
Problem Set 4
Physics 480 / Fall 1999
Professor Klaus Schulten

Problem 1: Wave Functions of One-Dim. Harmonic Oscillator

In this problem we consider three different numerical evaluations of the
stationary states φn(x) of the one-dimensional harmonic oscillator described
by the Schrödinger equation(
− h̄2

2m
d2

dx2
+

1
2
mω2x2

)
φn(x) = En φn(x) , En = h̄ω (n +

1
2

) (1)

Employ in the following the variable y =
√
mω/h̄ x and assume the nor-

malization
∫∞
−∞ dy |φn(y)|2 = 1.

(a) Starting from the ground state φ0(y) construct the five stationary states
lowest in energy by application of the differential operator â† according to

φn(y) =
â+

√
n
φn−1(y) . (2)

Obtain explicit expressions using the differential operation available in Mathe-
matica. Plot the results.
(b) Employing the expression of φn(y) in terms of Hermite polynomials,
determine the Hermite polynomials using the recursion relationship

Hn+1(y) − 2y Hn(y) + 2nHn−1(y) = 0 , n = 1, 2, . . . (3)

starting from
H0(y) = 1, H1(y) = 2y (4)

Use for this purpose again Mathematica to obtain explicit expressions for
φn(y). Compare with the expressions determined in (a).
(c) Evaluate the stationary states φn(x), n = 1, 2, 3, 4, 5 employing the ex-
plicit expression for the Hermite polynomials

Hn(y) =
[n/2]∑
k=0

(−1)k n!
k! (n− 2k)!

(2y)n−2k . (5)

Compare the result with (a) and (b).

Problem 2: Displaced Harmonic Oscillator

We consider the time evolution of the quantum state of a harmonic oscillator
which experiences an external force

F (τ) =

{
0 for τ < 0
F0 for τ > 0 .

(6)



and for τ < 0 is in its initial ground state

Ψ0(x, τ) =
[
mω

πh̄

] 1
4

exp
(
−mω

2h̄
x2
)

exp
(
−iωτ

2

)
, (7)

Since for t > 0 the force is time-independent one can describe the sys-
tem through stationary states of a harmonic oscillator corresponding to a
potential V (x) = 1

2mω
2x2 − F0x and introduce for such description the

stationary states characterized by discrete energy values EFn , (n = 0, 1, . . .)
and wave functions

ΨF
n (x, t) = ψFn (x) exp

(
−i E

F
n

h̄
t

)
. (8)

In the following employ time and length units

T =
2π
ω
, (9)

and, respectively,

L =

√
h̄

mω
. (10)

(a) Show that the stationary states ψFn (x), for t > 0, can be expressed in
terms of the Hermite polynomials Hn(x) as follows

ψFn (x) =
1√

2nn!
√
π

exp

[
−(x− a)2

2

]
Hn(x− a) . (11)

(b) Prove that the probability to find the considered system, for t > 0, in
state ψFn (x) is

Pn =
∣∣∣∣∫ ∞
−∞
dx[ΨF

n (x)]∗Ψ(x)
∣∣∣∣2 =

(a2/2)n

n!
e−(a2/2) , n = 0, 1, 2, . . . ,

(12)
and check that

∑∞
n=0 Pn = 1 holds.

(In your derivation you may find useful the following two formulae∫ ∞
−∞
dxe−x

2
Hn(x)Hm(x) = 2nn!

√
πδn,m ,

and

e2tx−t2 =
∞∑
n=0

Hn(x)
n!

tn .

(c) Using Mathematica plot Pn as function of n for a ∈ [0, 5] and n ≤ 5 and
discuss the result.



(d) For which value(s) of the external force F0 will the chance to find the
oscillator, for t > 0, in its second exited state be larger than the probability
to find the oscillator in any other state?

Problem 3: Two-Dimensional Harmonic Oscillator

Determine the stationary states of the two-dimensional isotropic harmonic
oscillator described by the time-independent Schrödinger equation[
− h̄2

2m

(
∂2

∂x2
1

+
∂2

∂x2
2

)
+

1
2
mω2

(
x2

1 + x2
2

) ]
φE(x1, x2) = E φE(x1, x2)

(13)
employing the method of separation of variables applied previously for par-
ticles in a three-dimensional box (see notes), i.e., seeking solutions of the
form φE(x1, x2) = φE1(x1)φE2(x2), E = E1 + E2.
(a) Show that the factors in φE1(x1)φE2(x2) obey the time-independent
Schrödinger equation of the one-dimensional harmonic oscillator.
(b) Plot the probability density of all stationary states with energy E ≤
4 · h̄ω. Use for this purpose the routine Plot3D[ ... ] of Mathematica
and the wave functions as determined in Problem Set 3.
(c) Plot for the stationary states in (b) the points in the x1, x2–plane where
the wave functions vanish, the socalled node lines.

Problem 4: Vibrations of Linear Triatomic Molecule

We want to describe the stretching vibrations of a linear, symmetric tri-
atomic molecule Y=X=Y. The atomic masses are mX , mY . We consider
only consider the vibrations along the long axis of the molecule, the so-called
stretching vibrations.

These vibrations are decribed by the potential energy function

V =
1
2
k0 [ (x2 − x1)2 + (x3 − x2)2 ] + k1 (x2 − x1) (x3 − x2) (14)

where the coordinates x1, x2 and x3 are defined in the figure below. k0

and k1 are two constants (see below). The first term on the r.h.s. of (14)
describes the vibrational energy of each bond separately, and the second
term describes the interaction between two bond vibrations.

(a) Express the Hamiltonian of the system in term of the center of mass
coordinate y1, and in terms of displacements of bond lengths y2 and y3

defined through

y1 =
mY (x1 + x3) + mX x2

mX + 2mY

y2 = x2 − x1

y3 = x3 − x2 (15)
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Figure 1: The three small sphere represent the X-ray structure of molecule
Y=X=Y. x2 is the displacement of X atom away from its equilibrium position.
So do x1 and x3.

and show that the resulting Hamiltonian can be written as

Ĥ = − h̄2

2 (mX + 2mY )
∂2

∂y2
1

+ Ĥ1(y2, y3) (16)

where

Ĥ1(y2, y3) = − h̄2

2

(
1
mX

+
1
mY

)(
∂2

∂y2
2

+
∂2

∂y2
3

)
(17)

+
h̄2

mX

∂

∂y2

∂

∂y3
+

1
2
k0 (y2

2 + y2
3) + k1 y2 y3

Note

∂

∂x1
=

∂y1

∂x1

∂

∂y1
+

∂y2

∂x1

∂

∂y2
+

∂y3

∂x1

∂

∂y3
(18)

(b) Determine a linear coordinate transformation

z2 = y2 + c2 y3

z3 = y2 + c3 y3 (19)

which brings Ĥ1(y2, y3) to the form

Ĥ1 = − h̄2

2m2

∂2

∂z2
2

+
1
2
k′2 z

2
2 −

h̄2

2m3

∂2

∂z2
3

+
1
2
k′3 z

2
3 . (20)

(c) Determine the stationary states by means of separation of variables, i.e.,
assuming a wave function of the form

Ψ(y1, z2, z3, t) = e−
i
h̄
Et φ1(y1)φ2(z2)φ3(z3) . (21)

Express an arbitary wave function in terms of the coordinates y1, y2 and y3.

(d) Apply your result to the molecule CO2. In this case holds: mX =
12 u; mY = 16 u, where 1u = 1.66 × 10−27 kg. Determine the corre-
sponding vibrational energies first for potential energy coefficients k0 =



1160 Kcal/molÅ2 and k1 = 0. The observed normal mode frequencies are
1337 cm−1 and 2349 cm−1. Evaluate the percentage errors. Note that 1
rad/sec = 5.341× 10−12 cm−1.

(e) If infrared light linearly polarized along the long axis of the molecule
irradiates CO2, which of the two normal modes can be possibly excited?
Keep in mind that linearly polarized electromagnetic radiation is decribed
by an electric field vector oscillating along the direction of polarization, and
that C, O atoms are partially charged with opposite charges.

(f) The density plots in Fig. 2 are the stationary wave functions φ1(z2)φ1(z3)
as defined in (21) generated by Mathematica. The axes in these plots
correspond to the y2 and y3 coordinates. State the vibrational quantum
numbers corresponding to the wave numbers, each state being associated
with two quantum numers n2 for the z2 and n3 for the z3 coordinate. Specify
the quantum numbers like n2 = 2, n3 = 6.
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Figure 2: The density plots generated by Mathematica represent the stationary
wave functions φ1(z2)φ1(z3) with z2 and z3 expressed as functions of y2 and y3 (in
Å). The horizontal axis in these plots corresponds to the y2 and the vertical one
corresponds to the y3 coordinates. White codes values of the density above average,
and black values below average.

Problem 5: Algebraic Solutions for Stationary States of Morse
Potential
[L. Infeld and T. E. Hull, The Factorization Method, Rev. Mod. Phys.
23, 21–68 (1951)]

The following problem will demonstrate that the method of creation and
annihilation operators A±, introduced for the linear harmonic oscillator,
can be generalized to other potentials. For this purpose we consider the
one-dimensional time-independent Schrödinger equation[

− h̄2

2m
d2

dy2
+ U(y)

]
φ(y) = E φ(y) (22)



for the so-called Morse potential often employed to model the interaction
between atoms and molecules (D > 0)

U(y) = D [ e−2ay − 2 e−ay ] . (23)

We seek to determine the eigenvalues and wave functions of the bound states
of the Morse potential.

(a)

1. Show that for the bound states holds E < 0. [Hint: Plot the potential
(23).]

2. Show that the lowest eigenvalue should be

Eo = −D + ah̄

√
D

2m
− ε, ε > 0 . (24)

[Hint: Compare the plot of the potential (23) with a plot of its quadrat-
ic expansion at its minimum.]

3. Provide an estimate for the number of stationary bound states of the
Morse potential. Evaluate for this purpose the classical action integral
I =

∫
dy p(y) for motion at E = 0. It holds then (this result will be

proven later in the course)

number of bound states ≤ I/h̄ (25)

(b) Show that the stationary Schrödinger equation for the Morse poten-
tial through the transformation of variables

x = −ay + ln

(√
8mD
ah̄

)
, (26)

s+
1
2

=
√

2mD
ah̄

, (27)

t2 = −2mE
a2h̄2 > 0 (28)

yields

Hs φt(x) =

[
− d2

dx2
+

1
4
e2x −

(
s+

1
2

)
ex
]
φt(x) = −t2φt(x) (29)

where
Hs =

2m
a2h̄2 H , s defined through (27). (30)



Consider in the follwing s as a variable and t as a constant. Show that (29)
is equivalent to

A−s+1A
+
s+1 φ

(s)
t (x) = [(s+ 1)2 − t2]φ(s)

t (x) (31)

as well as to
A+
s A
−
s φ

(s)
t (x) = [ s2 − t2 ]φ(s)

t (x) (32)

where
A±s = ∓ d

dx
+

ex

2
− s . (33)

(c) Show that for fixed t the operators A+
s , A

−
s generate new solutions

to Eq. (29) according to the rule

A+
s+1 φ

(s)
t (x) = cs φ

(s+1)
t (x) , (34)

A−s φ
(s)
t (x) = ds φ

(s−1)
t (x) . (35)

For the normalization factor ds holds (as long as the functions φ(s)
t (x) and

φ
(s−1)
t (x) are normalizable)

d2
s = s2 − t2 . (36)

Why should hold s > t?

(d) Equation (29) above can only have bound states, i.e., normalizable
solutions, for s > t. This implies that the sequence . . . A−s−2A

−
s−1A

−
s φ

(s)
t (x)

for s − n < 0 leads to a solution which is not admissable as a bound state.
Hence, the sequence must break up for some so, i.e., there must exist an so
for which holds

A−so φ
(so)
t (x) = 0 . (37)

Show that this property implies so = t and s = t, t+ 1, t+ 2 . . .

(e) Argue under which condition the derivation in (d) yields the allowed
negative eigenvalues for the Morse potential

En = −D + ah̄

√
2D
m

(
n+

1
2

)
− a2h̄2

2m

(
n+

1
2

)2

,

n = 0, 1, 2, . . . ≤
√

2mD
ah̄

− 1
2
. (38)

Rationalize the upper bound for n in view of the derivations in (c), (d).



(f) Assume in the following D = a = 1 and
√

2m/h̄ = 3. Determine
and plot the wave function for n = 0. To normalize the wave function use

Γ(z) =
∫ ∞

0
dt tz−1 e−t (39)

where Γ(z) is the Gamma function.

(g) How can one obtain also the stationary states corresponding to the
energies (38) for n > 0. Determine and plot the wave functions of these
states using Mathematica.

The problem set needs to be handed in by Tuesday, October 19.
The web page of Physics 480 is at
http://www.ks.uiuc.edu/Services/Class/PHYS480/


