Spect al Tuning in Retinal Proteins
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Spectral tuning in color visual receptors

ﬁ_ . Color is sensed by red, green and
= blue rhodopsin visual receptors.
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How does the protein tune its
absorption spectrum?

How can we change the maximal
absorption of retinal chromophore?




Excitation energy determines the
maximal absorption

Electronic Absorption
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" Absorption of light in the

UV-VIS region of the
spectrum is due to
excitation of electrons to
higher energy levels.
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Tuning the length of the
conjugated backbone
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Salmon: different retinals in
different stages of life

OPSIN SHIFT: how protein tunes the
absorption maximum of its chromophore.

Maximal absorption of protonated

retinal Schiff base in: .

Water/methanol solution: 440 nm 000 -

bR: 568 nm T sy
530

rod Rh: 500 nm

red receptor: 560 nm
green receptor: 530 nm
blue receptor: 426 nm
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Electrostatics and opsin shift
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* The counterion stabilizes the positive charge of
the chromophore.

*The position of the counterion determines how
and how much the band gap energy changes.
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Maximal absopriton of protonated retinal Schiff base can be changed
by D85N (Purple to blue shift)

Red shift from 568 to 605 nm at pH = 3

Dinosaurs had red-shifted visual receptors!

Dinosaur ancestor's vision possibly nocturnal
240-million-year-old protein created in test tube

Howard Hughes Medical Institute
at The Rockefeller University and
Yale University

Microbial rhodopsins in
Halobacteria -

Bacteriorhodopsin (bR):
proton pump

Halorhodopsin (hR):
chloride pump

purple membrane

Sensory rhodopsin I (sRI):

attractant (repellent) to orange (near UV) light
Sensory rhodopsin II (sRII):

repellent to blue-green light

phototaxis o
(color vision of halobacteria) 500nm 600nm




Spectral Tuning in Bacterial
Rhodopsins

Sensory Rhodopsin II
(sRII)
Phototaxis

* Large blue shift of
absorption maximum
in sSRIT (70 nm)

Bacteriorhodopsin
(bR)
Proton pump

bR
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Binding Sites of bR and sRII
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Similar structure

ﬁWhaf is the main determinant(s) g

+ Aromatic residues.

* Hydrogen-bond network.
(counter-ion asparatates,
internal water molecules)

Mutagenic substitutions

T204A/V108M/6G130S of
sRII produces only 20 nm
(30%) spectral shift.

Structures of bR and sRII

X-ray crystallography shows

that structures are very similar.

Both include protonated a//-
trans retinal Schiff base
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spectral tuning?

QM/MM Calculation of spectral
shift in bR and sR-II

« Refinement of X-ray structures
by HF (retinal, 2Asp, 3H,0)

« Excitation energy calculations
for retinal

Calculated spectra
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bR: purple, sRII: orange

Spectral shift
AE(S;-Sy) : 6.1 (exp. 7.2) keal/mol

AE(S,-S,): 1.7 (exp. 4.0) keal/mol

A sub-band in sRII is due to the
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second excited state (S,).

Deprotonation of the Schiff base

UV vision
birds, honeybee

p atomic orbitals
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Planarity is essential for
maximal overlap of p orbitals
in a double bond (Tt molecular
orbital)




Steric interactions and
spectral shift?

A highly fwisted structure can decrease the overlap of
p orbitals and effectively decrease the length of the
conjugation, i.e., blue shift.

Summary of Mechanisms of Spectral Tuning

+ Using a different chromophore with a longer or a
shorter conjugated chain
- Modifying the amino acid composition of the binding
pocket (electrostatics)
* Manipulating the distance and/or conformation of
charged/polar groups in the vicinity of retinal
+ Steric interaction with the chromophore so that
some of the double bonds go out of plane (a similar
effect to using a shorter chromophore)
+ Protonation state of retinal Schiff base (Strong
blue shift upon deprotonation)
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The chromophore retinal adopts different
colors in different environments. Doesn't it
remind you of something?




