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A simple expansion method for numerically calculating the energy levels and the corresponding
wave functions of a quantum particle in a two-dimensional infinite potential well with arbitrary
shape~quantum billiard! is presented. The method permits the study of quantum billiards in an
introductory quantum mechanics course. According to the method, wave functions inside the
billiard are expressed in terms of an expansion of a complete set of orthonormal functions defined
in a surrounding rectangle for which the Dirichlet boundary conditions apply, while approximating
the billiard boundary by a potential energy step of a sufficiently large size. Numerical
implementations of the method are described and applied to determine the energies and wave
functions for quarter-circle, circle, and triangle billiards. Finally, the expansion method is applied to
investigate the quantum signatures of chaos in a classically chaotic generic-triangle billiard.
© 1999 American Association of Physics Teachers.
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I. INTRODUCTION

One of the most striking predictions of quantum mech
ics is thediscretenessof the energy spectrum of a micro
scopic particle whose motion is confined in space. The
lowed values of energy for such a particle, together with
corresponding wave functions~i.e., stationary states!, can be
determined by solving the~time-independent! Schrödinger
equation, subject to some properly chosen boundary co
tions. Perhaps the simplest example in this respect is
problem of a particle in an infinite potential well. The pa
ticle is trapped inside the well, a simply connected regionD ,
where it can move freely. Since the Schro¨dinger equation for
a free particle assumes the form of the well-known Hel
holtz equation1

~¹21k2!c~r !50, rPD , ~1.1!

the problem of determining the stationary states of the p
ticle in the infinite well amounts to the calculation of th
eigenvalues and eigenfunctions as stated by Eq.~1.1! for
Dirichlet ~hard wall! boundary conditions along the boun
ary G5]D of the well, i.e.,

c~r !urPG50. ~1.2!

In Eq. ~1.1! k5A2ME/\ is the wave vector, whereM, E
(.0), and\ are the mass of the particle, the energy of t
particle, measured from the bottom of the well, and Planc
constant divided by 2p, respectively.

In one dimension, Eq.~1.1! is the ordinary differential
equation of the vibrating string, and the solution of the
genvalue problem~1.1!–~1.2! is presented in all introductory
quantum mechanics textbooks.1 In two-dimension~2D!, the
degree of difficulty in solving the above eigenvalue proble
depends on the actual shape of the infinite well. Herea
for obvious reasons, we shall refer to a particle in a
infinite potential well as a~quantum! billiard. When the
shape of the billiard is highly regular, such as square, r
133 Am. J. Phys.67 ~2!, February 1999
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angular, or circular, then Eq.~1.1! can be solved by means o
separation of variables. Thus the energy eigenvalues
eigenfunctions of the square and rectangle billiards can
expressed in terms of the results for the one-dimensio
well. Furthermore, the square billiard is a good example
illustrate the concept of degeneracy of an energy level du
geometrical symmetries, whereas the rectangular billi
provides a first example for what is called ‘‘accidental’’ d
generacy~when the ratio of the edge lengths of the rectan
is a rational number!, which does not originate from symme
try. The stationary states of a circle billiard2 can also be
determined analytically by employing plane-polar coor
nates in Eq.~1.1!. For the radial part of the wave functio
one obtains the differential equation of the Bessel functio
and one finds that the corresponding energy levels can
expressed in terms of the zeros of the integer Bessel fu
tions. The study of the angular part of the wave function
a circle billiard provides the opportunity to introduce th
quantum mechanical description of the angular momen
and to relate the degeneracy in the energy spectrum to
rotational symmetry with respect to the symmetry axis of
system.

The problem of determining the stationary states of a
neric quantum billiard, with arbitrary shape, is not covered
quantum mechanics textbooks. Presumably, the main re
for this is that a generic quantum billiard cannot be solv
analytically and apparently a tedious and costly numer
calculation would benefit the student too little. Howeve
quantum billiards have recently attracted much interest
quantum physics and electronics such that an introductio
these quantum systems in modern physics is now desira
Advances in crystal growth and lithographic techniques h
made it possible to produce very small and clean devic
known as nanodevices.3 The electrons in such devices
through gate voltages, are confined to one or two spa
133© 1999 American Association of Physics Teachers
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dimensions. At sufficiently low temperatures, a 2D nano
vice in which the electrons are confined to a finite 2D d
main of submicron size should be regarded as an experim
tal realization of a quantum billiard. Under these conditio
the motion of electrons inside the device is ballistic, i.e.,
electrons are scattered mainly by the device boundary
not by impurities or other electrons. The behavior of suc
nanodevice is governed by single-particle physics and,
cordingly, can be described by solving the time-independ
Schrödinger equation for a particle in a 2D infinite potenti
well, i.e., by solving the eigenvalue problem~1.1!–~1.2!.
Thus quantum billiards can be regarded as models of n
odevices which play an important role in today’s semico
ductor industry.3 It should be noted that the theoretical pr
dictions of quantum mechanics for a quantum billiard can
tested experimentally by using scanning tunnel
microscopy.3

The study of quantum billiards is also of great interest
the relatively new field ofquantum chaos.4 Generic billiards
are one of the simplest examples of conservative dynam
systems with chaotic classical trajectories. In general, ch
refers to the exponential sensitivity of a classical phase sp
trajectory on the initial conditions. It is known that integrab
systems~which have the same number of constants of m
tion as their dimension!, such as billiards with regular shap
are nonchaotic, whereas nonintegrable systems~with fewer
constants of motion than their dimensionality!, such as ge-
neric billiards, are chaotic.5 In billiards the chaotic behavio
is caused by the irregularities of the boundary and not by
complexity of the interaction in the system~e.g., scattering
of the particle from randomly distributed impurities!. Since
the concept of ‘‘phase space trajectory’’ loses its meaning
quantum mechanics, one can naturally ask oneself wha
the quantum mechanical analogue of~classical! chaos, or
more precisely, is there any detectable difference betw
the behavior of a quantum system with chaotic and nonc
otic classical limits, respectively. The answer to these qu
tions should be sought in the statistics of the energy level
the billiard and in the morphology of the corresponding wa
functions.

Although the stationary states of a generic billiard can
computed only numerically, the analogy between the Sch¨-
dinger and Helmholtz equations allows us to compare
obtained numerical results with the experimentally det
mined eigenmodes of a vibrating membrane, or the reso
modes of the oscillating electromagnetic field in a reson
cavity, of the same shape as the billiard. In fact, this anal
has been exploited by several authors who employed mi
wave cavities in order to measure directly, with high acc
racy, both the eigenvalues and eigenfunctions in model
liard geometries.6

The aim of this article is to present a simple, yet qu
general and powerful, numerical method, referred to as
expansion method~EM!, for calculating the stationary state
of quantum billiards. This method is conceptually simple a
should be accessible to students interested in quantum
chanics. The EM together with its computer implementati
e.g., as aMATHEMATICA notebook,7 may also be of interes
for those engaged in teaching introductory quantum mech
ics.

This article is structured as follows. The formulation
the EM, along with its computer implementation, is given
Sec. II. In Sec. III the EM is applied to calculate the statio
ary states of three integrable billiards~quarter-circle, circle,
134 Am. J. Phys., Vol. 67, No. 2, February 1999
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and equilateral-triangle! and the calculated values of the e
ergy levels are compared with the corresponding exact
lytical results. Next, in Sec. IV, the results of similar calc
lations for several chaotic billiards~isosceles and generi
triangles! are presented. In Sec. V the energy level spac
distributions corresponding to the studied quantum billia
are compared with the theoretical predictions of the rand
matrix theory8 ~RMT! and used to distinguish billiards whic
are classically integrable from those which are chaotic.
nally, Sec. VI presents conclusions.

II. THE EXPANSION METHOD

There exist several efficient numerical methods for cal
lating the energy spectrum of a generic quantum billiard~a
classification of these methods is provided in Ref. 9!, but all
of them have certain shortcomings which make them uns
able for the study of quantum billiards in an introducto
quantum mechanics course. The expansion method~EM!, we
describe next, is simple, intuitive, quite general, and pow
ful enough to allow us to determine simultaneously both
energy levels and the corresponding wave functions o
quantum billiard.

Consider a particle of massM moving in a 2D infinite
potential well,

V~r !5H 0 if rPD

` otherwise
. ~2.1!

The corresponding stationary states are given by the ei
values and eigenfunctions of the time-independent Sc¨-
dinger equation

Ĥcn~r !5F2
\2

2M
¹21V~r !Gcn~r !5Encn~r !. ~2.2!

Since the potential energy is infinitely large outside t
domainD , the wave functionscn(r ) must obey the Dirichlet
boundary condition~1.2!. By introducing the wave vector

kn5A2MEn

\2 , ~2.3!

Eqs.~2.2!–~2.1! yield the eigenvalue problem~1.1!–~1.2!.
The EM is founded on the approximation of the poten

energy~2.1! through

Ṽ~r !5H 0 if rPI[D

V0 if rPII

` if rPIII

, ~2.4!

whereV0 is a properly chosen large constant; domains I,
III are specified in Fig. 1. Approximation~2.4! amounts to
fitting the generic billiard inside a rectangular infinite pote
tial well of edge lengthsa1 and a2 , and then replacing the
infinite potential energy in region II~determined by what
remains from the rectangular domain after removingD , i.e.,
region I; see Fig. 1! by a sufficiently large, but finite, value
V0 . Since limV→` Ṽ(r )5V(r ), one expects that bothV(r )
and Ṽ(r ) will lead approximately to the same stationa
states as long as the associated energies are less thanV0 .

Approximation ~2.4! also replaces boundary conditio
~1.2! by

c~r !urPG̃50, ~2.5!
134Kaufman, Kosztin, and Schulten



-
a
o

e

e

l
d
th
e

x
n
th
o
e

r

-
il

nts

trix
n-

d
be

nd

n
ary

the

ly a
n be

f-
u-

tal
sing

-
the

t to

-

an-
he
whereG̃ is the boundary of a rectangular well. This modifi
cation of the boundary condition has two important implic
tions. First, the corresponding stationary state wave functi
cn(r ) do not vanish identically in region II~i.e., betweenG
and G̃! but, for En!V0 , they assume a very small valu
~controlled byV0! in this region. Second, the functionscn(r )
can be expressed as

c~r !5(
m

cmfm~r !, ~2.6!

wherecm are expansion coefficients to be determined;fm(r )
are the energy eigenfunctions corresponding to a particl
the rectangular infinite potential well, i.e.,

fm~r ![fm1 ,m2
~x1 ,x2!

5A 2

a1
sinS p

a1
m1x1DA 2

a2
sinS p

a2
m2x2D .

~2.7!

The functionsfm(r ) form a complete set of orthonorma
functions. In Eq.~2.7! x1,2 are Cartesian coordinates oriente
along two perpendicular edges of the rectangle of leng
a1,2, andm5(m1 ,m2) are doublets of positive integers. Th
orthonormality condition of the functionsfm(r ) reads

E dr fn~r !fm~r !5dnm , ~2.8!

where the Kronecker-deltadnm is equal to one forn5m and
zero otherwise. The possibility to employ the convenient e
pansions~2.6! and ~2.7! is the reason why approximatio
~2.4! has been introduced. The price one needs to pay is
the resulting wave functions do not vanish exactly in regi
II. However, by choosingV0 large enough this error can b
kept small as demonstrated below.

Inserting Eq.~2.6! into the Schro¨dinger equation~2.2!,
with V replaced byṼ, multiplying the result from the left by
fn(r ), and integrating with respect to the position vecto
one arrives at the matrix eigenvalue equation

(
m

~Hnm2Ednm!cm50. ~2.9!

In deriving Eq.~2.9! we have used the orthonormality con
dition ~2.8!, and defined the matrix elements of the Ham
tonian as

Fig. 1. Generic 2D billiard~I! fitted in a rectangular domain~II !. The po-
tential energy vanishes in region I, it has a finite valueV0 in region II, and
it is infinitely large in the rest of the plane~region III!.
135 Am. J. Phys., Vol. 67, No. 2, February 1999
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Hnm5E d2r fn~r !Ĥfm~r !. ~2.10!

Using the HamiltonianĤ52(\2/2M )¹21Ṽ(r ) together
with ~2.4! and ~2.7! one can evaluate these matrix eleme
and obtain

Hnm5
p2\2

2m F S m1

a1
D 2

1S m2

a2
D 2Gdnm1V0vnm . ~2.11!

Here we used the notations:m5(m1 ,m2), and

vnm5E
II
d2r fn~r !fm~r !, ~2.12!

where* IId
2r¯ denotes integration over region II~see Fig.

1!.
The ~approximate! energy levelsE of the quantum billiard

are given by the condition that the homogeneous ma
equation~2.9! has nontrivial solutions, i.e., the allowed e
ergy levels are those which obey

detuHnm2Ednmu50. ~2.13!

The corresponding energy values are a discrete setEn , n
51,2,... . We assume the orderingEn,Em for n,m. Once
the energy eigenvaluesEn are determined, they are inserte
in ~2.9! and the resulting sets of linear equations have to
solved for the unknown expansion coefficientcm

(n) , which
provide the desired wave functionscn(r )5(m cm

(n)fm(r )
@cf. Eq. ~2.6!#.

In practice, the application of the EM requires a seco
approximation, since in expansion~2.6! one can retain only a
finite number ofM0 terms. This implies that the Hamiltonia
matrix Hnm is truncated, and that the approximate station
states of the billiard are described by the eigenvalues and
eigenvectors of this truncatedM03M0 matrix. The diago-
nalization ofHnm yields as many states as the dimensionM0
of the matrix. However, due to the truncation process on
fraction of the obtained states with the lowest energies ca
trusted. In fact, it must holdE1 , E2 ,...!V0 and only m0

states withm0!M0 can be used. In principle, by using su
ficiently largeM0 and V0 values, one can determine acc
rately an arbitrarily large numberm0 of stationary states. In
practice, however, by increasing the values ofM0 andV0 the
required computational resources~both CPU time and
memory! proliferate exponentially and, therefore, the to
number of stationary states which can be obtained by u
the EM method are actually limited.

Numerical algorithm—The formulation of a numerical al
gorithm based on the EM is straightforward. The steps of
algorithm are the following.

~1! Define proper energy and length units. It is convenien
chose as energy unit\2/2Ma1

2, and as length unita1 .
~2! Define the shape of the billiard~G! and calculate the

edge lengthsa1 and a2 of a rectangle which encom
passesG completely.

~3! Chose proper values forM0 andV0 .
~4! Evaluate and save the symmetric matrixvn,m , n, m

<M0 , by calculatinganalytically the integrals~2.12!. If
the shape of the billiard is such that these integrals c
not be evaluated analytically then the efficiency of t
135Kaufman, Kosztin, and Schulten
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815

.221

.234

.258

.845

.864

.463

.506

.679

.709

.347

.908

.960

.727

.776

.342
Table I. Comparison between the exact wave vectorskn and the ones computed numerically by using the expansion method~EM! corresponding to the firs
sixteen stationary states for:~1! quarter-circle,~2! full-circle, and ~3! equilateral-triangle billiards. The corresponding energy eigenvaluesEn , in units of
2p\2/2MA, are also given.

State
n

1! Quarter Circle 2! Circle 3! Equilateral Triangle

kn

~EM!
kn

~Exact!
Dkn

(1022%)

En

S2p\2

MA
D kn

~EM!
kn

~exact!
Dkn

~%!

En

S2p\2

MA
D kn

~EM!
kn

~exact!
Dkn

(1022%)

En

S2p\2

MA
D

1 5.1351 5.1351 0.9 1.648 2.4002 2.4048 0.19 0.360 7.2547 7.2551 0.66 1.

2 7.5918 7.5883 4.5 3.602 3.8226 3.8317 0.23 0.913 11.0690 11.0824 12.11 4

3 8.4165 8.4172 0.7 4.427 3.8226 3.8317 0.23 0.913 11.0856 11.0824 2.81 4

4 9.9375 9.9361 1.4 6.172 5.1213 5.1356 0.27 1.639 14.5135 14.5103 2.19 7

5 11.0702 11.0647 4.9 7.659 5.1273 5.1356 0.16 1.643 15.0888 15.1028 9.31 7

6 11.6193 11.6198 0.4 8.438 5.5099 5.5200 0.18 1.897 15.1077 15.1028 3.21 7

7 12.2279 12.2251 2.3 9.345 6.3679 6.3801 0.19 2.534 18.2398 18.2585 10.20 11

8 13.5918 13.5893 1.9 11.546 6.3679 6.3801 0.19 2.534 18.2737 18.2585 8.36 11

9 14.3804 14.3725 5.5 12.924 6.9997 7.0155 0.22 3.062 19.1826 19.1954 6.65 12

10 14.4781 14.4755 1.8 13.100 6.9997 7.0155 0.22 3.062 19.2053 19.1954 5.15 12

11 14.7960 14.7950 0.0 13.682 7.5699 7.5883 0.24 3.581 21.7810 21.7655 7.10 16

12 16.0425 16.0378 3.0 16.085 7.5754 7.5883 0.17 3.586 22.1520 22.1649 5.82 16

13 16.7016 16.6982 2.0 17.433 8.3950 8.4172 0.26 4.404 22.1859 22.1649 9.43 16

14 17.0080 17.0038 2.4 18.079 8.4047 8.4172 0.14 4.414 23.3125 23.3221 4.12 18

15 17.6269 17.6159 6.2 19.419 8.6391 8.6537 0.16 4.664 23.3430 23.3221 8.94 18

16 17.9609 17.9598 0.6 20.162 8.7551 8.7714 0.18 4.790 25.4634 25.4794 6.27 22
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EM is jeopardized due to the required large numbe
numerical integrations involving highly oscillatory int
grands.

~5! Evaluate the Hamiltonian matrixHnm by using Eq.
~2.10!.

~6! Find the eigenvaluesEn ~energy levels! and the corre-
sponding eigenvectorscm

(n) of the Hamiltonian matrix.
~7! Determine the wave functionscn(r ) according to Eq

~2.6!.

We have implemented the above algorithm as
MATHEMATICA3.0 notebook. The actual code can be ma
extremely compact by employing the excellent built-in fun
tions thatMATHEMATICA3.0 offers, together with the standa
LinearAlgebra‘MatrixManipulation’ package.
For example, once the symmetric matrixHnm is determined
the single commandEigensystem [Hnm] returns both
the eigenvalues and the eigenvectors of the truncated H
tonian. Also, the obtained wave functions can be con
niently visualized as three-dimensional~3D! plots ~with the
Plot3D command! or density plots ~by employing the
DensityPlot MATHEMATICA command!.

In general the most time-consuming part of the algorit
is the evaluation of the matrixvnm . Note, however, that fo
a given billiard this matrix should be evaluated only on
and it is a good idea to save it on the hard disk. The alre
existing matrix elements need not be reevaluated even if
increases the value of the truncation constantM0 in order,
e.g., to determine more energy levels.

The approximations connected with the EM, i.e., the tr
cation sizeM0 of the matrixHnm and the magnitude ofV0 ,
need to be carefully explored.M0 should be large enough s
that the truncated series~2.6! will accurately describe an
desired stationary state. The higher the energy of the de
state, the more basis functionsfm need to be included in th
136 Am. J. Phys., Vol. 67, No. 2, February 1999
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expansion. The reason is that higher energy wave functi
will have faster spatial oscillations than lower energy wa
functions. A good rule of thumb in choosing a value forM0

is to take the kinetic energy corresponding tofM0
( r̄ ) to be

about 10 times larger than the highest desired energy le
En ; a good choice forV0 is about 10 timesEn . Note that
although the size ofV0 does not effect the CPU time, too
large a value of this quantity results in erroneous eigenval
due to internal over/underflow errors.

III. INTEGRABLE SYSTEMS

First we apply the EM to calculate the stationary states
three examples of integrable billiards~quarter-circle, circle,
and equilateral-triangle! for which analytical solutions are
available. The wave vectorskn corresponding to the first
sixteen stationary states for these systems, which have b
calculated numerically by employing the EM, are listed~the
first column! and compared with the corresponding exa
analytical results~the second column! in Table I. The agree-
ment between the numerical and analytical results is
tremely good, as indicated by the small relative errorDkn
~the third column!. Furthermore, in Table I we also list th
energiesEn of the considered stationary states~the fourth
column! in units 2p\2/2MA, which allows us to compare
the corresponding energy eigenvalues of billiards which ha
the same areaA but different shapes. As intuitively ex
pected, the circle billiard has the smallest ground state
ergy, followed by the quarter-circle and the equilater
triangle billiards.

A. Quarter-circle billiard

First we consider a quantum billiard, the boundaryG of
which is a quarter of a circle with unit radius. Expressin
136Kaufman, Kosztin, and Schulten
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En5\2kn
2/2M , the wave vectorskn are given by the zeros o

the even-integer Bessel functions,1 i.e., J2m(kn)50.
To employ the EM, we fit this billiard in a unit square, i.e

a15a251. The matrix elements~2.12!, in this case, are
given by

vnm54E
0

1

dx1 sin~pn1x1!sin~pm1x1!

3EA12x1
2

1

dx2 sin~pn2x2!sin~pm2x2!. ~3.1!

The latter integral can be evaluated analytically. The fi
fifty energy values resulting from the EM withM05400 and
V0550 000 are within 0.13% of the exact values. Dens
plots of the absolute valueucn(r )u of the wave function for
the first sixteen stationary states are provided in Fig. 2.

B. Circle billiard

Next, we consider a full-circle billiard of unit radius cen
tered about the origin. Analytical solutions for this syste
are well known.1,2 The energy eigenvalues areEn

5\2kn
2/2M , where thekn values are given by the zeros o

the integer Bessel functions of the first kind:Jm(kn)50.
To employ the EM, we fit the billiard in a square wit

a15a252. Because the origin of the coordinate system
chosen in the center of the square, the corresponding b
functions are given by~2.7! in which x1,2 are shifted by
unity. The matrix elementsvnm are

Fig. 2. Density plot ofuc~r !u corresponding to the first sixteen stationa
states~of lowest energy! for the quarter-circle billiard. The values of th
corresponding wave vectorskn are listed above each graph, in units spe
fied in the text.
137 Am. J. Phys., Vol. 67, No. 2, February 1999
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vnm5E
21

1

dx1E
21

1

dx2 fn~x1 ,x2!fm~x1 ,x2!

2E
21

1

dx1E
2A12x1

2

A12x1
2

dx2 fn~x1 ,x2!fm~x1 ,x2!,

~3.2!

and, again, can be evaluated analytically.
In Table I the numerically calculatedkn’s, for the same

values ofM0 andV0 as above are compared with the exa
values. Most of the energy levels, namely those with nonz
angular momentum, are doubly degenerate. Density plots
the first sixteen wave functions are shown in Fig. 3.

C. Equilateral-triangle billiard

The equilateral-triangle billiard is also integrable. The e
ergy spectrum, in units\2/2Ma2, wherea is the edge length,
is given by10

En[Epq5S 4p

3 D 2

~p21q22pq!, 1<q<p/2, ~3.3!

wherep andq are positive integers. All the states are dege
erate, except those withp52q.

The EM can be efficiently applied to triangle billiards be
cause the matrix elementsvnm can be evaluated analytically
We fit the triangle inside a rectangle witha151 and a2

5 l , l being the height of the triangle, which in the gener
case can be expressed in terms of two acute anglesa1 and
a2 . If one definesb i5tanai , i 51,2, the vertices of the
triangle have the coordinates~0,0!, ~1,0!, and (xb ,l ), where

Fig. 3. Density plot ofucn(r )u, n51,...,16, for the circle billiard.
137Kaufman, Kosztin, and Schulten
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l 5
b1b2

b11b2
, xb5

b1

b11b2
. ~3.4!

For an equilateral trianglea15a2560°, l 5)/2, and xb

51/2. The matrix elementsvnm are in this case

vnm5E
0

xb
dx1E

b1x1

l

dx2$cos@p~n12m1!x1#

2cos@p~n11m1!x1#%H cosFpl ~n22m2!x2G
2cosFpl ~n21m2!x2G J ~3.5!

1E
xb

1

dx1E
b2~12x1!

l

dx2$cos@p~n12m1!x1#

2cos@p~n11m1!x1#%H cosFpl ~n22m2!x2G
2cosFpl ~n21m2!x2G J . ~3.6!

The first sixteen stationary states of an equilateral-trian
billiard are presented through their wave vectorskn
and wave functions in Fig. 4. One can see that the
furnishes wave functions which decay to zero toward
edge of the triangle. The energy values indicate that
threefold symmetry has one-dimensional and two-dim
sional representations,11 i.e., there exist nondegenerate sta
and pairwise degenerate states. Due to the approxima
character of the EM, the latter degeneracies are slightly b
ken with errors below 1%. Only 3 of the states show
namely 1, 4, and 11, are nondegenerate, the correspon
wave functions exhibiting the threefold symmetry of the t

Fig. 4. Density plot ofucn(r )u, n51,...,16, for the equilateral-triangle bil
liard.
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angle ~see Fig. 4!. The doubly degenerate states are p
sented through wave functions which do not exhibit the
symmetry of the equilateral triangle, but can be super
posed to be symmetric, in which case complex amplitu
are needed.

The wave functions in Fig. 4 reflect the well-known pri
ciple that increases in energy are accompanied by an incr
in the number of nodal lines. For example, the nondegene
states 1, 4, and 11 have, respectively, no nodal line, a n
triangle ~three lines!, and three nodal triangles~nine nodal
lines, two of which are oriented such that they form a sin
long line!. Similarly, the first two pairs of nondegenera
states,~2,3! and ~5,6!, are characterized through one a
through two nodal lines, respectively.

IV. CHAOTIC SYSTEMS

A. Isosceles-triangle billiard

Figure 5 presents the first sixteen stationary states~ener-
gies and wave functions! of the isosceles triangle witha1

5a2565°. In this case the double degeneracies, which a
in the equilateral triangle, are broken since the mirror sy
metry of the isosceles triangles has only one-dimensio
representations. One can relate quite well the states of
isosceles triangle to those of the equilateral triangle, in p
ticular for the double-degenerate equilateral triangle sta
In the case of state 4 one can discern that the wave func
of this state evolves from that of state 4 of the equilate
case through a merging of the wave function minima in
two bottom corners. Similarly, state 11 of the isosceles
angle evolves through merging of wave function maxi
~minima! of state 11 of the equilateral triangle. This ‘‘mo
phological’’ view of the wave functions in Fig. 5 emphasiz

Fig. 5. Density plot ofucn(r )u, n51,...,16, for an isosceles-triangle billiar
with a5b565°.
138Kaufman, Kosztin, and Schulten
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that the wave functions in the triangle depend sensitively
the triangle shape. One can readily imagine how a cont
ous change of the shape of the triangle ‘‘morphes’’ wa
functions. What is not obvious is that continuous change
the shape of the triangle can lead to new wave function
cases when nodal lines merge with the triangle perimete
detract from the triangle perimeter. These situations, wh
arise only in generic triangles, have been termed ‘‘diabo
points’’ in Ref. 10 and will be investigated now.

B. Generic-triangle billiard

In Ref. 10 the authors present several generic triangle
which the quantum states exhibit ‘‘diabolic points,’’ i.e
points of ‘‘accidental’’ degeneracy. Two of the triangles d
cussed by these authors are presented below together
the wave functions and energies of the first nine station
states.

The first triangle we consider has angles 30.73°, 18.7
and 130.57°. For this triangle one can discern in Fig. 6 a near
degeneracy between states 5 and 6~see energy values! cor-
responding to a diabolic point. The reader should note
the numerical approximation associated with the expans
method precludes exact degeneracies. Inspection of the w
functions of the first seven states of the triangle shows
mediately that the wave functions of state 1, 2, 3, 4, 5
follow the expected progression of an increasing numbe
maxima and minima, namely 1, 2, 3, 4, 5, and 6, resp
tively. State 6, however, sports solely three maxim
~minima!, one of the main characteristics of the wave fun
tion being a long squeezed feature, a ‘‘banana.’’

The second triangle with angles 55.30°, 39.72°, a
84.98°, exhibits a similar scenario. The energy values sho
in Fig. 7 exhibit a near degeneracy of states 6 and 7 co
sponding to a ‘‘diabolic point.’’ The wave function of state
disrupts the progression of nodal lines and wave funct
maxima ~minima! again: State 6 has a wave function wi
four connected regions without sign change, state 8 a wave
function with five such regions, whereas state 7 has a w
function with only three such regions.

V. ENERGY LEVEL STATISTICS

One characteristic which distinguishes the spectra of in
grable systems~e.g., quarter-, full-circle, and equilatera
triangle billiards! from chaotic ones~e.g., isosceles- and
generic-triangle billiards! is the so-calledenergy level spac-
ing distribution9 P(s). By definition, P(s)ds represents the
probability that, given an energy level atE, the nearest-
neighbor energy level is located in the intervalds aboutE
1s. According to random matrix theory~RMT!,8,4 appli-

Fig. 6. Density plot ofucn(r )u, n51,...,9, for a generic-triangle billiard with
a530.73°, andb518.7°.
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cable due to a quasirandom character of the Hamilton
matrix Hnm , integrable systems are described by the Pois
distribution with

P0~s!5e2s. ~5.1!

The energy levels of classically chaotic systems, which
not break time reversal symmetry~e.g., the generic triangle
without geometrical symmetries!, form aGaussian orthogo-
nal ensemble~GOE! with

PGOE~s!5
p

2
s expS 2

ps2

4 D . ~5.2!

Poisson and GOE distributions are distinguished most cle
near s50, since P0(0)51 @maximum of P0(s)# and
PGOE(0)50 @minimum of PGOE(s)#; neighboring energy
levels are likely to attract each other in the case of integra
systems, while in chaotic systems neighboring energy le
are likely to repel each other. In what follows we demo
strate that the level spacing distributions evaluated by me
of the expansion method for the quarter-circle, circle, a
triangle indeed obey these characteristics. For this purp
we evaluateP(s) by using several hundred of the lowe
energy levels calculated numerically by employing the
pansion method.

First, one needs to make sure that the energy levels w
enter in the determination ofP(s) are accurate. For the circl
billiard this can be accomplished by comparing the EM
sults with the available exact energy eigenvalues. For
triangle billiard, where the exact energy eigenvalues are
known, one can check the correctness of EM energ
through comparison with theenergy staircase function N(E)
~which gives the number of quantum states with energy
than or equal toE! with the correspondingWeyl-type
formula4

^N~E!&5
1

4p
~AE2LAE1C !, ~5.3!

whereA and L are the area and the perimeter of the b
liard, andC is a constant that carries information about t
topological nature of the billiard. Strictly speaking, Wey
equation is only valid in the semiclassical limit, i.e., for lar
quantum numbersn; however, it turns out that Eq.~5.3!
holds well even in the lower part of the energy spectrum.

Fig. 7. Density plot ofucn(r )u, n51,...,9, for a generic-triangle billiard with
a555.3° andb539.72°.
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a proper analysis of the energy level statistics, we first ‘‘u
fold the spectrum’’9 by linearly scaling the set of energie
such that for the resulting sequence the mean level spaci
uniform, and equal to one, everywhere in the studied inte
of the energy spectrum. This transformation is achieved
replacing the original set of energiesEn by Ẽn5^N(En)&.
To this end, we evaluate first the areaA and the perimeter
L of the billiard and, for the sake of simplicity, we negle
the constantC in Eq. ~5.3!. The resulting staircase functio
N(E) for the first 400 energy levels of the quarter- and fu
circle billiards are given in Fig. 8~a! and~b!. The agreemen
between our results and the corresponding Weyl formul
satisfactory only for the lowest 200 energy levels; only t
values of these levels can be trusted and used for statis
analysis of the energy spectrum. Next we unfold the sp
trum formed by the lowest 200 energiesEn , i.e., we evaluate
Eq. ~5.3! for eachEn in order to obtain the new energiesẼn .
For the first few energies this procedure is represen
graphically in Fig. 9. Note that the integer part ofẼn is about
n and, as a result, the corresponding mean level spacin
characterized througĥs&5(n51

N (Ẽn112Ẽn)/N'1. The re-
sulting level spacing distributionsP(s) are shown in Fig.
10~a! and ~b!; for comparisonP0(s) and PGOE(s) are also
shown. As expected,P(s) for both systems are best approx
mated by the Poisson distribution.

The staircase functionN(E) for the first 200 of 400 energy
levels of the a15a2530° isosceles triangle and thea1

520° and a2568° generic-triangle billiards are given i
Fig. 8~c! and~d!. The agreement betweenN(E) and the cor-
responding Weyl formula is acceptable only for the low
fifty levels. For these levels the resultingP(s) are shown in
Fig. 10~c! and~d!. As expected,P(s) for the classically cha-
otic generic-triangle billiard is approximated byPGOE(s).
Note, however, thatP(s) for the chaotic isosceles triangl
seems to be different from both GOE or Poisson distri
tions. The deviation ofP(s) from a GOE distribution is due
to the fact that the isosceles triangle has symmetry axes
hence, has two sets of states, one for each symmetry

Fig. 8. Spectral staircase functionN(E).
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~even and odd reflection symmetry!. As a result,P(s) is best
approximated with the superposition of two independ
GOE distributions@see Fig. 10~c!#, which describes the dis
tribution for two independent sets of GOE distributed ene
levels. A general expression for the level spacing distribut
P(N)(s) corresponding to the superposition ofN independent
spectra with GOE statistics is given by9

Fig. 9. Evaluation ofẼn5^N(En)&, i.e., ‘‘unfolding of the energy spec
trum.’’ The open circles on the vertical axes represent the distribution
Ẽn’s on the new energy axis. The filled circles have coordinates (En ,Ẽn).
At this scale, the discrepancy between the staircase functionN(E) and the
Weyl formula^N(E)& is evident.

Fig. 10. Histogram of the energy level spacing distributionP(s).
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P~N!~s!5
]2

]s2 FerfcSAp

2

s

ND GN

, ~5.4!

where erfc(z)5(2/Ap)*z
`dt exp(2t2) is the complementary

error function. Note that forN51 one recovers Eq.~5.2!,
i.e., P(1)(s)5PGOE(s), while in the limit N→` one recov-
ers the Poisson distribution~5.1!, i.e., P(`)(s)5P0(s). For
the isosceles triangle the appropriate level spacing distr
tion function isP(2)(s).

VI. CONCLUSIONS

In this paper we have presented a simple numer
method, the expansion method~EM!, for calculating the sta-
tionary states, i.e., the energy spectrum and the corresp
ing wave functions, for quantum billiards. This method
conceptually simple and, accompanied by its compu
implementation, e.g., as aMATHEMATICA notebook,7 it is
most suitable for the investigation of quantum billiards in
introductory quantum mechanics course. To demonstrate
viability of the EM we have tested it with good results in th
cases of quarter-, full-circle, and equilateral-triangle billiar
where analytical results are available. Then, we have app
the EM to calculate the stationary states of nonintegra
~chaotic! triangle billiards which cannot be solved analy
cally. By using the energy spectra obtained with the EM,
have shown that there is a qualitative difference between
statistics of the energy levels of an integrable and a cla
cally chaotic system. The applications of the EM presen
in this article have been provided as examples and by
means exhaust the possibility of using this method to exp
the exciting world of quantum billiards.
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SO WHAT?

One tries to discover some regularity, e.g., that the fault density is correlated with the ratio of
the number of conduction electrons to atoms. Then one goes on to do it all again with another set
of alloys. These papers did not effectively link with any other aspects of alloy theory or experi-
ment. After a year or two of this, there is no longer any answer to the question: So what?? And
when that point is reached, the paper is to be rejected by the editor, whatever the referee recom-
mends. This seems straightforward enough; but one man’s sense of pointlessness can be another
man’s experience of fascination. Furthermore, if one looks at a compilation such as a Landolt–
Börnstein volume or a set of ‘‘critical’’ tables of melting-points, elastic moduli, etc., one comes to
realize that most of the listed values come from small exercises in measuring, say, the melting-
point of one of the thousands of new organic compounds discovered during a year.~This is, in
part, why chemists’ publications lists can be so enormous!. Thus the question, so what?, as well as
being important to save squandered journal space, is singularly difficult to resolve.

Robert W. Cahn, inEditing the Refereed Scientific Journal, edited by Robert A. Weeks and Donald L. Kinser~IEEE Press,
New York, 1994!, p. 38.
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