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Physics 480 / Fall 1999

Professor Klaus Schulten

Solutions prepared by Sinan Arslan

Problem1: Scattering by a Spherical Potential Well

(a) The total cross section is defined through

σtot = 2π
∫ π

0
sinθ dθ

dσ

dΩ
(1)

Inserting the expression for the differential cross section into (1) one obtains

σtot =
2π
k2

∫ π

0
sinθdθ

∞∑
�=0

(2�+ 1) eiδ� sinδ� P�(cosθ)
∞∑

�
′
=0

(2�
′
+ 1) e−iδ

�
′ sinδ�′ P�′ (cosθ) (2)

=
2π
k2

∞∑
�=0

∞∑
�′=0

(2�+ 1) (2�
′
+ 1) eiδ� sinδ� e

−iδ
�
′ sinδ�′

∫ π

0
sinθdθP�(cosθ)P�′ (cosθ)

By using the orthogonality relation of Legendre polynomials,
∫ π

0
sinθdθP�(cosθ)P�

′ (cosθ) =
2

2�+ 1
δ��′ (3)

one arrive at the desired result

σtot =
4π
k2

∞∑
�=0

(2�+ 1) sin2δ� . (4)

(b) In classical mechanics, an incoming particle scattered by a spherical potential well is characterized by
an impact parameter b. The angular momentum of the particle is conserved, and its magnitude is given
by L = p b = ~ k b, where p = ~k is the linear momentum outside the potential well. Clearly, a particle
with impact parameter b > a will not be deflected. In quantum mechanics, both concepts of trajectory
and impact parameter are meaningless. However, when the de Broglie wavelength of the particle is much
smaller than the size of the potential well, i.e., λ ∼ 1/k � a, or equivalently ka� 1, the particle behaves
semi-classically. Hence, only partial waves corresponding to L = ~

√
�(�+ 1) ≈ ~ . ~ka will contribute

to σtot, i.e., in Eq. (4) � ≤ �max = k a.

(c) The radial wave function v�(r) = rφ�,E(r) can be found by solving the corresponding radial Schrödinger
equation

[
d2

dr2
+
2m
~2

[E − U(r)]− �(�+ 1)
r2

]
v�(r) = 0 . (5)

Outside the well U(r > a) = 0 and the solution to Eq. (5) can be written as a linear combination of the
spherical Bessel and Neumann functions, i.e.,

v�(r) = β� j�(kr) + γ� n�(kr) , for r > a , (6)
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where k =
√
2mE/~. Inside the well U(r < a) = −|Uo|, and the radial wave function has a similar

expression as above, except that this time the coefficient in front of the spherical Neumann function must
be set equal to zero. This is because n�(r) diverges for r → 0, and v�(r) must be finite at the origin. Hence,

v�(r) = α� j�(Kr) , for r < a , (7)

where K =
√
2m(E − Uo)/~.

(d) By matching the solutions (6) and (7), together with their derivatives, at r = a, one obtains

γ� = α�
k j�(Ka)j

′
�(ka)−K j�(ka)j

′
�(Ka)

k n�(ka)j
′
�(ka)− k j�(ka)n

′
�(ka)

(8)

and

β� = −α�
k j�(Ka)n

′
�(ka)−K n�(ka)j

′
�(Ka)

k n�(ka)j
′
�(ka)− k j�(ka)n

′
�(ka)

(9)

In terms of the phase shift δ�, the asymptotic behavior (r → ∞) of the radial wave function is given by

v�(k, r) ∼ sin
(
kr − �π

2 + δ�(k)
)

kr
(10)

=
sin

(
kr − �π

2

)
kr

cosδ�(k) +
cos

(
kr − �π

2

)
kr

sinδ�(k) .

By using the asymptotic form of the spherical Bessel functions

j�(kr) ∼ sin
(
kr − lπ

2

)
kr

, and n�(kr) ∼ −cos(kr −
lπ
2 )

kr
, (11)

for large r, Eq. (6) becomes

v�(k, r) ∼ sin
(
kr − �π

2

)
kr

β� −
cos

(
kr − �π

2

)
kr

γ� . (12)

The phase shift can be determined by comparing Eqs. (10) and (12)

tan δ�(k) = −γ�

β�
=
ka j�(Ka)j

′
�(ka)−Kaj�(ka)j

′
�(Ka)

ka j�(Ka)n
′
�(ka)−Kan�(ka)j

′
�(Ka)

. (13)

The � dependence of the phase shift δ� is shown in the left panel of Fig. 1.
(e) The differential cross section, as a function of θ, is plotted in the right panel of Fig. 1.

(f) The total cross section calculated with Mathematica is σtot = 3.58 a2 (slightly larger than the classical
πa2 value).
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Fig. 1: δ� vs � (left), and dσ/dΩ vs θ (right). Note that δ� decreases dramatically for � ≥ �max = 16.

Problem 2: Resonant Scattering States for a Spherical Potential Well

(a) For � = 0 the radial Schrödinger equation (5) becomes

(
d2

dr2
− 2m

~2
[|E|+ U(r)]

)
v(r) = 0 , (14)

where, for bound states, E < 0. Keeping in mind that the radial wave function must vanish for r → ∞,
and be finite for r = 0, the solution to Eq. (14) has the form

v�(r) =
{
A sinKr

r r < a

B e−αr

r r > a
, (15)

where α =
√
2m|E|/~ and K =

√
2m(Uo − |E|)/~2. From the continuity of the logarithmic derivative of

v(r) at r = a one obtains the following transcendental equation

K cotKa = −α = −
√
2mUo

~2
−K2 , (16)

whose solutions determine the energies of the bound states with � = 0. Equation (16) is equivalent to

sin Ka = ±Ka
√
~2/2ma2Uo , (17)
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x

-1

-0.5

0.5

1
sin x

-sin x

Fig. 2: Graphical solution of
Eq. (17).

which can be solved graphically. By using the substitution x = Ka,
Eq. (16) becomes

| sin x| = (
√
~2/2ma2Uo)x . (18)

The solution to this equation are given by the intersections of | sin x|
with a line which passes through the origin, and has a slope proportional
to 1/

√
Uo (see Fig. 2). From Eq. (17), it is clear that cot x < 0, which

means that (2m + 1)π/2 ≤ x ≤ (2m + 1)π must hold, with k ∈ N (see
the highlighted parts on the plot of | sin x| in Fig. 2). Now a simple
inspection of Fig. 2 tells us that the minimum value of Uo for which the
well can accommodate one bound state is determined by the condition
x = π/2. Indeed, as we increase Uo (from zero) the slope of the line in
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Fig. 3: Contour plots of σ� vs
√
Uo (horizontal axis) and k (vertical axis) for � = 0 (left) and � = 1 (right).

Fig. 2 decreases and intersects for the first time the relevant (highlighted) parts of the | sin x| curve exactly
at x = Ka = π/2. Hence,

Umin
o =

(π
2

)2 ~
2

2ma2
=
π2
~

2

8ma2
. (19)

Following the same strategy, one can easily see that the minimum value of Uo for which one has m ∈ N
∗

bound states in the well is given by

U (m)
o =

[
(2m+ 1)

π

2

]2 ~
2

2ma2
= (2m+ 1)2

π2
~

2

8ma2
. (20)

(b) In the new units

σt =
∞∑
l=0

σ� =
4π
k2

∞∑
�=0

(2�+ 1)sin2 δ� (21)

where tan δ� is given by Eq. (13), with a = 1 and K =
√
k2 + π2 Uo.

(c) ContourPlots of σ�(k,
√
Uo) in Fig. 3 and Fig. 4, are produced with Mathematica for � = 0, 1, 2, 3.

(d) The total cross section can be obtained by adding up σ�’s up to �max = 4k. The result is shown in
Fig. 5.
(e) According to Fig. 5, the first three lowest order resonances occur for the following (approximate) values
of (

√
Uo,k): A (0.5 , 0.1), B (0.98 , 0.35) and C (1.41 , 0.573). A comparison of Figs. 3, 4 and 5. suggests

that the resonance islands in σt originates mainly from a single, similar resonance in one particular partial
scattering cross section σ�. This does not come as a surprise if one realizes that a resonant state can also
be regarded as a pseudo bound state in the effective potential

Veff = V (r) +
~

2�(�+ 1)
2mr2

(22)

In Fig. 6 σ� vs � is plotted for the above identified (
√
Uo,k) values.

(f) The radial wave functions for the resonant states A, B, and C are plotted in Fig. 7
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Fig. 4: Contour plots of σ� vs
√
Uo (horizontal axis) and k (vertical axis) for � = 2 (left) and � = 3 (right).
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Fig. 5: Total cross section obtained by the summation of the σ�’s
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Fig. 6: σ� vs � for tuples (0.5 , 0.1), (0.98 , 0.35) and (1.41 , 0.573)
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Fig. 7: v�(r) vs r for resonances A, B and C.
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