
Problem Set 2
Physics 480 / Fall 1999
Professor Klaus Schulten

Consider a harmonic oscillator of mass m and frequency ω which is driven
by some external force F (τ); the contribution of this force to the Lagrangian
is V (τ) = −xF (τ).

(a) State the Lagrangian L(x, ẋ, τ) of the system and derive the classical
equation of motion.

(b) Show that the classical path xcl(τ) with endpoints xcl(τ = t0) = x0 and
xcl(τ = t) = x is given by

xcl(τ) =
x0 sinω(t− τ) + x sinω(τ − t0)

sinω(t− t0)
− 1
mω

∫ t

t0
ds g(τ, s)F (s) , (1)

where

g(τ, s) =


sinω(t−τ) sinω(s−t0)

sinω(t−t0) for s ≤ τ
sinω(t−s) sinω(τ−t0)

sinω(t−t0) for s > τ
(2)

Hint: In order to solve the equation of motion obtained at (a) you can follow the
following steps

1. Define the complex function ξ = ẋ + iωx and prove that it satisfies the fol-
lowing equation of motion

ξ̇ = iωξ +
F (τ)
m

.

2. Show that the general solution for the above differential equation can be writ-
ten as

ξ(τ) =
[
ξ0 +

1
m

∫ τ

t0

dsF (s)e−iωs
]
eiωτ ,

where ξ0 is a complex integration constant.

3. Obtain the general solution x(τ) through the formula x = 1
ω Im{ξ}.

(c) Show that the propagator φ(x, t|x0, t0) defined through the path integral

φ(x, t|x0, t0) =
∫∫ x(t)=x

x(t0)=x0

d[x(τ)] exp
{
i

h̄
S[x(τ)]

}
(3)

for our system is given by

φ(x, t|x0, t0) =
[

mω

2πih̄ sinω(t− t0)

]1/2

exp
{
i

h̄
S[xcl(τ)]

}
. (4)



(d) Using the result for xcl(τ) at (b), prove that the classical action integral
is given by

S[xcl(τ)] =
mω

2 sinω(t− t0)
[(x2 + x2

0) cosω(t− t0)− 2xx0] +

x

∫ t

t0
dsF (s)

sinω(s− t0)
sinω(t− t0)

+ x0

∫ t

t0
dsF (s)

sinω(t− s)
sinω(t− t0)

−

1
2mω

∫ t

t0
dτ

∫ t

t0
dsF (τ) g(τ, s)F (s) . (5)

Let us apply now the results obtained so far to study the time evolution
of the quantum state of a harmonic oscillator under a constant force F0

which is suddenly turned on at τ = t0 = 0, i.e., the external force F (τ) is
given by

F (τ) =

{
0 for τ < 0
F0 for τ > 0 .

(6)

(e) Show that in this particular case the classical action integral (5) reads

S[xcl(τ)] =
mω

2 sinωt
{[(x−a)2+(x0−a)2] cosωt−2(x−a)(x0−a)}+mω2a2t

2
,

(7)
where

a =
F0

mω2
. (8)

Give a physical interpretation of the obtained result.

(f) Assuming that for τ < t0 = 0 the oscillator is in its ground state (a
stationary state corresponding to the lowest possible energy value E0 = h̄ω

2 )
described by the wave function

Ψ0(x, τ) =
(
mω

πh̄

) 1
4

exp
(
−mω

2h̄
x2
)
e−i

ωτ
2 , (9)

prove that for τ = t > 0 the oscillator will propagate into the state

Ψ(x, t) =
(
mω

πh̄

) 1
4

exp

[
−iωt

2
(1− mωa2

h̄
)

]
exp

{
−mω

2h̄
(x− a)2−

mωa

h̄
e−iωt(x− a) +

imωa2

2h̄
sinωte−iωt

}
exp

(
−mωa

2

2h̄

)
.(10)

At this stage it is convenient to introduce dimensionless quantities for
further calculations. This can be done, for example, by redefining the time
and length units as follows

T =
2π
ω
, (11)



and respectively

L =

√
h̄

mω
. (12)

Now we can switch to dimensionless quantities in our expressions by simply
setting T = 1 ( i.e., ω = 2π) and L = 1 ( i.e., h̄ = mω). Obviously, we can
recover the original quantities from the dimensionless ones at any time by
multiplying them with the appropriate unit factors L and T .

(g) Show, by using dimensionless quantities, that for t > 0 the probability
density of finding the oscillator in the spatial interval (x, x+ dx) is given by
the following expression

|Ψ(x, t)|2 =
1√
π

exp[−(x− a+ a cos 2πt)2] . (13)

(h) Derive the solution of the analogue classical problem, i.e., a harmonic
oscillator initially at rest and subjected to the force (6). Compare this
solution to the quantum mechanical probability (13).

Since for t > 0 the Lagrangian L(x, ẋ, t), in fact, is time independent one can
describe the resulting state (10) through stationary states for a harmonic
oscillator corresponding to a potential V (x) = 1

2mω
2x2−F0x and introduce

for such description the stationary states charcterized by discrete energy
values EFn , (n = 0, 1, . . .) and wave functions

ΨF
n (x, t) = ψFn (x)e−i

EFn
h̄
t . (14)

(i) Prove that the ground state of the system, for t > 0, is described by the
wave function

ΨF
0 (x, t) = (π)−

1
4 exp

[
−1

2
(x− a)2

]
e−iπt(1−a

2) , (15)

where
a =

F0

mω2
. (16)

Give a physical interpretation for a.

(j) Prove that the probability to find the considered oscillator in its ground
state for t > 0 is given by

P0 =
∣∣∣∣∫ ∞
−∞
dx[ΨF

0 (x, t)]∗Ψ(x, t)
∣∣∣∣2 = exp(−a

2

2
) . (17)



(k) Show that the stationary states ψFn (x) can be expressed in terms of the
Hermite polynomials Hn(x) as follows

ψFn (x, t) = π−
1
4

1
2n/2
√
n!
e−

(x−a)2

2 Hn(x− a) . (18)

(l) Prove that the probability of finding the oscillator at t > 0 in its nth

excited state ΨF
n (x, t) is given by

Pn =
(a2/2)n

n!
e−(a2/2) , n = 0, 1, 2, . . . , (19)

and check that
∑∞
n=0 Pn = 1 holds.

In your derivation you may find useful the following two formulae∫ ∞
−∞
dxe−x

2
Hn(x)Hm(x) = 2nn!

√
πδn,m ,

and

e2tx−t2 =
∞∑
n=0

Hn(x)
n!

tn .

(m) Using Mathematica or another program of your choice make the follow-
ing plots

(i) Pn as function of n for a ∈ {0.5, 1.0, 1.5, 2.0} and n ≤ 5;

(ii) P0, P1, P2 and P3 as a function of a ∈ [0, 5].

Comment on the behavior of the plotted quantities.

(n) For which value(s) of the external force F0 will the chance to find the
oscillator, for t > 0, in its second excited state be larger than the probability
to find the oscillator in any other state?

The problem set needs to be handed in by Thursday, Sept. 23.
The web page of Physics 480 is at
http://www.ks.uiuc.edu/Services/Class/PHYS480/


