Expansion method for stationary states of quantum billiards
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A simple expansion method for numerically calculating the energy levels and the corresponding
wave functions of a quantum particle in a two-dimensional infinite potential well with arbitrary
shape(quantum billiard is presented. The method permits the study of quantum billiards in an
introductory quantum mechanics course. According to the method, wave functions inside the
billiard are expressed in terms of an expansion of a complete set of orthonormal functions defined
in a surrounding rectangle for which the Dirichlet boundary conditions apply, while approximating
the billiard boundary by a potential energy step of a sufficiently large size. Numerical
implementations of the method are described and applied to determine the energies and wave
functions for quarter-circle, circle, and triangle billiards. Finally, the expansion method is applied to
investigate the quantum signatures of chaos in a classically chaotic generic-triangle billiard.
© 1999 American Association of Physics Teachers.

I. INTRODUCTION angular, or circular, then E@l.1) can be solved by means of

o o separation of variables. Thus the energy eigenvalues and
~ One of the most striking predictions of quantum mechanjgenfunctions of the square and rectangle billiards can be
ics is thediscretenesf the energy spectrum of a miCro- gynressed in terms of the results for the one-dimensional

scopic particle whose motion is °°“f”?ed In space. The al\'/veII. Furthermore, the square billiard is a good example to
lowed values of energy for such a particle, together with thellllustrate the concept of degeneracy of an energy level due to
corresponding wave functiorise., stationary states can be P 9 y 9y

determined by solving thétime-independeitSchralinger geor_netrical_ symmetries, wherea_s the rectangular billiard
equation, subject to some properly chosen boundary condRrovides a first example for what is called “accidental” de-
tions. Perhaps the simplest example in this respect is th@eneracywhen the ratio of the edge lengths of the rectangle
problem of a particle in an infinite potential well. The par- is a rational numbey which does not originate from symme-
ticle is trapped inside the well, a simply connected regign  try. The stationary states of a circle billidrdan also be
where it can move freely. Since the Sctiimger equation for  determined analytically by employing plane-polar coordi-
a free particle assumes the form of the well-known Helm-nates in Eq(1.1). For the radial part of the wave function
holtz equation one obtains the differential equation of the Bessel functions
(V2+K2)(r)=0, re, (1.1) and one fiqu that the corresponding energy levels can be
expressed in terms of the zeros of the integer Bessel func-
the problem of determining the stationary states of the partons. The study of the angular part of the wave function for
tlg:le in the infinite yvell amounts to the calculation of the 5 circle billiard provides the opportunity to introduce the
e|_g_envalues and eigenfunctions ag_stated by Edl) for guantum mechanical description of the angular momentum
Dirichlet (hard wal) bogndary conditions along the bound- and to relate the degeneracy in the energy spectrum to the
ary ['=oZ of the well, i.e., rotational symmetry with respect to the symmetry axis of the
¥(0)]rer=0. (1.2 system. . _
The problem of determining the stationary states of a ge-
In Eq. (1.1) k=y2ME/# is the wave vector, wherdl, E neric quantum billiard, with arbitrary shape, is not covered in
(>0), and? are the mass of the particle, the energy of thequantum mechanics textbooks. Presumably, the main reason
particle, measured from the bottom of the well, and Planck’sor this is that a generic quantum billiard cannot be solved
constant divided by 2, respectively. _ _ _analytically and apparently a tedious and costly numerical
In one dimension, Eq(1.1) is the ordinary differential ., 0\,ation would benefit the student too little. However,
equation of the vibrating string, and the solution of the e"quantum billiards have recently attracted much interest in

I lenil.1)—(1.2) i inalli X . ) .
gﬁgx?ulrf E]rgcbhzrr?ics)te(xtb())(l)igrﬁ\slve; tdei(rjngnziolr?(tzroDc)Juﬁgry quantum physics and electronics such that an introduction to

degree of difficulty in solving the above eigenvalue problemth€S€ quantum systems in modern physics is now desirable.
depends on the actual shape of the infinite well. Hereaftefpdvances in crystal growth and lithographic techniques have

for obvious reasons, we shall refer to a particle in a 2DMade it possible to produce very small and clean devices,
infinite potential well as auantum billiard. When the known as nanodevice$ The electrons in such devices,

shape of the billiard is highly regular, such as square, rectthrough gate voltages, are confined to one or two spatial
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dimensions. At sufficiently low temperatures, a 2D nanodeand equilateral-triangjeand the calculated values of the en-
vice in which the electrons are confined to a finite 2D do-ergy levels are compared with the corresponding exact ana-
main of submicron size should be regarded as an experimefytical results. Next, in Sec. IV, the results of similar calcu-
tal realization of a quantum billiard. Under these conditionslations for several chaotic billiard§sosceles and generic
the motion of electrons inside the device is ballistic, i.e., thetriangleg are presented. In Sec. V the energy level spacing
electrons are scattered mainly by the device boundary andistributions corresponding to the studied quantum billiards
not by impurities or other electrons. The behavior of such a&re compared with the theoretical predictions of the random
nanodevice is governed by single-particle physics and, adnatrix theory (RMT) and used to distinguish billiards which
cordingly, can be described by solving the time-independengre classically integrable from those which are chaotic. Fi-
Schralinger equation for a particle in a 2D infinite potential nally, Sec. VI presents conclusions.
well, i.e., by solving the eigenvalue problefi.1)—(1.2).
Thus quantum billiards can be regarded as models of nan-
odevices which play an important role in today’s semicon-||. THE EXPANSION METHOD
ductor industry’ It should be noted that the theoretical pre-
dictions of quantum mechanics for a quantum billiard can be There exist several efficient numerical methods for calcu-
tested experimentally by wusing scanning tunnelinglating the energy spectrum of a generic quantum billigxd
microscopy: classification of these methods is provided in Ref.ut all

The study of quantum billiards is also of great interest inof them have certain shortcomings which make them unsuit-
the relatively new field ofjuantum chaa$ Generic billiards ~ able for the study of quantum billiards in an introductory
are one of the simplest examples of conservative dynamicauantum mechanics course. The expansion metbt), we
systems with chaotic classical trajectories. In general, chaodescribe next, is simple, intuitive, quite general, and power-
refers to the exponential sensitivity of a classical phase spadel enough to allow us to determine simultaneously both the
trajectory on the initial conditions. It is known that integrable energy levels and the corresponding wave functions of a
systems(which have the same number of constants of mo-quantum billiard.
tion as their dimensionsuch as billiards with regular shape, ~Consider a particle of masl moving in a 2D infinite
are nonchaotic, whereas nonintegrable systémith fewer  potential well,
constants of motion than their dimensionalitguch as ge- 0 ifrew
neric billiards, are chaotitIn billiards the chaotic behavior Vv :[ T
is caused by the irregularities of the boundary and not by the % otherwise

complexity of the interaction in the systefe.g., scattering The corresponding stationary states are given by the eigen-
of the particle from randomly distributed impuritlesSince  yajyes and eigenfunctions of the time-independent ‘Schro
the concept of “phase space trajectory” loses its meaning ijinger equation

guantum mechanics, one can naturally ask oneself what is

the quantum mechanical analogue (ofassical chaos, or |:|¢ (=
more precisely, is there any detectable difference between n

the behavior of a quantum system with chaotic and noncha- _. . S .
otic classical limits, respectively. The answer to these ques-, Since the potential energy is infinitely large outside the

tions should be sought in the statistics of the energy levels df°main<, the wave functiong;,(r) must obey the Dirichlet

the billiard and in the morphology of the corresponding wavePoundary conditior(1.2). By introducing the wave vector

(2.1

ﬁZ
T 2M V2+V(r)} Yn(D=Entho(r). (2.2

functions. 2ME,
Although the stationary states of a generic billiard can be k.= \/—hz—, (2.3
computed only numerically, the analogy between the Schro
dinger and Helmholtz equations allows us to compare th&qgs.(2.2)—(2.1) yield the eigenvalue probleifi.1)—(1.2).
obtained numerical results with the experimentally deter- The EM is founded on the approximation of the potential
mined eigenmodes of a vibrating membrane, or the resonamnergy(2.1) through
modes of the oscillating electromagnetic field in a resonant 0 ifrel=0
cavity, of the same shape as the billiard. In fact, this analogy _ -
has been exploited by several authors who employed micro- V(r)={ Vo if rell | (2.4
wave cavities in order to measure directly, with high accu-
racy, both the eigenvalues and eigenfunctions in model bil-
liard geometrie§. whereV, is a properly chosen large constant; domains I, Il
The aim of this article is to present a simple, yet quitelll are specified in Fig. 1. Approximatiof2.4) amounts to
general and powerful, numerical method, referred to as thétting the generic billiard inside a rectangular infinite poten-
expansion methotEM), for calculating the stationary states tial well of edge lengths,; anda,, and then replacing the
of quantum billiards. This method is conceptually simple andnfinite potential energy in region l{determined by what
should be accessible to students interested in quantum meemains from the rectangular domain after remowirigi.e.,
chanics. The EM together with its computer implementationregion I; see Fig. Lby a sufficiently large, but finite, value
e.g., as aMATHEMATICA notebook! may also be of interest V,. Since lim, .. V(r)zV(r), one expects that bott(r)
for those engaged in teaching introductory quantum mechargnd V(r) will lead approximately to the same stationary

ics. . .
s states as long as the associated energies are les¥han

This article is structured as follows. The formulation of L .
the EM, along with its computer implementation, is given in (1/'2\)|OE;OX'mat'0n (24 also replaces boundary condition

Sec. Il. In Sec. Il the EM is applied to calculate the station-
ary states of three integrable billiardguarter-circle, circle, W(r)|, =0, (2.5

o if relll
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I Hnmzf 42 (1) (). (2.10

I . LA -
li' /\ \ Using the HamiltonianH = —(4%/2M)V?+V(r) together
2 I '

with (2.4) and (2.7) one can evaluate these matrix elements

l { \/\/ and obtain

w2h? [ (m\2 [m,)2
______ Hnm: om a—l + (a—z) }5nm+vovnm. (21],)
d; .
Here we used the notationsi=(m,,m,), and
Fig. 1. Generic 2D billiard]) fitted in a rectangular domaifil). The po-
e o0 e g B S9Ny [ 6 (016 212

where ,,d?r--- denotes integration over region ($ee Fig.
~ 1).
wherel is the boundary of a rectangular well. This modifi-  The (approximatg energy levels€ of the quantum billiard
cation of the boundary condition has two important implica-are given by the condition that the homogeneous matrix
tions. First, the corresponding stationary state wave functionsquation(2.9) has nontrivial solutions, i.e., the allowed en-
(1) do not vanish identically in region li.e., betweerd”  ergy levels are those which obey

andI') but, for E,<V,, they assume a very small value

(controlled byVy) in this region. Second, the functiogig(r) detH m— Ednm| =0. (213
can be expressed as The corresponding energy values are a discreteEgetn
=1,2,.... We assume the orderibg<E,, for n<m. Once

lﬁ(f)Zé Crn®Pm(r), (2.6)  the energy eigenvaluds, are determined, they are inserted

in (2.9 and the resulting sets of linear equations have to be
wherec,, are expansion coefficients to be determinggl(r)  solved for the unknown expansion coefficiesif’, which
are the energy eigenfunctions corresponding to a particle irovide the desired wave functiong,(r)= =, ¢™ ¢m(r)

the rectangular infinite potential well, i.e., [cf. Eq. (2.6)].
dm(H=¢ (Xq1,X5) In practice, the application of the EM requires a second
m ml,mz 1172 . . . . . .
approximation, since in expansi@®.6) one can retain only a
2 |m 2 | finite number ofM, terms. This implies that the Hamiltonian
= Vg SMg, MXe| g SN 5 MaXz ). matrix H,,, is truncated, and that the approximate stationary
1 1 2 2 e . .
states of the billiard are described by the eigenvalues and the
2. eigenvectors of this truncatdd ;X M, matrix. The diago-

The functions¢,(r) form a complete set of orthonormal nalization ofH,, yields as many states as the dimendibg
functions. In Eq(2.7) x, , are Cartesian coordinates oriented of the matrix. However, due to the truncation process only a
along two perpendicular edges of the rectangle of length&action of the obtained states with the lowest energies can be
a, ,, andm=(my,m,) are doublets of positive integers. The trusted. In fact, it must holdE;, E;,...<V, and onlym,

orthonormality condition of the functiong,(r) reads states withmy<M, can be used. In principle, by using suf-
ficiently large M, and V, values, one can determine accu-
J dr én(r) (1) = Snm, (2.8  rately an arbitrarily large numben, of stationary states. In
practice, however, by increasing the valued/f andV, the

where the Kronecker-delté,, is equal to one fon=mand  required computational resource®oth CPU time and
zero otherwise. The possibility to employ the convenient exnemory proliferate exponentially and, therefore, the total
pansions(2.6) and (2.7) is the reason why approximation number of stationary states vyhl_ch can be obtained by using
(2.4) has been introduced. The price one needs to pay is th#te¢ EM method are actually limited. _

the resulting wave functions do not vanish exactly in region Numerical algorithm—The formulation of a numerical al-

Il. However, by choosing/, large enough this error can be gorlthm based on the EMis straightforward. The steps of the
kept small as demonstrated below. algorithm are the following.

Inserting Eq.(2.6) into the Schrdinger equation(2.2, (1) Define proper energy and length units. It is convenient to

with V replaced by, multiplying the result from the left by chose as energy unit?/2M ai, and as length uni; .
¢n(r), and integrating with respect to the position vector,(2) Define the shape of the billiard’) and calculate the
one arrives at the matrix eigenvalue equation edge lengthsa; and a, of a rectangle which encom-
passed” completely.

> (Hym—ESamCm=0. (2.9  (3) Chose proper values foMy and V.

m (4) Evaluate and save the symmetric mattix,, n, m
In deriving Eq.(2.9) we have used the orthonormality con- <M, by calculatinganalytically the integralg2.12). If
dition (2.8), and defined the matrix elements of the Hamil- the shape of the billiard is such that these integrals can-
tonian as not be evaluated analytically then the efficiency of the
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Table I. Comparison between the exact wave vedtgrand the ones computed numerically by using the expansion médficorresponding to the first

sixteen stationary states fofl) quarter-circle,(2) full-circle, and (3) equilateral-triangle billiards. The corresponding energy eigenvdhjesin units of
27h?2M. 7, are also given.

1) Quarter Circle 2Circle 3 Equilateral Triangle
En En En

State Ky Kn Ak, (Z_wﬁz) Ky Kn Ak, (Z_Wsz) K, K, Ak, (Z_vrﬁz)

n (EM) (Exach (1072%) M. 7 (EM) (exac) (%) M. % (EM) (exac) (1072%) M. 7

1 5.1351 5.1351 0.9 1.648 24002 24048  0.19 0.360 7.2547 7.2551 0.66 1.815

2 7.5918 7.5883 4.5 3.602 3.8226  3.8317 0.23 0.913 11.0690  11.0824 12.11 4.221

3 8.4165 8.4172 0.7 4.427  3.8226  3.8317 0.23 0.913 11.0856  11.0824 2.81 4.234

4 9.9375 9.9361 1.4 6.172 51213 5.1356  0.27 1.639 145135  14.5103 2.19 7.258

5 11.0702  11.0647 4.9 7.659 51273 51356 0.16 1.643 15.0888  15.1028 9.31 7.845

6 11.6193  11.6198 0.4 8.438 55099 55200 0.18 1.897 15.1077  15.1028 3.21 7.864

7 12,2279  12.2251 2.3 9.345  6.3679  6.3801  0.19 2.534 18.2398  18.2585 10.20 11.463

8 13.5918  13.5893 1.9 11.546  6.3679  6.3801  0.19 2.534 18.2737  18.2585 8.36 11.506

9 14.3804  14.3725 5.5 12.924  6.9997 7.0155 0.22 3.062 19.1826  19.1954 6.65 12.679
10 14.4781  14.4755 1.8 13.100  6.9997  7.0155 0.22 3.062 19.2053  19.1954 5.15 12.709
11 14.7960  14.7950 0.0 13.682  7.5699  7.5883  0.24 3.581 21.7810  21.7655 7.10 16.347
12 16.0425  16.0378 3.0 16.085  7.5754  7.5883  0.17 3.586 221520  22.1649 5.82 16.908
13 16.7016  16.6982 2.0 17.433  8.3950 84172 0.26 4.404 221859  22.1649 9.43 16.960
14 17.0080  17.0038 2.4 18.079  8.4047 84172 0.14 4.414 23.3125  23.3221 4.12 18.727
15 17.6269  17.6159 6.2 19.419 86391 86537 0.16 4.664 23.3430  23.3221 8.94 18.776
16 17.9609  17.9598 0.6 20.162  8.7551  8.7714  0.18 4.790 25.4634  25.4794 6.27 22.342

EM is jeopardized due to the required large number ofexpansion. The reason is that higher energy wave functions
numerical integrations involving highly oscillatory inte- will have faster spatial oscillations than lower energy wave
grands. functions. A good rule of thumb in choosing a value fdg

(5) Evaluate the Hamiltonian matriX,, by using Eq. is to take the kinetic energy correspondingqigo(r_) to be
(2_-1@- _ about 10 times larger than the highest desired energy level

(6) Find the eigenvalueg, (energy levelsand the corre- g - 4 good choice folV, is about 10 time€,. Note that
sponding eigenvectors’ of the Hamiltonian matrix.  ajthough the size o¥/, does not effect the CPU time, too

(7) Determine the wave functiong,(r) according to Eq. large a value of this quantity results in erroneous eigenvalues
(2.6). due to internal over/underflow errors.

We have implemented the above algorithm as a
MATHEMATICA3.0 notebook. The actual code can be madelll. INTEGRABLE SYSTEMS
extremely compact by employing the excellent built-in func- )
tions thatMATHEMATICA3.0 offers, together with the standard  First we apply the EM to calculate the stationary states of
LinearAlgebra‘MatrixManipulation’ package. three examples of integrable billiardguarter-circle, circle,
For example, once the symmetric matk, . is determined, and equilateral-trianglefor which analytical solutions are
the single commandigensystem [Hnm]  returns both ~available. The wave vectors, corresponding to the first
the eigenvalues and the eigenvectors of the truncated Hamifixteen stationary states for these systems, which have been
tonian. Also, the obtained wave functions can be convetalculated numerically by employing the EM, are listéhe
niently visualized as three-dimensior{8D) plots (with the ~ first column and compared with the corresponding exact
Plot3D command or density plots(by employing the analytical resultsthe second columrin Table I. The agree-
DensityPlot MATHEMATICA commandl. ment between the numerical and analytical results is ex-
In general the most time-consuming part of the algorithmtremely good, as indicated by the small relative erfdc,
is the evaluation of the matrix,,. Note, however, that for (the third column. Furthermore, in Table | we also list the
a given billiard this matrix should be evaluated only once€nergiesk, of the considered stationary statétbe fourth
and it is a good idea to save it on the hard disk. The alreadgolumn in units 27%/2M. Z, which allows us to compare
existing matrix elements need not be reevaluated even if onte corresponding energy eigenvalues of billiards which have
increases the value of the truncation constiigtin order, the same area# but different shapes. As intuitively ex-
e.g., to determine more energy levels. pected, the circle billiard has the smallest ground state en-
The approximations connected with the EM, i.e., the trun€rgy, followed by the quarter-circle and the equilateral-
cation sizeM, of the matrixH,, and the magnitude df,,  triangle billiards.
need to be carefully exploret¥ ; should be large enough so
that the truncated serid2.6) will accurately describe any
desired stationary state. The higher the energy of the desired First we consider a quantum billiard, the bound&nof
state, the more basis functiogs, need to be included in the which is a quarter of a circle with unit radius. Expressing

A. Quarter-circle billiard
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k; = 5.1351 ky = 7.5918 ks = 8.4165 k4 = 9.9375
ks =11.0702 k¢ =11.6193 k7 =12.2279 kg = 13.5918

Fig. 2. Density plot of|¢(r)| corresponding to the first sixteen stationary
states(of lowest energy for the quarter-circle billiard. The values of the

corresponding wave vectoks, are listed above each graph, in units speci-
fied in the text.

E,= ﬁzkﬁIZM, the wave vectork,, are given by the zeros of
the even-integer Bessel functiohse., J,n(k,) =0.

To employ the EM, we fit this billiard in a unit square, i.e.,
a;=a,=1. The matrix element$2.12, in this case, are
given by

1
Unm:4fo Xm S|n( Wnlxl)sir(’ﬂmlxl)

dxy sin(NyX,)Sin( mmsyX,). (3.1

xf\l/l_z

ky = 2.4002

ko = 3.8226 ks = 3.8226

ks =5.1213

%
-

ks = 5.1273 ke = 5.5099 k7 = 6.3679 kg = 6.3679
kg = 6.9997 k10 =6.9997 ki3 =7.5698  kip = 7.5754
ki3 =8.3950  ki4 =8.4047  ky5 = 8.6391

1 1
Unm= f_ldxlf_ldx2 Pn(X1,X2) pm(X1,X2)

1 7X2
- f_lolx1 f_le__iidXZ Bu(X0. %) br(Xe Xo),

(3.2

and, again, can be evaluated analytically.

In Table | the numerically calculatekl,’s, for the same
values ofMy andV, as above are compared with the exact
values. Most of the energy levels, namely those with nonzero
angular momentum, are doubly degenerate. Density plots for
the first sixteen wave functions are shown in Fig. 3.

The latter integral can be evaluated analytically. The first

fifty energy values resulting from the EM witid ;=400 and

V=50 000 are within 0.13% of the exact values. Density

plots of the absolute valuy,(r)| of the wave function for
the first sixteen stationary states are provided in Fig. 2.

B. Circle billiard

Next, we consider a full-circle billiard of unit radius cen-

C. Equilateral-triangle billiard

The equilateral-triangle billiard is also integrable. The en-
ergy spectrum, in units?/2Ma?, wherea is the edge length,
is given by!°

En=Epq=

477\2 5 5
| (P+a?-pa), 1=q=p2, (33

tered about the origin. Analytical solutions for this systemwherep andq are positive integers. All the states are degen-

are well known'? The energy eigenvalues aré&,
=h2kﬁ/2M, where thek, values are given by the zeros of
the integer Bessel functions of the first king},(k,) =0.

To employ the EM, we fit the billiard in a square with

erate, except those with=2q.

The EM can be efficiently applied to triangle billiards be-
cause the matrix elemengs,,, can be evaluated analytically.
We fit the triangle inside a rectangle wity=1 and a,

a,;=a,=2. Because the origin of the coordinate system is=1, | being the height of the triangle, which in the general
chosen in the center of the square, the corresponding bagisse can be expressed in terms of two acute angjesnd

functions are given by2.7) in which x, , are shifted by
unity. The matrix elements,,, are
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k1 =2.69346  k; =3.32703 ks =3.3295 k4 = 3.80967 k1 =6.62797  k, =9.83362 k3 =10.3913  k, = 12.874

ks = 3.88443 kg =3.88686 ky =4.27082 kg = 4.27479
ks =13.8217 ke =14.1099  k; =15.9157 kg = 16.9068

e
JoR ==

Rl
kg = 17.7158 k1o = 17.7983 ki, = 18.951 k12 = 20.0507

:
-
-
-

kg = 4.37981

ks = 4.71019

Fig. 4. Density plot of ,(r)|, n=1
liard.

Fig. 5. Density plot of #,(r)|, n=1
B182 B1 with = B=65°.

= L Xpm o (3.4
BitBs' " Bt B

For an equilateral trianglex;=a,=60°, 1=v3/2, andx,

=1/2. The matrix elements,, are in this case

angle (see Fig. 4. The doubly degenerate states are pre-
sented through wave functions which do not exhibit the full
symmetry of the equilateral triangle, but can be superim-

Xp ' posed to be symmetric, in which case complex amplitudes
Unm= fo dxlf dxp{cog m(ny—my)x,] are needed.

Pra The wave functions in Fig. 4 reflect the well-known prin-
ciple that increases in energy are accompanied by an increase
in the number of nodal lines. For example, the nondegenerate
states 1, 4, and 11 have, respectively, no nodal line, a nodal

triangle (three lineg, and three nodal triangle@ine nodal
] (3.5 lines, two of which are oriented such that they form a single
long ling). Similarly, the first two pairs of nondegenerate
1 I states,(2,3) and (5,6), are characterized through one and
+ Lbdxlfﬁz(lXl)dxz{COS{TF(nl—ml)Xl] through two nodal lines, respectively.

—cog m(ny+ ml)xl]}{ COf{lz (Nz—my)X;

a
—co T (ny+my)X,

IV. CHAOTIC SYSTEMS
A. Isosceles-triangle billiard

—cog m(ny+ ml)xl]}[ 005{|z (nz—my)x;

(3.6 gies and wave functionof the isosceles triangle with;
= a,=65°. In this case the double degeneracies, which arise

The first sixteen stationary states of an equilateral-trianglén the equilateral triangle, are broken since the mirror sym-
billiard are presented through their wave vectoks metry of the isosceles triangles has only one-dimensional
and wave functions in Fig. 4. One can see that the EMepresentations. One can relate quite well the states of the
furnishes wave functions which decay to zero toward thdsosceles triangle to those of the equilateral triangle, in par-
edge of the triangle. The energy values indicate that thécular for the double-degenerate equilateral triangle states.
threefold symmetry has one-dimensional and two-dimenin the case of state 4 one can discern that the wave function
sional representatior$,i.e., there exist nondegenerate statesof this state evolves from that of state 4 of the equilateral
and pairwise degenerate states. Due to the approximativease through a merging of the wave function minima in the
character of the EM, the latter degeneracies are slightly broawo bottom corners. Similarly, state 11 of the isosceles tri-
ken with errors below 1%. Only 3 of the states shown,angle evolves through merging of wave function maxima
namely 1, 4, and 11, are nondegenerate, the correspondifiminima) of state 11 of the equilateral triangle. This “mor-
wave functions exhibiting the threefold symmetry of the tri- phological” view of the wave functions in Fig. 5 emphasizes

] Figure 5 presents the first sixteen stationary stéeer-

v
—Cco T (ny+my)X,
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ky = 17.9889 ky = 225632 ks = 26.2698 ky = 9.61977 ky = 13.6261 ks = 15.5872

S~ _&

kq = 29.6447 ks = 33.1045 ke = 33.1712 . ‘ .

ém\ (D

ky =17.594 ks = 19.5959

k7 = 36.4715 kg = 38.4481 ko = 39.9074
P P Y YA

-
Fig. 6. Density plot of r,(r)|, n=1,...,9, for a generic-triangle billiard with
@=30.73°, and3=18.7°. k; = 21.5785 kg = 23.5754
- L
that the wave functions in the triangle depend sensitively or /i ‘. ..

the triangle shape. One can readily imagine how a continu-
ous (,:hange of t_he shape_ of t_he tnangle.“morphes” Wa‘VeFig. 7. Density plot of ,(r)|, n=1,...,9, for a generic-triangle billiard with
functions. What is not obvious is that continuous changes 0f,= 55 3° ands=39.72°.

the shape of the triangle can lead to new wave functions in

cases when nodal lines merge with the triangle perimeter or

detract from the triangle perimeter. These situations, which ) o
arise only in generic triangles, have been termed “diaboliccable due to a quasirandom character of the Hamiltonian

points” in Ref. 10 and will be investigated now. matrix H,,, integrable systems are described by the Poisson
distribution with
B. Generic-triangle billiard Po(s)=e"S. (5.2

In Ref. 10 the authors present several generic triangles ithe energy levels of classically chaotic systems, which do
which the quantum states exhibit “diabolic points,” i.e., not break time reversal symmet(g.g., the generic triangle
points of “accidental” degeneracy. Two of the triangles dis- without geometrical symmetrigsform a Gaussian orthogo-
cussed by these authors are presented below together wittal ensembléGOE) with
the wave functions and energies of the first nine stationary 7752)

states Peods) = = p(
: s)==sexg ——|.
The first triangle we consider has angles 30.73°, 18.70°, coe8)= 3 4

and 130.57°. For this triangle one can discem in Big near  pgisson and GOE distributions are distinguished most clearly
degeneracy between states 5 an@G&e energy valugsor- near s=0, since Po(0)=1 [maximum of Po(s)] and

responding to a diabolic point. The reader should note thaF,GOE(O)ZO [minimum of Pgod(s)]; neighboring energy

the numerical approximation associated with the expansio . . ;
method precludes exact degeneracies. Inspection of the wa\fevels are l'kely.to attract each other n the case of integrable
systems, while in chaotic systems neighboring energy levels

functions of the first seven states of the triangle shows ims: re likely to repel each other. In what follows we demon-

mediately that the wave functions of state 1, 2, 3, 4, 5, trate that the | | ing distributi luated b
follow the expected progression of an increasing number opirate that the level spacing distributions eévaluated by means
of the expansion method for the quarter-circle, circle, and

maxima and minima, namely 1, 2, 3, 4, 5, and 6, respect. le indeed obev th h teristics. For thi
tively. State 6, however, sports solely three maxima_ 'anglé indeed obey these characteristcs. or this purpose

(minima), one of the main characteristics of the wave func-We €valuateP(s) by using several hundred of the lowest
tion being a long squeezed feature, a “banana.” energy levels calculated numerically by employing the ex-
The second triangle with angles 55.30°, 39.72°, and*@nsion method. .
84.98°, exhibits a similar scenario. The energy values shown First, one needs to make sure that the energy levels which

in Fig. 7 exhibit a near degeneracy of states 6 and 7 corre2nter in the determination ¥(s) are accurate. For the circle
sponding to a “diabolic point.” The wave function of state 7 Dilliard this can be accomplished by comparing the EM re-
disrupts the progression of nodal lines and wave functiorfults with the available exact energy eigenvalues. For the
maxima (minima) again: State 6 has a wave function with triangle billiard, where the exact energy eigenvalues are not
four connected regions without sign change,estita wave known, one can check the correctness of EM energies
function with five such regions, whereas state 7 has a wavéirough comparison with thenergy staircase function (&)

(5.2

function with only three such regions. (which gives the number of quantum states with energy less
than o‘r1 equal toE) with the correspondingWeyttype
V. ENERGY LEVEL STATISTICS formulet
One characteristic which distinguishes the spectra of inte-  (N(E))= 41 (AE—INE+9), (5.3
a

grable systemge.g., quarter-, full-circle, and equilateral-

triangle billiard$ from chaotic ones(e.g., isosceles- and \yhere 7 and  are the area and the perimeter of the bil-

generic-triangle billiardsis the so-callecenergy level spac- jiard, and# is a constant that carries information about the
ing distributior? P(s). By definition, P(s)ds represents the topological nature of the billiard. Strictly speaking, Weyl's

probability that, given an energy level &, the nearest- equation is only valid in the semiclassical limit, i.e., for large

neighbor energy level is located in the internds aboutE guantum number®; however, it turns out that Eq5.3

+s. According torandom matrix theory(RMT),2# appli-  holds well even in the lower part of the energy spectrum. For
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Fig. 8. Spectral staircase functioi(E). E E

Fig. 9. Evaluation ofEn:(N(En)), i.e., “unfolding of the energy spec-
. L . «, ... trum.” The open circles on the vertical axes represent the distribution of
a proper analysis of the energy level statistics, we first “un—

, . - . E,’s on the new energy axis. The filled circles have coordin n)-
fold the spectrum ° by. linearly scaling the set of energlgs At this scale, the disc?gpancy between the staircase funm(ﬁ)aﬁzi(lftﬁe
such that for the resulting sequence the mean level Spacing {Seyi formula(N(E)) is evident.
uniform, and equal to one, everywhere in the studied interval
of the energy spectrum. This transformation is achieved by
replacing the original set of energi&s, by E,=(N(E,)).
To this end, we evaluate first the area and the perimeter (even and odd reflection symmetras a resultP(s) is best
2 of the billiard and, for the sake of simplicity, we neglect gpproximated with the superposition of two independent
the constant” in Eq. (5.3). The resulting staircase function GOE distributiongsee Fig. 1(t)], which describes the dis-
N(E) for the first 400 energy levels of the quarter- and full- tribution for two independent sets of GOE distributed energy
circle billiards are given in Fig. @ and(b). The agreement |evels. A general expression for the level spacing distribution
between our results and the corresponding Weyl formula i$(N)(s) corresponding to the superpositionindependent
satisfactory only for the lowest 200 energy levels; only thegpectra with GOE statistics is givenby
values of these levels can be trusted and used for statisticaP
analysis of the energy spectrum. Next we unfold the spec-
trum formed by the lowest 200 energigg, i.e., we evaluate

Eq. (5.3 for eachE,, in order to obtain the new energigs . (a) Quarter-circle (b) Circle

For the first few energies this procedure is representec 10 : : : N -

graphically in Fig. 9. Note that the integer partif is about 08 | Poisson Poisson
: /~,  ---- GOE 0.8 ---- GOE

n and, as a result, the corresponding mean level spacing i a
characterized througts)=="_,(E,.1—E,)/N~1. The re- 06 ¢
sulting level spacing distributionB(s) are shown in Fig.
10(a) and (b); for comparisonPy(s) and Pgog(S) are also
shown. As expected(s) for both systems are best approxi-
mated by the Poisson distribution. 0.0 5
The staircase functioN(E) for the first 200 of 400 energy s s
levels of the a;=a,=30° isosceles triangle and the; (c) Isosceles triangle
=20° and @,=68° generic-triangle billiards are given in , . :

— EM

~_
w

—

(=9

04|

. 10 | 1.0
Fig. 8(c) and(d). The agreement betwe&(E) and the cor- Poisson Poisson
responding Weyl formula is acceptable only for the lowest 08\ - - SggE 08 — SSE
fifty levels. For these levels the resulti(s) are shownin  _ o6 X T% A = 06
Fig. 100c) and(d). As expectedP(s) for the classically cha- &  F<X "\ &

h . . o . . 04}/ \ 0.4
otic generic-triangle billiard is approximated Wgog(S). / \
Note, however, thaP(s) for the chaotic isosceles triangle 02 [f AN 02
seems to be different from both GOE or Poisson distribu- . == 0.0

0 1 2 3 4 0 1 2 3 4

tions. The deviation oP(s) from a GOE distribution is due
to the fact that the isosceles triangle has symmetry axes and,
hence, has two sets of states, one for each symmetry class Fig. 10. Histogram of the energy level spacing distributR(s).
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SO WHAT?

One tries to discover some regularity, e.g., that the fault density is correlated with the ratio of
the number of conduction electrons to atoms. Then one goes on to do it all again with another set
of alloys. These papers did not effectively link with any other aspects of alloy theory or experi-
ment. After a year or two of this, there is no longer any answer to the question: So what?? And
when that point is reached, the paper is to be rejected by the editor, whatever the referee recom-
mends. This seems straightforward enough; but one man’s sense of pointlessness can be|another
man’s experience of fascination. Furthermore, if one looks at a compilation such as a Landolt—
Bornstein volume or a set of “critical” tables of melting-points, elastic moduli, etc., one comes to
realize that most of the listed values come from small exercises in measuring, say, the melting-
point of one of the thousands of new organic compounds discovered during a¥eiaris, in
part, why chemists’ publications lists can be so enormolisus the question, so what?, as well as
being important to save squandered journal space, is singularly difficult to resolve.

Robert W. Cahn, irEditing the Refereed Scientific Journablited by Robert A. Weeks and Donald L. KingltEE Press,
New York, 1994, p. 38.
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