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Problem 1: Election In Spherical Box

(a) assume
ψ(~r) = uk,l(r)Ylm(θ, ψ)

we have (7.20)(
− h̄2

2me

1
r
∂2
rr +

h̄2l(l + 1)
2mer2

+ V (r)− Elm
)
uE,l,m = 0

Since this equation is independent of the quantum number m we drop the index
m on the radial wave function uE,l,m and El,m.

V (r) =
{
∞ for r ≥ a
0 for r < a

we can rewrite the (7.20) as(
∂2

∂r2
− l(l + 1)

r2
+ k2

)
r uk,l(r) = 0

where k2 = 2meE
h̄2 .

(b) see the mathematica notebook.
(c) k must satisfy the following equation since the wavefunction vanishes when
r ≥ a

jl(k r)|r=a = 0 =⇒
√

π

2ka
Jl+ 1

2
(ka) = 0

(d)(e)(f) see the notebook.
(g) the lowest energy of the system (ground state) is the lowest energy for l=0,
the corresponding x0 = 3.14159
the second lowest energy of the system is the lowest energy for l=1, the corrspond-
ing x1 = 4.49341(see the notebook).

=⇒ ∆E =
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λ ∼= 5350Å for green light
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=⇒ a =

√
h̄2λ(x2
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2mhc
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=

√
h̄λ(x2

1 − x2
0)

4πmc
= 4.12 ∗ 10−10 m

= 4.12Å

Problem 2: Three Dimensional Harmonic Oscillator

(a) Since the equation is already seperate according to the variables x1, x2 and
x3 the solution will be of the form of the multiplication of the three independant
one-dimensional harmonic oscillators

ΨE(~r) = Ψ1(x1)Ψ1(x2)Ψ1(x3) = constant ∗ e−( 1
2α

2r2)Hn1(αx1)Hn2(αx2)Hn3(αx3) (1)

where α =
√

mω
h̄ and the energy levels therefore will be

En = En1 + En2 + En3 = h̄ω(n1 + n2 + n3 +
3
2

) ≡ h̄ω(n+
3
2

) (2)

where n1, n2, n3 and n are integers 0, 1, 2, .... The degree of degeneracy of the
nth level is equal to the number of ways in which n can be divided into the sum
of three positive integral (or zero) numbers; this is

gn =
1
2

(n+ 1)(n+ 2) (3)

(b) By writing the Schrodinger‘s equation in spherical coordinates and using the
fact that the angular part of the ∇2 is just the L̂2 operator in the coordinate
basis up to a factor (−h̄2r2) we get the radial equation

(− h̄
2

2µ
[

1
r2

∂

∂r
r2 ∂

∂r
− l(l + 1)

r2
] + V (r))R(r) = ER(r) (4)

To solve this equation we plug the form R(r) = vkl(r)
r into the equation and

obtain

(− h̄
2

2µ
[

1
r2

∂

∂r
r2 ∂

∂r
− l(l + 1)

r2
] + V (r))

vkl(r)
r

= E
vkl(r)
r

(5)

− h̄
2

2µ
[

1
r2

∂

∂r
r2 v̇(r)r − v(r)

r2
] + (

h̄2

2µ
l(l + 1)
r2

+ V (r))
vkl(r)
r

= E
vkl(r)
r

(6)

− h̄
2

2µ
[

1
r2

(v̈kl(r)r + ˙vkl(r)− ˙vkl(r))] + (
h̄2

2µ
l(l + 1)
r2

+ V (r))
vkl(r)
r

= E
vkl(r)
r

(7)

(− h̄
2

2µ
[
d2

dr2
− l(l + 1)

r2
] + V (r))vkl(r) = Evkl(r) (8)
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Writing E = h̄2k2

2m and rearranging the terms, we obtain the desired result

(− d2

dr2
− l(l + 1)

r2
+

1
2
mω2r2 − k2)vkl(r) = 0 (9)

(c) We should investigate the behaviour for large and small r in order to under-
stand the general form of the wave function. For large r as r →∞ the dominant
term in the equation will be the harmonic oscillator potential and the solution
will look like

vkl(r) ∼ e−
1
2α

2r2
(10)

and for small r as r → 0 dominant term will be the angular momentum term
which will behave like a centrifugal potential. Thus the solution to the equation

v̈kl(r) '
l(l + 1)
r2

vkl(r) (11)

will be vkl(r) ∼ rl+1 or vkl(r) ∼ r−l.Since the latter solution is irregular and
so does not meet the boundary conditions, the correct form of the solution for
small r should look like

vkl(r) ∼ rl+1 (12)

Combining these two facts we can say that the general solution should be of the
form

vkl(r) = e−
1
2α

2r2
rl+1

∑
csr

s (13)

For vkl(r) to have the right properties near r = 0 the sum should approach to a
constant as r → 0. Thus c0 6= 0 and since the second order differential equation
will give us a two-term recursion relation, the only non-zero terms will be even
coefficients.
(d) Plugging the series into the differential equation and with a little algebra
we obtain the recursion relation

cs+2 =
(s+ l − λ) + 3/2

(s+ 2)(s+ 2l + 3)/2
cs (14)

where λ = E/(h̄ω). For the series to be finite, it should terminate at some cs
which is determined by the energy value that makes the numerator zero. From
the equation

s+ l − λ+ 3/2 = 0 (15)
λ = s+ l + 3/2 = 2p+ l + 3/2 (16)

(e) If we define the principal quantum number

n = 2p+ l (17)
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we get

E = (n+ 3/2)h̄ω (18)

And at each n, allowed l values turn out to be

l = n− 2p = n, n− 2, n− 4, ..., 1 or 0 (19)

For the first three energy levels the quantum numbers will be

n = 0 l = 0 m = 0 (20)
n = 1 l = 1 m = −1, 0, 1 (21)
n = 2 l = 0, 2 m = −2,−1, 0, 1, 2 (22)

(f) The l=0 states have radial symmetry, i.e. they don’t have angular depen-
dance. But the states obtained in (a) are functions of variables x1, x2, x3 which
possess directionality. To get rid of this directionality either we should construct
a term like x1

2 + x2
2 + x2

3 or get a constant using the six degenerate states
having energies 7/2h̄ω. If we look at the form of the Hermite polynomials for
these states we immediately see that they look like

|Ψ >110 = const e−r
2
xy (23)

|Ψ >101 = const e−r
2
xz (24)

|Ψ >011 = const e−r
2
yz (25)

|Ψ >200 = const e−r
2
(1− 2x2) (26)

|Ψ >020 = const e−r
2
(1− 2y2) (27)

|Ψ >002 = const e−r
2
(1− 2z2) (28)

where |Ψ >{n1,n2,n3} represents the states with quantum numbers n1, n2, n3

obtained in (a). The only way to get rid of the directionality is to add the
last three states and form a linear superposition which does not have angular
dependance. So we can write the l = 0 state as

|ψ >200 = const {|Ψ >200 + |Ψ >020 + |Ψ >002} (29)

Extra Problem: Hydrogen Atom in External Electric Field( Stark
Effect in Hydrogen)

(a)
V = −e ~E · ~r = −eEr cos θ

Whether the matrix element vanishes or not is determined by the angular mo-
mentum part.

Y00 =
1√
4π

Y10 =

√
3

4π
cos θ
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Y11 = −
√

3
8π

sin θeiφ Y1−1 =

√
3

8π
sin θe−iφ

< Ylm|V |Ylm >=
∫ π

0

∫ 2π

0

|Ylm|2 · (−eEr cos θ) · sin θdθdφ = 0

(note: sin θ is symmetric with θ = π
2 .

cos θ is anti-symmetric with θ = π
2 .

|Ylm|2 is symmetric with θ = π
2 )

< Y00|V |Y10 > ∝
∫ π

0

cos2 θ · sin θdθ 6= 0

< Y00|V |Y11 > ∝
∫ π

0

sin θ cos θ · sin θdθ = 0

< Y00|V |Y1−1 > ∝
∫ π

0

sin θ cos θ · sin θdθ = 0

< Y10|V |Y11 > ∝
∫ 2π

0

eiφdφ = 0

< Y10|V |Y1−1 > ∝
∫ 2π

0

e−iφdφ = 0

< Y11|V |Y1−1 > ∝
∫ π

0

sin2 θ cos θ · sin θdθ = 0

since< Yl1m1 |V |Yl2m2 >=< Yl2m2 |V |Yl1m1 > for V = −eE r cos θ
we know that only

ε =< 00|V |10 >=< 10|V |00 >6= 0

(b) For |nlm >= |200 > and |nlm >= |210 >

ψ200 = R20Y00 =
1√
2a

3
2

(1− r

2a
)e−

r
2a · 1√

4π

ψ210 = R21Y10 =
1

2
√

6a
3
2

r

a
e−

r
2a ·

√
3

4π
cos θ

where a = h̄2

µe2 (bohr radius), µ is the mass of an electron.

ε =
∫
ψ200ψ210r

2 sin θdθdφdr

=
∫ ∞

0

1
4
√

3a3

r

a
(1− r

2a
)e−

r
a (−eEr) · r2dr

·
∫ π

0

√
3

4π
cos2 θ · sin θdθ ·

∫
dφ
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= − eEa
4
√

3

∫ ∞
0

(1− 1
2
η)η4e−ηdη ·

√
3

4π

∫ π

0

cos2 θ sin θdθ · 2π

where η = r
a∫ ∞

0

(1−1
2
η)η4e−ηdη = −36(you can use mathematica to evaluate this integral)

∫ π

0

cos2 θ sin θdθ = −
∫ π

0

cos2 θd cos θ = −1
3

cos3 θ|π0 =
2
3

=⇒ ε = − eEa
4
√

3
· (−36) ·

√
3

2
· 2

3

= 3eEa

(c)
assume |200> |211> |210> |21−1> are the base wavefunctions, then the
Hamiltonian for perturbed n = 2 states is

H = H0 + V = H0 +


0 0 ε 0
0 0 0 0
ε 0 0 0
0 0 0 0


Since E0 = H0 |2lm >= − e2

2a ·
1
n2 |n=2 = − e2

8a use mathematica command
Eigenvalues and Eigenvectors to evaluate this matrix.

E1 = E2 = E0

φ1 =


0
0
0
1

 φ2 =


0
1
0
0


E3 = E0 − ε = E0 − 3eEa

φ3 =


−1
0
1
0


E4 = E0 + ε = E0 + 3eEa

φ4 =


1
0
1
0



6


