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Problem 4: Vibrations of Linear Triatomic Molecule

(a) By using the definition
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The kinetic energy of the system is
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and the potential energy function part is
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Then the Hamiltonian of the system can be written as:
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(b) Employ the transformation

z2 = y2 + c2 y3

z3 = y2 + c3 y3 , (9)

the kinetic energy part of Ĥ1(y2, y3) can be written as
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For the potential part, first, we express y2 and y3 as a function of z2 and z3

from (9)

y2 =
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2



and substitute (11) into (6), so that
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Let the coefficients of the crossterms ∂
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be 0, i. e. {
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The solution of (13) is{
c2 = 1
c3 = −1 ; or

{
c2 = −1
c3 = 1 . (14)

The derivations from (9) to (14) can be actually done either by hand or by
Mathematica (see the notebook).

The two solutions in (14) are actually equivalent. Now we just pick up one,
c2 = 1, c3 = −1, such that

z2 = y2 + y3

z3 = y2 − y3 . (15)

Then Ĥ1(y2, y3) can be given as:
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(c) In the normal coordinate, we know that φ1(y1) is a plane wave; φ2(z2) and
φ3(z3) are two independent harmonic oscillators. So the wave function for them
can be written as
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The vibrational energy levels of this system are:
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So the general wave function as a function of y1, y2 and y3 will be:

ψ(y1, y2, y3, t) =
∞∑

n,l=0

1√
2πh̄

∫ ∞
−∞

dpωnl(p)

exp
{
ipy1 − it

[
p2

2mh̄
+ (n+

1
2

)ω2 + (l +
1
2

)ω3

]}
√

α2

2nn!
√
π
e−α

2
2(y2+y3)2/2Hn(α2(y2 + y3))√

α3

2ll!
√
π
e−α

2
3(y2−y3)2/2Hl(α3(y2 − y3))

=
∞∑

n,l=0

√
α2α3

π
√

2n+l+1h̄n!l!

∫ ∞
−∞

dpωnl(p)

Hn(α2(y2 + y3))Hl(α3(y2 − y3))
exp

{
−α2

2(y2 + y3)2/2− α2
3(y2 − y3)2/2 + ipy1

}
exp

{
−it

[
p2

2mh̄
+ (n+

1
2

)ω2 + (l +
1
2

)ω3

]}
. (22)

(d) Using mX = 12 u; mY = 16 u, where 1u = 1.66 × 10−27 Kg, and
k0 = 580 Kcal/molÅ2 and k1 = 0, one can find

ω2 = 930.893 cm−1 ;
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ω3 = 1471.87 cm−1 . (23)

The percentage errors for ω2 and ω3 comparing to the experiment are 30.4%
and 37.3% respectively.

(e) From the Fig 1, one can see that there is a net dipole moment for the
normal mode of ω3, but no net dipole moment for the normal mode of ω2.
This means that there is no interaction between the normal mode of ω2 and
the infrared light, and it can not be excited. So only the normal mode with
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√
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)
can absorb energy from the light and be excited.

O OC

x x1 2 3x

x x1 2 3x

ω

ω

2

3

Figure 1: The two normal modes of the CO2 molecule.

(f) One can find out the vibrational quantum numbers of certain state by count-
ing the number of nodes (the points where the wave function is 0) along its
normal coordinate. From the solution of part (e), we find that the normal co-
ordinate for mode ω2 is along y2 + y3 = z2, and the normal coordinate for
mode ω3 is along y2 − y3 = z3,where z2 and z3 will have a spatial pattern
of one dimensional harmonic oscillator. In Fig.?? (a), there is no node, so it
represents the ground state, where n2 = 0 and n3 = 0. In Fig.?? (b), there is
no node along y2 − y3 = z3, but there are 5 nodes along y2 + y3 = z2. So it
represents an excited state, where n2 = 5 and n3 = 0. In Fig.?? (c), there are
4 nodes along y2 − y3 = z3, and there are 5 nodes along y2 + y3 = z2 so that
it represents another excited state, where n2=5 and n3 = 4.
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