2mU0
2/~2.

Here we give the asymptotic form of Ai(z) and Bi(z) for z → ±∞.
For z → +∞, ( ξ = 2

3z
3/2 )

Ai(z) ≈ 1
2
π−1/2z−1/4e−ξ (18)



Bi(z) ≈ π−1/2z−1/4eξ (19)

For z → −∞, ( ξ = 2
3(−z)3/2 )

Ai(z) ≈ π−1/2(−z)−1/4sin(ξ +
π

4
) (20)

Bi(z) ≈ π−1/2(−z)−1/4cos(ξ +
π

4
) (21)

The problem set needs to be handed in by Tuesday, October 26.
The web page of Physics 480 is at
http://www.ks.uiuc.edu/Services/Class/PHYS480/


