VMD User’s Guide

A. Dalke, J. Gullingsrud, W. Humphrey, S. Izrailev, J. Stone, J. Ulrich
Version 1.4

January 6, 2000

Theoretical Biophysics Group'
University of Illinois and Beckman Institute
405 N. Mathews
Urbana, IL 61801
VMD WWW home page: http://www.ks.uiuc.edu/Research/vmd/

Description

The VMD User’s Guide describes how to run and use the molecular visualization and analy-
sis program VMD. This guide documents the usage of both the graphical user interface and the
text console interface for displaying and grapically manipulating molecules, and describes how to
customize the appearance and behavior of VMD for each user.

"http://www.ks.uiuc.edu/

Contents

1 Introduction
1.1 For more information on VMD and MDScope
1.2 Contacting the authors o
1.3 Credits and Program Reference oo
1.4 Copyright and Disclaimer L e
1.5 Registering VMD e
1.6 Acknowledgments
2 Tutorials
2.1 Rapid Introduction to VMD
2.2 Viewing a molecule: Myoglobin Lo oo
2.3 Rendering an Image L
2.4 A Quick Animation e e
2.5 An Introduction to Atom Selection o
2.6 Comparing Two Structures L
3 User Interface Components
3.1 Using the Mouse in the Graphics Window
3.1.1 ThePopup Menu e e
3.1.2 Atom/Molecule Specific Popup Menu,
3.1.3 Delete Representation
3.14 Hot Keys e
3.2 Using the Forms library
3.2.1 Buttons e
3.2.2 SHAers e e e e e e e
3.2.3 ChooSers i i e e e e e
3.2.4 Text Entry Areas
3.2.5 Browsers e e e e e e
3.2.6 File Browser e
3.3 Description of each VMD form oo
3.3.1 Main Form e
3.3.2 Molecules (Mol) Form
3.33 FilesForm e e
3.3.4 Graphics Form
3.3.5 Animate Form
3.3.6 Edit Animation Form,

10
11
11
12
12
13
13

14
14
14
16
16
17
17

3.3.7 LabelsForm
3.3.8 Display Form
3.3.9 Color Form e
3.3.10 Render Form
3.3.11 Tracker Form e
3.3.12 Sim Form e e e
3.4 Other User Interfaces. e
3.4.1 External Interfaceso

Loading A Molecule

4.1 Babelinterface e
4.2 What happens when a file is loaded? L o 0oL
4.3 Raster3D file format
4.4 Raster3D Caveats e e e

Molecular Drawing Methods

5.1 Lines o e e e e e e
5.2 Bonds e e
5.3 CPK . . . e
5.4 Points e
5.5 VDW . o e
5.6 Dotted e
B.7 Solvent e e
5.8 Tube e
5.9 Trace. oL e e e e e e
5.10 Licorice o e e e e e e e
5.11 Ribbon e
5.12 Surf . . . e e
5.13 Cartoon e e e e
5.14 MSMS o e e
5.15 HBonds e e
5.16 Off o e
Coloring Molecules and Objects
6.1 Color categories e
6.2 Coloring Methods L
6.2.1 Coloring by color categorieso
6.2.2 Colorscale e
6.3 Transparencyo e
6.4 VMD Script Commands for Colors L.
6.4.1 Adjusting the degree of transparency
6.4.2 Changing the color scale definitions
6.4.3 Creating a set of black-and-white color definitions
6.4.4 Revert all RGB values to defaults
6.4.5 Setting the transparent colors according to solid
6.4.6 Making the molecule to show upslowly,
6.4.7 Querying VMD for Color Information,

62
62
63
64
64

65
65
66
66
67
67
68
68
69
69
69
69
70
70
71
71
72

7 VMD Atom Selection Language 82

7.1 Definition of Keywords and Functions 83
7.2 Boolean Keywords e 84
7.3 Short Circuiting L 84
7.4 Quoting with Single Quoteso 84
7.5 Double Quotes and Regular Expressions, 85
7.6 Comparison selections oL 86
7.7 Comparison Operators e e e e e e e e e e 86
7.8 Otherselections L 87
T.8.1 SEQUENCE v o e e e e e e e e e e 87
7.8.2 withinandsame e 87

7.9 Referencing Tcldata L 88
7.9.1 Sreferences 88
7.9.2 Q@references 88
7.9.3 Thedifferences 88

8 Creating Output Raster Images 92
8.1 Creating an Output Image File 0. 92
8.2 Known Problems e 94
8.3 Omne Step Printing e 94
9 Viewing Modes 95
9.1 Perspective/Orthographic views 95
9.2 Momnoscopic Modes e e e e e e e e 95
9.3 Stereoscopic Modes L L 95
9.3.1 Side-By-Side and Cross-Eyed Stereo 96
9.3.2 Crystal Eyes Stereo L 96
9.3.3 Problems with stereo on Indigo2 machines, 97
9.3.4 Stereo Parameterso o 97

9.4 Making Stereo Raster Images L L L 98
10 Text User Interface 99
10.1 Using text commandso e 99
10.2 Tel/TK . oo o e e e e e 100
10.3 Core Text Commands o ot te 100
10.3.1 animate L e e e 100
10.3.2 aXeso e e e e e 102
10.3.3 color 103
10.3.4 colorinfo L 103
10.3.5 debug L 104
10.3.6 displayo e e e 104
10.3.7 echo L 106
10.3.8 exit L e 106
10.3.9 externmal 106
10.3.10help 107
10.3.111imd e 107
10.3.121abelo 108

10.3.13Light L e 108

10.3.14logfile e 108
10.3.16menu e e e e e e e e 109
10.3.16mol L e e 110
10.3.17molecule e e e e e 111
10.3.18mouse L e e e e e e e e e e e e 111
10.3.19play L e e 112
10.3.20quit o e e e 112
10.3.211imd e e e e 112
10.3.22render e e e e e e e e 112
10.3.23rocko e e e 113
10.3.24rotate e e e e e 113
10.3.25scale L e e e e 113
10.3.268Im L e e e e 114
10.3.27simulation L L L e e e e e 114
10.3.28stageo e 114
10.3.29t001 115
10.3.30translate e e e e e 115
10.3.31user e e e e e e e e e e e 115
10.3.32vmdlog e e 116
10.3.33vmdinfo L 116
10.3.34walt e e e e 116
10.3.35sleep oo e e e 116

11 Vectors and Matrices 117
11.1 Vectors o e e e e e e e e 117
11.2 Matrix routines e e e e e e e e 120
11.3 Multiplying vectors and matriceso L Lo 122
11.4 Misc. functions and values e 123
12 User-Defined Graphics 125
12.1 Introduction L e e e e 125
12.2 Tutorials and Examples e 127
12.2.1 Drawing a graph L L 128
12.2.2 Triangles oL 129
12.2.3 Draw asurface plot oL 130
12.2.4 Drawing a box around amolecule. 131
12.2.5 Adding a label 132
12.2.6 Interface to picking oL 132
12.2.7 Animation e e e e e 133

12.3 Graphics oL e 134
12.4 Draw and Drawing Extensions 0oL 136
13 Molecular information: molinfo and atomselect 138
13.1 molinfo L e 138
13.1.1 Using molinfo to access the moleculelist 138
13.1.2 Using molinfo to access information about a molecule 139

13.2 Atom information. . . .
13.3 Analysis scripts

14 Tips and Tricks

14.1 Customizing the Popup Menu and the Hot Keys
14.1.1 Customizing the popup menu oo
14.1.2 Customizing the Hot Keys L.
14.1.3 Automatically loading customization commands

14.2 Using VMD as a WWW Client (for chemical/* documents)

14.2.1 MIME types . .

14.2.2 Setting up your .mailcap « ¢ v . ot oo e e

14.2.3 Example sites . .
14.3 Making a Movie.
14.4 Coloring Trick - Override

a Coloring Category

14.5 Some Nice Represenations Lo
14.6 Finding Contact Residues

14.7 Tcl Logging
14.8 Remote Control of VMD

14.9 Controlling One VMD With Another

15 Interactive Molecular Dynamics
15.1 How the Connection Works

16 Advanced Script Writing

16.1 Drawing a distance matrix Lo o

16.2 Analysis of PDB files . .

16.3 save/load VMD state information Lo L
16.4 Currently picked molecule/atom o0 L.
16.5 Trace on the pick variables oo oo
16.5.1 Information about the picked atom L.
16.5.2 Making a sphere appear when an atom is picked
16.5.3 Drawing a line from the eye to the picked atom

16.6 Trajectory frames. . . .

16.6.1 Animating the secondary structure
16.6.2 Viewing selections which change during an animation

16.6.3 Simulation frames

16.7 RMSD and best-fit alignments L
16.7.1 RMSD Computation o
16.7.2 Computing the Alignment L.
16.7.3 A simulation example script oL

17 Customizing VMD Sessions

17.1 Command-Line Options
17.2 Environment Variables .
17.3 Startup Files
17.3.1 Core Script Files
17.3.2 User Script Files

152
152
152
154
154
155
155
155
155
155
157
157
157
158
159
159

160
160

162
162
165
167
169
169
169
170
170
171
171
173
175
176
177
177
178

17.3.3 .vmd_init File

17.3.4 .vmdrc File

18 Future Plans

Index

List of Figures

21

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

3.18
3.19
3.20

6.1

6.2

Sample VMD session displaying myoglobin. oo L. 15
Simple buttons L e e 33
A common button motif 35
Sliders e e e e e e e e e 35
ChoOoSErS e e e e e e 35
A Text Entry Area e 36
Several Browsers e e e e e 36
The File Browser e e e 37
The Main form e e e 55
The Molecules form 56
The Files form 56
The Graphics form (in Image Controls mode) 56
The Graphics form (in Atom Name Lists mode) 57
The Animate form e 57
The Edit Animation form 58
The Labels form e 58
The Display form e 59
Relationship between screen height (SCRHEIGHT), screen distance to origin (SCRDIST),

and the viewer e e 60
The Color form e 60
The Render form e 61
The Tracker form e 61

RGB color scale: the three plots shows the contributions of each color, and the
resulting colors are on the bottom. oo 78
The shift to the red component of the RGB scale caused by the value of “min”. . . . 79

List of Tables

3.1
3.2
3.3
3.4

5.1

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5

8.1

10.1
10.2

13.1
13.2

Mouse control hot keys. 32
Rotation & scaling hot keys. L 33
Menu control hot keys. Lo 34
Animation hot keys. L 34
Molecular view representation styles. L L L oL 66
Color categories used in VMD. L Lo 75
Molecular coloring methods. Lo 76
Available Color Scale Gradations. 7
Atom selection keywords. 89
Atom selection keywords (continued). oo Lo 90
Atom selection functions. 91
Regular expression methods. Lo 91
Regular expression conversions.o e e e e 91
Supported output rendering formats. L L. 93
Summary of core text commands in VMD.o oL 0oL 101
On-line Help Sources 0 0 i 107
molinfo keywords 150
atomselect keywords oL 151

Chapter 1

Introduction

VMD is a molecular graphics program designed for the interactive visualization and analysis of
biopolymers such as proteins, nucleic acids, lipids, and membranes. Currently VMD runs on
SGI workstations with IRIX 5.3 or higher, Hewlett-Packard workstations with HP-UX 10.20, Sun
workstations with Solaris 2.6 or higher, IBM RS/6000 workstations with AIX 4.2 or higher, PC’s
running Linux, and PC’s running Windows 95/98/NT.
Online information about VMD is available from http://www.ks.uiuc.edu/Research/vmd/.
VMD has several features:

e General molecular visualization
At its heart, this program is a general application for displaying molecules containing any
number of atoms. It is similar in basic capabilities to commercial programs such as Quanta
and non-commercial programs such as RasMol, XMol, and Ribbons. It can read PDB files
or use Babel (if available) to convert other formats automatically. Once loaded, user-defined
subsets of the molecule can be displayed in various ways including licorice, ribbons, van der
Waal spheres, and molecular surfaces. The display can be saved directly to a postscript file or
in a format suitable for use by ray tracing programs such as Raster3D, POV, and Rayshade.

e Visualization of dynamic molecular data
VMD can read molecular trajectories from DCD and Amber files, or it can acquire timesteps
from a running molecular dynamics program. The data can be used to animate the molecule
or to plot the change in molecular properties such as interatomic distances, angles, or dihedrals
over time.

e Display and control of molecular dynamics simulations
VMD can be used as a graphical front end to a molecular dynamics (MD) program running
on a remote supercomputer or high-performance workstation. VMD can interactively display
and control the MD simulation as the simulation is running. The user can disconnect from
the simulation and let it continue, reattach to a running simulation, or halt the MD program.

e Support for several input and display (output) devices
A number of different visual display and control systems are supported in addition to the
usual monitor, keyboard, and mouse. The UNC tracker library is used to get position and
orientation information from a wide variety of spatial input devices, including a Polhemus
Fastrak. An interface to the CAVE library has been developed for use in many different types
of stereo projection facilities.

10

e Tcl scripting language
VMD uses the freely available Tcl scripting language for processing text commands. This is
a very common and popular language which contains variables, loops, subroutines, and much
more. The TclX and Tcl-DP extension packages have been included to improve the usefulness
of the language.

e Molecular analysis commands
Many new Tcl commands have been added for doing molecular analysis. These include
methods to extract information about a set of atoms and molecules, vector and matrix routines
for coordinate manipulation, and functions for computing values like the center of mass and
radius of gyration.

VMD is the visualization component of MDScope, a computational environment for structural
biology and interactive molecular dynamics.

1.1 For more information on VMD and MDScope

MDScope (a Molecular Dynamics computational environment) is a complete software environment
for interactive simulation and display of biopolymers. It consists of three components:

e VMD
A general molecular visualization program capable of interactive display and concurrent
control of a molecular dynamics simulation running on a remote computer. VMD uses an

object-oriented design, and is written in C4++. This document describes the VMD component
of MDScope.

e NAMD

A parallel, object-oriented molecular dynamics code designed for high-performance simula-
tion of large biomolecular systems. NAMD uses the CHARMM force field and file formats
compatible with both CHARMM and X-PLOR. NAMD supports both periodic and non-
periodic boundaries with efficient full electrostatics, multiple timestepping, constant pressure
and temperature ensemble simulation methods. NAMD provides several methods of steering
a simulation through the application of additional forces, including the ability to connect
directly to VMD for interactive steering of a live simulation. NAMD is distributed free of
charge and includes source code.

For more information on MDScope, or on any of the individual components VMD, or NAMDsee
the Theoretical Biophysics Group WWW home page'!. Full source code and documentation for all
components of MDScope may be obtained from the Theoretical Biophysics Group anonymous FTP
server?, in the directory pub/mdscope.

1.2 Contacting the authors

The current authors of VMD are Justin Gullingsrud and John Stone. We are very interested in and
grateful for any user comments and reports of program bugs or inaccuracies. If you have any sugges-
tions, bug reports, or general comments about VMD, please send them to us at vmd@ks.uiuc.edu.

"http:/ /www.ks.uiuc.edu/
*ftp:/ /ftp.ks.uiuc.edu/

11

1.3 Credits and Program Reference

The authors request that any published work or images created using VMD include the following
reference:

Humphrey, W., Dalke, A. and Schulten, K., “VMD - Visual Molecular Dynamics” J. Molec.
Graphics 1996, 14.1, 33-38.

VMD has been developed by the Theoretical Biophysics group at the University of Illinois and
the Beckman Institute. The main authors of VMD are A. Dalke, J. Gullingsrud, W. Humphrey,
S. Izrailev, J. Stone, J. Ulrich. This work is supported by grants from the National Institutes of
Health (grant number PHS 5 P41 RR05969-04), the National Science Foundation (grant number
BIR-9423827 EQ), and the Roy J. Carver Charitable Trust.

1.4 Copyright and Disclaimer

VMD is Copyright (© 1995-1999 Theoretical Biophysics Group and the Board of Trustees of the
University of Illinois

Portions of this code are copyright (©) 1997-1998 Andrew Dalke.

The terms for using, copying, modifying, and distributing VMD are specified by the VMD
License. The license agreement is distributed with VMD in the file LICENSE. If for any reason
you do not have this file in your distribution, it can be downloaded from:
ftp://ftp.ks.uiuc.edu/pub/mdscope/vmd/LICENSE

Some of the code and executables used by VMD have different restrictions. They are:

1) STRIDE, the program used for secondary structure calculation, is free to both academic
and commercial sites provided that STRIDE will not be a part of a package sold for money. The
use of STRIDE in commercial packages is not allowed without a prior written commercial license
agreement. See http://www.embl-heidelberg.de/argos/stride/stride_info.html

2) The source code for SURF is copyrighted by the original author, Amitabh Varshney, and
the University of North Carolina at Chapel Hill. Permission to use, copy, modify, and distribute
this software and its documentation for educational, research, and non-profit purposes is hereby
granted, provided this notice, all the source files, and the name(s) of the original author(s) appear
in all such copies.

BECAUSE THE CODE IS PROVIDED FREE OF CHARGE, IT IS PROVIDED ”AS IS” AND
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED.

This software was developed and is made available for public use with the support of the
National Institutes of Health, National Center for Research Resources under grant RR02170.

See ftp://ftp.cs.unc.edu/pub/projects/GRIP /SURF /surf.tar.Z .

3) The perl script url_get, was written by Jack Lund at the University of Texas as Austin. There
appear to be no restrictions on its use.

12

1.5 Registering VMD

VMD is made available free of charge for non-commercial use to all interested users (but please see
the Disclaimer below). We would like to request that you register with us that you are using VMD.
This is so that we can maintain some idea of the number of users of the program and so that we
know who to contact about program updates, bug fixes, etc. To register, please fill out the form at
http://www.ks.uiuc.edu/Research/vmd/VMDregistration.html.
We appreciate your help in this service.

1.6 Acknowledgments

The authors would particularly like to thank those individuals who have contributed improvements
to VMD in the form of new features or entire replacement codes for old features. Special thanks go
to Andrew Dalke, Paul Grayson, and Charles Schwieters for their VMD contributions. The entire
VMD user community now benefits from your contributions.

The authors would like to thank the members of the Theoretical Biophysics group, past and
present, who have helped tremendously in making suggestions, pushing for new features, and trying
out quite often very bug-ridden code. Tom Bishop, the original (and for some time only) VMD
user, has been a driving force in suggesting (well, demanding) new features and bug fixes. As well,
thanks go to Alexander Balaeff, Ivo Hofacker, Xiche Hu, Barry Israeliwitz, Dorina Kosztin, Ilya
Logunov, Jim Phillips, Ari Shinozaki, Svilen Tzonev, Willy Wriggers, Dong Xu, Feng Zhou, and
our agent in the field, Daniel Barsky. Thanks also to all of you who have tried out the program.

Many external libraries and packages are used in VMD, and the program would not be possible
without them. The authors wish to thank Jon Leech for the code to compute the uniform point
distributions; T. C. Zhao and Mark Overmars, authors of the excellent XFORMS library; John
Ousterhout and the other authors of the Tcl, Tk, TclX, TkX and Tcl-DP packages; the authors
of the VRPN library from the University of North Carolina; Amitabh Varshney, author of SURF,
also from UNC; Dmitrij Frishman at EMBL for developing STRIDE; Jack Lund for the url get
perl script; and Ethan Merrit from the University of Washington for developing the algorithm for
drawing ribbons.

We also received invaluable assistance from people who got the source code and sent in patches
and explicit bug reports. The VMD developers would like to thank Axel Berg, Andrew Dalke,
Rick Kufrin, Joe Landman, Clare Macrae, Lukasz Salwinski, Stephen Searle, Charles Schwieters,
Michael Tiemann, Raymond de Vries, and Simon Warfield for their bug fixes and correspondence.

13

Chapter 2

Tutorials

2.1 Rapid Introduction to VMD

For those of you who don’t like reading the manual, here is a quick introduction to VMD. To start it
type vmd on the command line of your shell. (If that doesn’t work, make sure it is in your path; you
may have to check with your system administrator about how to fix it). VMD should start up in
a window titled vmd console, a display window entitled OpenGL Display, and a button bar entitled
main. Text commands are typed in the console window, graphics are displayed and manipulated
in the display window, and many commands are available from the menu interface, accessible
through the button bar. (The menus are based on the Forms library so all future references in the
documentation will refer to them as forms and not menus.) All the forms can be turned off by
pressing the button in the center top; for instance, press the button labeled VMD in the main form
to turn it off.

There are two ways to perform almost all functions in VMD, either use the forms or the text
console. For many of the commands, you can also use the popup menu available in the display
window by pressing the right mouse button. Some of the more sophisticated commands, such as
Tcl scripting, are only available in the text interface. Now that the button bar is turned off, you
probably will want it back. The easiest way to access any form is by placing the cursor in the
display window and holding down the right button on the mouse to obtain a popup menu. Select
the option ‘show form’ on the popup menu, and then select the form ‘main’. The button bar should
reappear. The same effect may be accomplished by typing the command menu main on in the text
console window.

2.2 Viewing a molecule: Myoglobin

You have probably obtained VMD in order to visualize molecules, so we’ll load up one of the
provided molecular structures to demonstrate the capabilities of VMD. On the button bar, click on
the Mol button. This brings up the Molecules form [§3.3.2]. (As before, this form may be turned
off by clicking the button in the center top of the form, labeled Molecules). Select Load From Files
on the Molecules form to bring up the Files form [§3.3.3].

We will load a PDB (Protein Data Bank) file containing the coordinates of the atoms in myo-
globin (compliments of Joel Berendzen from the Biophysics Group at Los Alamos National Lab-
oratory). In the browser on the left, select the line that says pdb only then click on the button
labeled Select pdb. Use the file browser that appears to go to the subdirectory proteins/ of

14

the VMD distribution (you may have to ask where this is located; try /usr/local/lib/vmd or
/usr/local/vmd). Once there, select the file mbco.pdb. (Be careful when changing directories as
the Forms library does not understand double clicks, and clicking too rapidly may cause the form
to get very upset and core dump. This problem will be fixed in future versions of VMD.) Once the
PDB file is selected, click on the Load Molecule button in the center of the Files form. You have
loaded a myoglobin structure. Figure 2.1 shows an example of VMD displaying this protein.

Figure 2.1: Sample VMD session displaying myoglobin.

You can use the mouse to manipulate the structure in the display window. There are three
basic mouse modes [§3.1.1]: rotation[§3.1.1], translation [§3.1.1], scaling[§3.1.1]. The mode can be
changed from the display window popup menu by pressing the right mouse button and picking
the option under ‘Mouse Mode’, or by pressing r, t, or s on the keyboard. Experiment with these
modes, and note how the cursor changes to indicate the current mode. In rotation mode, the left
mouse button controls rotation about axes parallel to the screen, and the middle button controls
rotation about the axis perpendicular to the screen. In translation mode, the left mouse button
controls translation parallel to the screen, while the middle button controls translation in and out
of the screen. Finally, in scaling mode, both the left and middle buttons control global scaling
when the mouse is moved left or right, but the middle button causes larger changes. In all modes,
the right mouse button controls the display window popup menu.

By default the myoglobin bonds are represented as lines and non-bonded atoms as points, with
the color in both cases representing the atom type. This representation is easy for the computer
to draw but is not always informative, especially when there are a large number of atoms. VMD
allows you to display many of the common molecular representations. To access these, open the
Graphics form [§3.3.4] using the button bar.

Suppose you would like to view the myoglobin structure with its protein backbone represented
as a tube, the heme represented as licorice, the SO, ion and C'O molecule represented as van der
Waals spheres, and histidines 64 and 93 represented as CPK models. First, type backbone in the
atom selection text entry area and press ’enter’ to select the myoglobin backbone. All of the

15

protein except for the backbone will disappear. Choose drawing method ‘Tube’ from the drawing
method chooser to render the backbone as a tube, and chose coloring method ‘Backbone’ from the
coloring method chooser to color the tube with the predefined backbone color. Click on the Create
New button. This causes a new line to appear on the browser identical to the first line. The new
line can be changed without affecting the first one, so clear the atom selection text area and then
enter resname HEM to select the heme. At this point the heme isn’t visible because it cannot be
drawn as a tube, so choose the ‘Licorice’ drawing method to make it appear. Click on Create
New again to make a new view, and enter resname S04 CO to select the SOy ion and the CO
molecule, and choose the drawing method ‘VDW’ to render them as Van der Waal spheres. Once
again, press the Create New button and enter resid 93 64 to select the two histidines, and render
them as ‘CPK’. If you followed all that, then congratulations, you have made a beautiful image of
myoglobin! Many more ways to represent atoms are possible. Please experiment with the options
available in the Graphics form.

2.3 Rendering an Image

This tutorial assumes Raster3D is installed on your system and the executable render is in your
path.

Find an interesting view of the molecule from the previous tutorial. Suppose you want to publish
this view in a journal and want a high quality image, or you want to make a large poster. Taking
the image from a screen capture results in a rather grainy image as the size of the pixels becomes
apparent, so you want something with more resolution. There are several programs available which
can render a high-quality raster image, based on an input script. VMD has the option to create
input scripts for many of these image processing programs, which may then be processed to create
a higher quality image of the scene displayed by VMD at the time the script was created. See the
section on rendering [§ 8] for a further description of how this works.

Open the Render form [§ 3.3.10] and click on the ‘Raster3D’ Output Format. Both of the
text boxes will fill with default values and do not need to be changed. Press the Go button. If
everything works correctly, a message starting with:

Info 1) Rendering current scene to ’plot.r3d’

Info 1) Raster3D file generation finished

Info 1) Executing post-render cmd ’ render < %s -sgi %s.rgb; ipaste %s.rgb’
Raster3D rendering program V2.0 Apr 1994

will appear in the text console. After a few moments, a window should open with an image similar
to the one in the VMD display. This image is in the RGB graphics format and can be read by
many programs (such as xv and ipaste).

2.4 A Quick Animation

Another strength of VMD lies in its ability to playback trajectories resulting from molecular dynam-
ics simulations. A sample trajectory, alanin.DCD is provided in the proteins directory included
with VMD. To load it, click on the Mol button of the button bar to bring up the Molecules form
[63.3.2]. Next click on the Load From Files button and select the psf and dcd option under the
Molecule File Types listing. Select alanin.psf for the psf file and alanin.DCD for the DCD by
clicking on the Select psf and Select dcd buttons respectively. After this, you need only click the

16

Load Molecule button in order to begin reading the trajectory. In the display window you should
see a simulation of an alanin residue in vacuo. It isn’t particularly informative, but you can easily
see that the structure is quite unstable in an isolated environment. After the DCD file has loaded,
it will by default stop. To see it again or to fine- tune playback, open the Animate form [§3.3.5]
by clicking on the appropriate button in the button bar. Press the button that looks like >> to
play the animation. Use the slider at the bottom of the form to change the speed of playback. By
rotating the molecule around, etc. you should get an idea about how the system destabilizes over
the course of the simulation.

2.5 An Introduction to Atom Selection

In this section it is assumed that you have the myoglobin structure mbco.pdb loaded and the views
discussed in 2.2 created. If this is not true, go back to 2.2 and repeat the process described there.

VMD has a powerful atom selection method which is very helpful when generating attractive,
informative, and complex graphics. In the previous section you used a few of these atom selection
tools. This tutorial assumes that you have already loaded the myoglobin molecule, but it isn’t
necessary to recreate all the graphical representations.

To change which atoms are used to display each representation of the molecule shown in the
display window, open the Graphics form [§ 3.3.4] and select the representation you want to change.
You can then either edit the different fields (selection, coloring method, or drawing method) or use
the Delete button to delete the view entirely. Try changing or deleting some of the views. When
finished, delete all representations for the myoglobin structure. To get the basic line drawing view
back, clear the atom selection text entry area (press Esc), enter all and press the Create New
button.

Atoms may be selected on the basis of a property, i.e. protein or not protein, water, or
nucleic backbone. They may also be selected by atom name, such as atom C, by residue name,
such as resname HEM, or by many other identifiers. Multiple atoms may be specified with one key-
word. For example, the selection name C CA N 0 will select the backbone atoms. (A similar effect
may be obtained with the command protein backbone.) VMD can handle regular expressions,
so that name "C.*" will select all atoms with names starting with C. VMD also understands the
boolean operators and, or, and not, so the selection resname HEM and not name "N.x*" selects all
non-nitrogen atoms in the heme group of myoglobin.

Several more abstract selection criteria are available. For instance, the selection x > 5 finds all
atoms with an x coordinate greater than 5, while mass >12 and mass < 14 selects all atoms with
mass greater than 12 and less than 14 atomic mass units. Many math functions are also provided, so
the selection sqrt(sqr(x) + sqr(y) + sqr(z)) < 10 will select atoms in a spherical region
of radius 10 A centered about the origin of the coordinate space. You can pick atoms nearby
a selection with the phrase “within <distance> of <selection>” and all residues with the same
property as a given selection as “same <property> as <selection>".

See section § 7 for a full description of the selection command.

2.6 Comparing Two Structures

Let’s start from scratch by deleting everything: open the Mol form [§ 3.3.2], select every line in the
browser (there should be only one), and press the Delete button.

17

Start by loading the mbco.pdb structure with the Files form. Turn on just the heme, CO, and
histidines by using the selection commands resname HEM CO or resid 64 93. The dot (probably
green) in the middle is the iron and you can verify that by clicking on it with the mouse. The label
HEM154:FE should appear both on the display and in the text console.

To get the distance between the iron and the oxygen of the CO, click with the middle mouse
button first on the iron and then on the oxygen. The first click turned the FE label off and the
second turned the O label on and drew a line between the two atoms with the distance drawn in
the middle and a bit to the right. The distance between the two atoms is 2.94 A, as compared
to 2.93 A in the paper; not bad. However, picking the distance between the FE and the C of the
CO reveals a distance of 1.91 A as compared to 1.85 A in the paper. The difference is that the
structures in the VMD distribution are actually preliminary structures obtained before the final
coordinates were determined.

In order to experiment with more complex picking modes, consider the angle made by the O
of the CO with the FE of the heme and the NE2 of residue 93 (you can click on the atoms to find
which ones are which). Using the right mouse button in the Display window, select ‘Mouse Mode’,
then ‘Pick Item’, then ‘Angles.” This should cause the cursor to become a red crosshair. Click on
each of the three atoms. After the third pick, a shallow angle will appear indicating an 8.71 degree
angle between the three atoms.

Now load the intermediate star.pdb file which can also be found in the proteins directory of
your distribution. Again use the Files form to do this. Both of the molecules will be loaded side by
side. Go to the Graphics form and change the selection so it the same as the first, i.e. resname HEM
CO or resid 64 93. The two molecules are almost atop each other, making it hard to distinguish
the two, so change the colors to simplify things.

First, in the Graphics form, change the Coloring method to ‘Molecule’. Use the Selected Molecule
chooser to change the mbco.pdb Coloring method to ‘Molecule’ as well. Open the Color form [§3.3.9]

and scroll the Category browser down until the line ‘Molecule’ is visible. Click on it then click
on the line which says mbco.pdb. (There may be two mbco lines if the file had been loaded before
in this session.) Scroll the Colors browser up to click on ‘blue’. This should change one of the
molecules in the display to blue.

Next, click on the last line in the Names chooser, which says star.pdb. This time, choose ‘red’
from the Colors chooser. The display should be much easier to understand. The myoglobin with
the bound CO is in blue and the intermediate state is in red. At this point it is easy to measure
the change in position between the two different states by using the middle mouse button to pick
the same atom in the two conformations.

Once that is done, it is easy to point out one interesting aspect of the way VMD handles the
graphics. Go to the Mol form, select one of the two molecules, and press Toggle Fixed. Enter
translation mode and move the other molecule around. Notice that the number which lists the
distance between the two atoms never changes. That’s because the mouse only affects the way the
coordinates are translated to the screen image. It does not affect the real coordinates at all. It is
possible to change the coordinates in a molecule using the text command interface, or by using the
atom move pick modes [§3.1.1]).

By the way, unfix the molecules and do a ‘Reset View’ from the right pull-down menu to reset
everything. Load up the third structure, deoxy.pdb and give it the same selection as the other two
molecules. However, color this one green. Pull out Nature v. 371, Oct. 27, 1994 and turn to page
740. With a bit of manipulation you should be able to recreate the image that appears there.

18

Chapter 3

User Interface Components

There are several methods available in VMD for the user to control and interact with the molecular
display. The primary methods are by using the mouse, either in the VMD graphical display window
(where the molecule is displayed) or in the different graphical user interface (GUI) forms provided
by the program. There is also a third user interface component, the text console interface, in which
the user can enter and execute simple commands or more sophisticated VMD scripts. Also under
development, but not documented here due to their experimental nature, are user interface com-
ponents based on three-dimensional input devices and on speech- and gesture-recognition systems.
This chapter describes how to use the mouse-based user interface components; it describes the basic
operation of the graphical user interface components, and gives a quick overview of each available
form. In VMD, the GUI is composed of several distinct windows, called forms, which provide a set
of buttons, sliders, choosers, etc. to control some specific element of the program.

The other primary user interface component, the text user interface, is described fully in chapter
§ 10.

3.1 Using the Mouse in the Graphics Window

The graphics display window is labeled OpenGL Display and contains a display of the various
molecules and other graphical objects, like the axes, which make up the scene. When the mouse
cursor is located inside the graphics display window, it may be used to perform the following
actions:

e Rotate, translate, or scale the displayed molecules

e ‘Pick’ atoms or other objects. That is, select them in order to move them around, label them
etc.

e Execute commands from the popup menu, available by pressing the right mouse button
e Move the lights

e Translate and rotate a set of atoms

e Apply a force (acceleration) to a set of atoms

There are also hot keys, or keyboard accelerators, available when the mouse is in the graphics display
window. These hot keys are bound to some VMD text commands, which are executed when a hot

19

key is pressed. VMD has several built-in hot key commands (see Tables 3.1, 3.2, 3.3 and 3.4), and
the user can add new ones as well (overriding the built-in ones if desired). A description of how to
set up personal hot key commands is given in section § 14.1.

3.1.1 The Popup Menu

Pressing the right mouse button while the mouse cursor is in the graphics display window activates
the VMD popup menu. This menu contains a number of commands, and also submenus with
commands, which may be executed by selecting the option while keeping the third mouse button
pressed and then releasing the button. The commands accessed via the popup menu simply execute
a text command which is bound to the selected popup option, just as if that command had been
entered at the VMD command prompt. There are options available in VMD to add your own
submenus and commands to the main VMD popup menu, to customize this GUI control to your
personal taste. See section § 14.1 for a complete description of how to do this, and how to make
these popup menu customizations available every time you start up VMD.

In addition to this general popup menu, there is also an atom/molecule specific popup menu
which is available when one holds down both the shift key and the rightmost mouse button over
any atom in a molecule. This submenu contains options to change how the molecule is rendered,
to display information about the molecule, and to perform actions such as fix the molecule in place
or hide it from view. The following section describe the menu options for both the general and
atom-specific popup menus.

The following sections describe the submenus and options available in the general VMD popup
menu.

Mouse Mode Submenu

The mouse, while positioned within the graphics display window, is used to perform a variety of
functions. There are several different modes which the mouse may be in at any time; the current
mouse mode determines what the effect is when the user presses the left or middle button. Each
mouse mode, except the lights mode (see below), causes the cursor to acquire a characteristic shape.
The mouse mode is changed via the popup menu; pressing the right mouse button brings up this
menu, which contains several submenus with various commands. The first two submenus, ‘Mouse
Mode’ and ‘Picking Mode’, are used to set the mouse mode. Note: the actions performed from the
"Mouse Mode’ submenu do not change the atom coordinates, while the actions performed from the
"Picking Mode’ do. The available modes are as follows:

e Mouse Mode — Rotation Mode
When the mouse is in this mode, holding the left mouse button down and moving the mouse
rotates the molecules about axes parallel to the screen, in a ‘virtual trackball’ behavior. To
get a rotation around the axes coming out of the screen (the ‘z’ axis), hold the middle button
down and move the mouse left (clockwise) or right (counter-clockwise).

You can keep the molecules rotating without continuously moving the mouse. Start the
molecule moving with the mouse, as above, then release the mouse button before you stop
moving the mouse. With some practice it becomes easy to impart a slight spin on the molecule,
or whirl it about madly. To stop the rotation, either press and hold the left mouse button
down until the molecule stops moving, or use the pop-up menu and select ‘Stop Rotation.’

20

The hot key to enter rotation mode is r. Also, pressing r or any of the other mouse mode
hot keys causes the rotation to stop.

Mouse Mode — Translation Mode

When the mouse is in translation mode, holding the left button down allows you to move
the molecules parallel to the screen plane, so, for example, moving the mouse left moves the
system left. To move the molecule towards or away from you, hold the middle button down
and move the mouse right or left, respectively.

The translation hot key is t; pressing t while the mouse is in the graphics display window
will change the mouse to translation mode.

Mouse Mode — Scaling Mode

The scaling mode has the simplest mouse controls as pressing either the left or middle button
down and moving to the right enlarges the molecules, and moving the mouse left shrinks them.
The difference is that the middle button scales faster than the left button.

The scaling hot key is s.

Mouse Mode — Move Lights Mode

VMD provides up to four separate light sources to illuminate the graphics objects in the
display window. These light sources act independently, and use the native lighting hardware
acceleration available on the graphics workstation (if any). Thus, they do not cast shadows,
and their effect is not calculated with any form of raytracing or similar algorithm. They do,
however, add a nice realistic effect to the objects and help give the appearance of material
characteristics to spheres, cylinders, and so forth. You can use the mouse to rotate each
of the light sources in space to a new position; you can even set a specific light to rotate
continuously about the origin.

The light sources are located at infinity, so only their orientation is important. To enter the
move light mode in order to position a specific light, select the ‘Move Light’ submenu from
the ‘Mouse Mode’ menu, and select a light. Not all lights are turned on; those that are on
are indicated with a check mark. Once a light is chosen, the mouse is set to rotate that light
source; a line should appear from the origin towards the chosen light. The controls for this
mode are the same as the rotation mode controls, so holding the left button down allows
you to rotate the light around an axis parallel to the screen, while holding the middle button
allows for rotations perpendicular to the screen. To stop moving the light source, change the
mouse to another mode via the popup menu or by pressing a hot key.

If the light is not currently on, moving that light source will not affect any change in the
displayed image. To turn a light on or off, use the Lights browser in the upper right of the
Display form [§3.3.8].

Pick Item Mode Submenu

The mouse can also be used to select things from the screen. As with many molecular graphics
programs, an atom can be picked by moving the cursor over it and clicking the left mouse button.
When an atom is picked for the first time, a text label appears which shows the atom residue name
and number, and the atom name. Clicking on the atom again turns the label off.

Picking atoms with the mouse is used to turn on or off various types of labels, to query for
information about an object, or to move items around on the screen. You can label an atom (and

21

display the atom name), or you can label geometric values such as the distance between two atoms
(a bond label), an angle between three atoms (an angle label), or the dihedral angle formed by four
atoms (a dihedral label). This is done by setting the mouse into the proper picking mode and then
selecting the relevant atoms with the mouse.

You first select the proper picking mode by using the popup menu, and choosing the mode
required to perform the desired action. The available actions when in pick item mode are:

Pick Item Mode — Query
Clicking with the left or middle mouse button on an item will print out the name of the item
(e.g. the atom name) to the text console window. The hot key to set this mode is ‘0’.

Pick Item Mode — Center

This mode is used to change the point about which a molecule rotates when the molecule
is rotated. To cause a molecule to rotate about a specific atom, select this mode and then
click on that atom. The rotation point may be restored to its default position (the center
of volume of the molecule) by executing the ‘Reset View’ option from the popup menu (see
below). The hot key to set the mouse to Pick Item Mode — Centering mode is ‘c’.

Pick Item Mode — Atom
Clicking on an atom will toggle on/off a label for the atom. The hot key to set this mode is
‘1.

Pick Item Mode — Bond
Clicking on two atoms in a row will toggle on/off a bond distance label between the two atoms
(a dotted line with the distance printed at the midpoint). The hot key to set this mode is ‘2.

Pick Item Mode — Angle
Clicking on three atoms in a row will toggle on/off a label showing the angle formed by the
three atoms. The hot key to set this mode is ‘3’.

Pick Item Mode — Dihedral
Clicking on four atoms in a row toggles on/off a label showing the dihedral angle formed by
the four atoms. The hot key to set this mode is ‘4’.

Pick Item Mode — MoveAtom

In this mode, the position of an atom can be changed by clicking on the desired atom,
and dragging with the mouse while the button is still pressed. This will change the atom
coordinates. The hot key to set this mode is ‘5.

Pick Item Mode — MoveResidue

This mode may be used to move all the atoms in a selected residue at the same time. Select
an atom in a residue, and move it to a new position while keeping the mouse button pressed.
All the atoms in the same residue as the selected one will be moved the same amount. Holding
down the jshift; key and the left mouse button while moving the mouse will rotate the atoms
in the residue about the selected atom. If the middle mouse button is held down instead, the
atoms in the residue will rotate about a line drawn through the picked atom and parallel to
a line coming directly out of the screen. This behavior is similar to the usual Rotate mode,
except that coordinates of atoms are changed.

The hot key to set this mode is ‘6’.

22

e Pick Item Mode — MoveFragment

A fragment is a set of atoms all connected by a series of covalent bonds. This mode acts just
like MoveResidue, except that the atoms which are moved are all in the selected fragment
rather than in the selected residue. This will change the atom coordinates. Holding down
the jshift; key and the left mouse button while moving the mouse will rotate the atoms in
the fragment about the selected atom. If the middle mouse button is held down instead, the
atoms in the fragment will rotate about a line drawn through the picked atom and parallel to
a line coming directly out of the screen. This behavior is similar to the usual Rotate mode,
except that coordinates of atoms are changed.

The hot key to set this mode is ‘7’.

e Pick Item Mode — MoveMolecule

This mode may be used to move all the atoms in a selected molecule at the same time.
Select an atom in a molecule, and move it to a new position while keeping the mouse button
pressed. All the atoms in the same molecule as the selected one will be moved the same
amount. Holding down the shift; key and the left mouse button while moving the mouse
will rotate the atoms in the molecule about the selected atom. If the middle mouse button
is held down instead, the atoms in the fragment will rotate about a line drawn through the
picked atom and parallel to a line coming directly out of the screen. This behavior is similar
to the usual Rotate mode, except that coordinates of atoms are changed.

The hot key to set this mode is ‘8’.

When a label is added to a molecule (say, for a bond, or just to show the name of an atom), a
new entry will be added to the list of current labels which is available via the Labels form [§ 3.3.7],
or from the Labels popup menu commands. These controls also contain options to turn the labels
on or off, or to delete them entirely from memory.

Since atom and bond picking is a very common action, these two types of labels can be added
without having to set the mouse to a picking mode. To just add an atom label, click on and release
the left mouse button while pointing to an atom, without moving the mouse during the click and
release. To add a bond label, click on and release the middle mouse button on first one, and then
the other, of the two atoms involved. Again, make sure not to move the mouse while the button is
pressed down.

Display Modes Submenu

From the popup menu you can control certain settings for the graphics display window. This
submenu is used to control what stereo mode is available, and how the 3D graphics are projected
onto the 2D screen. The commands available in this menu are:

e Display Modes — Perspective
In perspective mode, items closer to the viewer appear larger than items further away from
the viewer. This is the default projection in VMD. Selecting this option sets the display for
perspective projection.

e Display Modes — Orthographic
In orthographic mode, graphical objects are merely projected straight onto the screen, with
no consideration of their distance from the viewer. Selecting this option sets the display to
use orthographic projection.

23

e Display Modes — Stereo Off
This command sets the display window back to a non-stereo mode, if it was in another mode
displaying stereo images.

e Display Modes — CrystalEyes
Selecting this mode tells VMD to display the graphics in stereo, using Stereographics Corp.
Crystal Eyes stereo equipment (if available). In this mode, the monitor is set to a special
scanning state to display overlapping left and right eye images, and the user must wear special
glasses to see the stereo image. This is described in depth in section §9.

e Display Modes — CrossEyes

¢ Display Modes — SideBySide
In these stereo modes, the graphics display window is split into two side-by-side halves, and
separate right and left eye images are shown in the two halves. In SideBySide mode, the left
eye image is shown on the left side, and the right eye image is shown on the right side. In
CrossEyes mode, the images are reversed.

e Display Modes — Left

e Display Modes — Right
These stereo display modes actually only show a single image; the image shown, however, is
that which would be shown for the left or right eye, respectively, if any of the other stereo
display modes were selected.

Fit Submenu

When one has two similar structures, one often wants to compare them. What’s the difference
between two X-ray structures? How much did the structure change during a simulation? To
answer these questions, you must first figure out how to compare two structures, which usually
means that you must find the root mean square deviation (RMSD).

Formally, given N atom positions from structure x and the corresponding N atoms from struc-
ture y with a weighting factor w (7), the RMSD is defined as:

N 913
RMSD (N;z,y) = [—Z"N%Ll_m;w?”]

Using this equation by itself probably won’t give you the answer you are looking for. Imagine
two identical structures offset by some distance. The RMSD should be 0, but the offset prevents
that from happening. What you really want is the minimum RMSD between two given structures;
the best fit. There are many ways to do this, but for VMD we have implemented the method of
Kabsch (Acta Cryst. (1978) A34, 827-828 or see file Measure.C in the VMD source code). This
algorithm computes the transformation, needed to move one structure onto another in order to
minimize the RMSD.

With the mathematical prerequisites behind us, we still need to be able to specify how to choose
the atoms to compare. If you want to compare all the atoms in both structures, and they both
have the same number of atoms, then the problem is easy — N is everything. This occurs most
often in MD simulations when the only thing different between two structures are the coordinates.

24

But what about homologous sequences? In this case, the number of atoms differ because
while the number of residues is the same, the sidechains have different numbers of atoms. The
usual solution is to determine the RMSD based solely on the backbone atoms or, in some X-ray
structures where only the C, atoms have been determined, based on the C, atoms. In addition,
VMD allows two other methods for fitting. Fitting by heavy atoms omits the hydrogens, since their
positions are often not well determined. Fitting by “picked atoms” performs only a translation to
bring one atom directly on top of another molecule.

Hopefully the previous discussion revealed the importance of the options available in the fit
submenu. Before examining each of them in turn, you should be aware of some VMD definitions.
In VMD, a “molecule” refers to all the atoms from a structure file. The file may contain multiple
molecules under standard chemical usage, but VMD still thinks of them as one molecule. Instead,
those individual parts are called “fragments,” for lack of a better term. With this said, the fit
options in the submenu include:

¢ Fit - Do RMSD Fit
The fitting will change the stored coordinates of one of the molucules.

e Fit — Print RMSD
VMD wll print out the RMSD between the molecules after fitting them together, without
changing their stored coordinates.

e Fit — Two Molecules

e Fit —» Two Fragments
These two submenus contain the same options, which select which atoms of the two molecules
should be used to do the least squares fit. For the first submenu, the atoms used will be taken
from all the atoms in two different molecules; for the second submenu, the atoms used will
only be taken from two separate fragments, where a fragment is a connected chain of residues.
The available atom selections for fitting the molecules are:

— All atoms;

— Heavy atoms (i.e., all except hydrogen);
— Backbone atoms;

CA (that is, C,) atoms;

Picked atoms (i.e., atoms currently labeled on the screen).

Presently the VMD feedback for RMSD picks is a little terse. To make things clear, here is
the process: First select one of the options (i.e., All atoms; Heavy atoms; etc.) from the fit
submenu. VMD will respond with a confirmation of your choice and then it will ask you to
click on one atom of each of the two selections you would like to compare. The selection you
click on first will be moved to the selection you click on second. The atoms that you click on
are representative of the entire molecule, fragment, set of heavy atoms, etc. associated with
those atoms. Thus, if you have chosen to RMSD fit two molecules, then clicking on one atom
for each of the two molecules does in fact specify an RMSD calculation involving all atoms of
the two molecules.

As a simple example of computing RMSD, load the same molecule twice. Press the ‘8’ key
(this puts VMD into the “MoveMolecule” pick mode and lets you use the mouse to change

25

the coordinates of a molecule). Click and drag one of the molecules away from the other so
there is a space between the two.

By default the fit routines are configured to do the best fit but for this example you will only
compute the RMSD, so pick “Fit — Print RMSD.” Now go to the pop-up menu and pick
“Fit — Two Molecules — All Atoms.” Look at the VMD console window and you'll see a
new line was printed to show the current state. The mouse should look like a crosshair. Pick
one of the atoms in the first molecule and then one of the atoms in the second molecule. The
value of the RMSD will be printed to the screen, for example:

RMSD between the two molecules is: 1.123410

In case of two identical molecules the RMSD calculation should, of course, give zero as a
result. To stop computing RMSDs, simply change the mouse mode to what you want to do
next, for example, press r to go to the rotate mode.

A discussion of advanced RMSD features available through the scripting interface can be
found in section §16.7.

VMD’s atom alignment should be able to handle most common tasks, but there are some it
cannot do. If this occurs, you might want to look at Andrew Martin’s ProFit at
http://www.biochem.ucl.ac.uk/ “martin/text/ProFit.readme

Labels Submenu

The labels submenu is used to control the appearance of text labels which may be placed on atoms,
and of bond, angle, and dihedral angle labels which may be created between atoms. Once a label
is placed on an atom or set of atoms, through the use of the mouse (see section § 3.1.1), it may
be turned on or off, or deleted entirely, through use of this submenu and also through use of the
Labels form [§ 3.3.7] form as explained later in this manual. The labels submenu has the following
options:

e Labels — Show

If a label has been previously added to, e.g., an atom, but has been hidden from view, this
submenu contains options to turn the label back on. It contains submenus for the following
categories of labels:

— Labels - Show — Atoms

— Labels — Show — Bonds

— Labels —+ Show — Angles

— Labels —+ Show — Dihedrals

Each submenu contains a list of the labels which have been added to that menu; selecting the
label from the submenu turns on that label.

e Labels — Hide
This acts identically to the Labels — Show menu, except that it is used to hide labels from
view instead of to display them. It contains the same submenus of label categories.

26

Labels — Delete
This acts identically to the Labels —+ Show menu, except that is is used to delete labels
entirely. It contains the same submenus of label categories.

Labels — Delete all
This command will delete all the labels currently stored in each label category.

Animate Scene Submenu

A molecule in VMD can contain any number of coordinate sets; the resulting molecular trajectory
may be played back in order to animate the molecule. This submenu contains commands to control
the animation, much like the controls for a VCR or tape player. The animation can also be
controlled via the Animate form [§ 3.3.5]. The commands available in this submenu are:

Animate Scene — play forward
Causes the animation to start playing forward through the frames which have been read into
memory.

Animate Scene — play reverse
Plays the animation in reverse.

Animate Scene — step 1 forward
Advances the animation one frame forward, and then pauses it. If the end is reached, the
animation goes back to the initial frame.

Animate Scene — step 1 reverse
Advances the animation one frame backwards, and then pauses it. If the start of the animation
is reached, the last frame is displayed.

Animate Scene — pause
Pauses the display at the current frame.

Animate Scene — goto start
Rewinds the animation to the initial frame, and pauses the animation.

Animate Scene — goto end
Fast-Forwards the animation to the final frame, and pauses the animation.

Animate Scene — Style
This submenu controls how the animation behaves when it reaches the beginning or end of
the trajectory. The following styles may be selected:

— Animate Scene — Style — Once
When the end of the trajectory is reached (or the beginning, if the molecule is being
animated in reverse), the animation will be paused at the last (first) frame.

— Animate Scene — Style — Loop
Causes the animation to loop around back to the start of a trajectory when the end is
reached, or vice versa if playing in reverse.

— Animate Scene — Style — Rock
Causes the direction in which the animation is playing to reverse when the end or start
of the trajectory is reached.

27

Spin/Rock Scene Submenu

These commands allow you to spin or rock the displayed molecules. A spin is a constant rotation
in a given direction, and a rock is rotation that alternates between one direction and its opposite.
Thus, ‘Spin X’ rotates the system in a constant speed around the X axis and ‘Rock Z’ rocks it
around the Z axis. The speed of rotation and total rock angle are currently fixed. Available
commands are:

e Spin/Rock Scene — Stop Rotation
Halts the rotational motion of the displayed molecules, i.e. sets their spin and rock values to
be zero.

e Spin/Rock Scene — Spin (X, Y or Z)
Imparts a constant angular velocity (spin) to the molecules around the selected axis.

e Spin/Rock Scene — Rock (X, Y or Z)
Imparts a constant angular velocity (spin) to the molecules around the selected axis. After
the molecule rotates through a 180° arc, the rotation direction is reversed.

Stop Rotation

Halts the rotational motion of the displayed molecules, i.e. sets their spin and rock values to be
Zero.

Reset View

VMD does not actually alter a molecule when it is translated or scaled. Instead, it changes the
transformation matrix used to convert the atomic coordinates to screen coordinates. The initial
definition of this matrix is set up so that the top molecule [§ 3.3.2] takes up most of the screen.
However, after moving things about, you may want to reset the view to bring the molecule back to
the initial position. Selecting ‘Reset View’ allows you to do just that.

Show Form Submenu

The GUI controls for VMD, also known as forms, consist of separate windows containing controls
for the program. The forms may be individually displayed on the screen or hidden from view. This
menu provides one way to display a form. To do so, select the name of the form to display from
the ‘Show Form’ submenu. If the box to the left is checked, it is already turned on and selecting it
again will not affect anything. To bring the form to the front of screen, you will have to turn the
form off then back on.

Hide Form Submenu

This menu provides another way to close a form. Select the form name to turn it off.

Help

Starts an HTML viewer (like Mosaic or Netscape) and displays on-line VMD help documents. The
viewer is designated by the environment variable VUIDHTMLVIEWER [§ 17.2]. Starting help multiple
times will start multiple viewers. The default web browser is Netscape. The following documents
can be accessed from this submenu:

28

Quick Help - A listing of common procedures in VMD

User’s Guide - An online version of what you are presently reading

e VMD Home Page - The WWW site from which you can access many VMD docs

VMD FAQ - A listing of fequently asked VMD questions (plus answers)

Mailing List - Allows you to access an archive of past VMD discussions

Tcl - If you need hints on programming the scripting interface
e Software - Links to common programs used by VMD (i.e. renderers)

Note, you may need to have Netscape or Mosaic up and running before successfully selecting
these options. That is, if you obtain a message such as ¢ ‘netscape: mnot running on display
:0.0’, then you will have to start up the program yourself, after which VMD will be able to direct
you to the correct page.

Quit Submenu

Opens a submenu asking if you really want to quit.

Play File

Forces VMD to execute the Tcl commands found in a file of your choosing.

Save Config

With this option, VMD saves information about the representations and viewing angle character-
izing your display of the scene. It creates a log file of Tcl commands which can be read back in at
a later time to reproduce the images seen in the output window. See also section § 16.3 for text
interface that can be used to save/restore VMD state information.

3.1.2 Atom/Molecule Specific Popup Menu

In addition to the general popup menu which is always available with a right mouse button click,
there is also an atom-specific menu which appears when you hold down both the Shift key and
the right mouse button while positioned over an atom in the display. The options available in this
menu allow one to quickly customize selections and representations.

Center

Designates the position of the atom being clicked on to be the new center of transformations such
as rotation, scaling, and translation.

Pick

Performs a selection of the atom being clicked on. This will toggle labels on and off

29

Info

The Info menu gives you a synopsis of properties for the atom that you are holding the mouse over.
In particular, information about the following fields is identified:

Name - the name of the atom as it appeared in the coordinate file

Type - the type of the atom, as determined by an internal VMD match-up of the given name
to a likely atom type associated with that name

Index - the internal VMD index used to identify the atom; this is useful for specifying selection
syntax to generate different representation styles for particular atoms. For PDB files Index
corresponds to the atom number listed in the file minus 1 (so that the index starts with 0).

Resname - the type of the amino or nucleic acid to which this atom belongs

Resld - the internal VMD ID number of the entire residue to which the particular atom
belongs. E.g., Resld for an atom of a protein is the same as the residue number of that atom
as listed in its PDB file.

Chain - if the coordinate file contained data in the “Chain” field for this atom, then that data
is given here.

Segname - the name of the segment to which this atom belongs

X, Y, Z - the position of the atom in 3D space

In addition, there is an option “Print” in the Info submenu which simply prints the information
into the console window, in case you would like to cut and paste the data somewhere else.

Mol Status

As discussed in section §3.3.2, there are a number of attributes which characterize the display of a
given molecule on the screen. A few of the most important properties which can be toggled on and
off with the MolStatus menu include:

Top - makes the molecule to which the picked atom belongs to the top one (a check mark
indicates its status)

Make Active/Make Inactive - several VMD commands operate on multiple active molecules.
Toggling this parameter will allow you to control whether or not these actions are done to
your molecule of interest.

Fix/Free - Fized molecules do not undergo rotation, translation, or scaling. Free molecules
do.

Hide - Refrain from displaying the selected molecule

30

Atom Selection

This submenu allows you to selectively display portions of a molecule based on relationships to the
picked atom. Presently this is the only way to define atom selections in a graphical fashion. All
other selections must be described via a text-based entry form. The following criteria may be used.
In each case, VMD will render only those atoms which have the following property in common with
the selected atom

e Same Residue
e Same Chain

e Same Segname
e Same Fragment

In addition, the currently selected atom can be used as a representative of the entire molecule by
choosing to render only the following atoms of the molecule.

e backbone - VMD should display backbone atoms only

e protein - only atoms comprising a protein should be displayed
e nucleic - only display atoms comprising nucleic acids

e water - only display water atoms in the molecule

e not waters - only display non-water atoms in the molecule

e heavy atoms- only display the heavy atoms of the molecule

Note that this submenu only affects the first representation (view) listed in the Graphics form
[§3.3.4] for the given molecule.

Rendering Method

With this submenu, you can again use the currently picked atom as a representative of the entire
selection it belongs to. You can switch the representation style to any of those listed in section §5.
This will affect only the first representation containing the picked atom in the list of representations
accessible through Graphics form.

Coloring Method

Much in the spirit of the Rendering Method submenu, with this option you can change the way
in which the rendered selection associated with the picked atom is colored. Any of the options
described in the section on coloring methods [§ 6] are valid.

3.1.3 Delete Representation

As its name suggests, with this option of the atom specific popup menu, you may delete the current
representation of which the atom pick is a part of. The lowest-numbered representation containing
the picked atom will be deleted.

31

3.1.4 Hot Keys

When the mouse is in the graphics window, several more commands are accessible via programmable
hot keys. They allow you to do things like change mouse modes or advance the animation by a
frame by simply pressing a key. The default key bindings are listed in the following tables. The
commands listed are the text commands which are executed when the hot key is pressed; these text
commands are explained in section §10.3. See section §14.1 for information on how to customize
the behavior of these hot keys and how to add new hot key commands.

Hot Key ‘ Command ‘ Purpose
r, R mouse mode 0 O enter rotate mode; stop rotation
t, T mouse mode 1 0 enter translate mode
s, S mouse mode 2 O | enter scaling mode

0 mouse mode 4 O query item

c mouse mode 4 1 | pick center

1 mouse mode 4 2 | pick atom

2 mouse mode 4 3 | pick bond (2 atoms)
3 mouse mode 4 4 | pick angle (3 atoms)
4 mouse mode 4 5 | pick dihedral (4 atoms)
5 mouse mode 4 6 move atom

6 mouse mode 4 7 move residue

7 mouse mode 4 8 | move fragment

8 mouse mode 4 9 | move molecule

% mouse mode 4 10 | force on atom

A mouse mode 4 11 | force on residue

& mouse mode 4 12 | force on fragment

Table 3.1: Mouse control hot keys.

32

Hot Key ‘ Command ‘ Purpose
X rock x by 1 -1 | spin about x axis
X rock x by 1 70 | rock about x axis
y rock y by 1 -1 | spin about y axis
Y rock y by 1 70 | rock about y axis
z rock z by 1 -1 | spin about z axis
Z rock z by 1 70 | rock about z axis
j, Cntl-n | rotate x by 2 | rotate 2° about x
k, Cntl-p | rotate x by -2 | rotate —2° about x
1, Cntl-f | rotate y by 2 | rotate 2° about y
h, Cntl-b | rotate y by -2 | rotate —2° about y
g rotate z by 2 | rotate 2° about z
G rotate z by -2 | rotate —2° about z

Cntl-a scale by 1.1 enlarge 10 percent
Cntl-z scale by 0.9 shrink 10 percent

Table 3.2: Rotation & scaling hot keys.

3.2 Using the Forms library

The various menus used in VMD are based on the XForms Library developed by Mark Overmars
and T. C. Zhao. In this library, each graphical user interface component window is referred to as
a form. A form contains a collection of graphical controls, such as buttons, sliders, browsers, etc,
described in the following sections.

3.2.1 Buttons

Edit.

Go | Trackers ' Tools |

Figure 3.1: Simple buttons

Figure 3.1 shows some of the buttons used by VMD. For example, the button in 3.1 A draws all
the loaded files and the one in 3.1 C writes the current screen description for use in a ray-tracing
program. Some buttons, as in 3.1 B, indicate if something is turned on or off by turning an indicator
light on or off. They can be turned on or off by clicking on the button. Others, shown in 3.1 D,
indicate that they are pressed by appearing recessed.

One common button usage motif in VMD is shown in figure 3.2. These indicate that the value
in the middle can be increased by pressing the button(s) on the right and decreased by pressing
the button(s) on the left. If there are two sets of buttons, as in 3.2 B, then the outer set of buttons
change the number in larger increments than the inner set.

33

Hot Key ‘ Command ‘ Purpose
Alt-M menu main off;menu main on Show main menu
Alt-m | menu mol off;menu mol on Show mol menu
Alt-f menu files off;menu files on Show files menu
Alt-a menu animate off;menu animate on Show animate menu
Alt-e menu edit off;menu edit on Show edit menu
Alt-g | menu graphics off;menu graphics on | Show graphics menu
Alt-1 menu labels off;menu labels on Show labels menu
Alt-r menu render off;menu render on Show render menu
Alt-d | menu display off;menu display on Show display menu
Alt-c menu color off;menu color on Show color menu
Alt-s menu sim off;menu sim on Show sim menu
Alt-t menu tracker off;menu tracker on Show tracker menu
Cntl-r | display resetview Reset display
Alt-q | quit confirm Quit VMD with confirmation
Alt-Q | quit Quit VMD
Alt-h | hyperref invert Invert hyper text mode (NOT help)
Table 3.3: Menu control hot keys.
Hot Key ‘ Command ‘ Purpose ‘
+,f,F animate next move to next frame
-,b,B animate prev move to previous frame
, > animate forward | play animation forward
, animate reverse | play animation reverse
< animate reverse | play animation reverse
/s 7 animate pause stop animation

3.2.2 Sliders

3.2.3 Choosers

Table 3.4: Animation hot keys.

34

Sliders are used somewhat rarely in VMD, typically to control some smoothly varying quantity
that should always be set within some definite limits. An example from each is shown in figure 3.3.
To use a slider, click and drag on the interior rectangle.

Choosers look like the items in figure 3.4. They are used to select one of a list of possible choices.
There are two ways to change the selection. Clicking with the left mouse button brings up the
list of choices. Move the mouse to the correct selection and release the button to pick that item,
or release the button outside of the menu to keep the original selection. Clicking with the right
mouse button advances the selection through the list by one. If the currently selected item is the
last element of the list, the selection loops around to the first item.

A [T
B. |44l o5]E

Figure 3.2: A common button motif

A, i
B.

Figure 3.3: Sliders

3.2.4 Text Entry Areas

Figure 3.5 shows an example text entry. These are used for things such as atom selection or for
entering filenames. To select a text entry, use the mouse and click on the appropriate field, or
press the tab key to move between different text entry areas. The currently active area should have
a brighter background. Some emacs-style control keys are allowed, so ~A (control-A) goes to the
beginning of the line, “E goes to the end, "B moves the cursor back by one without deletion, and
“F moves it forward one. ~H or backspace deletes the previous character, and K deletes everything
from the cursor to the end of the line. The mouse can be used to select text inside the entry field.
If text is selected, pressing any normal key replaces the text, and pressing backspace deletes it.
Cut-and-paste operations among XForms text entry regions and other X-Windows applications are
allowed.

Figure 3.4: Choosers

Figure 3.5: A Text Entry Area

3.2.5 Browsers

Figure 3.6: Several Browsers

Another way to view a list of items is to use a browser, as shown in figure 3.6. A browser displays
several items on the screen (unlike the chooser which only shows one) and has a slider which is used
to scroll though all the available options. Selected items are highlighted. Some browsers only allow
one item to be selected, while others allow multiple selections and do not automatically deselect a
line when a new item is picked. To turn off a selected item when multiple selections are allowed,
click on the item, and the highlight will disappear.

One common browser motif uses coupled browsers to describe two-level hierarchies. Selecting
a line in the first browser determines the possible selections in the second. An example is shown in
figure 3.6 B.

3.2.6 File Browser

This form, as shown in figure 3.7, is used for input or output file selection. The current directory
is shown on the line labeled Directory, and is changed by clicking on the current directory name
and entering the new name into the text entry field which appears. On the left side of the form
is a browser which alphabetically lists all of the available directories and the files which match the
Pattern given on the second line. Note that the file selection pattern will use glob-style pattern
matching, not regular expression matching.

The browser can be used to traverse the file structure. Clicking once on a directory name
changes the current directory to the new one. If you click once on a file name, the name appears
in the file name text entry field and can be modified as needed. To select the file name given in
the field, press the enter key or click on the Ready button, or else double-clock the file name entry.
To cancel this file selection, click on the Cancel button. To refresh the list of files in the directory
press Rescan.

36

| Dot | dsdeitied |
T T —
—
o |
el
[

Figure 3.7: The File Browser

3.3 Description of each VMD form

VMD uses several different GUI forms, each designed to control a specific aspect of the molecular
display (e.g., to control the appearance of the graphics display window, or to change the colors of
displayed objects). Each form has a unique name, includes a button with the name of the form
near the top of the window. Pressing this button will hide the form from view. The following
sections give a brief description of the forms available in VMD; the remaining chapters in this
manual describe the actions which these forms make available in greater detail.

3.3.1 Main Form

The Main form, also called the button bar, can turn most of the other forms on or off. It can also
be used to start an HTML viewer to see the VMD quick help file, and to exit the program. The
buttons with lights control which forms are turned on or off; if the light is on, the form is being
displayed. Sometimes a form is turned on but is hidden behind other forms or windows. A quick
way to bring the form to the top is to turn it off and then on again, as implemented for you using
the Menu shortcut keys described in Table 3.3.

The button bar can be closed by clicking on the Main button and, as with all other forms, by
clicking on the button in the center top. There are several ways to re-open the form. The simplest
is to go to the window labeled OpenGL Display and use the pop-up menu that appears when you
press the right mouse button (see section §3.1 to select ‘Show Form’ followed by ‘main’. It can also
be turned on with the text command menu main on.

The Help button starts up an HTML viewer (such as Mosaic or Netscape) to view the Quick
Help file (see General Help, §3.1.1).

37

Press the Quit button to exit VMD. This will bring up another form which verifies that you do
indeed wish to exit. Press Yes to quit, or No to return to VMD.

3.3.2 Molecules (Mol) Form

The Mol, or Molecules, form shows the global status of the loaded molecules. Any number of
molecules may be displayed by VMD simultaneously. Each molecule can separately be hidden from
view, fixed in place (e.g., prevented from being affected by mouse rotation commands). This form
contains controls to change the status of the molecules individually or in groups.

Loading a New Molecule

The Load From Files button will activate the Files form [§3.3.3], which is used to read a new molecular
structure in from a file or set of files. The Setup Remote Connection does nothing at this time; future
versions of VMD will use this button to activate a browser for running remote simulations. Chapter
§ 4 describes fully how to load a molecule and what file formats are supported.

The Molecule List browser

The browser at the center displays information about each molecule. The Name is the file name
which contained the topology information, followed by a unique integer ID which is assigned to
each molecule by VMD when it is loaded. Atoms shows the number of atoms in the molecule,
Frames gives the number of timesteps associated with the file, and Source is either File or Remote,
reflecting whether the information was acquired from a file or a remote simulation.

Next to each molecule is a set of status flags, which indicate the current Status of each molecule.
Each molecule has the following characteristics, which can be on or off:

e Top (T)
Top indicates the default molecule used in the text commands when nothing is specified for the
mol text command. It is also used in some forms (like Graphics and Animate) to determine
certain values. There can be only one top molecule at a time.

e Active (A)
Several commands and actions in VMD operate on many molecules. These commands, unless
specifically specified otherwise, will do their action for all the active molecules.

e Drawn (D)
If a molecule is Drawn then it is being displayed in the graphics display window. This is
useful for temporarily hiding a molecule from view without deleting it.

¢ Fixed (F)
Fized molecules do not undergo rotation, translation, or scaling. Note that while it may seem
that one molecule has been moved relative to another, the difference is only apparent. The
internal coordinates do not change when a standard rotation is applied by using, for example,
the mouse. It is possible, however, to change the coordinates of atoms in a molecule, using
the text command interface, and by using the atom move picking modes.

38

Changing the Molecule’s Status

The status of a given molecule can be changed by selecting the molecule in the browser and pressing
the toggle that controls the appropriate flag. The active, drawn, and fixed status values can be
changed for several molecules at the same time by selecting several molecules before pressing the
toggle. However, only one molecule can be top at any one time, so Make Top can only be applied
to one selection. Pressing one of the All ... or No ... buttons either sets or unsets corresponding
flag on all the loaded molecules.

The Single A/D/T button makes the selected molecule active, displayed, and top. It also resets
the scene so the given molecule roughly fills the screen. It is a quick way to switch from viewing
one molecule to another when it is desirable to only show one molecule within the graphics display
window at a time.

Deleting a Molecule

The Delete button deletes all selected molecules. There is no prompt verifying the deletion, so take
some care. If a deleted molecule was the top molecule, a new top molecule will be set from the
remaining structures.

3.3.3 Files Form

The Files form is used to load a file from disk. It is not accessible via the button bar on the Main
form. Instead, use the Load From Files button in the Molecules form or select the ‘files‘ submenu
in the ‘Show Form’ option available from the popup menu in the graphics display.

To use this form, first select the appropriate file type from the browser on the left (the available
file types are described in section §4). One or two text input lines (depending on the molecular
structure and coordinate file formats selected) will be displayed in the center of the screen. These
need to be filled with the appropriate file names, which can be done in two ways. The easiest is to
press the button to the left of the text area to bring up the file browser. The other way is to type
the name directly into the text area. To clear the file selection, press Reset; to cancel the operation
press Cancel.

Once you've selected the correct file (or files), press the large button that says Load Molecule.
The button will disappear and be replaced with a message that says Loading ... Please Wait. After
the files are completely processed, the structural information will be displayed in the text window,
and the Files form will be closed automatically.

3.3.4 Graphics Form

The Graphics form is the most complicated form in VMD, which could be expected from a visu-
alization program. The details of most of the subjects discussed below are covered in the special
topics on selections [§ 7], drawing methods [§ 5], and coloring methods [§ 6]. In short, a molecule
can have many different representation, also referred to as views. Each view consists of three parts:
a selection, a drawing method (also called representation style, and a coloring method. The selec-
tion determines which part of the molecule is drawn, the drawing method defines which rendering
representation is used, and the coloring method gives the the color of each part of the representation.

There are actually two parts to the graphics form. The Image Controls button brings up the
controls used to alter the drawing and coloring methods. The Atom Name Lists button provides

39

access to browsers which display the lists of atom names, residue names, and so forth for the selected
molecule.

This form is used to control the appearance of one molecule at a time. The molecule it affects is
selected in the ‘Selected Molecule’ chooser at the top of the form. The browser below this chooser
lists the views available for the molecule. Each line of the browser shows information about the
drawing method, the coloring method, and the selection which completely specify the view. To
change the attributes of a given view, click on the view that should be changed. The atom selection
for that view will appear in the Atom Selection text area and, if the Image Controls button is
pressed, the drawing and coloring method choosers will also change to reflect the current view.

To add a new view of the molecule, enter the selection into the Atom Selection text area (or
keep what is there) and press Create New. This adds the view to the currently selected molecule.

To delete a view, select the view in the browser and press the Delete button. Bear in mind that
this does not delete the molecule, it only deletes a view of the molecule. (To delete the molecule,
use the Mol form [§ 3.3.2].)

Image Controls

The drawing method indicates how the view’s selected atoms are displayed in the graphics display
window, and the coloring method indicates how to color the displayed atoms. The selected view’s
drawing [§ 5] and coloring [§ 6] methods are changed via the corresponding chooser. Some of the
methods have additional controls which will appear when that particular method (either drawing
or coloring) is chosen. The controls for the drawing method are:

e Line Width — only works on some versions of IRIX (see section §12.1).

e Sphere Res — detail level for rendered spheres

e Sphere Rad — sphere radius scaling factor

e Cylinder Res — cylinder resolution (number of sides in the polygon approximation)

e Cylinder Rad — cylinder radius scaling factor

For the coloring method, the transparent button allows you to make the drawing representation
semi-transparent (see §6.3). Also, when ‘ColorID’ is chosen for the coloring method, a text entry
box is shown allowing you to specify the index of a color to use for the selection, which may be a
number from 0 to 15.

Atom Name Lists

When the Atom Name Lists button is pressed, two browsers appear in place of the drawing and
coloring method controls. These are used to list the available keywords and values for use in
choosing atoms for the selected views. The left browser contains a list of the keywords and functions
understood by the selection command [§7]. If a keyword is selected which can take on a value (for
instance, name and index), then the possible names will be displayed in the rightmost browser. The
functions can be identified by the (to the right of the name. After selecting a keyword, the right
browser will display all the names associated with the keyword. For example, selecting resname in
the left browser will show all the three-letter residue names known for the selected molecule.

Clicking on a field in the value browser will add it to the selection text field. Double clicking a
keyword field adds the keyword to the text field. A double click is used so that the single click is
available for simple viewing of the possible keyword values.

40

Changing Views

In addition to adding or removing views from a molecule, this form is also used to change how an
existing view is displayed. After selecting a view for a specific molecule, the form’s controls are
updated to show the current settings for that view. Changing the settings will automatically change
the respective view, and the new format will be shown in the graphics display window. The display
will be updated after every change, however, which is sometimes not always desirable (for example,
if a number of different aspects need to be changed at once). The Apply Changes Automatically
button may be toggled off to change this behavior — if it is turned off, selected changes will only be
applied when the Apply Changes button is pressed. Selecting a different view, or pressing the Clear
Changes button, before applying the changes will reset the form controls to the current settings of
the selected view.

To clear the selection text for a given view double click on the Clear Changes button. The first
(and every odd) click reverts the text to its previous setting, the second (and every even) click
clears it completely.

A few details regarding the mechanism for ‘selections’ is in order. For beginners, it is best
to use the Atom Name Lists and the Image Controls together in order to generate and organize
views. For instance, load a molecule and choose the Atom Name Lists option. If you double click
on the name keyword, you will notice that two things happen. First, a listing of values appears to
the right of the keyword. Second, the word “name” appears in the text selection window. Now if
you go ahead and single click on some of the available values, you will notice that they are also
printed in the text selection box. In this way you can use the mouse to generate a description of
your selection and then hit Apply Changes in order to have that description register with VMD.
The moral is, if you want to create a complex description quickly with the mouse:

e Use the Atom Name Lists to see what your available options are.

e Double click on the keyword in order to enter it in the selection text box.

e Single click on each of the desired values for the keyword that you want to display.
e Hit the Apply Changes button.

e Go back to Image Controls and customize your style of presentation

As a final note, keep in mind that both the Color form [§3.3.4] and the Molecule form [§3.3.2]
can be accessed from the Graphics form by clicking on the buttons located in the upper corners of
the form.

The Tool Selection Button

Next to the Apply Changes button on the Graphics Form is the Tool Selection button. This
button allows the tools defined in the Tracker form to affect certain atom selections, rather than
simply a single atom or the entire molecule. Only one atom selection, if any, can be assigned to
the tools. To make the assignment, click on the desired representation in the browser window so
that it is highlighted, then press the Tool Selection button. If you have multiple representations
or multiple molecules loaded, the button will be lighted only when the assigned representation is
highlighted. To clear the assignment, again highlight the previously assigned representation in the
browser window (when it is found, the Tool Selection button should be on) and press the button.
Deleting the assigned representation also has the effect of clearing the assignment.

For information about how the Tools work with atom selections, see Tool descriptions [§3.3.11].

41

3.3.5 Animate Form

Each molecule displayed by VMD can contain multiple sets of atomic coordinates, which may be
played back to animate the molecule and show its motion. The source of the coordinates can be, for
example, from a molecular dynamics simulation, or simply multiple versions of the same molecular
structure. The Animate form is one way to control the playback of these trajectories.

The Animate form handles the trajectory playback of the active molecules [§3.3.2]. The second
line of controls contains five buttons which act like the buttons on a tape player or VCR. The center
button (with the square) stops the animation. The button to the right of the stop button advances
the animation one step forward in the trajectory, and the next button to the right continually steps
the animation forward. Similarly, the buttons to the left of the stop button steps the animation
backwards either once or continuously. (Just remember that the button that looks like fast-forward
is really the play button, and that the one that looks like the play button is really the single step
forward button.)

The molecular status shown in this form reflects the state of the top molecule. Commands
entered via this form, however, affect all active, not just the top molecule. This makes it possible
to position several different molecules at the same frame, and to start them in motion at the same
time with one command. But, since it is not immediately obvious from the information shown in
this form what molecules will be affected, some care must be taken to make sure you have the
proper molecules active that you wish to animate.

Animation Speed

The rate of playback can be controlled in two ways. The Frame Skip controls change the step size.
By default, the frame skip is 1, so each step of the playback increases (or decreases) the animation
frame number by one. If the frame skip is 5 then the animation proceeds five times faster because
only 1/5 of the frames are shown.

The Speed slider at the bottom of the form also affects the playback speed. Internally, this
controls how many screen updates are needed between each step. By default, the slider is at the
far right indicating that one step is performed for each screen redraw. Moving the slider to the left
increases the minimum time required between updates.

Jumping to Specific Frames

The Start and End buttons are used to simplify the comparison between the initial and final struc-
tures - Start resets the current animation to the first frame, and End jumps to the last frame. If
you need to jump to a specific frame, enter the frame number in the Jump To text area and press
enter. One thing to bear in mind is that the frame number starts at 0, so to jump to the 5th frame,
you must actually enter 4 here.

All of the controls affect the active molecules, but two parts of the animate menu use information
from the top molecule [§3.3.2]. There is a display just below the End button which shows something
like 0/1 or 23/59. The first number specifies the current frame number, starting at 0, and the second
gives the total number of frames.

Looping Styles

When the animation is playing forward and reaches the end of the data available for the top
molecule, one of three possible actions takes place, as specified in the Style chooser. The default

42

is ‘Loop’, which will reset the active molecules to the first frame and continue playing forward.
‘Once’ will stop the animation when it reaches the last frame, and ‘Rock’ reverses the direction of
animation. The actions are symmetrical when the animation is playing in reverse.

3.3.6 Edit Animation Form

This form is used to add, save, or delete coordinates sets (also referred to here as frames) from a
molecule. Usually these coordinates come from successive frames of a trajectory but, as shown in
the tutorial A Quick Animation [§3.3.6], can also be distinct conformations of the same structure.

When this form is used, it will affect only the molecule selected in the Selected Molecule chooser.
There are three types of actions which can take place; read frames from or write frames to a file
(in the CRD, DCD or PDB format) or delete frames from the current animation.

Reading Frames

VMD can read in new coordinate sets from either PDB files (to add a single new frame to the
animation), from ascii CRD files (which may contain several frames), or from binary DCD files
(which may also contain several frames). The new coordinate sets are appended to the end of the
stored animation list for the selected molecule. At present, there is no way to use Babel to append
non-PDB and non-CRD/DCD files. The format is determined by selecting the appropriate name
in the File Type chooser. If you want to read in all the information from the file, make sure that the
Amount chooser says ‘All’, then press the Read button in the bottom right corner. This will bring
up the file browser so you can select the file. (Unlike the Files form, the file is loaded immediately
after the filename is entered in the file browser.)

Sometimes you may not want to read in a whole CRD/DCD file. For example, you may only
want the last frame, or every tenth frame. You can do this by choosing the ‘Selected’ option in the
Amount chooser|[§ 3.3.6]. This brings up the frame skip selection controls. Once you’ve chosen the
appropriate values, press the Read button to bring up the file browser and finish as mentioned in
the previous paragraph. The Amount options are ignored when reading in PDB files.

Writing Frames

Using the ‘Write File’ action, you can write the loaded frames to file in either the PDB or the CRD
ASCII formats, or you may write to a binary file following the DCD format. This may be used
to write out a new trajectory in a single file after assembling many frames from different sources
(such as PDB CRD, or DCD files, or even from a remote simulation). You can also use this, in
combination with Read File, as a way to make PDB files from a DCD/CRD trajectory.

You can either save the entire stored trajectory, or a slice of the data by using the Amount
chooser [§ 3.3.6]. Then select the appropriate output file type in the File Type chooser, and press
the Write button in the bottom right corner. This brings up the file browser, which you can use to
enter the new filename. Once you press the Write button in the browser, the file will be written
without further confirmation. See section on atomselect command [§ 13] for information on how
to write atom coordinates for an atom selection in a PDB file.

Deleting Frames

This provides a way to delete frames from memory. First, choose the frames you wish to delete with
the Amount chooser and (possibly) the frame skip controls, then press the Delete button. There is

43

no confirmation of deletions.

One problem with this mechanism is there is no way to delete every frame except for those
given by the frame skip. You can get around this by writing the skip selection to a CRD/DCD file,
deleting all the frames from memory, then reading the skip back in from disk.

Amount Chooser

The meaning of this option varies depending on the action. If ‘All’ is selected, then all the frames
will be read from the file, or all the frames will be written to the file, or all the frames will be
deleted from memory.

The other option is ‘Selected.” This will bring up three controls, labeled Begin, End, and Skip.
These make it possible to use a subset of the frames, starting at frame Begin and selecting every
Skip frames until the End is reached. For instance, to select every fifth frame between frames 14
and 98, set:

e Begin to 14
e End to 98

e Skip to 5

(Remember that frame numbers in VMD start at 0, so frame 0 is the first frame.) The value
-1’ is a special number; setting Begin to -1 is the same as starting at the first frame, End = -1 is
the same as ending at the last frame, and Skip = -1 is the same as taking one step.

When the Action is ‘Read File’, the selection is applied to the frames from the file to be read.
When it is ‘Write File’, the selection determines the frames to be written, and when ‘Delete Frames’,
the selection determines the frames to be deleted from memory.

3.3.7 Labels Form

This form is used to manipulate the labels which may be placed on atoms, and the geometry
monitors which may be placed between atoms. Labels are selected with the mouse, as discussed
in §3.1.1. Once selected, the Labels form can be used to turn different labels on or off or to delete
them entirely. Also, labels displaying geometrical data such as bond lengths may be graphically
displayed using this form.

Label categories

The Category chooser (in the upper left) is used to select which category of labels to manipulate.
The different label categories include:

e Atoms, which are shown as a text string next to the atom listing the name and residue of the
atom;

e Bonds, which are shown as dotted lines between the atoms with the bond length displayed
at the bond midpoint;

e Angles, which are shown as dotted lines between the three atoms with the angle displayed at
the center of the defined triangle;

44

e Dihedrals, which are shown as dotted lines between the four atoms with the dihedral angle
(the angle between the planes formed by the first three atoms and the last three atoms) shown
at the midpoint of the torsional bond.

e dihedrals

All the labels for the selected category which have been previously added are displayed in the
browser in the center of the form. The line itself contains from 1 to 4 atom names, depending
on the category; the atom names have the form <residue name><residue id>:<atom name>
followed by either (on) or (off). The last word indicates if the label is turned on or off.

Modifying or deleting a label

A label can be turned on or off without deleting it, by selecting the label in the central browser and
pressing the Hide button. To turn it back on, select it again then press the Show button. Press the
Delete button to delete it. This browser allows multiple selections, which, for example, allows you
to delete several labels at once. To select everything in the current category, press Select All; to
unselect them, press Unselect All. If nothing is selected, the action is applied to everything. Thus,
one way to turn everything off is to press Unselect All then press Hide. (It may seem counterintuitive,
but it was done this way so all the labels could be deleted by just pressing Delete.)

Plotting a label’s value

If the label has a numeric value (such as a bond length geometry monitor), it is easy to graph the
change of the value over time (for multiple frames in an animation). The Graph button creates a
temporary file for use by a graphing program, then optionally starts such a program to display the
data. Each line of the file contains the frame number (starting at zero and expressed as a floating
point number) followed by the value of the label for that frame.

Once the file is created, the text in Graph Command is executed to plot the data. By default,
the text is xmgr %s, where the %s is automatically replaced with the appropriate temporary file
name. When the graphing program finishes, the temporary file is deleted.

The default setup causes VMD to freeze until the graphing program finishes. It is possible to
get around this by including an & at the end of the graph command, as in:

xmgr %s &

This may sometimes cause a problem because VMD might delete the file before the program finishes
reading it. If this is a problem, try:

csh -c "xmgr %s &; sleep 4"

to cause VMD to wait a few seconds before deleting the file. You may have to increase the delay
depending on the file size and type of program used. You may also try variations on the theme; for
instance

csh -c "xterm -e vi %s ; sleep 4"

will bring up a vi window with the data file.

45

3.3.8 Display Form

The Display form controls many of the characteristics of the graphics display window. The charac-
teristics which may be modified include:

AA — Turns antialiasing on or off. Antialiasing helps smooth out the sometimes jagged
appearance of lines resulting from the discrete pixels used to represent a line on the screen. It
is highly recommended to leave this on, but on some versions of IRIX (i.e., 6.3) antialiasing
is known to be buggy.

Depthcue — Turns depth cueing on or off. Depth cueing causes the more distant objects to
blend into the background color. This can help give a 3D effect when viewing in a non-stereo
mode. Warning: There is a known bug that causes the antialias and depth cue buttons to
stop working. The existence of the bug is known, but the solution is not (yet). Until this is
worked out, it is suggested to not change the AA or Depthcue settings.

Axes — A set of XYZ axes may be displayed at any one of five places on the screen (each of
the corners or the center) or turned off. This is controlled by the Axes chooser.

Stage — The Stage browser controls the stage, which is a checkerboard plane that can be
located in any one of six places or turned off.

Detail — The degree of detail in the displayed image. Nothing: show nothing; Points: show
everything as points; Wireframe: show only wireframe representation for spheres, cylinders,
etc.; Flat: show a flat image (no 3D effects); Full: show complete detail. The performance
increases as the level of detail decreases.

Alt. Detail — Same as Detail, but for the display during mouse operations on the displayed
molecules, such as rotation, translation and scaling. Since VMD redraws the screen often
while the molecule is rotated, it is sometimes beneficial to set lower level of detail for the time
of rotation for better performance.

Perspective — The view of the scene can be Perspective or Orthographic. In the perspec-
tive view (the default), objects which are far away are smaller than those near by. In the
orthographic view, both objects appear at the same scale.

Stereo, Eye Sep, and Focal L — These controls set the stereo mode and parameters; stereo
is discussed fully in chapter §9. The Stereo chooser changes the stereo mode, while the Eye
Sep and Focal L controls change the eye separation distance and the focal length, respectively.

Lights — The graphics display window can use up to four separate light sources to add a
realistic effect to displayed graphical objects. The Lights On browser turns these light sources
on or off. If the number is highlighted, the light is on, and clicking on it turns the light off.
See sectin §3.1.1 for more discussion regarding lights.

Clipping Planes (Near Clip and Far Clip) — Clipping occurs when only the part of an
image within a certain region of space is drawn. Ounly those parts of graphical objects which
are between the near and far clipping planes are drawn. This feature is useful for viewing
a slice of the molecule. The clipping planes also affect the depth cueing, if it is turned on.
Objects at the near clipping plane are distinct while objects at the far clipping plane are
indistinguishable from the background color.

46

The positions of the clipping planes are changed with the Near Clip and Far Clip controls. It
is not possible for the near clip to be farther away than the far clip. When using stereo, the
near clip should be decreased, or even set to zero.

e Screen Height (H) and Distance (D) — The screen distance parameter determines
the distance, in ‘world’ coordinates, from the origin to the display screen. If this is zero, the
origin of the coordinate system in which molecules (and all other graphical objects) are drawn
coincides with the center of the display. If it is less than 0, the origin is located between the
viewer and the screen, while if it is greater than 0, the screen is located closer to the viewer
than the origin. A negative value puts any stereo image in front of the screen, aiding the
three-dimensional effect; a positive value results in a stereo image that is behind the screen,
a less dramatic effect (but easier to see, for some people) stereo effect.

The screen height, along with the screen distance, defines the geometry and position of the
display screen relative to the viewer. The screen height is the vertical size of the display
screen, in ‘world’ coordinates. Each molecule is initially scaled and translated to fit within
a 2 x 2 x 2 box centered at the origin; so the screen height helps determine how large the
molecule appears initially to the viewer. This parameter is used mainly to configure the VMD
display to the dimensions and position of a large-screen display, such as a projector, that may
be used as a stereo display.

Figure 3.17 describes the relationship between the screen height, the screen distance, and the
world coordinate space.

3.3.9 Color Form

VMD maintains a database of the colors used for the molecules and the other graphical objects in
the display window. The database consists of several color categories; each color category contains
a list of names, and each name is assigned a color. The assignment of colors to names can be
changed with this form. There are 16 colors, as well as black (the VMD color map), and this form
can also be used to modify the definitions of these 17 colors. For more about colors, see the chapter
on Coloring [§6].

To see the names associated with a color category, click on the category in the Category browser
located on the left side of the form. Click on the name to see the color to which it is mapped. To
change the mapping, click on a new color in the browser to the right of the Category browser. For
instance, to change the background to white, pick ‘Display’ in the left browser and ‘Background’
in the center one. The right browser will indicate the current color (which is initially black for the
background). Scroll through the right browser and select white to change the background.

Changing the RGB Value of a Color

Sometimes you may want to change the RGB value of a color in the color map, instead of changing
which color is assigned to a particular name. For example, you may need to make a black and
white picture and need to emphasize the contrast between a red oxygen and a yellow sulphur. This
is done with the Edit Colors part of the form. First, choose the color you want changed in the
browser. Then move the red, green, and blue sliders until you get the desired color. There are a
few additional buttons to help you do this. The white button makes the color white (red = blue =
green = 1.0) and the black color makes it black (red = blue = green = 0.0). The default button
restores the color to its original RGB values. The tie button is used to make grey colors; when the

47

button is depressed, as you move one slider the rest will follow. Press the tie button again to untie
the sliders.

For example, suppose, we don’t really like the appearance of the green color and we want to
make it darker. To see what is happening we’ll change the color of the background, so choose
Display in the category field of the upper part of the Color form, then choose Background, and,
finally, choose green. The background should become green. The (default) RGB values are 0.20,
0.70, 0.20. To make the color darker, let’s bring the RGB values down by moving the red, green
and blue sliders to the left. You can see the color changing as you move the sliders, so this way
you can easily pick the color you prefer to be named ’green’. The definition can be immediately
brought back to the default values by pressing the ’Default’ button on the form. Note, that moving
the sliders changes both solid and transparent (’green’ and ’trans_green’) colors (see Chapter § 6
for details).

Color Scale

Several of the coloring methods in the graphics form are used to color a range of values, as compared
to a list of names. The actual coloring is determined by the color scale [§6.2.2].

There is only one color scale available at any one time (out of the ten possible) and it is changed
with the Color Scale Method chooser. Changing the values of Minimum and Midpoint change some
of the proportionality values used in making the scale.

The colors used by the color scale are not the colors in the color map, so the Edit Colors part
of the form will not affect the color scale colors.

3.3.10 Render Form

This form is used to create a file with an image of the currently displayed graphics scene. VMD
can write input script files for a number of image processing packages. These packages are listed
in table 8.1. Once VMD creates an input script in one of the supported formats, the particular
package can use this file to create a final output image. See Chapter § 8 for more information on
how rendering is performed.

Rendering

The rendering process works in two stages. The first step writes an input file for the image
processing program selected in the Output Formats browser, and the second (optionally) starts
the rendering process. The file is given the name entered in the Output Filename field; a default
name is given when a new format is selected, so it is best to hold off entering the filename until
after the file format is selected. Another way to select the filename is available by pressing the
List... button, which opens up a file browser.

Pressing the Go button writes the data file. After that, the Render Command is executed. The
default command should start the appropriate rendering program if it is available.

The fastest of the currently supported programs is Raster3D. The rendering command for it
has been set up to call the SGI program ipaste when the RGB output file is finished. VMD will
wait for the rendering to finish, which causes VMD to freeze, so you may want to run the job in
the background. This can be done by enclosing the existing text with ()’s and putting an & at the
end. For example, the way to make the Raster3D render command run in the background is:

(render < ¥s -sgi %s.rgb; ipaste %s.rgb)&

48

Caution

There are some issues to consider when using the rendering commands, which can lead to discrep-
ancies between the scene displayed in the VMD graphics display window and the image generated
by the image processing application. These issues include:

e The near and far clipping planes are ignored;

e The colors or intensities may be slightly different, due to different colormaps, gamma values,
or lighting models;

e The rendering commands do not currently support stereo output, so even if the display is
currently in stereo mode, a non-stereo perspective will be used for the rendering program
input script;

e Text is generally not available as a graphics primitive in the image processor input scripts, so
label text will not appear, although the lines of bond, angle, etc. labels will be drawn. The
only exception is in Postscript output, which supports text output.

e Dotted spheres are not drawn with dots.

e The background color may be black, as not all output formats support a background color
other than black;

e Cylinders will look slightly different; in VMD cylinders are drawn as cylindrical polygons
with N facets, while they may appear as smooth in the final output (which is generally looked
upon as an improvement!)

3.3.11 Tracker Form

The Tracker form is used to set up external 3D pointers, buttons, force-feedback devices, and the
VMD “tools” that they control.

Supported devices and how to configure them

VMD currently can only communicate with devices in two ways: through the CAVE software or
using the Virtual Reality Peripheral Network (VRPN). VRPN is a system which allows workstations
to use many types of devices over the network. This means that VMD does not have to be running
on the same computer that the devices are plugged into. In the CAVE, VMD recognizes two types
of devices: buttons and three-dimensional trackers. With VRPN, you may use buttons, trackers,
and also force-feedback (haptic) devices such as the PHANToM. More types of devices may be
added in the future.

To use these kinds of devices with VMD, you need to create a sensor configuration file, in your
home directory, called .vmdsensors. In this file, any number of devices can be specified, using a
universal sensor locator (USL). The format for a USL is as follows:

e USL — type://place/name: nums

e type — the type of sensor (vrpntracker, vrpnbuttons, vrpnfeedback, cavetracker, or
cavebuttons)

49

e place — the machine that controls it. Devices that cannot yet be used on arbitrary computers
over the network must have the keyword local here to be compatible with future versions.

e name — the name of the device within that machine. If multiple devices can’t currently exist,
such as with the CAVE, then a standard name should be used, such as cave, so that the
same USL will make sense in the future, when multiple devices are allowed.

e nums — a comma-separated list of numbers of devices belonging to that names (optional,
defaults to zero). Some devices demand only one number or a specific number but button
devices should work correctly now.

The lines of a sensor configuration file come in four flavors:
e (Comments begin with # and are ignored.
o Empty lines are also ignored.

e Device lines have the form device name USL, where name is the name that VMD will use
to refer to the device, and USL is the device’s USL.

e Options tell VMD how to use the most recently listed device. Currently, there are four
supported options:

— “scale x” scales the position of a tracker by a factor x.
— “offset x y 2z” adds a constant vector to the position of a tracker.

— “rot right—Ileft Agy Aoi...Ass” multiplies the orientation matrix returned by a
tracker on either the right or the left by the matrix A.

— “forcescale x” multiplies the force applied to a force-feedback device by the amount z.
Here is an example, showing all the possible things you can do with a sensor configuration file:

the PHANToM connected to the computer "odessa"
device phantomtracker vrpntracker://odessa/Phantom0
scale 10

rot left 00 -1010100

device phantombuttons vrpnbuttons://odessa/Phantom0
device phantomfeedback vrpnfeedback://odessa/Phantom0

Polhemus fastrak on titan

device fastrakl vrpntracker://titan/Tracker0:0
rot right 001100010

rot left 00 -1-1000-10

device fastrak2 vrpntracker://titan/TrackerO:1
rot right 001100010

rot left 00 -1 -1 000 -10

Configuration for the CAVE
CAVE tracker

50

device cavetracker cavetracker://cave/cave
scale 0.32
offset 0 -3.03 O

CAVE buttons
device cavebuttons cavebuttons://cave/cave:0,1,2,3

CAVE buttons (for left-handers)
device cavebuttons cavebuttons://cave/cave:3,2,1,0

Using devices with VMD

There are several different “tools”, each of which can be used with any of the input devices!:

e The Grab Tool mimics a pair of tweezers, and can be used to move molecules around on
the screen without any keyboard or mouse commands. Pressing a button connects the 3d
cursor to the nearest molecule. Then, moving or rotating the tracker will cause the molecule
to move or rotate around on the screen.

e The Rotate Tool is a tool for precisely rotating molecules with haptic devices. When a
button is pressed and released, the cursor is again connected to the molecule. With this tool,
however, the center of the molecule is fixed, and the end of the haptic pointer is forced to
lie on the surface of a sphere about this center. Moving the device around the surface of
the sphere rotates the molecule, and another button click releases the molecule. There are
detentes — like the clicks commonly felt in a 2d dial — on the surface of the sphere, arranged
so that the user can rotate the molecule to precise 90-degree points. If the user holds down
the button for a while initially, he can feel the sphere and the detentes, but do not affect the
molecule. This “preview mode” allows the user to find a good point from which to start the
rotation.

e The Joystick Tool is the three-dimensional equivalent of a Joystick, for haptic devices.
Pressing the button creates a virtual “spring,” holding the device to its current location. If it
is pushed away from this point in some direction, the selected molecule starts sliding in that
direction, with a velocity that is proportional to the displacement of the device. The joystick
tool shows how a three dimensional input device can be used to supply relative (differential)
coordinates instead of absolute coordinates.

e The Tug Tool is a tool that allows interaction with running molecular dynamics simulations.
Pressing the button connects the device with a simulated spring to the nearest atom, and
pulling on it adds a force to the simulation. If a haptic device is being used, the user will feel
a force on his hand that is proportional to this force. In this way, the tug tool implements
something like the click-and-drag that is commonly used with windowing systems.

If an atom selection is assigned to the Tools, as described in section 3.3.4, the the Tug Tool
will apply a force to all the atoms in the selection. The force applied will be proportional to
the masses of the atoms in the selection, so that all atoms experience the same acceleration.
When a Tool Selection has been assigned, the Tug Tool will always affect that selection, even

!The new tools have been designed to allow VMD to use haptic devices in many ways. All of the tools can give
force-feedback to the user, but none of them actually require haptic devices to work.

51

if the button is pressed far from any atoms in the selection; this is intended to make it easier
for the user to apply forces only on those atoms he/she intends to steer.

e The SMD Tool is a tool intended for use with steered molecular dynamics (SMD). It allows
the user to pull on atoms in only one direction, so that the forces and motions of the molecule
can be more easily analyzed. The user clicks at a “target point”, drags the pointer back to
the atom he wishes to pull on, then releases the button. The tool now behaves like a tug
tool, but forces are restricted to lie parallel to the line through the atom and the target point.
Using the SMD tool with a haptic device feels like pushing against a non-rotating, frictionless
plane, since the forces applied to the user’s hand must also all point parallel to this line. The
force applied and the position of the atom are automatically recorded to the file pull.txt.

To add a new tool to a VMD session, open the tracker form and click the Create Tool button.
The tool’s number and type are displayed in the list to the left. Devices can be added to the tool by
selecting them from the Add Device menu, or removed with the Delete Device button. Some of
the options that can be specified in the sensor configuration file can be edited in using the controls
below, and the tool’s type can be changed with the Type menu.

3.3.12 Sim Form

As described in the chapter on Interactive Molecular Dynamics [§15], VMD has the capability to
work with a molecular dynamics program running on another computer, in order to display the
results of a simulation as they are calculated.

The Sim form allows you to control the behavior of a molecular dynamics simulations which has
been previously connected to through use of the Remote form. This form contains controls to change
parameters for the simulation and to affect how VMD displays the results of the simulation. The
form also contains informative displays, which show the current status of the simulation connection,
and such things as the current energy, temperature, and timestep of the molecular system being
simulated.

At the top of the form, the host machine, if any, of the molecular dynamics simulation to
which VMD is connected is displayed. Below the connection display is a browser used to set some
connection parameters. These include:

e Transfer Rate: How often a timestep is transferred from the remote simulation program
to VMD. By default, this is 1, which means every calculated timestep is sent. If this is set
to some value N, then only every Nth step will send from the remote computer. If you have
the dubious misfortune of receiving coordinates faster than VMD can process them, or if you
simply don’t care to receive coordinates very often, setting this transfer period higher will
improve the performance of both VMD and the simulation.

e Keep Rate: How often VMD saves the timestep in its animation list, instead of just dis-
carding it after displaying it. By default, this is 0, which means that VMD does not save any
frames. When this is 0, then when VMD receives a new frame it replaces the last frame in the
animation list with the new frame, instead of appending it. When it is set to some number
N larger than 0, then every Nth frame received from the remote simulation will be appended
to the animation list, instead of being used to replace the last frame.

To change a parameter, select the line with the relevant parameter, and in the text entry area
that appears enter the new value and press <return>. After you enter a new value, a command

52

will be sent to the remote simulation to change it, and there may be some delay between when the
simulation gets the command, acts on it, and the results propagate back to VMD.

In the central portion of the form is shown a status message for the chosen connection. A large
browser near the bottom of the Sim form displays the different energy values for the system being
simulated (kinetic, electrostatic, etc.), as well as the current timestep and the temperature. It is
automatically updated each time a new atomic coordinate set (timestep) is received and stored in
the VMD animation loop.

At the bottom of the Sim form are two buttons:

e The Kill button, which when pressed will terminate the remote simulation which is currently
selected in the connection chooser. This will not delete the molecule stored in VMD’s internal
lists, it will just stop the remote program from executing (and thus stop the transfer of new
timesteps from that program to VMD). You must go to the Molecule form and delete the
molecule from that list to completely remove the molecule from VMD memory.

e The Detach button, which when pressed will sever the connection between VMD and NAMD,
but will NOT kill the NAMD process. Instead, the simulation will be left running.

3.4 Other User Interfaces

VMD is the visualization component of MDScope which is an interactive environment for molecular
modelling and dynamics. As part of that project we are experimenting with new modes of human-
computer interaction. Most programs use the mouse and menu user interface components, or even
a dial box (which, by the way, VMD does not currently support - anyone want to give us one?)
but these do not fully support the full range of control needed for modelling. We envision a system
where a ligand can be picked up and inserted directly into an active site, or where one can point
to a molecule and say “which helix is that?”

3.4.1 External Interfaces

We have developed a simple mechanism to receive external text commands. It is based on the Tcl
extension package, Tcl-DP, which adds commands to interface with standard socket communica-
tions. It allows other programs to send messages to VMD and be interpreted as if they originated
from the keyboard. If the command returns information, that data is sent back to that calling
process.

The external interface works by setting up VMD as a server for remote execution of a Tcl
command (VMD is a Tcl-DP RPC server). Other processes can contact VMD by connecting to a
port. The remote process sends a text command to VMD which interprets it and sends the result
back to the remote process, which can do with it as it may.

The command external on starts VMD as a Tcl-DP RPC server. When an external process
attempts to connect, the calling hostname is checked to see if it is allowed to run commands on the
local machine. If so, the command is run. Note that external off does not disconnect currently
attached processes, it only disallows new ones.

There is a simple security mechanism in the external command which derives from the standard
Tcl-DP security. This allows or denies new connections based on the host name of the calling process
and uses the command external host.

There are two ways to make a client that connects to VMD. The first is to use VMD itself. The
command external connect <hostname> will connect to a VMD process on the given machine.

53

The process that started the contact is the client VMD and the one that was contacted is the server
VMD. The other way is to use a Tcl based shell which has Tcl-DP compiled in. Source (or look
at) the file $env(VMDDIR) /scripts/vmd/external.tcl to see how the DP calls are made.

The client process sends a new command to the server with the command external send
<command>.

54

Fic1ire 2 - The Matr fArra

Figure 3.10: The Files form

| Coor Dfs] ETE

CEFK 1.15 0. nsme resld 2.6 and ns

o BB =) B
1 e

Figure 3.11: The Graphics form (in Image Controls mode)

56

| Color Dafs | | _vilecules |

CFE 1.15 0. neme resld 2.6 and ns

Figure 3.12: The Graphics form (in Atom Name Lists mode)

Figure 3.13: The Animate form

57

et |

Figure 3.14: The Edit Animation form

Figure 3.15: The Labels form

58

Figure 3.16: The Display form

59

o ‘\

4/3 SCRHEIGHT
i.e.8.0
A
................... \
Viewer's I
Eye Position
SCRHEIGHT
i.e.6.0

Figure 3.17: Relationship between screen height (SCRHEIGHT), screen distance to origin
(SCRDIST), and the viewer

f 1 RGN |

Figure 3.18: The Color form

60

Figure 3.19: The Render form

e |

OSMD ||| DekteTol |
|

nhantomtracker I

W 0o D] 4 00 DM

ol e

 mememrem |

Figure 3.20: The Tracker form

61

Chapter 4

Loading A Molecule

The Files form is the primary means for loading a new molecule into VMD from one or more data
files. VMD natively understands five molecular data file formats: PDB coordinate files, CHARMM
and X-PLOR style PSF (topology) files, CHARMM and X-PLOR style DCD trajectory files, and
Amber structure and trajectory files (i.e. PARM and CRD). These files contain some redundant
information and can be loaded in different combinations.

The PDB file contains data about the atom, residue, and segment names, the occupancy and
beta factor, and one coordinate set. The PSF and PARM files list the atom, residue, and segment
names, the residue type, atomic mass and charge, and the bond connectivity. The DCD and CRD
files contain only the atomic coordinates over multiple frames (timesteps).

When VMD loads a file it requires information about atom names and coordinates and tries to
fill in the rest. Since the PDB file contains all this information, it does not need to be loaded with
any other data files. However, the PDB file doesn’t contain the atom types, masses, and charges,
so these are guessed.

A PSF file does not contain coordinate information so it must be loaded along with a PDB or
DCD file. If a PDB and PSF are given there is no missing data and VMD makes no assumptions.
If a PSF and DCD are given then only the chain identifier and occupancy and beta values are
missing so they are given a default value.

A PARM file is similar to a PSF in that it too contains no coordinate information. It must be
loaded along with an CRD trajectory file. If a PARM and CRD file are loaded together, then only
the segname and chain ID for the atoms are left blank. VMD fills in the remaining fields explicitly,
making no assumptions.

A CRD or DCD file can be specified along with the PDB, in which case the PDB file will be
read as normal, and then coordinate sets are read from the DCD or CRD until the end of the file
is reached.

Additional coordinates from a PDB, CRD, or DCD file can be appended to the current coordi-
nate set using the Edit form [§3.3.6].

4.1 Babel interface

VMD can use the program Babel, if installed, to translate a wide variety of different molecular data
files into the PDB format. Babel, written by Pat Walters and Matt Stahl, can convert between
many types of molecular data files. Not all of these have been tested for use with VMD, so your
results may vary. Some data formats, such as XYZ, contain a series of coordinates. Babel converts

62

these to a series of PDB files which VMD then reads as an animation. For more information about
Babel, see http://www.eyesopen.com/babel.html VMD supports version 1.6 of Babel. Older
versions of Babel will not work correctly with VMD.

VMD at present has no provision for using Babel to convert the output PDB CRD, or DCD files
to anything else (see sections §3.3.6, § 10.3.1 and § 13.2 for information on writing output files).

The Babel-VMD interface uses two environment variables [§17.2], VMDBABELBIN and VMDTMPDIR.
The first specifies the absolute location for the Babel binary (i.e. it must include the name of the
executable itself, such as /usr/local/bin/babel). The second defines the location for the temporary
PDB files made by Babel.

4.2 What happens when a file is loaded?

(See the Files form §3.3.3 for instructions on how to specify input files. See the the Edit form [§3.3.6]
for instructions on how to save data as either a PDB, DCD, or CRD file. The Edit form can also
be used to append [§3.3.6] PDB and DCD files to a loaded molecule.)

If only a coordinate file (i.e. just a PDB, with no PSF) is given, two passes are made through
the file. The first pass determines how many atoms exist and the second reads them in. VMD then
uses internal defaults to fill in the missing values. It then does a distance search to determine the
bond connectivity, which will make some strange bonds if atoms are too close. If both a PSF and
a PDB file are given, no approximations or guesses are made. For those interested in the details,
when VMD is forced to guess the connectivity, it considers a bond to be formed whenever two
atoms are within R; * Ry % 0.6 of each other, where R; and Ry are the respective radii of candidate
atoms.

After the molecule is read, VMD checks to see if any new names are needed for the various
coloring categories [§6.2.1]. If so, they are created and assigned a new color. (When the end of
the color list is reached, the color starts again at the beginning.) Next, the bond connectivity is
established and the molecule is analyzed to identify the various components, i.e., determine which
residues are protein, nucleic acids, and waters, which atoms are backbone atoms, etc. A search
is then made to connect these different types into larger fragments of the same type. As these
searches take place, the information is printed to the screen. An example output for BPTI is:

Info 1) Analyzing structure ...

Info 1) Atoms: 898 Bonds: 909

Info 1) Backbone bonds: Protein: 231 DNA: 0
Info 1) Residues: 58

Info 1) Waters: 0

Info 1) Segments: 1

Info 1) Fragments: 1 Protein: 1 Nucleic: O

There are actually several types of fragments. Protein and nucleic fragments are homogeneous;
either all proteins or all nucleic acids. However, it is quite possible for a protein to be connected to
a nucleic acid or some other non-protein. When this occurs, a warning message is printed, as in:

Warning 1) Unusual bond between residues 1 and 2

These warnings are known to occur with terminal amino acids, zinc fingers, myristolated
residues, and poorly defined structures.

63

4.3 Raster3D file format

In addition to the molecular file formats, VMD can read the input file for Raster3D. (Raster3D
converts an input file into a shaded raster image for use in making high quality pictures. It is often
used with MolScript.) The ability to read Raster3D allows users to view MolScript files in 3D and
incorporate special images into the display without having to edit the VMD code. If anyone has
used this second option, we would be interested in knowing what was done.

The file format, which is part of the Raster3D documentation, describes a simple collection of
triangles, spheres, and cylinders with either flat or spherical ends. Each shape is colored by an
RGB triplet.

4.4 Raster3D Caveats

Certain newer Raster3D objects are ignored, such as quadrics. Also, nearly all of the header
information is ignored—most notably, the viewing matrix.

Aside from quadrics, VMD can read and display all shapes in the format with one excep-
tion. Raster3D uses many cylinders with spherical (rounded) ends. VMD deliberately omits these
rounded ends since the resultant image would be very slow.

Finally, since VMD uses a palette of 16 colors, each triplet is converted into its “nearest” indexed
color. This may cause images to be colored slightly differently than expected.

64

Chapter 5

Molecular Drawing Methods

Each molecule in VMD is drawn as several representations, or views, of the molecule. A view is
just one particular way of drawing the molecule, and consists of three characteristics:

e A rendering method (representation style), which determines what shape to draw the atoms,
bonds, and other components of the molecule. This chapter describes the different rendering
methods available in VMD.

e A coloring method, which determines how to color each of the atoms and bonds included in
the view. The Graphics form contains controls to set the coloring method at the right of the
form. Chapter § 6 describes the different coloring methods.

e An atom selection, which determines which of the atoms in the molecule will be included in
the view. This selection is entered in the text input field at the bottom of the Graphics form.
Chapter § 7 describes the syntax used to select atoms.

A molecule can contain any number of different representations, and complex pictures of the
molecule can be generated by creating views with different selections, coloring schemes, and ren-
dering methods. For example, the protein backbone can be drawn as a smooth tube in one view,
and important residues in the protein can be drawn as spheres or licorice bonds in other views.
When a molecule is first loaded, it is given a ‘default’ view, which will draw all the atoms as lines
and points, coloring each atom by what kind of element it is.

All of the different rendering methods have various parameters which determine how they are
drawn. For each method, there are controls in the Graphics form which modify the associated
parameters, such as the line width and sphere resolution (the graphical controls are described in
section §3.3.4). Table 5.1 lists the available rendering methods, and the following sections describe
these methods and the parameters which modify their appearance.

5.1 Lines

The default representation is ‘Lines’, which is also known as ‘wireframe’. It draws a line between
each atom and the atoms to which it is bonded. Both atoms have to be selected before the bond
will be drawn. The first half of each bond is colored appropriately for the first atom, while the
color of the final half corresponds to the second atom.

The only parameter for this option is the line thickness. On some SGIs you will only notice a
difference between settings of 0, 1, and 2. Anything beyond 2 looks the same as 2. To understand

65

Representation styles ‘ Description

Lines simple lines for bonds, points for atoms

Bonds lighted cylinders for bonds

CPK scaled VDW spheres, with cylinders for bonds

Points just points for atoms, no bonds

VDW solid van der Waal spheres for atoms, no bonds

Dotted dotted van der Wall spheres for atoms, no bonds
Solvent dotted representation of the solvent accessible surface
Trace connected cylindrical segments through C, atoms
Licorice spheres for atoms, cylinders for bonds, same radius
Ribbons flat ribbon through the C, atoms

Tube smooth cylindrical tube through the C, atoms

Cartoon cartoon diagram (cylinders and ribbons) based on secondary structure
MSMS molecular surface as determined by the program MSMS
HBonds display hydrogen bonds

Surf molecular surface as determined by SURF

Off do not draw anything

Table 5.1: Molecular view representation styles.

why, you should see the man page for linewidth (look at an excerpt from that man page in section
§12.1).

5.2 Bonds

Nearly everything about this option is the same as lines except that instead of drawing a bond as
a line between two atoms, a cylinder is drawn instead. To be more specific, it draws an n-sided
prism, where the number of sides is determined in the Graphics form by the “Bond Res” control
and the radius is given by the value of “Bond Rad,” in Angstroms. If the radius or number of sides
gets too small, the bonds are drawn as lines.

In order to fine tune the bond representation, VMD does a small amount of trickery to the
prisms. That is, imagine two hollow cylinders coming together so that the center of the face of one
cylinder is in the same position as the center of the face of the other cylinder. Also suppose these
two cylinders come together at 90 degrees. Although most of these two cylinders will overlap, there
will appear to be a gap at their intersection.

To correct for this problem, VMD extends both cylinders somewhat so that the far ends touch.
If one looks closely, this produces more of an overlap, but it is much nicer looking than the gap.
When three or more bonds join at one atom, VMD chooses the lowest numbered bond and extends
all other bonds to meet with that one. It then extends that lowest numbered bond to meet with
the second lowest numbered one. A bit technical, but not too difficult to do.

5.3 CPK

‘CPK’ is a combination of both ‘Bonds’ and ‘VDW?’ in that it draws the atoms as spheres and the
bonds as cylinders. The resolution and radius can be modified independently. The radius of the
sphere drawn in CPK mode is by default smaller than the sphere drawn in VDW mode, but this

66

radius can be made larger. Since a sphere is drawn for each atom, it will always be slower than
the VDW option, but we will work on performance for future versions. If the values for a sphere
or bond attribute are too small, then those objects will not be drawn.

5.4 Points

‘Points’ draws each atom as a point, and does not draw any of the bonds. This option is not terribly
useful.

5.5 VDW

‘VDW?’ draws the atoms as spheres. The radius used is the van der Waals radius multiplied by a
user-selectable scaling factor. The sphere resolution determines how finely to tessellate the spheres
that are drawn. Drawing spheres takes some time, since they are built from a collection of triangles
produced by a sphere library external to GL/OpenGL.

For those of you interested in the details, what happens is as follows: At the most primitive level,
the sphere drawing algorithm starts with a shape, such as a square bipyramid (two pyramids with a
square base joined base-to-base). Then a recursive bisection is applied to this shape, where at each
level of recursion, given a triangular face, the endpoints of the centers are computed and scaled so
as to be on the surface of the sphere. Given these endpoints and centers, one can construct four
sub-triangles, which themselves are subject to bisection on the next level of recursion. A diagram
illustrating these concepts is given below.

Subdivide each triangle in the old approximation and normalize
the new points thus generated to lie on the surface of the unit
sphere.

Each input triangle with vertices labeled [0,1,2] as shown
below will be turned into four new triangles:

Make new points

a = (0+2)/2
= (0+1)/2
c = (1+2)/2

Normalize a, b, c

a = (0+2)/2
b = (0+1)/2
c = (1+2)/2
1
/\ Normalize a, b, c
/ \
b/___\c Construct new triangles
/\ /\ [0,b,a]
/ N\ / \ [b,1,c]
/____\/____\ [a,b,c]
0 a 2 [a,c,2]

67

The “Sphere Res” setting is actually controlling the number of levels of recursion being applied.

Note:: Due to variations in atom naming conventions, in rare instances VMD may improperly
assign VDW radii to specific atoms, since VMD determines each atom type based on the first letter
forming its name. For example, VMD would assume an atom named “HG” to be a hydrogen rather
than a mercury. If this happens, you are always free to redefine the radii, using a syntax much like
that below:

set sel [atomselect top ¢ ‘name HG’’]
$sel set radius 1.9

5.6 Dotted

Same as ‘VDW’ except that the spheres are drawn dotted instead of solid. That is, a dot is placed
at each of the vertices of the triangle making up each sphere. This can be used, for instance, to
imitate a surface representation.

5.7 Solvent

This method is similar in spirit to the Dotted representation in that it gives a quick estimate of
the molecular surface with a collection of dots. However, it goes above and beyond the Dotted
option by giving a more uniform coverage of the surface. The method that VMD uses to check for
overlaps isn’t technically correct, but it is fast and works quite well. A technical description of the
algorithm is as follows:

For each point of the surface distribution (of radius r = atom radius + probe radius) of atom
1, check each of the atoms j to which it is covalently bound. If the point is too close to j, don’t
display it. Also, if the point is too close to any neighbor k of j (k # i) then don’t draw it. This
is fast since there aren’t that many neighbors to check, but it doesn’t omit parts of the surface in
contact with atoms which aren’t one or two bonds away. This can be considered a good thing since
you might get a better idea of the contact surface.

There are three parameters for this option. One is the probe radius, which was mentioned
in the description. If the probe radius is too large, the problem of over-lapping surfaces between
non-connected atoms becomes more apparent. The second is ”Detail”, which should probably be
renamed ”Density” as it determines the surface density of the distributions. The higher the detail,
the higher the density. The final option is the "Method”. By default the surface is drawn as a
collection of points, but a point is a pixel in size regardless of the scale of the molecule, so when
scaled small the surface density appears high, and when scaled large, the density appears low.
Method 2 draws little plus signs instead of points, which does scale better so the density appears
more contant. Method 3 draw lines between the surface points that are on the same atom, but
makes no attempt to connect the two spheres.

Thanks to Jan Hermans for implementation pointers and thanks again to Jon Leech for the code
to compute the uniform point distributions. That code was included as part of the 1.x distribution.

68

5.8 Tube

There are two ways to draw a ‘Tube’ representation, one for proteins and the other for nucleic
acids. The protein tube is a smooth curve through the selected C,, positions, and the nucleic acid
tube is a smooth curve through the backbone phosphates.

The protein tube is a spline curve that passes through all the Cys in a protein fragment. Five
evenly spaced interpolation points are found along the curve to break the curve connecting the two
Cqs into six line segments. If the first C, is selected, the first three segments are colored by the
color assigned to that C,. If the second C, is selected, the last three segments are colored by the
color of the second C,. The nucleic acid tube is constructed in the same manner except that the
phosphate atoms are used.

The two controls set the spline radius and resolution and have the same meaning as they did in
the ‘Bond’ control. However, if the bond radius becomes 0 or the bond resolution is 2 or less then
the spline is drawn as a simple line. This make moving and rotation the image much faster.

It is possible to pick with the mouse the C, which defines the tube by clicking near the middle
of the six tube segments which are associated with that atom.

5.9 Trace

This representation applies much of the procedure used to construct the Tube. In the end, it
connects the alpha-carbon atoms of successive residues by cylindrical segments with adjustable
width. In the case of nucleic acids, it is the P backbone atoms which are connected. As always, the
segment pieces are colored according to the atom they are associated with. If the cylinder radius
is made 0.00, then the cylinder segments are replaced with lines.

Note: the Trace option is useful for people doing threading or protein folding work who only
look at the C, coordinates and residue names, for then they don’t have to build the sidechains
necessary to see their structure. Also, people working on polymers can fake their structure by
naming everything “CA.” in the PDB file and then using Trace.

5.10 Licorice

‘Licorice’ draws the atoms as spheres and the bonds as cylinders. The difference between this and
‘CPK’ is that the sphere radius is not controllable; instead, it is made the same size as the bond.
This makes for a nice, smooth transition and is one of the most often used representations. It can
be rather slow for large molecules.

5.11 Ribbon

The ‘Ribbon’ representation is similar to ‘Tube’ in that it follows the same spline curve for both the
protein and nucleic acids. However, it uses additional information (the O of the protein backbone
or some of the phosphate oxygens for nucleic acids) to find a normal for drawing the oriented
ribbon. (There may be some problems with the ribbon definition for nucleic acids as it is possible
for the nucleic acid detection routine to label a residue as a nucleic acid even though it does not
have phosphate oxygens.)

Given the coordinates of each atom and the offset vector for the ribbon vector, the drawing
code finds the spline curves for the top and bottom of the ribbon. The two splines are connected

69

by triangles and both splines are drawn as small tubes. As with the ‘Tube’ representation, the six
ribbon segments nearest the given atom are drawn with the color assigned to that atom and the
atom can be selected by clicking near the center of those six elements.

Bond radius and resolution modify the tubes that make up the top and bottom of the ribbon.
If the radius or resolution get too small, the tubes are not drawn (this speeds up drawing time by
an appreciable amount). The line thickness controls the width of the ribbon and make it look like
everything from vermicelli to lasagna. Additionally, the sugars are drawn filled in with triangles.
This helps highlight the pucker.

Thanks to Ethan Merrit for the ribbon drawing algorithm taken from Raster3D.

5.12 Surf

This option uses the molecular surface solver written by Amitabh Varshney when he was at the
University of North Carolina. When this option is used, the radii and coordinates are written to
a temporary file and the ’surf’ executable is run with the probe radius as a parameter. When
finished, the output is written to another temporary file which is then read by VMD and colored
and displayed. The value of the probe radius is controlled by the sphere radius, and this is identical
to the probe size in A.

This surface is rather slow in both generation and display for systems over several hundred
atoms. The SURF calculation is quite exact and will show complete detail even when it isn’t
needed. The use of disk space as a communications medium takes up about half the time, and the
method used to draw the triangles has not been optimized.

There are two environment variables which can affect the Surf display option:

e SURF_BIN - location of the SURF binary (defaults to SURF_$ARCH as defined in the vind startup
script)

e SURF_TMPDIR — location of the directory to use for temporary files (defaults to the value of
the environment variable VMDTMPDIR, which defaults to /tmp)

A helpful trick when constructing surfaces is to use the “Apply Changes Automatically” toggle
button on the graphics form wisely. That is, since surfaces often take a long time to build, changing
viewing parameters such as the probe radius can cause long delays. By default, each time you hit
the probe radius button, VMD rebuilds the surface. If you want to reduce or enlarge the probe
radius by several increments, then you would end up rebuilding the surface multiple times. By
toggling the afore-mentioned button, you can force VMD to update on your command only. This
trick is sometimes helpful with other representations as well.

For a faster though arguably more imprecise surface rendering method, see the description of
MSMS below.

5.13 Cartoon

The ‘Cartoon’ option produces a simplified representation of a protein based on its secondary
structure. Helices are drawn as cylinders, beta sheets as solid ribbons, and all other structures
(coils and turns) as a tube. If the secondary structure has not yet been determined, it will be
calculated automatically by the program STRIDE.

70

A helix cylinder is constructed by finding the least squares linear fit along the coordinates
of the helix’s C, atoms. If a given residue’s C, is selected, the small cylinder (found by linear
interpolation along the line of best fit) is drawn with radius determined by the ??? parameter.
Because this method computes a best fit, a helix must have at least 3 residues before it is drawn
(those helicies with one or two residues are drawn as a coil). It is possible to pick the C, for
each cylinder segment, but they are at the location of the C,, which is not near the axis cylinder.
Interesting results occur when the whole protein is defined to be a helix and drawn as a cartoon.

The solid beta ribbon is constructed by building a spline along the center points between each
beta sheet residue. Again, the spline is linearly interpolated to find the start and end points for each
residue. Those are extended to construct the corners for a ribbon with rectangular cross section
(the amount of extension is determined with the 777 parameter). A ribbon segment is used if the
corresponding C, atom is selected. Note that since this method assumes the protein is in a beta
conformation, it draws a much smoother ribbon than the standard Ribbon option, which draw the
ribbon with an oscillation along the sheet.

The other conformations are drawn as a tube. Since the endpoints of the helix cylinder and
cartoon sheet are not at the C, coordinate, the tube method was slightly changed to make the
tube go to the new locations. This does not always work, resulting in a tube which does not quite
connect to a cylinder.

5.14 MSMS

Another molecular surface renderer is MSMS, a program written by Michael Sanner of Olsen’s lab
at Scripps. This program is much faster than the Surf code in both generating the initial surface and
then in manipulating the surface after it is built. See the web page http://www.scripps.edu/pub/olson-
web /people/sanner/html/msms_home.html for more details. Available options include

e All Atoms — should the surface be of the selection (0) or of the contribution of this selection
to the surface of all the atoms? (1)

e Density — triangle density on the surface (typical values are 1.0 for molecules with more than
one thousand atoms and 3.0 for smaller molecules)

e Probe — Probe radius used to construct the molecular surface

5.15 HBonds

The HBond representation will draw a dotted line between two atoms if there is a possible hydrogen
bond between them. A possible hydrogen bond is defined by the following criteria:

Given an atom D with a hydrogen H bonded to it and an atom

A with no hydrogen bonded to it, a hydrogen bond exists between

A and H iff the distance ||D-A|| < dist and the angle D-H-A < ang,
where ang and dist are user defined.

Only the selected atoms are searched, so both the donor and acceptor must be selected for the
bond to be drawn. Also, you’ll note that the above doesn’t check the atom type of the donor or
acceptor; the only criterion is if it already has or doesn’t have a hydrogen.

71

One downfall of the current implementation is that it does an n? search of the selected atoms

so you probably don’t want to show all the HBonds of a very large structure. Look for performance
improvements in future versions of VMD.

If you choose an HBonds representation but fail to see any hydrogen bonds, it may be because
the default angle and distance criterion in VMD are too small, so you might want to try increasing
the angle value from 20 to 30 degrees and the distance value from 3 to 4.

The HBonds are drawn as dotted lines of a given width. The default is 1 but you should
probably increase that to 2. On most SGIs you can’t make it any wider than that, as described in
the man page for linewidth. The bond is colored by the color associated with the acceptor.

5.16 Off

The ‘Off’ representation draws nothing. It is used in place of delete to hide a selection so it can be
redisplayed quickly later.

72

Chapter 6

Coloring Molecules and Objects

VMD maintains a database of the colors used for the molecules and other graphical objects which
are visible in the display window. It keeps track of

e color name definitions - RGB, alpha value, etc.
e mappings from a color category to color name - so residue name MET is colored yellow
e the current color scale - red to white to blue, and several related parameters

There are 98 colors available in VMD, with color ids ranging from 0 to 97. Of these, 34 are
named. The first 17 (with values 0 to 16) are, in order: blue, red, gray, orange, yellow, tan, silver,
green, white, pink, cyan, purple, lime, mauve, ochre, iceblue, and black. The next 17 (with color
indices from 17 to 33) are translucent (partially transparent) versions of the same terms. The
names for these are the same as the solid color, prefixed with the word “trans_”. For example, the
translucent version of “yellow” is “trans_yellow”.

The next group of 32 colors (from 34 to 65) are solid colors used in the color map, followed
by the 32 colors (65 to 97) which make up the translucent forms of the solid colors. These can be
set to one of several ranges with the Color form or the color text command: red—green—blue,
red—white—blue, or black—white, etc. There are no names for the specific colors. The color map
will be discussed in more detail in a section to follow.

Each color has six properties which consist of floating point values. Some describe the color,
others the transparency, and still others how the color interacts with the surrounding light. For the
most part, you will not need to alter the values given to these parameters by default. Alterations
will usually only arise when you want to tweak values to output rendering files used by VRML and
POV readers. Another application of changing the default color settings might be defining your
own color palette or making black-and-white pictures. The six options are:

e RGB: a triplet of numbers (0.0 to 1.0) describing the color (red, green, blue); 0 indicates none
of that color (also see Diffuse).

e Alpha: a number (0.0 to 1.0) describing the transparency; 1 is solid, 0 is transparent. By
default, transparent objects are drawn with alpha set to .3

e Ambient: a triplet of numbers (0.0 to 1.0) describing RGB values for the ambient light for
the given color. Noticeable in absence of diffuse light. Ambient light provides a uniform
illumination of objects with a background lighting of the specified color. This means that if

73

you have ambient for the color named ’cyan’ set to 1 0 0, the object colored in 'cyan’ will
appear red in the absence of any light sources and will have a red component in the ’shaded’
areas in the presence of light sources. Default is (0.0, 0.0, 0.0).

e Diffuse: same as RGB; This property determines the color of the object. Diffuse reflections
are independent of the viewing direction, but depend on the direction of the light source with
respect to the surface of the displayed object.

e Specular: a triplet of numbers (0.0 to 1.0) describing the color of specular reflections. Pro-
duces highlights, the higher the value, the smaller and the brighter the highlight. Default is
(1.0, 1.0, 1.0). You can reduce the reflectivity of the surface by reducing all three values (say,
to 0.5 0.5 0.5). This would give white light reflections with less intensity. However, you can
use any settings to produce effect of a colored reflection.

e Shininess: a number (1 to 100) describing how large is the angle of the specular reflections.
The smaller the number the wider the angle and the more shiny objects appear. Default is
40.

For details regarding these material properties, consult an elementary graphics book such as Foley
& Van Dam (Computer Graphics).

6.1 Color categories

VMD maintains a database of the colors used for the molecules and the other graphical objects in
the display window. The database consists of several color categories; each color category contains
a list of names, and each name is assigned a color. For example, there is a Resname color category,
and within this category there are many names; one for each of the available residue names. Some
of these are ALA, CYS, and PRO. Each name can be assigned a color from a list of 17 available colors
called the color map. The RGB value of each color can be modified directly in the Color form
[§3.3.9]. Also, each color has a semi-transparent version used when the transparent button [§ 3.3.4]
is pressed in the Graphics form. To color items in a gradation manner, there are additional 32 colors
used in the color scale [§6.2.2].

The different color categories in VMD are listed in table 6.1. The Color form can be used to
change the assignment of colors to the names in each of these categories. For example, to change
the color used to draw Arginine residues when molecules are colored by residue, you would use the
Color form, select the ‘Resname’ category, select the ‘Arg’ name there, and then pick the color to
use for Arginine’s from the list of colors next to the names.

6.2 Coloring Methods

As described in chapter 5, each representation for a molecule has a specific coloring method. The
coloring method determines how the color for each atom in the representation (view) is determined.
These different methods use the colors assigned to the names in the categories listed above, and use
those names to color the atoms. Molecular drawing methods which also draw the bonds between
atoms will always color each half of the bond separately, using the color of the nearest atom for
each half. Table 6.2 lists the different coloring methods available. The description for each method
explains the source of the information used to determine the color.

74

‘ Category ‘ Contents

Display The background color

Axes The components of the axes

Stage The colors for the checkboard stage

Name The available atom names (color by Name)
Type The available atom types (color by Type)
Resname | The residue names (color by ResName)
Chain The one-character chain identifier.

Segname | The segment names (color by SegName)

Molecule | The names assigned to each molecule (color by Molecule)

Highlight | The protein, nucleic, and non-backbone colors

Restype | The residue types (color by ResType)

Structure | The secondary structure type (helix, sheet, coil) (color by Structure)
Labels The different labels (atoms, bonds, etc.)

Table 6.1: Color categories used in VMD.

6.2.1 Coloring by color categories

The default method is to color by the atom name. The way it works is that there is a color category
called ‘Name’ which contains a list of all the atom names (e.g., CA, N, O5’, and H) that have been
loaded into VMD. Each name is assigned one of the 16 main colors (e.g., cyan, blue, red, and white).
When the drawing representation needs a color for a specific atom, it looks in the appropriate color
category and finds that CA is colored cyan, N is blue, and so on.

Most of the coloring methods are based on color categories, so coloring by ‘ResName’ colors
each residue name differently, ‘SegName’ colors each segment differently, and so on. The mapping
between a given item in a color category and a color can be changed using the Color form [§3.3.9].

This allows users to make atoms with the name CA be black and the residue CYS be yellow.
Some attention was given to making the colors reasonable, so that oxygens are red, nitrogens blue,
sulphur and cysteines yellow, etc.

6.2.2 Color scale

Several of the coloring methods, including ‘Beta’, ‘Charge’, and ‘Occupancy’, describe a range of
floating point values rather than a set of names. These are colored via the color scale, which is a
list of 32 smoothly changing colors. There are many color gradations available. All of them consist
of transformations of three colors. For instance, “RGB” colors the smallest value red, values near
the middle of the scale are green, and the largest values are blue. Colors in-between are linear
mixes of the two colors. The list of available gradations is given below.

The minimum of the range of values is linearly scaled and shifted to start at 0 and end at 1.
Assume the color scale is RGB. For a given value of x in the scale range [0..1], the RGB value is
found first from a linear scaling based on the midpoint. If x = 0, R is 1 (for maximum red). This
continues linearly until x = midpoint, at which point, R is 0 and stays 0. The green component is
0 at both x = 0 and x = 1 and is 1 at the midpoint. Linear scaling occurs in between. The blue
component is 0 for x <= midpoint, and 1 for x = 1.

An additional term, “min”, is added to each of the component terms before they are merged.
This shifts the final colors more towards white or black. Min can take on values from -1 to 1.

75

‘ Method ‘ Description

Name Atom name, using the Name category
Type Atom type, using the Type category
ResName Residue name, using the Resname category
ResType Residue type, using the Restype category

ResID Residue identifier, using the resid mod 16 for the color
SegName Segment name, using the Segname category

Molecule Molecule all one color, using the Molecule category
Structure Helix, sheet, and coils are colored differently

Chain The one-character chain identifier, using the Chain category
ColorID Use a user-specified color index (from 0 to 15)

Beta Color scale based on beta value of the PDB file
Occupancy | Color scale based on the occupancy field of the PDB file
Mass Color scale based on the atomic mass

Charge Color scale based on the atomic charge

Pos Color scale based on the distance of each atom to the

center of the molecule. This is an interesting way to
view globular systems.

Index Color scale is based on the atom index. Due to the way
the PDB file is organized, this actually looks nice.
Backbone | Backbone atoms green, everything else is blue

Table 6.2: Molecular coloring methods.

There is only one color scale used at a time so it is impossible to display objects colored by
multiple different color scales.

6.3 Transparency

Making objects semi-transparent is a potentially powerful means of viewing multiple layers of the
molecule simultaneously. Imagine a protein on the surface of, and extending part way into, a
membrane. One way to visualize the extent of the penetration is to represent the lipids as ‘Bonds’
and make them transparent. That will show the membrane without completely obstructing the
view of the protein.

Transparency is currently not implemented in the OpenGL version of VMD. Thus, the following
suggestions apply only to versions of VMD compiled with the GL option for IRIX5.x and IRIX6.x
platforms.

If transparent views of a molecule seem to be obscuring other views, make sure all the trans-
parent views in the Graphics form are farther down the list of views than non-transparent views.

Also, VMD will sometimes have problems displaying transparent objects when they are not
drawn in a front-to-back order. If you click on the Transparent button on the Graphics form and
rotate the molecule around you will see instances of this problem. VMD provides a script command
to correct for this, but it tends to slow down the display update considerably. The command to
type into the console window is “display depthsort on”. This will force VMD to arrange the objects
in a front-to-back order by means of a depth sort. When many objects are on the screen, this sort

76

Method ‘ Description ‘

RGB small=red, middle=green, large=blue
BGR small=blue, middle=green, large=red
RWB small=red, middle=white, large=Dblue
BWR small=blue, middle=white, large=red
RWG small=red, middle=white, large=green
GWR small=green, middle=white, large=red
GWB small=green, middle=white, large=blue
BWG small=Dblue, middle=white, large=green
BlIkW small=Dblack, large=white

WBIlk small=white, large=black

Table 6.3: Available Color Scale Gradations.

can result in a substantial amount of calculation. Thus, it is best to first rotate the view around
until you find an angle and style that you are happy with, and then turn depth-sorting on to enable
correct transparency. The command to turn depth sorting off is simply “display depthsort off.”

The transparent colors change their definitions automatically when the corresponding solid
colors are redefined through the the Color form [§3.3.9]. Using text interface, however, requires
changing the settings for the transparent colors explicitly.

6.4 VMD Script Commands for Colors

In order to fine tune color parameters, one typically needs more sophisticated controls than those
offered in the GUI. For this reason, VMD provides a number of scripting level commands for color
access. These commands will be discussed in detail in chapter §10, but to give you a flavor for their
use, here are a couple of examples that you may find useful right away. Most things can be done
with color [§10.3.3] and colorinfo [§10.3.4] commands.

6.4.1 Adjusting the degree of transparency

To change an object’s transparency value from the default of .3 to a smaller value of .1, one would
type the following Tcl script into the console, or write it to a text file and source it (see Using
text commands [§10]

proc change_transparency {new_alpha} {
This will always get the correct colors even if VMD
gains new definitions in the future
set color_start [colorinfo num]
set color_end [expr $color_start * 2]
Go through the list of colors (by index) and
change their transp. value
for {set color $color_start} {$color < $color_end} {incr color} {
color change alpha $color $new_alpha

77

)
'_

ol zziss
I
E:
o
i
=
=
o 0 1
= Frldplnt
=
=
=
!
] 1
#i el it

Color scale ranpe —————»

B (I
Eesulting calor scale

Figure 6.1: RGB color scale: the three plots shows the contributions of each color, and the resulting
colors are on the bottom.

to use:
change_transparency .1

You can even make a new popup window to do this:

user add menu Transp
for {set i 0} {$i < 10} {incr i} {
set £ [expr $i / 10.0]
user add subitem Transp $f "change_transparency $f"

6.4.2 Changing the color scale definitions

Suppose that of the 32 colors, the first 15 should be red, then 2 whites, and finally 15 blues. You
can use the ‘color’ command to modify the color scale values accordingly. The only sticky point is
that you must update the transparent definitions as well or things might look strange.

78

—1 Ml

|
(l | 1

T .".|'I.'l nt

)

Figure 6.2: The shift to the red component of the RGB scale caused by the value of “min”.

proc tricolor_scale {} {
set color_start [expr [colorinfo num] * 2]
for {set i 0} {$i < 32} {incr i} {
if {$i == 0} {
set r 1; set g 0; set b O
}
if {$i == 15} {
set r 1; set g l; set b1
+
if {$i == 17} {
set r 0; set g O0; set b 1
}
color change rgb [expr $i + $color_start] $r $g $p
get the transparent version as well
color change rgb [expr $i + $color_start + 32] $r $g $b

tricolor_scale

6.4.3 Creating a set of black-and-white color definitions

To map grayscale on the color ids 0-16 (O=black; 16=white):

proc make_grayscale {} {
display update off
for {set i 0} {$i < 17} {incr i} {
set val [expr $i / 16.0]
color change rgb $i $val $val $val
}
display update on
}

Note that the display updates are switched off for the time of redefinition, so that the screen
would not be redrawn every time one color is changed. This way the procedure works faster. The

79

only bad thing about this idea is that black becomes white, and white changes too, so the names
of the colors (yellow, orange, etc.) become useless.

6.4.4 Revert all RGB values to defaults

After some of the color definitions have been changed and you want to restore the default definitions,
the following procedure might be useful.

proc revert_colors {} {
display update off
foreach color [colorinfo colors] {
color change rgb $color
}
display update on
}

6.4.5 Setting the transparent colors according to solid

Once you have set the RGB values for solid colors, you may want to set the transparent colors to
the same RGB values. Here is how one could do it:

proc set_trans_colors {} {
set numofcolors [colorinfo num]
for {set i 0} {$i < $numofcolors} {incr i} {
lassign [colorinfo rgb $i] r g b
color change rgb [expr $i + $numofcolors] $r $g $b
}

6.4.6 Making the molecule to show up slowly

The only application of this that I know of is producing a movie for demonstration and having
parts of the molecule appear and disappear slowly. These are very crude scripts and they can be
improved.

change alpha values for all solid colors.
proc change_alpha {newvall} {
set num [colorinfo num]
for {set i 0} {$i < $num} {incr i} {
color change alpha $i $newval
}
X

vary the alpha value from O to 1 thus forcing an object to slowly
appear on the screen.
proc fade_in {} {
for {set i 0} {$i < 1} {set i [expr $i + 0.051} {
change_alpha $i
b
}

80

6.4.7 Querying VMD for Color Information

To obtain a list of the available color names:
colorinfo colors
To obtain a listing of the attributes of the color red:

foreach attrib {rgb alpha shininess ambient specular} {
puts "$attrib [colorinfo $attrib red]"
}

To change the ambient value of the color red to (1.0 .5 .33):
color change ambient red 1.0 .5 .33

81

Chapter 7

VMD Atom Selection Language

VMD has a rather powerful atom selection language available. It is based around the assumption
that every atom has a set of associated with it values which can be accessed through keywords.
These values could be boolean (is this a protein atom?), numeric (as in the atom index or atomic
mass), or string (the atom name). The values can even be referenced via a Tcl array.

To start off, here are some examples of valid selection commands in VMD. Following these will
be a more in depth description of how selections work.

name CA

resid 35

name CA and resname ALA

backbone

not protein

protein (backbone or name H)

name ’A 1’

name ’A *’

name "C.x*"

mass < b5

numbonds = 2

abs(charge) > 1

x <6 and x > 3

sqr (x-5) +sqr (y+4)+sqr(z) > sqr(5)
within 5 of name FE

protein within 5 of nucleic

same resname as (protein within 5 of nucleic)
protein sequence "C..C"

name eq $atomname

protein and @myselection

There are two types of selection modes. The first is a keyword followed by a list of either values
or a range of values. For example,

name CA

selects all atoms with the name CA (which could be a C, or a calcium);

82

resname ALA PHE ASP
selects all atoms in either alanine, phenylalanine, or asparagine;
index 5

selects the 6th atom (in the internal VMD numbering scheme).
VMD can also do range selections, similar to X-PLOR’s “:” notation:

mass 5 to 11.5
selects atoms with mass between 5 and 11.5 inclusive,
resname ALA to CYS TYR

selects atoms in alanine, arginine, asparagine, aspartic acid, cystine, and also tyrosine.

The keyword selection works by checking each term on the list following the keyword. The term
is either a single word (eg, name CA) or a range (eg resid 35 to 90).

The method for determining the range checking is determined from the keyword data type;
numeric comparisons are different than string comparisons. The comparison should work as ex-
pected so that “8” is between “1” and “11” in a numeric context but not in a string one. This
may lead to some peculiar problems. Some keywords, such as segname, can take on string values
but can also be used by some people as a number field. Suppose someone labeled the segname
field with the numbers 1 through 12 on the assumption that they are numbers. That person would
be rather confused to find that segname 1 to 11 only returns two segments. Also, strings will be
converted (via atof ()) to a number so if the string isn’t a number, it will be given the value of 0.
It is possible to force a search to be done in either a string or numeric context using the relational
operator discussed in §7.6

Selections can be combined with the boolean operators and and or, collected inside of paren-
thesis, and modified by not, as in

(name CA or name CB) and mass 12 to 17

which selects all atoms name CA or CB and have masses between 12 and 17 amu (this could be used
to distinguish a C-alpha from a calcium). VMD has operator precedence similar to C so leaving
the parentheis out of the previous expression, as in:

name CA or name CB and mass 12 to 17

actually selects all atoms named CA or those that are named CB and have the appropriate mass.

7.1 Definition of Keywords and Functions

The keywords available for selecting atoms in VMD are listed in tables 7.1 and 7.2 at the end of
this chapter. If a keyword definition is followed by bool, it is either on or off. If followed by str it
takes a value in the string context. If followed by num it takes a value in the number context.

83

Table 7.3 lists the built-in functions which may be used in atom selection expressions with
keywords which take on a numeric value.

7.2 Boolean Keywords

Some selections take no values. For example, backbone selects the backbone atoms of the protein
and nucleic acids and protein selects protein atoms. Giving options to these selections is an error.
The selections can be used in the same way as other selections, as in:

protein and backbone
nucleic or protein

In addition, if neither and nor or are located after a boolean keyword, then an implicit and is
inserted, so that the following are valid:

protein name CA (same as: protein and name CA)
nucleic backbone

7.3 Short Circuiting

The boolean logic in VMD does short circuit evaluation on an element-wise basis. For instance,
given one atom, if X is true then X or Y will be true regradless of the value of Y, so there is no
need to evaluate it. Similarly, if X is false, then X and Y will also be false, so Y again need not be
evaluated.

Knowing how short circuit selections work can speed up several types of selections. Consider a
system with a large number of waters and a protein. The expression protein and segname < 10
is faster than segname < 10 and protein since in the first selection only the atoms which are
proteins have the segname converted to a number, while in the second selection, all the segment
names are converted.

The within selection has its own form of short circuiting. The command can be interpreted as
“find the atoms of A which are withing a given distance from B,” and if A isn’t given, search all
the atoms. The search done in VMD takes a time roughly proportional to the number of atoms
in A multiplied by the number of atoms in B, so reducing the number of atoms in A (i.e., by not
testing every atoms) make the search faster.

Using the system with a lot of water and a protein, compare the selection

protein within 5 of resid 1
to (within 5 of resid 1) and protein.
The first is very fast as it does a distance search between all the protein atoms and all the atoms
in resid 1. However, the second selection searches through all the atoms for those which are within
5 A of resid and then finds which of those are protein atoms.

7.4 Quoting with Single Quotes
VMD allows two types of quoting mechanisms, single and double quotes. Single quotes are used

to include spaces and other non-alphanumeric characters. Believe it or not, there are some residue
names with a space in them, so they can be referenced as, for example,

84

resname ‘A 1°

More importantly, ribose atoms can be given names like C5’ or C5* (depending on the age of
the PDB record). The lexer in VMD has been modified so that C5’, 0", and N’’ can be used
without quotes, but it cannot handle an unquoted asterisk (* conflicts with multiplication and the
parser is not able to resolve the difference). Some examples are:

name ’05%’
segname ’A *’
name 05’

Quotes may also be used to get around a reserved selection word, like x. The selection command
segname x will give an error because x is another keyword. Instead, use segname ’x’. There is an
escape mechanism for including single quotes inside a single quoted string which uses a backslash
(’\’) before the single quote. This allows unusual names like C > to be quoted as ’C \’’.

segname X <---- error; conflicts with the ’x’ keyword
segname ’x’
name ’05\’’

Also, double quotes (discussed in the next section) can be used, as in "C ’" or "C *".

7.5 Double Quotes and Regular Expressions

Double quotes around a string are used to specify a regular expression search (compatible with
Perl 5.005, using the Perl-compatible regular expressions library written by Philip Hazel). Regular
expressions are a very powerful concept but rather hard to explain from scratch. If you don’t know
how to use them, you might have some luck with the unix man pages for ed, egrep, vi, or regex.
If not, ask someone, or get any one of a number of books including the O’Reilly and Associates Sed
and Awk book. The following should given an idea of how they work.

Regular expressions allows selection of all atoms with a name starting with C as:

name "C.x*"

or segment names containing a number as
segname ".*[0-9]+.%"

As expected, multiple terms can still be provided on the list of matching keywords, as in
resname "A.x" GLY ".xT"

to select residues starting with an A, the glycine residues, and residues ending with a T. Kind of
silly, but it is just to demonstrate. As with a string, a regular expression in a numeric context gets
converted to an integer, which will always be zero.

In brief, a regular selection allows matching to multiple possibilities, instead of just one char-
acter. Table 7.4 shows some of the methods that can be used.

So there are many ways to do some selections. For example, choosing atoms with a name of
either CA or CB can be done in the following ways:

85

name CA CB

name "CA|CB"
name "C[AB]"
name "C(A|B)"

Several caveats for those who already understand regular expressions. VMD automatically
prepends “~(” and appends “)$” to the selection string. This makes the selection 0 match only
0 and not 0G or PRO. On the other hand, putting = and $ into the command won'’t really affect
anything, selections that match on a substring must be preceded and followed by “.*” asin .*0.*,
and some illegal selections could be accepted as correct, but strange, as in C) | (0 , which gets
converted to ~(C) | (0)$ and matches anything starting with a C or ending with an O.

A regular expression is similar to wildcard matching in X-PLOR. Table 7.5 is a list of conversions

from X-PLOR style wildcards to the matching regular expression.

7.6 Comparison selections

Comparisons can be used in VMD to do atom selections like mass < 5, which selects atoms with
mass less than 5 amu, and name eq CA, which is another way of choosing the CA atoms. The
underlying idea for the comparison selection is also based on the concept that every atom has a
property as specified by a keyword. When the keyword is given in the expression, the array (or
vector) of the corresponding values is constructed, and the size of the array is the same as the
number of atoms in the molecule. (If a single number or string is given instead of a keyword, the
array consists of copies of that given value.) The operations, like addition, multiplication, string
matching, and comparison, are then applied element-wise along the array. This type of selection is
similar to the vector statement in X-PLOR.

Take the example mass < 5 when applied on water, which has an oxygen of mass 15.9994 and
two hydrogens of mass 1.008. VMD sees the keyword mass and constructs the array [15.9994,
1.008, 1.008], then sees the “5” and makes the array [5, 5, 5]. It then compares each term of the
array and returns with the boolean array [False, True, True] (since 15.9994 is not less than 5, but
1.008 is). This final boolean array is then used to determine which atoms are selected; in this case,
the hydrogens.

More complicated comparison selections can be constructed, either from arithmetic operations
or by using some of the standard math functions (the functions are listed in Table 7.3). Probably
the most often used function will be sqr, which squares each element of the array. Thus, the
command to select all atoms within 5 A of a point (x,y,z) = (3,4,-5) in space is:

sqr (x-3) +sqr (y-4) +sqr(z+5) <= sqr(5)

7.7 Comparison Operators

There are two types of comparison operators — numeric and string — which allow the user to
specify the appropriate comparison function. Suppose the segment name, which takes on a string
value, contains the names ‘11’; and ‘8’. VMD cannot figure out if ‘8’ should be less than ‘11’ (in
the numeric sense) or greater than ‘11’ (in the lexographical sense). Instead of trying to resolve
this problem through some sort of internal heuristics, VMD leaves it up to the user so that 8 < 11
but 11 1t 8. (Perl users should recognize this solution.)

86

The numeric comparisons are the standard ones: <, <=, = or ==, >=, > and !=. The corresponding

string comparisons are: 1t, le, eq, ge, gt, and ne. As in perl there is a “match” operator, =", so
that

) CA) =~ IIC . *ll

segname =" "VP[1-4]" (matches VP1, VP2, VP3, and VP4, present in some

virus structures)

are valid. No distinction is made between single and double quotes.

7.8 Other selections

7.8.1 sequence

VMD supports selection based on the one-letter amino acid sequence with the sequence selection
keyword. This allows selections of the form

sequence APD
sequence "C..C" (might be used to pick out zinc fingers)
sequence AATCGGAT

Unlike the other string selection commands which take one of three types of strings, all the
strings for sequence are taken as regular expressions (though strings with non-alphanumerics must
still be quoted to get past the input parser). The method works by taking each of the protein
and nucleic acid fragments (pfrag and nfrag) in turn and constructing the one-letter amino acid
sequence. If a regular expression matches any of the sequence, the atoms in the matching residues
are selected. Multiple matches are allowed, though they cannot overlap. As is usual with regular
expressions, the largest possible match is made, so take care with expressions like C.*C.

7.8.2 within and same

Two useful types of selection mechanisms available in VMDare: within <number> of <selection>
and same <keyword> as <selection>. The first selects all atoms within the specified distance (in
A) from a selection, including the selection itself. Therefore, the command:

within 5 of name FE

selects all atoms within 5 A of atoms named FE. One common use for this command is to limit the
region of atoms shown on the screen. Another is to find atoms that may be involved in interactions.
For instance:

protein within 5 of nucleic

finds the protein atoms that are nearby nucleic acids. On a cautionary note, the distance search
method is not very efficient, making these selections rather slow. Some selections may be sped up
by short circuiting [§7.3].

The same <keyword> as <selection> finds all the atoms which have the same ‘keyword’ as
the atoms in the selection. This can be used for selections like

same fragment as resid 35

87

which finds all the atoms attached to residue id 35. Any keyword can be used, so selections like
same resname as (protein within 5 of nucleic)

are fine, although weird. The perhaps the most useful keyword for this command is residue, so
you can say same residue as

7.9 Referencing Tcl data

Tcl variables (with either scalar or array data) can be used in the selection in one of two possible
ways.

7.9.1 S$references

If a keyword starts with a $, the rest of the keyword is used as the Tcl variable name. The Tcl
interpreter is queried for the associated data, which is then used as it would be for any other
keyword. The variable can be either an array, in which case element 0 is for the first atom, 1 for
the second, ...; or a scalar value, in which case that value is used for all the atoms. For an array
example, suppose the Tcl array “foo” contained the values foo(n) = 2*n. Then the statement $foo
< 10 selects atom with indices 0 to 4, while $foo 20 to 30 6 selects indices 10, 11, 12, 13, 14, 15,
and 3. If foo has a scalar value, such as PRO, the statement resname eq $foo selects the proline
residues. Because of a limitation in Tcl, the only way VMD recognizes if a variable is an array is
if element 0 exists.

7.9.2 Q@references

The other way to reference a Tcl variable is as a boolean array. This is most often used when there
is a set of atoms which must be referenced often or when the selection is very complicated. These
start with a @ sign and specify if the given atom should be on or off. This notation is used in the
same place as a boolean keyword (like protein or water). As with the § variables, the Tcl variable
can be either a scalar or an array. If the value is false, (or 0) the corresponding atom is not selected.
If true (or non-zero), it is turned on. Additionally, if the scalar value is an atom selection, the data
from that selection is used. Here are some examples of @Qvariables:

if the array foo(n) is defined as 1 of n is odd, 0 if n is even, then the selection text @foo turns
on atoms with an odd numbered atom index.

Let “my_selection” be defined as set my selection [atomselect top resid 35] then the selections
“$my _selection and name CA” and “sidechain $my selection” are also valid.

7.9.3 The differences

The difference between the two notations ($ and @) is somewhat subtle and occurs because the
original selection language is not as dynamic as one would expect. The key thing to remember
about Tcl references is they are used only where keywords are allowed. $variables are for keywords
that have a value while @variables are for boolean keywords. That means variable references cannot
be in the parameter list for the value keywords (e.g., resname $name is not allowed). Instead, the
comparison operators must be used (as in resname eq $name).

88

Keyword ‘ Arg ‘ Description

all bool everything

none bool nothing

name str atom name

type str atom type

index num the atom number, starting at 0

chain str the one-character chain identifier

residue num a set of connected atoms with the same residue number

protein bool a residue with atoms named C, N, CA, and O

nucleic bool a residue with atoms named P, 01P, 02P and either
03’, C3’, C4’, C5’, 05’ or 03*%, C3*, C4x, Cbx*, 0bx.
This definition assumes that the base is phosphorylated,
an assumption which will be corrected in the future.

backbone bool the C, N, CA, and 0 atoms of a protein
and the equivalent atoms in a nucleic acid.

sidechain bool non-backbone atoms and bonds

water, wa- | bool all atoms with the resname H20, HHO, OHH, HOH,

ters
0OH2, SOL, WAT, TIP, TIP2, TIP3 or TIP4

fragment num a set of connected residues

pfrag num a set of connected protein residues

nfrag num a set of connected nucleic residues

sequence str a sequence given by one letter names

numbonds num number of bonds

resname str residue name

resid num residue id

segname str segment name

X, Y, Z num X, y, or z coordinates

radius num atomic radius

mass num atomic mass

charge num atomic charge

beta num temperature factor

occupancy num occupancy

at bool residues named ADA A THY T

acidic bool residues named ASP GLU

acyclic bool “protein and not cyclic”

aliphatic bool residues named ALA GLY ILE LEU VAL

alpha bool atom’s residue is an alpha helix

amino bool a residue with atoms named C, N, CA, and 0

aromatic bool residues named HIS PHE TRP TYR

basic bool residues named ARG HIS LYS

bonded bool atoms for which numbonds;0

buried bool residues named ALA LEU VAL ILE PHE CYS MET TRP

cg bool residues named CYT C GUA G

charged bool “basic or acidic”

cyclic bool residues named HIS PHE PRO TRP TYR

Table 7.1: Atom selection keywords.
89

Keyword ‘ Arg ‘ Description
hetero bool “not (protein or nucleic)”
hydrogen bool name ”[0-9]7H.*”
large bool “protein and not (small or medium)”
medium bool residues named VAL THR ASP ASN PRO CYS ASX PCA HYP
neutral bool residues named VAL PHE GLN TYR HIS CYS MET TRP ASX GLX PCA HYP
polar bool “protein and not hydrophobic”
purine bool residues named ADE A GUA G
pyrimidine | bool residues named CYT C THY T URI U
small bool residues named ALA GLY SER
surface bool “protein and not buried”
helix bool atom’s residue is an alpha helix
helix_3_10 bool atom’s residue is an alpha helix
extended_beta bool atom’s residue is a beta sheet
bridge_beta | bool atom’s residue is a beta sheet
rasmol Rasmol translates Rasmol selection syntax to VMD
string

alpha_helix | bool atom’s residue is an alpha helix
pi_helix bool atom’s residue is a pi helix
helix bool atom’s residue is an alpha or pi helix
sheet bool atom’s residue is a beta sheet 777
turn bool atom’s residue is in a turn conformation
coil bool atom’s residue is in a coil conformation
structure str single letter name for the secondary structure
within str selects all atoms within a specified distance

of a selection (i.e within 5 of name FE).
same str selects all atoms which have the same keyword

as the atoms in a given selection (i.e. same segname as resid 35)
ux, uy, uz num force to apply in the x, y, or z coordinates

Table 7.2: Atom selection keywords (continued).

90

‘ Function ‘ Description
sqr(x) square of x
sqrt(x) square root of x
abs(x) absolute value of x
floor(x) | largest integer not greater than x
ceil(x) smallest integer not greater than x
sin(x) sine of x
cos(x) cosine of x
tan(x) tangent of x
atan(x) | arctangent of x
asin(x) arcsin of x
acos(x) | arccos of x
sinh(x) | hyperbolic sine of x
cosh(x) | hyperbolic cosine of x
tanh(x) | hyperbolic tangent of x
exp(x) “e to the power x”
log(x) natural log of x
logl0(x) | log base 10 of x

Table 7.3: Atom selection functions.

| Symbol I Example | Definition

. , A.C match any character
(] [ABCabc] , [A-Ca-c] match any char in the list

[7] [7z] , [TXYZ] , ["x-z] | match all except the chars in the list
- “C ., "A.x next token must be the first part of string
$ [COIG$ prev token must be the last part of string
* Cx , [ablx* match 0 or more copies of prev char or

regular expression token

+ C+ , [abl+ match 1 or more copies of the prev token
\ c\lo match either the 1st token or the 2nd

\(\) \ (CA\)+ combines multiple tokens into one

Table 7.4: Regular expression methods.

| X-PLOR Wildcard |

Description

‘ Regular Expression

*

%
+
#

matches any string

matches any digit
matches any number

matches a single character

*

0-9]
0-9)+

Table 7.5: Regular expression conversions.

91

Chapter 8

Creating Output Raster Images

VMD currently has no provision for making a raster image file (like a GIF, TIFF, or RGB) directly,
other than using an external program to do a screen capture. In many cases it is sufficient to use
the SGI program snapshot to get the image from the screen. This saves the image to an RGB
file which can then be converted to other formats with the programs /usr/sbin/to* (e.g., togif
converts RGB files to GIF). Since RGB is the default SGI image format, many other programs can
be used to view, edit, and manipulate RGB files.

To use snapshot in this sense, simply open the Render form [§3.3.10[and choose the snapshot
option. VMD will automatically pass the window coordinates to this program and the capture will
take place and the resulting RGB file will be posted to the display. After a little practice with
this option, you will recognize that it is important not to have other windows in front of the VMD
display when doing this type of capture, since snapshot will then include part of these windows in
the output RGB picture.

The snapshot rendering option is presently not available to those using the HP or Linux version
of VMD

Sometimes the screen image isn’t good enough; you may want a very large, high quality picture,
or maybe a picture with shadows. Instead of making these images directly, VMD writes files which
can be used as input to several of the more popular ray shading programs. Table 8.1 lists the
currently supported output formats, and, if applicable, where they may be obtained.

8.1 Creating an Output Image File

Making the raster image is a two step process. First you must make the output file suitable for the
image processing program, and then execute the program using the new file as input to produce
the raster output. The problem is that each of the programs write a different output file format,
which will probably have to be converted to something more appropriate for you. It is impossible
to predict what that might be, so we’ll say how to convert the different file types to RGB and let
you use the tools listed in Table 8.1 to get what you need. Raster3D produces an RGB file, so you
don’t need to do anything. POV and POV3 produce TARGA files, which can be converted on SGI
machines with the program /usr/sbin/fromtarga. Rayshade creates RLE image files, which can
be converted on SGI machines with /usr/sbin/fromutah. Radiance generates an .oct file, which
can be converted with the rview and rpict commands in the Radiance distribution.
The free program display from ImageMagick — see

http://www.wizards.dupont.com/cristy/ImageMagick.html —

92

‘ Name

Description

Default Render Command

Raster3D! Fast raster file generator | render < %s -sgi %s.rgb; ipaste Ys.rgb
tkRaster3D? | Tk interface to Raster3D | render < %s -sgi %s.rgb; ipaste %s.rgb
POV33 POV-Ray 3.0 ray tracer povray3 +H500 +W400 -I%s -0%s.tga +D +X +A
+FT +C
POV3 POV-Ray ray tracer povray +H250 +W200 -I%s -0%s.tga +P +X +A
+FT
Rayshade? Rayshade ray tracer rayshade < %s > Us.rle
Radiance® Radiosity ray tracer oconv %s >)s.oct; rview -pe 100 -vp -3.5 0
0 -vd 1 00 %s.oct
ART® VORT ray tracer render < %s -sgi %s.rgb; ipaste %s.rgb
PostScript Direct PostScript Output | ghostview s &
STL Stereolithography Format | true - Renders Triangles Only
VRML-1 Virtual Reality Markup | true - view this with VRML viewers like webspace
Language
Token Text Dump of Graphical | true
Objects

1See http://www-bio.unizh.ch/visualization/raster3d/raster3d.html for more info.
2Contact 7??

3See http://www.povray.org/ for more info.

4See http://www-graphics.stanford.edu/ cek/rayshade/rayshade.html for more info.
°See http://radsite.1lbl.gov/radiance/HOME.html for Radiance

6 Available from ftp://gondwana.ecr.mu.oz.au/pub along with the rest of VORT package
"See http://vrml.sgi.com/intro.html

Table 8.1: Supported output rendering formats.

should be able to read and interconvert all of these formats.

We suggest using either Raster3D or Radiance as they are the fastest of the programs. The
first is the easiest to understand and the second has many, many options (different types of lights,
textures, ...).

The image processing program input formats are straight text so they are easy to modify. This
is most often done to create a larger raster file, though some have other global options which you
may wish to change. For instance, by default the Raster3D file turns shadows on. We suggest you
consult the relevant documentation to determine what can be modified in the file.

To actually render the current image into an output file, first set up the graphics in VMD just
as you wish the output to appear. Then, either use the Render form [§ 3.3.10], or the following
text command, to create the input file and start the rendering program going:

e render method filename [render command]

method is one of the names listed in the first column of table 8.1, and filename is the name of the
file which will contain the resulting image processing program script. Any text following this will
be used as a command to be run to process the file. If %s appear in the command string, they will
be replaced with the name of the script file.

93

8.2 Known Problems

When VMD creates the output file it will try to match the current view and screen size. For the
most part it does a good a job but there are some problems. The colors in the final raster image
seem to be faded when compared to the screen. We may be able to correct this in future versions
by artificially increasing the color intensity. In the meantime, this can be remedied with a program
like xv or display which will brighten and sharpen the image.

The eye position seems to be slightly different between the screen and raster images. This
occurs because the Screen Height and Screen Width (see §3.3.8) values are not propagated to the
output file, so the programs have slightly different transformation matrices. We have added an
extra scaling factor, determined by trial and error, which reduces this effect for the default screen
sizes, but the factor is only valid if the parameters are not changed.

The lights are supposed to be positioned in the output file as they are on the screen but not
all formats support the number of lights available in VMD. In addition, there seems to be a bug
in the code that determines the correct light positions. This can be changed by editing the output
file by hand.

A new option in VMD draws cylinders with flat disks covering the ends. Some of the renderers
may not draw the capped ends.

We have primarily tested the Raster3D output and have little experience with the other pro-
grams. The only problem we have found with Raster3D is if there are too many objects to render
(this could easily occur when using ‘Tube’ or ‘Ribbon’ on large molecules), it will not render any-
thing. (Raster3D documentation mentions an “object limit”—Raster3D can be recompiled with a
new limit.)

8.3 Omne Step Printing

A frequently asked question is “How can I quickly get a printout of the VMD Display?” There are
several one step solutions to this problem

e Choose the PostScript output option in the Render form and type lpr %s in the render
command box.

e Choose the snapshot option and type convert %s eps:%s.ps; lpr %s.ps in the render
command box. This assumes that you have the ImageMagick tools available in your PATH
setting.

e As an example of how to directly print a Raster3D file, choose the Raster3D option in the Ren-
der form and type render < %s -sgi %s.rgb; convert %s.rgb eps:%s.ps; lpr %s.psin
the render command box.

94

Chapter 9

Viewing Modes

There are many different viewing modes available. These show the scene in orthographic or per-
spective views, and in several mono- and stereo- graphic displays. The stereo mode can be changed
using the popup menu available from the graphics display window. It can also be changed by using
the stereo entry in the Display form or the text command display stereo mode.

9.1 Perspective/Orthographic views

In the perspective view (the default), objects which are far away are smaller than those nearby.
In the orthographic view, all objects appear at the same scale. Since some prefer one over the
other, both options are available. Perspective viewpoints give more information about depth and
are often easier to view because you use perspective views in real life. Orthographic viewpoints
make it much easier to compare two parts of the molecule, as there is no question about how the
viewpoint may affect the perception of distance.

9.2 Monoscopic Modes

When you normally look at objects, your two eyes see slightly different images (because they are
located at different viewpoints). Your brain puts the images together to generate a stereoscopic
viewpoint. When generating a single image for the computer display, the default calculations (mode
Stereo Off) assume there is one eye centered between where two eyes would be. Sometimes, as when
generating ray tracing input files, the left and right eye views need to be generated independently.
Choosing mode Left produces the left eye viewpoint, while Right produces the right eye viewpoint.

9.3 Stereoscopic Modes

Molecules may be rendered in stereo, which can greatly enhance the appearance and visual content
of the displayed systems. There are several stereo formats available:

1. Side-by-side cross-eyed stereo;
2. Side-by-side wall-eyed stereo;

3. Crystal Eyes stereo (requires stereo-capable monitor, stereo sync emitters and special stereo
glasses equipped with liquid crystal lenses).

95

9.3.1 Side-By-Side and Cross-Eyed Stereo

Side-by-side stereo means that the normal display is divided into two halves, a left view and a
right view, each occupying one-half of the original display area. Each view displays the current
molecules from a slightly different perspective, corresponding to the left and right eye of the viewer.
The images are separated, however, so to actually see a 3D object you must direct your eyes until
the two images are on top of each other, and then focus on the resulting image until you can see it
as three-dimensional.

There are two ways of placing the images. In wall-eyed stereo, the left eye’s image is located on
the left side of the display, and the right eye’s image is on the right. This is the standard method
for displaying stereo images in publications as it works well when the display (in this case, the piece
of paper) is close to the eyes. It is called wall-eyed because your eyes are directed the same way
they would be if looking at a distant wall. In VMD, this method is referred to as “SideBySide”
stereo.

In cross-eyed stereo, the left eye’s image is located on the right side of the display, and the right
eye’s image is on the left, and hence the name cross-eyed. This is mostly used for distant displays
(such as overhead projections) as it is much easier to cross eyes at that range than use the wall-eyed
method — you are already looking at the wall. In VMD, this method is referred to as “CrossEyes”
stereo.

9.3.2 Crystal Eyes Stereo

Crystal Eyes stereo refers to a special hardware option available on Silicon Graphics workstations
that allows one to view three-dimensional objects through the use of a special display monitor
mode and special stereo viewing glasses. Stereographics Corp. is one such supplier of these glasses.
This mode also requires special infrared emitters to synchronize the stereo glasses with the display
monitor.

There are presently two types of Crystal Eyes stereo modes available on SGI machines; which
one is used depends on the available graphics hardware (see the man page stereo(7)). Follow the
outline below for the relevant graphics option:

Stereo in a window (aka new-style stereo): Available on workstations equipped with Reality
Engine2-style graphics subsystems only (such as Onyx or Power Onyx machines), this mode provides
separate left and right eye frame buffers. It allows the user to have a window display in stereo, and
the other windows appear as normal. Using this mode, however, requires the monitor to be in a
lower-resolution 960 by 680 display mode. The monitor must be set in this mode before starting
VMD. To do so, do one of the following:

e [f superuser access is not available, and the monitor is in the normal 1280x1024 mode, execute
the command:

/usr/gfx/setmon -n 960x680_.108s
This will change the display characteristics to the lower resolution mode, with a higher display

frequency (108 Hz), but will not change the managed size of the X-Window display screen.
To change back to the normal mode (after running VMD), execute the command:

/usr/gfx/setmon -n 1280x1024_60

96

When the computer is in the lower resolution mode, run VMD as normal, but note that the
lower resolution means the windows will appear larger and may end up sometimes positioned
off-screen. If this is a problem, a system superuser should set the video mode permanently
with the commands listed in the next item.

o If superuser access is available, do the following, which will change the video mode and restart
the window server with the lower resolution settings. (WARNING: executing this command
will log out anyone on the console)

/usr/gfx/setmon -x 960x680.108s; /usr/gfx/stopgfx; /usr/gfx/startgfx &

To reset the computer to regular 1280x1024 use, execute the command:
/usr/gfx/setmon -x 1280x1024_60; /usr/gfx/stopgfx; /usr/gfx/startgfx &

It may be useful, if stereo-in-a-window will be used often, to set the monitor to the lower
resolution mode, and leave it that way.

Once set in the proper display mode, start VMD as normal, and select ‘Crystal Eyes stereo’ from
the display window pop-up menu. The image should switch to two images nearly superimposed,
but slightly offset.

Regular stereo mode: All stereo-equipped SGI workstations can use this display mode, includ-
ing Reality Engine 2 workstations. VMD uses two programs onstereo and offstereo to switch the
monitor display mode. You will need to install these programs somewhere in your Unix path in order
to allow VMD to use them. Regular stereo mode will change the display window to occupy the en-
tire monitor screen, as opposed to stereo-in-a-window which can independently set the stereo mode
of just the display window. Versions of onstereo and offstereo which will run on SGI IRIX 5.X
workstations may be obtained via anonymous ftp from ftp://ftp.ks.uiuc.edu/pub/mdscope/vmd.

9.3.3 Problems with stereo on Indigo2 machines

SGI machines running versions 5.X or early versions of 6.X of IRIX may require patches for their
OS in order to run crystal eyes stereo.

9.3.4 Stereo Parameters

A stereo image is generated by drawing two images from two different perspectives, one from the
left eye and one from the right. The images are made by finding the view that would be seen
by someone located inside the scene. The method uses two parameters to find the view; the eye
separation and the focal length. The first defines the distance between the eyes and gives the
parallax effect. Setting the separation to 0 will result in a flat 2D image, while setting it too large
will give most people a headache.

The graphics model used by VMD assumes the eyes looking in front of the viewer and focusing
at the same point the focal length away. If the focal length is 0, the viewer’s eyes are crossed and
looking at each other. A larger focal length will often help in creating a viewable image.

The two parameters can be changed with the text commands display focallength and
display eyesep, or using the Display form [§3.3.8].

97

In general, try to make the eye separation as large as possible without giving the viewer a
migrane, and try to vary the focal length to cut down on double images. It may often help to
translate the molecule forward or backward and also adjust the scaling, since there is typically an
optimum position for a molecule for a given set of stereo parameters.

9.4 Making Stereo Raster Images

As discussed in Chapter §8, VMD can create output files of the current scene in the format needed
for input by various image processing packages. These formats do not always natively support the
ability to draw stereo images. In principle, it is possible to write the scene to the file twice with the
appropriate transformations applied to make the view correct for each eye, but then the shadows
would be incorrect.

Instead, we suggest making one image of the current scene, then shift the molecules to the left
(or right) to make the other image. (Note that neither the stage nor the axes will move, so they
will not be in stereo.) The text commands for this are something like:

render Raster3D left.r3d
trans by -.1 0 0
render Raster3D right.r3d

The two files must then be rendered to produce the rgb file. As it turns out, this method makes
it easy to produce stereo images of ordinary Raster3D files. Since VMD can read the Raster3D
format, all you have to do is read the file and then execute the commands listed above. The text
commands for generating left or right views also have equivalents in the GUI under the Stereo
option of the Display form.

98

Chapter 10

Text User Interface

The text interface provides complete access to all the VMD commands. In its basic form it can
be used to load molecules, rotate them, add and alter representations, and anything else that can
be done with the Forms and mouse interface. The standard distribution is compiled with Tcl and
the TclX and Tcl-DP extensions, which add a complete scripting language including variables,
loops, and conditionals along with a standard method for communicating with other programs
via standard TCP/IP sockets. Versions 1.2 and later also include the Tk toolkit and the TkX
extension. This allows, for example, to quickly create a form with buttons bound to one’s favorite
actions (similar to popup menus, but much more flexible).

This section describes the basics of the text interface as well as the core VMD commands. A
few of the T'cl commands are mentioned here, but are so noted.

10.1 Using text commands

Text commands are entered by typing them at the VMD prompt in the text console window.
This window normally contains the prompt vmd > . When other text (e.g., from a mouse pick)
is displayed to the screen, it will scroll the screen up so the prompt is not at the last line of the
screen. To make it reappear, press enter. When entering multi-line commands, an alternate prompt
appears, 7 , and will not disappear until the command is finished. Sometimes it is waiting for a
close to a double quote, open brace, or open bracket, while at other times it is waiting for a line
that doesn’t end in a backslash. Please read a Tcl manual to better understand what constitutes
the end of a statement.

Since you may not want to retype all the data in every time, there are two ways to read the
data in from a text file. The preferred method is the play VMD core command. This reads a line
from the file, executes it, then updates the screen and checks for any changes in the mouse or forms
input. Using this command you can modify the display options while the script is being read. The
other option uses the Tcl command source. This reads the whole file before allowing the mouse
and forms to respond to new input.

There are two other ways to play a file. If the file .vmdrc (see section §17.3.4) exists during
startup, it is played. Similarly, at startup the —e command line flag can be used to specify an input
file.

99

10.2 Tcl/Tk

Tcl (short for Tool Command Language, developed by John Ousterhout) is an embeddable and
extensible scripting language. In other words, Tcl sits inside VMD as a language interpreter where
it can execute its standard language commands or the various VMD specific extensions. There are
several reasons for using Tcl rather than writing our own language, the most important being that
it is easy to use, it was easy to modify our code to use it, it has few bugs, and documentation is
available at many bookstores. Many other packages use it, including Quanta. It is not necessary
that you know Tcl to use VMD. However, it is useful for some occasions, like making movies or
scripts.

VMD uses Tcl version 7.6 and Tk version 4.2. Since Tcl is extensible, many extension pack-
ages have been written to improves current features and add new ones. We have included two
of these, TclX (version 7.6), which adds many useful command for script writing, and Tcl-DP
(version 4.0), which adds an interface to Unix socket commands. This latter extension is used
by the External interfaces [§3.4.1]. The TkX version 4.2.0 is also included. We refer you to
http://www.scriptics.com/ for more information about Tcl, and
http://www.sco.com/Technology/tcl/Tcl.html for references to documentation on Tcl/Tk and
TclX. For the documentation on Tcl-DP see the Tcl-DP home page at
http://www.cs.cornell.edu/Info/Projects/zeno/Projects/Tcl-DP.html.

10.3 Core Text Commands

Most of VMD was originally written without the Tcl interface. The text interpreter used (which is
still available as a compile time option) treated the commands in a slightly different form than Tcl
does. Because we did not rewrite the old commands when Tcl was added, there are slight differences
in usage between the old style interface (the “core” commands) and the new Tcl functions. For the
most part, these are subtle and not important. For more information see the section on “writing
scripts.”

All text commands in VMD are composed of one or more words or phrases separated by white
space, and terminated by a newline. Since the parser now uses Tcl, a “phrase” is text surrounded
by double quotes or by a matching set of open and close braces. (Please read the Tcl manual
to better understand what constitutes the end of a statement.) The first word of each command
indicates the general purpose for the command, and the following words specify the exact type of
command to execute. Table 10.1 summarizes the text commands in VMD by listing the first words,
and describing the general purpose for commands starting with those words. Since VMD can be
compiled with optionally included components and features, commands labeled optional may not
be available in your version of VMD.

The commands described in the following sections are listed by name, and followed by a list of
the available arguments. If an argument is optional, it is enclosed in []s. If only one of a list of
arguments is needed, the list is enclosed in <>s and the items are separated by |. Words in italics
indicate a string or value to be specified by the user.

10.3.1 animate

These commands control the animation of a molecular trajectory and are used to read and write
animation frames to/from a file or Play/Pause/Rewind a molecular trajectory.

100

First Word

Description

animate
axes
color
colorinfo
debug
display
echo
exit, quit
external
help

imd
logfile
label
light
menu
molecule or mol
mouse
play or run
render
rock
rotate
scale
stage
tool
translate
user
vmdinfo
wait
sleep

Play/Pause/Rewind a molecular trajectory.

Position a set of XYZ axes on the screen.

Change the color assigned to molecules, or edit the colormap.
(Tcl) Obtain color properties for various objects

Turn on/off printing of debugging messages.

Change various aspects of the graphical display window.

Turn on/off echoing of text commands to the console.

Quit VMD.

(Tcl) Start an external VMD command source (optional).
Display an on-line help file with an HTML viewer.

Control the connection to a remote simulation.

Turn on/off logging a VMD session to a log file.

Turn on/off labels for atoms, bonds, angles, or dihedral angles.
Control the light sources used to illuminate graphical objects.
Control or query the on-screen GUI menu forms.

Load, modify, or delete a molecule in VMD.

Change the current state (mode) of the mouse.

Start executing text commands from a specified file.

Output the currently displayed image (scene) to a file.

Rotate the current scene continually at a specified rate.

Rotate the current scene around a given axis by a certain angle.
Scale the current scene up or down.

Position a checkerboard stage on the screen.

Initialize and control external spatial tracking devices.
Translate the objects in the current scene.

Add new commands to the graphics display pop-up menu.

(Tcl) Get information about this version of VMD

Wait a number of seconds before reading another command. Animation continues.
Sleep a number of seconds before reading another command. Animation is frozen.

Table 10.1: Summary of core text commands in VMD.

e dup [frame number 1 molld: Duplicate the given frame (default “now”) of molecule molld
and add the new frame to this molecule.

e forward: Play animation forward.

e for: Same as forward.

e reverse: Play animation backward.

e rev: Same as reverse.

e pause: Pause animation.

e prev: Go to previous frame.

e next: Go to next frame.

101

e skip n: Set stride to n+1 frames.

e delete all: Delete all frames from memory.

e speed n: Set animation speed to n.

¢ style once: Set to play animation once.

e style loop: Set to loop through animation continuously.

e style rock: Set to play animation forward and back continuously.
e styles: Return a list of the available styles.

e goto start: Go to first frame.

e goto end: Go to last frame.

e goto n: Go to frame n.

e read file type filename [beg nb] [end ne 1 [skip ns]l [molecule_number]: Read data for
molecule_number from filename, beginning with frame nb, ending with frame ne, with a stride
of ns+1.

e write file type filename [beg nb] [end ne] [skip ns] [molecule_number]: Write data from
molecule_number to filename, beginning with frame nb, ending with frame ne, with a stride
of ns+1.

e delete [beg nb]l [end nel [skip nsl [molecule_number]: Delete data for molecule_number,
beginning with frame nb, ending with frame ne, with a stride of ns+1.

e readdel filename [beg nb] [end ne] [skip nsl [molecule_number]: Read data for molecule_number
from filename, beginning with frame nb, ending with frame ne, with a stride of ns+1, over-
writing existing data.

10.3.2 axes

The axes (orthogonal vectors pointing along the z, y, and z directions) can be placed in any of 5
locations on the screen, or turned off.

e locations: Return a list of possible locations.
e location: Get the current location.

e location < off | origin | lowerleft | lowerright | upperleft | upperright >: Position
axes.

Also, though this may seem like a likely command for changing the color of the axes, this
function can only be performed from the Colors form or by the color command (see below).
Future implementations of VMD may change this.

102

10.3.3 color

Change the color assigned to molecules, or edit the color scale. All color values are in the range
0 ... 1. Please see the section on coloring [§ 6] for a full description of the various options.

e category name color: Set color of object specified by category and name to color.

e scale method < scale_name >: Set type of scale to use for coloring objects by values. They

are:

— RGB - Red to green to blue.

— BGR — Blue to green to red.

— RWB — Red to white to blue.

— BWR — Blue to white to red.

— RWG — Red to white to green.

— GWR - Green to white to red.

— GWB — Green to white to blue.

— BWG — Blue to white to green.

— BIkW — Black to white.

— WBIk — White to black.
e scale midpoint z: Set midpoint of color scale to z, in the range 0 ... 1.
e scale min z: Set minimum of color scale to z, in the range 0 ... 1.
e scale max z: Set maximum of color scale to z, in the range 0 ... 1.

e change < alpha | shininess | rgb | ambient | diffuse | specular > color: Reset given
property of color to default value.

e change < alpha | shininess > color value: Set given (scalar) property of color to value.

e change < rgb | ambient | diffuse | specular > color r g b: Set given (3-valued) property
of colorto r g b.

See also Chapter § 12 on how to change color of a user-defined graphics object.

10.3.4 colorinfo

(Tcl) This command provides access to the color definitions. For information on the color properties
see the chapter on Coloring [§6].

¢ colorinfo categories: returns a list of available categories
e colorinfo category category: returns a list of names for the given category
e colorinfo num: returns the number of base solid colors (17)

e colorinfo max: returns the total number of colors available (98)

103

e colorinfo colors: returns a list of the named solid colors

e colorinfo index < name | colorid >: returns the index of the given name or color id.
Useful for the cases when you do need the integer value and don’t want to use lsearch on
colorinfo colors.

e colorinfo jrgb | alpha | shininess | ambient | specular; < name | colorid >: returns
the appropriate values for the given name or color id

e colorinfo scale < method | methods | midpoint | min | max >: returns the information
about the color scales

Examples:

find out what color corresponds to which id:
set i 0
foreach color [colorinfo colors] {

puts "$i $color"

incr i

also get a list of RGB values

set 1 0

foreach color [colorinfo colors] {
lassign [colorinfo rgb $color] r g b
puts "$i $color \{$r $g $p\}"

incr i

10.3.5 debug

Turn on/off printing of debugging messages. This will have no effect if VMD was compiled without
the debugging option (the standard distribution was not compiled with debugging).

e < on | off > Turn debug on or off.

e level n: Set debug level to n.

10.3.6 display

Change various aspects of the graphical display window. For information about the options, see
the section describing the Display form [§3.3.8].

e update: Force the display update. Makes sense if the display update is off. This does not
necessarily take care of resizing the display window or using the Forms GUI while the display
update is turned off.

104

update on: Turn display update on.

update off: Turn display update off. By default VMD does the display updates constantly.
Sometimes it is beneficial to turn the turn the display updates off. This prevents VMD from
redrawing the scene as a response to every change, thus saving time while doing changes of
representations. See sections §16.6.2, § 6.4.3 and § 6.4.4 for examples of use.

update status: Return the display update status (on or off).

update ui: Similar to display update, but also forces updates of the GUI forms. The
Forms interface is subject to the following behavior: if the display update is set to off and
actions (such as, e.g., iconify/deiconify) have been performed to the Forms, the Form windows
do not get updated by just display update command, whereas display update ui forces
both updates to happen. Tk does not seem to have this problem, so this option will become
obsolete after switching to Tk graphics user interface.

reshape: Reshape the display. If the display update is turned off, and the display window
has been resized command display update updates the display, but does not necessarily
respond to the resizing of the window.

resetview: Reset the view.

eyesep value: Set the eye separation to value.

focallength wvalue: Set the focal length to value.

height value: Set the screen height to value.

distance wvalue: Set the screen distance to value.

antialias < on | off >: Turn antialiasing on or off.

depthcue < on | off > Turn depth cueing on or off.

depthsort < on | off >: Turn depth sorting on or off (useful in transparent mode)
detail < full | flat | lines | points | none >

altdetail < full | flat | lines | points | none >

stereo mode: Set the stereo mode to mode.

nearclip < set | add > value: Add or set near clipping plane position to it value.
farclip < set | add > wvalue: Add or set far clipping plane position to value.

get < eyesep | focallength | height | distance | antialias | depthcue | stereo |
projection | detail | altdetail | nearclip | farclip > Return information about the
given option.

get < stereomodes | projections | details > Return a list of the availalble values for
the given options. (See section § 3.3.8 and chapter § 9 for more information.)

105

10.3.7 echo

Turn on/off echoing of text commands to the console. When this is turned on, text commands read
from a file or from the VMD prompt are echoed to the screen before they are executed. Do not
confuse this with the standard Unix echo command.

e < on | off > Turn echoing on or off.

10.3.8 exit
Quit VMD.

e confirm: Use a form to verify with the user before quitting.

e [now]: Quit without asking.

10.3.9 external

(Tcl) Communicate Tcl commands between different processes based on the Tcl-DP RPC functions
(optional). This command can set the machine up as a server (listening for commands) or client
(sending commands) or both.

e on: Start VMD as a server on port 8639 (the number can be changed by changing the
variable vmd_external_port before starting VMD as a server). This lets any process connect
to VMD and send it new text commands. By default, only processes from the same machine
can connect to it, but that can be changed with the host option. See the sections on external
interfaces [§3.4.1] and remote control of VMD [§14.8] for more information on how to use this
feature.

e off: Deny new external connections to be made. Old connections will still exist.

e host machinename (machinename ...): Allow or deny new connections based on the address
of the requesting machine. The format for each machine on the list is the same as dp_Host,
which is based on xhost so external host + allows new connections from anyone, external
host - denies all new connections, external host +foo allows connections from foo and
external host -bar +128.186.7.* will allow any machine from the Florida State physics
department to connect.

e connect machinename: Establish connection with a VMD process on the given machine.
The remote process is the server and the process establishing the connection is the client.

e send command: Evaluate the command on the server process.

e close: Detach from the server.

106

10.3.10 help

Display the on-line help file with an HTML viewer. See Chapter § 17 for information on how to
change the default viewer (which is Netscape).

o [subject]: Jump to help corresponding to subject.

Presently, “subject” can be any one of the following words, which launches the associated URL.
To guarantee that the help system will work correctly, you will probably want to start up your
web browser before choosing one of these options. After you do this, VMD will properly direct the
browser to the pages mentioned below.

10.3.11

Source Associated URL
faq http://www.ks.uiuc.edu/Research/vmd/allversions/vmd faq.html
raster3d | http://www.bmsc.washington.edu/raster3d
stride http://www.embl-heidelberg.de/stride/stride_info.html
mdscope | http://www.ks.uiuc.edu/Research/mdscope/
homepage | http://www.ks.uiuc.edu/Research/vimd/
quickhelp | http://www.ks.uiuc.edu/Research/vind/vmd_help.html
babel http://www.eyesopen.com/babel.html
radiance | http://radsite.lbl.gov/radiance/HOME.html
maillist http://www.ks.uiuc.edu/Research/vind /mailing list/
namd http://www.ks.uiuc.edu/Research/namd/
vrml http://www.vrml.org/
rayshade | http://www-graphics.stanford.edu/~cek/rayshade/rayshade.html
povray http://www.povray.org/
tcl http://www.scriptics.com/
software | http://www.ks.uiuc.edu/Research/vmd/allversions/related _programs.html
userguide | http://www.ks.uiuc.edu/Research/vimd/vmd-1.3/ug/ug.html
Table 10.2: On-line Help Sources
imd

Controls the connection to a remote simulation.

connect host port. connect to an MD simulation running on the machine named host and
listening on port port. This command will fail if a previously-established connection has not
yet been disconnected.

detach: Disconnect from the simulation; the simulation will continue to run.
kill: Disconnect from the simulation and also cause it to halt.
pause: Pause the remote simulation.

transfer rate: Set the rate at which new coordinates are sent by the remote simulation to
VMD to the specified value.

keep rate: Set the keep rate, i.e. the frequency at which VMD saves simulation frames, to
the specified value.

107

10.3.12 label

Turn on or off labels for the four categories: atoms, bonds, angles, or dihedral angles. Once a label
is created (given the list of associated atoms) it can be turned on or off until it is deleted. Also, the
value of the label over the trajectory can be saved to a file and viewed with an external program
such as xmgr. In the following, category implies one of [Atoms—Bonds—Angles—Dihedrals].

e list: Return a list of available categories.
e list category: List all labels in the given category.

e add category mollD1/atomID1 [mollD2/atomID2... 1: Add a label involving the atom(s)
atomID of the molecule molID to the given category.

e show category < all | label_number >: Turn on labels in the given category.
e hide category < all | label_-number >: Turn off labels in the given category.
e delete category < all |label_number>: Delete labels in the given category.

e graph category label_number [command]: Show a graph of a label from the given category.
The data will be written to a temporary file, and the specified command will be run to graph
the data. %s in the command string will be replaced by the temporary filename.

10.3.13 light

There are four light sources, numbered 0 to 3, which are used to illuminate graphical objects. They
are point sources located at infinity so the only controls are to rotate a light or turn it on or off. A
dotted line from the light to the axis can be turned on to help show where the light is located.

e num: Return the number of lights available.

o light_number on: Turn a light on.

light_number off: Turn a light off.

light_number highlight: Display a line indicating the position of a light source.

light_number unhighlight: Hide the line indicating the position of a light source.

light_number status: Return the pair on/off highlight /unhighlight

light_number rot < x | y | z > angle: Rotate a light (at infinity) angle degrees about a given
axis.

10.3.14 logfile

Turn on/off logging a VMD session to a log file. This will create a log file with commands for
all the actions taken during the session. The log file may be played back later by using the ‘play’
command or the Tcl ‘source’ command. The only actions recorded are those which change the state
of the VMD display, so straight Tcl commands are not saved. All of the core VMD commands will
write to the log.

108

e filename: Turn on logging to filename.

e off: Turn off logging.

To write log information to the file ‘off’, use the file name ‘./off’. To have log information appear
on the text console, use logfile /dev/tty.

10.3.15 menu
The menu forms of the GUI Control or query the on-screen GUI menu forms.
e list: Return a list of the available menus
e menu_name on: Turn a menu on.
e menu_name off: Turn a menu off.
e menu_name status: Return on if on, off if off.
e menu_name loc: Return the z y location.

e menu_name move z y: Move a menu to the given (z, y) location
where menu_name is one of the following;:

e main

e mol

e animate
o edit

e graphics
e labels

e render
e display
e color

e sim

e tracker

e remote

Note that in the case when VMD is compiled without the REMOTE option, Sim and Remote menus
are not defined and do not appear on the Main form [§3.3.1].

109

10.3.16 mol

Load, modify, or delete a molecule in VMD. In the following, molecule_number is a string describing
which molecules are to be affected by the command. It is one of the following: all, top, active,
inactive, displayed, on, off, fixed, free, or one of the unique integer ID codes assigned to
the molecules when they are loaded (starting with 0). The codes (molIDs) are not reused after a
molecule is deleted, so if you, for example, have three molecules loaded (numbered 0, 1, 2), delete
molecule with molID equal to 0, and then load another molecule, the new molecule will have molID
3. Thus, the list of available molecule IDs becomes (1 2 3). The index of the molecule on this list
is, among many other things, accessible through the molinfo command [§13]. In the above case,
for example, molecule that was loaded the last has molID equal to 3, however, it is the third on
the list of molecules, so it has the index equal to 2 (since we start countin from 0).

The molecule representations (views) are assigned integer number (starting with 0 for each
molecule), which appear in the list on the Graphics form [§3.3.4]. The representations can be
added, deleted or changed with the mol command. See also sections on molinfo command [§ 13]
for more ways of retrieving information about the representations. See Chapter § 12 for information
on how to use mol command to load user-defined graphics.

e < new | load > structure_file_type structure_file [coordinate_file_type coordinate_file] : Load
a new molecule from filename(s) using the given format.

e urlload <file type> <URL>: Load a molecule from a given URL address
e pdbload <four letter accession id>: ftp molecule from PDB.
e list: Print a one-line status summary for each molecule.

e list molecule_.number: Print a one-line status summary for each molecule matching the
molecule_number. If only one molecule matches the molecule_number, also print the rep-
resentation status for this molecule, i.e., number of representations as well as the representa-
tion number, coloring method , representation style and the selection string for each of the
representations.

e color coloring method: Change the default atom coloring method setting.
e representation rep_style: Change the default rendering method setting.
e selection select_method: Change the default atom selection setting.

¢ modcolor rep_number molecule_number coloring_method: Change the current coloring method
for the given representation in the specified molecule.

e modstyle rep_number molecule_number rep_style: Change the current rendering method
(style) for the given representation in the specified molecule.

e modselect rep_number molecule_number select_method: Change the current selection for the
given representation in the specified molecule.

e addrep: Using the current default settings for the atom selection, coloring, and rendering
methods, add a new representation to the top molecule.

110

e delrep rep_number molecule_number: Deletes the given representation from the specified
molecule.

e modrep rep_number molecule_number: Using the current default settings for the atom se-
lection, coloring, and rendering methods, changes the given representation to the current
defaults.

e delete molecule_number: Delete molecule(s).

e active molecule_number: Make molecule(s) active.

e inactive molecule_number: Make molecule(s) inactive.

e on molecule_number: Turn molecule(s) on (make drawn).
o off molecule_number : Turn molecule(s) off (hide).

e fix molecule_number: Fix molecule(s).

o free molecule_number: Unfix molecule(s).

e top molecule_number: Set the top molecule.

10.3.17 molecule

Same as mol.

10.3.18 mouse
Change the current state (mode) of the mouse.
e mode 0: Set mouse mode to rotation.
e mode 1: Set mouse mode to translation.
e mode 2: Set mouse mode to scaling.
e mode 3 N: Set mouse mode to rotate light N.

e mode 4 N: Set mouse mode to picking mode N, where N is one of the following:

query item
— 1: pick center
— 2: pick atom
pick bond
pick angle
pick dihedral

move atom

move residue

|

move fragment

111

— 9: move molecule

10: force on atom

11: force on residue

— 12: force on fragment

10.3.19 play

Start executing text commands from a specified file, instead of from the console. When the end of
the file is reached, VMD will resume reading commands from the previous source. This command
may be nested, so commands being read from one file can include commands to read other files.

e filename: Execute commands from filename.

10.3.20 quit

Same as exit.

10.3.21 imd

Set up VMD to connect to or start a remote simulation program (optional).

e connect

10.3.22 render

Output the currently displayed image (scene) to a file.

e list: List the available rendering methods.

e method filename: Render the global scene to filename using method and execute the default
command, where method can be one of the following:
— Raster3D
— tkRaster3D
— snapshot
— POV3
— POV
— RayShade
— Radiance
— ART
— PostScript
— STL
— VRML-1

112

— Token

method filename command: Render the global scene to filename, then execute ‘command’.
Any %s in ‘command’ are replaced by the filename (up to 5).

options method: Get the default command string.

e options method command: Set new default command.

default method: Get the original default command.

10.3.23 rock
Rotate the current scene continually at a specified rate.
e off: Stops rocking.
e <x | y | z>Dby step: Rock around the given axis at a rate of step degrees per redraw.

e <x |y | z>by step n: Rock around the given axis at a rate of step degrees per redraw for
n steps, reverse, and repeat.

10.3.24 rotate

Rotate the current scene around a given axis by a certain angle. This does not change atom
coordinates.

e stop: Stop all rotation, same as rock off.
e <x | y | z> by angle: Rotate around the given axis angle degrees.
e <x |y | z>to angle: Rotate the given axis to the absolute position angle.

e <x |y | z><by | to> angle step: Rotate at a rate of step degrees per redraw.

10.3.25 scale

Scale the current scene up or down. This does not change atom coordinates.

e by f. Multiply scene scaling factor by f.

e to f Set scene scaling factor to f.

113

10.3.26 sim

Control the state of a remote simulation after it is connected (optional).

list: Return information about remote simulations. Each element returned contains three
pieces of information; the molecule id, the remote machine name, and the current status. The
status is one of:

— No Connection: remote connection has been disconnected or stopped

— Running Simulation: connected to an active simulation
top sim_number: Set the top simulation.
top: Get the molecule id of top simulation.

modify parameter value: Change a parameter for the top simulation. Possible parameters
are

— rate n: Send only every n simulation timesteps.

— keep n: Keep only every n received timesteps, appended to the animation.

patch < off | byatom | byload | bynode >: Display the patches from a simulation (if
any), coloring them by the specified criteria, for the top simulation.

detach sim_number: Detach from a simulation, leaving it running on the remote computer.

kill sim_number: Kill a simulation.

10.3.27 simulation

Same as sim.

10.3.28 stage

Position a checkerboard stage on the screen.

location < off | origin | bottom | top | left | right | behind >: Set the location.
location: Get the current location.

locations: Get a list of possible locations.

panels n: Set number of panels in stage, up to 30.

panels: Get the number of panels in use

114

10.3.29 tool

Initialize and control the tools that are controlled by external tracking devices.

create: Create a new tool

change type [toolid 1: Change the type of a tool.

scale scale [toolid 1: Change the scale of the coordinates reported by a tool.
scaleforce scale [toolid 1: Increase or decrease the force on a force-feedback device.

rot [left | right 1 Ay Ao1...Ass [toolid 1: Multiply a tool’s orientation matrix on the
left or right by a matrix A.

offset z y z [toolid 1: Add a vector to a tool’s position.

delete [toolid 1: Remove a tool.

info [toolid 1: Get info about a tool.

rep molid repid: Choose only a single representation for tugging or SMD.

adddevice name [toolid] : Add a device to a tool, using a name found in the sensor
configuration file.

removedevice name [toolid 1 : Remove a device from a tool, using a name found in the
sensor configuration file.

10.3.30 translate

Translate the objects in the current scene. This does not change the atom coordinates.

by z y z Translate by vector (z, y, 2) in screen units (note, that this does not change the
atom coordinates).

to z y 2z Translate to the absolute position (z, y, z) in screen units.

10.3.31 user

Add user-customized commands to the graphics display popup menu.

add menu name: Add a new submenu name to the main popup menu. The submenu will
be initially empty, and will not appear until items are added to it.

add item name command: Add a new menu item named name to the ‘User Command’
submenu of the main menu. If a command is specified, then when the menu item is selected
by the user, that command will be executed as if it had been typed at the console.

add separator: Add a separator to the end of the ‘User Command’ submenu of the main
menu.

115

e add subitem menu name command: Add an item name to the given submenu menu, which
must have been added already with an add menu command. The given command will be
executed when the item is selected by the user.

¢ add subseparator menu: Add a separator to the end of the given submenu.

e add key key command: Assign the given text command to the hot key key. When key is
pressed while the mouse is in the display window, the specified command will be executed.

e print < menus | keys >: Print out the current definition of the user-defined menus, or the
hot keys.

See section § 14.1 for examples of the use of the user command.

10.3.32 vmdlog

(Tcl) By default this procedure does not exist. If it is created, (nearly) every command that affects
the display state of VMD is passed to it as its single parameter. This can be used as an interface
alternative to the logfile [§10.3.14] command.

10.3.33 vmdinfo
(Tcl) Returns information about this version of VMD.

e version: Returns the version number;

e versionmsg: Full information about this version;
e authors: List of authors;

e arch: architecture type (in case you couldn’t tell);
e options: options used to compile VMD;

e www: VMD home page;

e wwwhelp: VMD help page.

This function is available without Tcl and the information is displayed to the screen.

10.3.34 wait

Specify a number of seconds to wait before reading another command. Animation continues during
this time.

e time: wait time seconds.

10.3.35 sleep

Specify a number of seconds to sleep before reading another command. Animation stops during
this time.

e time: sleep time seconds.

116

Chapter 11

Vectors and Matrices

Tcl does not handle mathematical expressions very well. It is slow at evaluating expressions, and
provides no facility for handling vectors or matrices. Since the latter two are needed for structure
analysis, we have added routines to manipulate them. The routines themselves are independent of
VMD, but do require TclX for a couple functions, such as lassign. The routines are loaded during
the evaluation of the $env(VMDDIR) /scripts/vmd/vmdinit.tcl script

A vector in VMD is a list of numbers. All of the vector routines but one will work with vectors
of any length; veccross will only use vectors of three numbers. A matrix is a 4x4 collection of
numbers stored as a list of 4 vectors of 4 numbers, in row-major form.

Following are descriptions and examples of all the commands. For more examples of vectors,
though without much documentation, the script used to test the vectors implementation is located
at $env(VMDDIR) /scripts/vmd/test-vectors.tcl. See also the chapter on writing scripts for
VMDI§16].

Since Tcl is slow at math, some of these commands have been reimplemented in C++. (The
original definition is in the vmd script distribution, but it is redefined later on inside VMD). At
times, the speedup is a factor of 40 or more. These commands are noted by (C++).

11.1 Vectors

e veczero — Returns the zero vector, {0 0 0}

Example:
vmmd > veczero
Info) 0 0 O

e (C++) vecadd v! v2 [v3 ... vn] — Returns the vector sum of all the terms.

Examples:

vmd > vecadd {1 2 3} {4 5 6} {7 8 9} {-11 -11 -11}
Info) 1 4 7

vmd > vecadd {0.1 0.2 0.4 0.8} {1123} {314 1}
Info) 4.1 2.2 6.4 4.8

vmd > vecadd 4 5

Info) 9

117

e (C++) vecsub vl v2 - Returns the vector subtraction of the second term from the first

Examples:

vmd > vecsub 6 3.2

Info) 2.8

vmd > vecsub {10 9.8 7} {0.1 0 -0.1}
Info) 9.9 9.8 7.1

vmd > vecsub {1 2 3 4 5} {6 7 8 9 10}
Info) -5 -5 -5 -5 -5

e (C++) vecscale ¢ v —

e (C++) vecscale v ¢ — Returns the vector of the scalar value ¢ applied to each term of v

Examples:

vmd > vecscale .2 {1 2 3}
Info) 0.2 0.4 0.6

vmd > vecscale {-5 4 -3 2} -2
Info) 10 -8 6 -4

vmd > vecscale -2 3

Info) -6

e vecdot v! v2 — Returns the scalar dot product of the two vectors

Examples:

vmd > vecdot {1 -2 3} {4 5 6%}

Info) 12

vmd > vecdot {3 4} {3 4}

Info) 25

vmd > vecdot {1 2 3 45} {643 21}
Info) 35

vmd > vecdot 3 -2

Info) -6

e veccross v v2 — Returns the vector cross product of the two vectors.

Examples:

vmd > veccross {1 0 0} {0 1 0}
Info) 0 0 1

vmd > veccross {2 2 2} {-1 0 0}
Info) 0 -2 2

e veclength v — Returns the scalar length of v (]|v||)
Examples:
vmd> veclength 5

Info) 5.0
vmd > veclength {5 12}

118

Info) 13.0

vmd > veclength {3 4 12}
Info) 13.0

vmd > veclength {1 -2 3 -4}
Info) 5.47723

veclength2 v — Returns the square of the scalar length of v (||v||?)

Examples:

vmnd > veclength2 5

Info) 25

vimd > veclength2 {5 12}
Info) 169

vmd > veclength2 {3 4 12}
Info) 169

vmd > veclength2 {1 -2 3 -4}
Info) 30

vecnorm v — Returns the vector of length 1 directed along v

Examples:

vmd > vecnorm -10

Info) -1.0

vmd > vecnorm {1 1 }

Info) 0.707109 0.707109

vmd > vecnorm {2 -3 1}

Info) 0.534522 -0.801783 0.267261

vmd > vecnorm {2 2 -2 2 -2 -2}

Info) 0.408248 0.408248 -0.408248 0.408248 -0.408248 -0.408248

vecdist v! v2 — Returns the distance between the two vectors (||v2 — v1]|)

Examples:

vmd > vecdist -1.5 5.5

Info) 7.0

vmd > vecdist {0 O 0} {3 4 0}

Info) 5.0

vmd > vecdist {0 1 2 3 45 6} {-6 -5 -4 -3 -2 -1 0}
Info) 15.8745

vecinvert v — Returns the additive inverse of v (—v).

Examples:

vmd > vecinvert -11.1

Info) 11.1

vmd > vecinvert {3 -4 5}
Info) -3 4 -5

vmd > vecinvert {0 -1 2 -3}
Info) 01 -2 3

119

11.2 Matrix routines

Because matrices are rather large when expressed in text form, the following definitions are used
for the examples.

e transidentity — Returns the identity matrix.

Example:
vmd > transidentity
Info) {1.0 0.0 0.0 0.0} {0.0 1.0 0.0 0.0} {0.0 0.0 1.0 0.0} {0.0 0.0 0.0 1.0}

e transtranspose m — Returns the matrix transpose of the given matrix

Example:
vmd > transtranspose {{0 1 2 3 4} {56 6 7 8} {9 10 11 12} {13 14 15 16}}
Info) {0 5 9 13} {1 6 10 14} {2 7 11 15} {3 8 12 16}

o (C++) transmult mI m2 [m& ... mn| — Returns the matrix multiplication of the given
matrices

Examples:
vimd > set matl {{1 2 3 4} {-2 3 -4 5} {3 -45 -6} {45 -6 -7}}
vmd > set mat2 {{1 0 0 0} {0 0.7071 -0.7071 0} {0 0.7071 0.7071 0} {0 0 O 1}}
vmd > set mat3 {{0.866025 0 0 0} {0 1 0 0} {-0.5 0 0.866025 0} {0 O O 1}}
vind > transmult $matl [transidentity]
Info) {1.0 2.0 3.0 4.0} {-2.0 3.0 -4.0 5.0} {3.0 -4.0 5.0 -6.0}
{4.0 5.0 -6.0 -7.0}
vmd > transmult $matl $mat2 $mat3
Info) {0.512475 3.5355 0.612366 4.0} {0.7428 -0.7071 -4.28656 5.0}
{-0.58387 0.7071 5.5113 -6.0} {7.35315 -0.7071 -6.73603 -7.0}

e transaxis <x|ylz> amount [deglrad|pi] — Returns the transformation matrix needed to
rotate around the specified axis by a given amount. By default, the amount is specified in
degrees, though it can also be given in radians or factors of pi.

Examples:

vmd > transaxis x 90

Info) {1.0 0.0 0.0 0.0} {0.0 -3.67321e-06 -1.0 0.0} {0.0 1.0 -3.67321e-06 0.0}
{0.0 0.0 0.0 1.0}

vmd > transaxis y 0.25 pi

Info) {0.707107 0.0 0.707107 0.0} {0.0 1.0 0.0 0.0}
{-0.707107 0.0 0.707107 0.0} {0.0 0.0 0.0 1.0}

vmd > transaxis z 3.1415927 rad

Info) {-1.0 -2.65359e-06 0.0 0.0} {2.65359e-06 -1.0 0.0 0.0} {0.0 0.0 1.0 0.0}
{0.0 0.0 0.0 1.0}

e transvec v — Returns the transformation matrix needed to bring the x axis along the v
vector. This matrix is not unique, since a final rotation is allowed around the vector. The
matrix is made from a rotation around y, then one about z.

120

Examples:

vmd > transvec {0 1 0}

Info) {-3.67321e-06 -1.0 0.0 0.0} {1.0 -3.67321e-06 0.0 0.0} {0.0 0.0 1.0 0.0}
{0.0 0.0 0.0 1.0}

vmd > vectrans [transvec {0 0 2}] {1 0 0}

Info) 0.0 0.0 1.0

transvecinv v — Returns the transformation needed to bring the vector v to the x axis. This
produces the inverse matrix to transvec, and is composed of a rotation about z then one about

y.

Examples:

vmd > transvecinv {0 -1 0}

Info) {-3.67321e-06 -1.0 0.0 0.0} {1.0 -3.67321e-06 0.0 0.0} {0.0 0.0 1.0 0.0}
{0.0 0.0 0.0 1.0}

vmd > vectrans [transvecinv {-3 4 -12}] {-3 4 -12}

Info) 13.0 -1.8e-05 5.8e-05

vmd > transmult [transvec {6 -5 7}] [transvecinv {6 -5 7}]

Info) {0.999999 2.29254e-07 -6.262e-09 0.0} {2.29254e-07 0.999999
-4.52228e-07 0.0} {-6.262e-09 -4.52228e-07 1.0 0.0} {0.0 0.0 0.0 1.0}

(C++) transoffset v — Returns the transformation matrix needed to translate by the given
offset

Examples:

vmd > transoffset {1 0 0}

Info) {1.0 0.0 0.0 1} {0.0 1.0 0.0 0} {0.0 0.0 1.0 0} {0.0 0.0 0.0 1.0}
vmd > transoffset {-6 5 -4.3}

Info) {1.0 0.0 0.0 -6} {0.0 1.0 0.0 5} {0.0 0.0 1.0 -4.3} {0.0 0.0 0.0 1.0}

transabout v amount [deg|rad|pi] — Generates the transformation matrix needed to rotate
by the given amount counter-clockwise around axis which goes through the origin and along
the given vector. As with transvec, the units of the amount of rotation can be degrees,
radians, or multiples of pi.

Examples:

this is a rotation about x by 180 degrees

vmd > transabout {1 0 0} 180

Info) {1.0 0.0 0.0 0.0} {0.0 -1.0 -2.65359e-06 0.0} {0.0 2.65359¢-06
-1.0 0.0} {0.0 0.0 0.0 1.0}

a rotation about z by 90 degrees

(compare this to "transaxis z 90"

vimd > transabout {0 O 1} 1.5709 rad

Info) {0.999624 -0.027414 0.0 0.0} {0.027414 0.999624 0.0 0.0}
{0.0 0.0 1.0 0.0} {0.0 0.0 0.0 1.0}

vmd > transabout {1 1 1} 1 pi

Info) {-0.333335 0.666665 0.666669 0.0} {0.666668 -0.333334 0.666666
0.0} {0.666666 0.66667 -0.333332 0.0} {0.0 0.0 0.0 1.0}

121

e trans [center {z y z}] [origin {z y z}] [offset {z y z}] [axis x amount [rad|deg|pi]]
[axis y amount [rad|degl|pi]] [axis z amount [rad|deg|pi]] [x amount [rad|deg]|pi]]
[y amount [rad|deglpi]] [z amount [rad|degl|pi]] [axis {z y z} amount [rad|deg]|pi]]
[bond {z1 y1 21} {z2 y2 22} amount [rad|degl|pi]] [angle {z1 y1 21} {22 y2 22} {z3 y3
28} amount [rad|deg|pi]] -

This command can do almost everything the other ones can do, and then some. It is designed
to be the main function used for generating transformation matrices.

Using it correctly calls for understanding how it works internally. There are three matrices:
centering, rotation, and offset. The centering matrix determines where the center of rotation is
located. By default, this is the origin, but it can be changed to pivot about any point. The
rotation matrix defines the rotation about that centering point, and the offset matrix defines the
final translation after the rotation.

For example, to rotate around a given point, the transformations would be 1) the centering
matrix to bring that point to the origin, 2) the rotation about the center, and 3) the final offset to
return the origin back to its original location.

The different options for the trans command modify the matrices in various ways.

— center {z y z} — Sets the centering matrix so that point x y z is brought to the origin
— offset {z y z} — Sets the offset matrix so that the origin is brought to x y z
— origin {z y z} — Sets both the centering and offset matrices to x y z

— axis x amount [rad|deg|pi] — Adds a rotation about the x axis by the given amount to the
rotation matrix

— axis y amount [rad|deg|pi] — Adds a rotation about the y axis by the given amount to the
rotation matrix

— axis z amount [rad|deg|pi] — Adds a rotation about the z axis by the given amount to the
rotation matrix

— axis {z y 2z} amount [rad|deg|pi] — Adds a rotation of the given amount about the given
vector to the rotation matrix

— bond {zI y1 21} {z2 y2 22} amount [rad|deg|pi] — Sets the center and offset transforma-
tions to the first point, and defines a rotation about the bond axis by the given amount.

— angle {z1 y1 z1} {22 y2 22} {z8 y3 23} amount [rad|deg|pi] — Sets the center and offset
transformation to the second point, and defines a rotation about the axis perpendicular to
the plane made by the three points (the vector is computed from the cross product of the
vector connecting the first two points with that connected the last two).

11.3 Multiplying vectors and matrices

There are two commands to multiply a matrix and a vector, vectrans and coordtrans. They
assume the vector is in column form and premultiply the matrix to the vector. If the vector
contains four numbers, the two commands are identical. If the vector has three elements, a fourth
is added; a 0 for vectrans and a 1 for coordtrans. The difference is that vectors are not affected
by translations during transformations, while coordinates are.

122

e (C++) vectrans m v — Multiple the matrix m with the vector v (length 4); returns a vector

e coordtrans m v — Multiple the matrix m with the coordinate v (length 3); returns a vector

Examples:

vmd > vectrans [tramsaxis z 90] {1 0 0}

Info) -3.67321e-06 1.0 0.0

vimd > vectrans [transvecinv {-3 4 -12}] {-3 4 -12}
Info) 13.0 -1.8e-05 5.8e-05

11.4 Misc. functions and values

Several other terms are added to the vectors package. The first is the variable M_PI, which contains
the value of pi.

Examples:

vmd > set M_PI

Info) 3.14159265358979323846
vmd > expr 90 * ($M_PI / 180)
Info) 1.5708

The functions trans_from_rot, trans_to_rot, trans_from offset, and trans_to_offset are
used to get or set a transformation matrix from either a 3x3 rotation matrix or offset vector. As
currently designed, these assume there is no scaling in the matrix. The trans_from offset is
identical to transoffset and is present for completeness.

The last is find_rotation_value varname, which takes a variable name and extracts from
the beginning of it those terms which describe an amount of rotation. The rest of the data in
the variable remains, and the amount of rotation, in radians, is returned. This is used by those
functions which need a rotation. The valid values are: a number, followed by one of rad, radian,
or radians for a value in radians, the word pi to give the rotation in factors of pi, or one of deg,
degree, or degrees for a value in degrees. If no units are given, the value is assumed to be in
degrees.

Examples:

vmd > set a "180 deg north"
Info) 180 deg north

vmd > find_rotation_value a
Info) 3.14159

vmd > set a

Info) north

vmd > set a "1 pi to eat"
Info) 1 pi to eat

vmd > find_rotation_value a
Info) 3.14159

vmd > set a

Info) to eat

vmd > set a 45

Info) 45

123

vmmd > find_rotation_value a
Info) 0.785398

vmd > expr $M_PI * 3.0 / 2.0
Info) 4.71239

vmd > set a "4.71238 radians"
Info) 4.71238 radians

vmd > find_rotation_value a
Info) 4.71238

124

Chapter 12

User-Defined Graphics

Sometimes you may want to display graphics other than the standard molecular graphics. You
may want to draw a box around a molecule, or an arrow between two atoms, or place a text label
somewhere in space, or test a new method for visualizing a molecule. Because of the wide range
of objects which can be displayed, VMD cannot be pre-programmed to display them all. Instead,
it does offer a way to build up a new object from simple graphical items, including: points, lines,
cylinders, cones, spheres, triangles (both with and without specified normals), and text. Since these
are displayed in the scene just like all other graphics, they can also be saved to the various ray
tracing formats.

This chapter describes how to use the text interface to add new graphics to VMD. It is broken
up into four parts. The first is an introduction to the basic graphics available, the second is a
tutorial which demonstrates many of the ways to use the graphics feature, the third describes how
the base graphics command works, and the last describes the draw extension which can handle
larger, more complicated objects.

12.1 Introduction

There are 10 types of basic graphical items built into VMD, which are used with graphics and
draw commands. These are:

e point {z y z} —
draws a point at the given position

o line {z1 yI 21} {22 y2 22} [width w] [style <solid|dashed>] —

draws either a solid or dashed line of the given width from the first point to the second. By
default, this is a solid line of width 1. A caution about the line width from the SGI man page
for linewidth(3G):

The maximum width of aliased lines is 255.

IRIS-4D VGX model supports antialiased line widths 1.0 and 2.0, and
aliased line widths one through 255. 1IRIS-4D G, GT, and GTX models, the
Personal Iris, Indy, Iris Entry, XL, XS, XS24, XZ, Elan and Extreme
systems support antialiased line width 1.0, and aliased line widths one
through 255.

125

Note that there is a known bug in VMD which causes it to mix up and lose track of the
anti-alias and depth-cue modes.

cylinder {zI y1 z1} {z2 y2 22} [radius 7] [resolution n] [filled <yes|no>]| —

draws a cylinder of the given radius (default r=1) from the first point to the second. The
cylinder is actually drawn as an n sided polygon. If the filled option is true (default), the
ends are capped with flat disks, otherwise the cylinder is hollow.

cone {basex basey basez} {tipz tipy tipz} [radius r] [resolution n| —

draw a cone with the center of the base at the first point and the tip at the second. The
radius(default r=1) determines the width of the base. As with cylinder, the resolution
determines the number of polygons used in the approximation.

triangle {z1 y1 21} {z2 y2 23} {x3 y3 23} —

draws a triangle with endpoints at each of the three vertices

trinorm {z1 yI 21} {22 y2 23} {z3 y3 28} {nzl y1 21} {nz2 ny2 nz3} {nz3 ny3 nz3} -

draws a triangle with endpoints at each of the first three points. The second group of three
values specify the normals for the three points. This is used for making a smooth shading
across the triangle.

sphere {z y z} [radius 7] [resolution n| —

draws a sphere of the given radius (default r=1) centered at the vertex. The resolution
(default n=6) determines how many polygons are used in the approximation of a sphere.

text {z y 2z} “text string” —
displays the text string with the bottom left of the string starting at the given vertex.

color colorld —
color name —

color trans_name — Each of the above geometrical objects are drawn using the current color.
Initially, that color is blue, which has the colorid of 0. The color command changes the
current color, and stays info effect until the next color command. Thus, to draw a red
cylinder then a red sphere, first use the command color red command to change the color,
then use the cylinder and sphere commands.

materials <on|off>> — Material properties are used to make the graphical objects (lines,
cylinders, etc.) be affected by the light sources. These make the objects look more realistic,
but are slower on machines which don’t implement materials in hardware (see chapter § 6
and sections on color [§ 10.3.3] and colorinfo [§ 10.3.4] commands for the information on how
to turn off material characteristics for all objects in VMD). One surprising effect of material
characteristics is that lines are affected. In some lighting situations, the lines can even appear
to disappear. Thus, you may want to turn off materials before drawing lines.

126

12.2 Tutorials and Examples

We'll start with some basic examples. Load VMD and enter:
draw cylinder {0 0 0} {5 0 0} radius 0.2

VMD will print:
Info) Loading new molecule ...

because of the way graphics are implemented (don’t worry about the details yet) and draw a blue
cylinder on the screen.
Now change the color to red and draw two more cylinders:

draw color red
draw cylinder {4 1 0} {5 0 0} radius 0.1
draw cylinder {4 -1 0} {56 0 0} radius 0.1

You might want to reset the view. Since the original scene had no data, a default size was chosen.
Now that there is data, a reset view will center the graphics just as if it was a regular molecule (in
fact, the implementation is a molecule with no atoms and only graphics). You now have a simple
arrow. Let’s make a nicer looking one now. First, remove all the graphics:

draw delete all
and make a cylinder with a cone on the end

draw cylinder {0 O 0} {4 O 0} radius 0.1
draw cone {4 0 0} {56 0 0} radius 0.15

Note that the widest part of the cone is at the first point. As long as we’re at it, let’s add some
text to the end of the arrow in green

draw color green
draw text {56 O 0} "This way"

Cool, eh? Of course, more things are available than a cylinder, cone, and text. How about a sphere?

draw sphere {0 O 0} radius 0.3
draw sphere {0 2 0} radius 0.2

The color of the spheres is green because that was the previously assigned color. The color doesn’t
change until explicitly specified with the color option. The default color is blue.
And some lines, first, a dotted line connecting the spheres

draw line {0 O 0} {0 2 0} style dashed
then a solid one from the second sphere to the end of the arrow
draw line {0 2 0} {5 0 0}

Now, reset the view and move things around a bit. You may be surprised to see the lines appear
and disappear. This is because the lines have a ” material property”; which means they are affected
by the lights. For some things, this may be useful, but usually if you want to draw lines, you’ll
need to turn materials off.

draw materials off

127

12.2.1 Drawing a graph

Here’s an example of how to draw a 2-D graph. First, get rid of the current graphics (since there
may be graphics from the previous tutorial):

draw delete all
Define a function to graph, in this case, a parabola.

proc f {x} {
expr $x * $x

}

The following function draws a graph given the function name, the start and end values, and
the step size.

proc draw_graph {function start end step} {
do some error checking
if {$step < 0} {set step -$step}
if {$step == 0} {error "draw_graph: cannot have step size of zero"}
if {$start > $end} {
set tmp $start
set start $end
set end $tmp
X
turn materials off
draw materials off
draw the data in green
draw color green

calculate and save the initial coordinates
set yO [$function $start]

set x0 $start

set miny $y0

set maxy $y0

go through the coordinates $start+$step to $end, $step at a time
for {set x1 [expr $start + $stepl} {$x1 <= $end} {
set x1 [expr $x1 + $stepl} {
calculate the function value for this point
set y1 [$function $x1]
and draw a line to connect the previous point to the current one
draw line "$x0 $y0 0" "$x1 $y1 0"
save the min/max values of y, and copy the x1,yl into x0,y0
if {$y1 < $miny} {set miny $yi1}
if {$y1 > $maxy} {set maxy $yl}
set yO $y1
set x0 $x1

128

draw a red box around everything
draw color red
draw line "$start $miny 0" "$end $miny 0"
draw line "$start $miny 0" "$start $maxy 0"
draw line "$end $maxy 0" "$end $miny 0"
draw line "$end $maxy 0" "$start $maxy 0"
and put some labels down
draw text "$end $miny O" "x ->"
draw text "$start $maxy 0" "f(x)"

}

Copy these two definitions into VMD’s text console (this script is available from the VMD script
library at http://www.ks.uiuc.edu/Research/vmd/script_library/), then enter

draw_graph f -5 4 0.2

and reset the view. Presto, a nice little parabola.

12.2.2 Triangles

If you want to draw the surface of a solid object you can build it out of triangles. The graphics
interface to VMD supports two types of triangles, simple triangles with just the corners defined, or
"trinorms” which have normals defined for each corner.

First, a simple red triangle

draw delete all
draw color red
draw triangle {1 0 0} {0 1 0} {0 O 1}

Not bad, so let’s put some more in

draw triangle {1 0 0} {0 1 0} {0 O -1}
draw triangle {1 0 0} {0 -1 0} {0 0 1}
draw triangle {1 0 0} {0 -1 0} {0 0 -1}
draw triangle {-1 0 0} {0 1 0} {0 O 1}

draw triangle {-1 0 0} {0 1 0} {0 0 -1}

draw triangle {-1 0 0} {0 -1 0} {0 O 1}

draw triangle {-1 0 0} {0 -1 0} {0 0 -1}

And you have yourself an octahedron. See how the colors on the faces don’t go smoothly from
one side to the next? This is because the surface normals for one face are quite different from
another, so the lights are reflected differently. The colors can be made smoother by defining the
normals for the corners such that the normals of the edges are the same. One caution about
defining the vertices and normals: they must be given in counter-clockwise order or the shading
will be wrong.

As an example, here’s the above octahedron with the normals specified:

draw delete all
draw color red
draw trinorm {1 0 0} {0 1 0} {0 0 1} {1 0 0} {0 1 0} {0 O 1}

129

draw
draw
draw
draw
draw
draw
draw

12.2.3
The fol

trinorm {1 0 0} {0 0 -1} {0 1 0} {1 0 0} {0 0 -1} {0 1 O}
trinorm {1 0 0} {0 0 1} {0 -1 0} {1 0 0} {0 0 1} {0 -1 0%}
trinorm {1 0 0} {0 -1 0} {0 0 -1} {1 0 0} {0 -1 0} {0 O -1}
trinorm {-1 0 0} {0 0 1} {0 1 0} {-1 0 0} {0 0 1} {0 1 O}
trinorm {-1 0 0} {0 1 0} {0 0 -1} {-1 0 0} {0 1 0} {0 O -1}
trinorm {-1 0 0} {0 -1 0} {0 0 1} {-1 0 0} {0 -1 0} {0 O 1}
trinorm {-1 0 0} {0 0 -1} {0 -1 0} {-1 0 0} {0 0 -1} {0 -1 O}
Draw a surface plot
lowing will plot the surface of a given function from —5 <= z,y <= 5. (This is a bit more

complicated, so I don’t want to include as much error checking for the inputs.)
The graphics here will be the function

proc g

{x y} {expr sqrt(abs($x*$y))}

proc draw_surface { f } {

set
set
set
set
set
fi
do
for
fo

}
}

minx -5

maxx 5

miny -5

maxy 5

step 0.5

rst, get the data (this isn’t the most data efficient way of
ing things)

{set i $minx} {$i <= $maxx} {set i [expr $i + $stepl} {

r {set j $miny} {$j <= $maxy} {set j [expr $j + $stepl} {
set data($i,$j) [$f $i $j]

make another pass through to plot it

for
fo

+ $dat

{set i $minx} {$i <= [expr $maxx - $stepl} {set i [expr $i + $stepl} {
r {set j $miny} {$j <= [expr $maxy - $stepl} {set j [expr $j + $stepl} {
get the next two corners
set i2 [expr $i + $step]
set j2 [expr $j + $stepl]
find the middle
set imiddle [expr $i + $step/2]
set jmiddle [expr $j + $step/2]
set kmiddle [expr ($data($i,$j) + $data($i2,$j) + $data($i2,$j2) \
a($i,$j2)) / 4.0]
use a cool coloring scheme (this depends on the graph having a min
value of 0 and max of 5, or at least less than about 30)
draw color [expr 34 + [int [expr 6 * $kmiddle]] % 321
make 4 triangles
draw triangle "$i $j $data($i,$j)" "$imiddle $jmiddle $kmiddle" \
"$i2 $j $data($i2,$j)"
draw triangle "$i $j $data($i,$j)" "$i $j2 $data($i,$j2)" \

130

"$imiddle $jmiddle $kmiddle"
draw triangle "$i2 $j2 $data($i2,$j2)" "$i2 $j $data($i2,$j)" \

"$imiddle $jmiddle

$kmiddle"

draw triangle "$i2 $j2 $data($i2,$j2)" "$imiddle $jmiddle $kmiddle" \
"$i $j2 $data($i,$j2)"

}
}
}

And graph it with the command:

draw_surfa

ce g

Looks like it should be on a quilt, doesn’t it?

12.2.4 Drawing a box around a molecule

Here’s a quick function to draw a box around a molecule. Delete any graphics you may have loaded

and enter this script.

proc box_m

olecule {molid} {

get the min and max values for each of the directions
(I'm not sure if this is the best way ...)

set

set
set
set

set
set
set

set
set
set

an
draw
draw
draw
draw
draw

draw
draw

draw
draw

sel [atomselect top all]

coords [lsort -real [$sel
minx [lindex $coords 0]
maxx [lindex [lsort -real

coords [lsort -real [$sel
miny [lindex $coords 0]
maxy [lindex [lsort -real

coords [lsort -real [$sel
minz [lindex $coords 0]
maxz [lindex [lsort -real

d draw the lines
materials off
color yellow
line "$minx $miny $minz"
line "$minx $miny $minz"
line "$minx $miny $minz"

line "$maxx $miny $minz"
line "$maxx $miny $minz"

line "$minx $maxy $minz"
line "$minx $maxy $minz"

get x]1]
-decreasing $coords] 0]
get yl]
-decreasing $coords] 0]
get zl]

-decreasing $coords] 0]

"$maxx $miny $minz"
"$minx $maxy $minz"
"$minx $miny $maxz"

"$maxx $maxy $minz"
"$maxx $miny $maxz"

"$maxx $maxy $minz"
"$minx $maxy $maxz"

131

draw line "$minx $miny $maxz" "$maxx $miny $maxz"
draw line "$minx $miny $maxz" "$minx $maxy $maxz"

draw line "$maxx $maxy $maxz" "$maxx Pmaxy $minz"
draw line "$maxx $maxy $maxz" "$minx $maxy $maxz"
draw line "$maxx $maxy $maxz" "$maxx $miny $maxz"

}

If you don’t already have a molecule loaded, load one, e.g.,
mol load pdb $env(VMDDIR)/proteins/alanin.pdb
and make it the top molecule. Then execute the command:

box_molecule top

(you could also enter the molecule id instead of top).

12.2.5 Adding a label

Here’s a quick way to add your own label to an atom selection [§7]. This function take the selection
text and the labels that atom (in the top molecule) with the given string. It returns with an error
if more anything other than one atom is selected.

proc label_atom {selection_string label_string} {
set sel [atomselect top $selection_string]
if {[$sel num] !'= 1} {
error "label_atom: ’$selection_string’ must select 1 atom"
}
get the coordinates of the atom
lassign [$sel get {x y z}] coord
and draw the text
draw text $coord $label_string

12.2.6 Interface to picking

When an atom is picked with the mouse, the Tcl variable vmd_pick mol gets set to the moleule id
of the picked molecule, and vmd_pick_atom contains the atom index. The Tcl command trace can
be used to call a function when those values change.

As an example of what can be done with this, the following statements will put a sphere around
each atom when it has been picked with the mouse. To turn it off, execute
trace vdelete vmd_pick_atom w sphere_pick.

proc sphere_pick {name element op} {
get the atom and molecule picked
global vmd_pick_atom vmd_pick_mol
get the coordinates
set sel [atomselect $vmd_pick_mol "index $vmd_pick_atom"]
lassign [$sel get {x y z}] coords

132

draw sphere $coords radius 1.0
X

trace variable vmd_pick_atom w sphere_pick

12.2.7 Animation

One last example of what can be done with the user-defined graphics. While VMD is not designed
for animation, it can be made to animate objects by repeating the cycle of drawing the objects
then calling the display update command. Here’s an example which has several balls swinging
(non-physically) at the end of a chain. If you want to stop it before it finishes, use <Ctrl-C>, but
if you catch it in the wrong place and nothing moves, you’ll need to execute the command display
update on (see section § 10.3.6 for details about display updates.

proc swing {} {
get rid of everything else (if there is anything)
if [expr [molinfo top] != -1] { mol off all }
create a new graphics molecule to handle just this
mol load graphics "swing"
set mol [molinfo top]
set center {0 0.5 0}
set radius 0.125
set offset ".25 0 O"
set length 1
set firsttime 1
display resetview
axes location off
stage location off
for {set i 0} {$i < 1000} {incr i} {
display update off
scale by 1.003
rotate y by b5
display update on
set topl [vecsub $center $offset]
set top2 $center
set top3 [vecadd $center $offset]
compute the bottom location
set botl [vecsub $topl "O $length 0"]
set bot2 [vecsub $top2 "O $length 0"]
set bot3 [vecsub $top3 "0 $length 0"]
set xdiff [expr sin($i/10.0)]
set ydiff [expr 1.0 - abs(cos($i/10.0))]

if [expr $xdiff < 0] {

set botl [vecadd $botl "$xdiff $ydiff 0"]
} else {

set bot3 [vecadd $bot3 "$xdiff $ydiff 0"]

133

if $firsttime {
set firsttime O
display resetview
} else {
graphics $mol delete all

draw the three different balls/strings in different colors
graphics $mol color red
graphics $mol sphere $botl radius $radius
graphics $mol color green
graphics $mol sphere $bot2 radius $radius
graphics $mol color blue
graphics $mol sphere $bot3 radius $radius
graphics $mol materials off
graphics $mol color red
graphics $mol line $topl $botl
graphics $mol color green
graphics $mol line $top2 $bot2
graphics $mol color blue
graphics $mol line $top3 $bot3
display reshape
}
display update on

12.3 Graphics

This section describes technical aspects of how the graphics commands are implemented and used.
It should be read by those who want to understand how to build script-level extensions and those
who like knowing more about how things work.

The user controlled graphics are implemented as if they are molecules of zero length which
contains only a list of graphical objects. (Indeed, internally the class is called “MoleculeGraphics”
and is derived from the Molecule class.) Thus, all the normal controls are applicable, and this is
why the graphics “molecules” are on the Mol form. This simplifies matters as many of the controls,
such as the mouse controls, do not need to be duplicated. However, some of the commands that
apply only to molecules then make no sense, such as the graphics form.

Multiple graphics lists can be created. Since they are just specializations of a normal molecule,
they are created with the mol load command, just like any other molecule. The full command is:

¢ mol load graphics name

The name parameter should be a distictive string related to the molecule. For instance, if the
purpose of a new graphics list is to read in a graphics file format, the name should be the file name.
If it is a method of viewing data from another, loaded molecule, the name should contain the name
of the method and the molecule Id of the molecule from which it was derived. VMD reserves the
name “graphics” for use with the draw command as that command always adds its graphics to the
last graphical molecule with that name.

134

Once the graphics list is loaded and on the list of molecules, it can be distinguished from a
normal molecule by using the molinfo <molID> get source command, which returns “Graphics”
for graphics molecules.

The information pertaining to a given graphics list is accessed via the graphics command,
which is of the following form:

e graphics <molecule id> command [options ...]

where the "molecule id” is the id of the graphics molecule on the molecule list. The command field
can be one of the graphical items listed in section §12.1, or one of the commands exists, delete,
replace, list or info. The graphics command returns a value, which depends on the command
given.

As graphical primitives are added to the list they are assigned a unique, increasing value. The
first object added is assigned 0, the second is assigned 1, etc. The commands which add an item
return its value. A list of the available object ids is available with the 1ist command. To test if a
specific primitive exists, use the exists command followed by the object index. This returns a 1
if the index exists, and 0 if it does not. Information can be retrieved about a given item with the
info command. This takes one option, which is the number of graphical information from which
information is desired.

A given primitive is deleted with the delete command followed by the index of the object to
delete. It does not have a return value. If the parameter is the string all, then all the primitives
are deleted and the index count reset to 0.

Another deletion method allows one primitive to be replaced by another; suspiciously enough,
this is the replace command. What it does is delete the given primitive and set things up so
the next primitive is put in the same spot on the list and given the same index. This is designed
for situations where the graphics are complicated to build, but where the colors might want to be
easily changed. The color definition can be replaced without needing to rebuild the full list.

Here are examples of all the above commands:

vmd > mol load graphics testing

Info) Loading new molecule ...

vimd > graphics top sphere {0.1 0.2 0.3} radius 0.4

Info) O

vimnd > graphics top cylinder {-1 -1 -1} {2.6 2.5 2.4} resolution 3
Info) 1

vmd > graphics top line {0 0 0} {3 O 0} style dashed

Info) 2

vmd > graphics top delete 1

vmd > graphics top list

Info) 0 2

vmd > graphics top exists O

Info) 1

vmd > graphics top exists 1

Info) O

vmnd > graphics top info 0

Info) sphere {0.100000 0.200000 0.300000} radius 0.400000 resolution 6
vmd > graphics top replace 0O

vimd > graphics top point {3.3 2.2 1.1}

135

Info) O

vmd > graphics top info O

Info) point {3.300000 2.200000 1.100000}
vmd > graphics top list

Info) 0 2

12.4 Draw and Drawing Extensions

The draw command is a straight Tcl function which is meant to simplify the interface to the
graphics command as well as provide a base for extensions to the standard graphics primitives.
The format of the draw command is:

e draw command [arguments]

Unlike the graphics command, draw does not take a molecule index by default. Instead, it
searches for the last graphical molecule with the name “graphics” and uses that. (If such a molecule
doesn’t exist, it is created.) The basic commands are identical to those used by graphics. However,
if the command doesn’t work or doesn’t exists, VMD tries to find an extension draw function.

This is done by searching for a function of the form vmd_draw_$command. If the function exists,
it is called with the first parameter the molecule index and the rest are the arguments from the
original draw call.

Here’s an example which extends the draw command to include an “arrow” primitive.

proc vmd_draw_arrow {mol start end} {
an arrow is made of a cylinder and a cone
set middle [vecadd $start [vecscale 0.9 [vecsub $end $start]]]
graphics $mol cylinder $start $middle radius 0.15
graphics $mol cone $middle $end radius 0.25
}

and here’s one which adds the “color” option to the “cylinder primitive. It works because the draw
command tries the “graphics” command and fails, because the “color” option doesn’t exist. At
that point, the extensions are checked.

proc vmd_draw_cylinder {mol start end args} {
if [expr [llength $args] % 2] {
error "draw: cylinder: incorrect argument list"
}
start the construction of the graphics command
set opts [list graphics $mol cylinder]
lappend opts $start $end
search for the "color" option
while {[string compare $args {}1} {
get the parameter and value
set a [lvarpop argsl]
set b [lvarpop argsl
check if it is the color command
if [string compare $a "color"] {

136

if it isn’t, save the options
lappend opts $a $b
} else {
otherwise, save the color
set color $b
}
}

call the graphics commands
graphics $mol color $color
eval $opts

137

Chapter 13

Molecular information: molinfo and
atomselect

This Chapter covers how to extract information about molecules and atoms using the VMD text
commands molinfo and atomselect.

13.1 molinfo

The molinfo command is used to get information about a molecule (or loaded file) including the
number of loaded atoms, the filename, the graphics selections, and the viewing matrices. It can
also be used to return information about the list of loaded molecules.

13.1.1 Using molinfo to access the molecule list

The molecule list contains information about all the loaded molecules, including those which are
not properly called molecules, such as a Raster3D file or “graphics” molecule (see section §12).
Each molecule has a unique id, which is assigned to it when it is first loaded. These start at zero
and increase by 1 for each new molecule. When a molecule is deleted, the number is not used
again. There is one unique molecule, called the top molecule top molecule [§3.3.2], which is used to
determine some parameters, such as the center of view, the data in the animation form, etc.

The list of available molecule ids is available with the command molinfo list, and the number
of loaded molecules is found with molinfo num. The command molinfo top returns the id of the
top molecule. One other command, molinfo <num> get index, returns the num’th molecule
index on the list, starting from 0. (See section §10.3.16). In all cases, a molecule id of -1 is returned
when no other valid id exists.

Examples:

vmd > molinfo list
Info) 0 1 2

vmd > molinfo top
Info) 2

vmd > mol top 1
vmd > molinfo top
Info) 1

vnd > molinfo num

138

Info) 3

vmd > mol delete 1

Info) Deleted 1 molecules.
vmd > molinfo list

Info) 0 2

vmd > molinfo top

Info) 2

vmd > molinfo index 1
Info) 2

13.1.2 Using molinfo to access information about a molecule

The molinfo command can also be used to access and, in some cases, modify information specific
to a given molecule. A query is in the form:

e molinfo molecule_id get {list of keywords}
and the result is a list of elements, one for each keyword.

Examples:

vmnd > molinfo top get numatoms

Info) 568

vimnd > molinfo O get {source filename}
Info) File /home/dalke/pdb/pti.pdb

This next example is a bit more complicated. It loops through all the graphical representation
(numreps) and, for each one, gets the representation used (rep), the selection text (selection),
and the coloring method (color).

vmd > for {set i 0} {$i < [molinfo top get numreps]} {incr i} {

7 lassign [molinfo top get "{rep $i} {selection $i} {color $i}"] a b c
? puts "view $i:"

? puts " representation: $a"

? puts " selection: $b"

? puts " coloring method: $c"

7}

view O:

representation: Tube 0.300000 8.000000
selection: protein backbone

coloring: method Structure
view 1:

representation: Lines 2.000000
selection: same residue as name "S.x"
coloring: method ResName
view 2:

representation: VDW 1.000000 6.000000
selection: name "S.x*"

coloring: method Name

139

A similar behavior can be achieved by using mol list top , in which case, however, there is no
direct access to the data. A complete list of keywords is given in Table 13.1.2.

The molinfo command, contrary to its name, can also be used to set some keyword values, such
as the current frame number and the display state flags. This duplicates some of the functionality
of the mol command, though there are distinct differences in the implementation. Specifically, the
mol command uses the internal command queue which, among other things, notifies the appropriate
forms that a change occured, redraws the graphics, and logs the commands to the log file, of logging
is enabled. In future versions of VMD there will be only one command; for now we suggest only
using the molinfo command to get information and to set the frame value and the various viewing
matrices.

Examples:

Two functions, one to save the current view position, the other to restore it. The position of
the axis is not changed by these operations.

proc save_viewpoint {} {
global viewpoints
if [info exists viewpoints] {unset viewpoints}
get the current matricies
foreach mol [molinfo list] {
set viewpoints($mol) [molinfo $mol get {
center_matrix rotate_matrix scale_matrix global_matrix}]
}
}
proc restore_viewpoint {} {
global viewpoints
foreach mol [molinfo list] {
puts "Trying $mol"
if [info exists viewpoints($mol)] {
molinfo $mol set {center_matrix rotate_matrix scale_matrix
global_matrix} $viewpoints($mol)
}
}

Cycle through the list of displayed molecules, turning each one on one at a time. At the end,
return the display flags to their original state.

save the current display state
foreach mol [molinfo list] {
set disp($mol) [molinfo $mol get drawnl]

X
turn everything off
mol off all

turn each molecule on then off again
foreach mol [molinfo list] {
if $disp($mol) {
mol on $mol
sleep 1

140

mol off $mol
}
}
turn the original omnes back on
foreach mol [molinfo 1list] {
if $disp($mol) {mol on $mol }
}

The last loop, which turns the originally drawn molecules back on, doesn’t turn them on at
the same time. That’s because some commands (those which use the command queue) redraw the
graphics when they are used. This can be disabled with the display update (see section § 10.3.6
for more information). Using this, the final loop becomes

#turn the original ones back on
display update off
foreach mol [molinfo list] {

if $disp($mol) {mol on $mol }
X
display update on

Alternatively, since the drawn option is settable, you could do:

foreach mol [molinfo list] {
if $disp($mol) {molinfo $mol set drawn 1}
}

However, that won’t set the flag to redraw the scene so you need to force a redraw with display
redraw.

13.2 Atom information

Atom selection is the primary method to access information about the atoms in a molecule. It
works in two steps. The first step is to create a selection given the selection text, molecule id, and
optional frame number. This is done by a function called atomselect, which returns the name of
the new atom selection. the second step is to use the created selection to access the information
about the atoms in the selections.

Atom selection is implemented as a Tcl function. The data returned from atomselect is the
name of the function to use. The name is of the form atomselect’d where '%d’ is a non-negative
number (such as ’atomselect0’, atomselect26’, ...).

To clear up a few points (even though this is covered elsewhere), the "molecule identifier” is a
non-negative integer which uniquely identifies one of the loaded molecules. Each molecule gets a
new number when it is loaded, and the numbers are generated in numeric order. Thus, the first
molecule loaded has a molecule id of 0, the second of 1, and so on. To see the molecule id, open
the ”Molecule” window and look for the number to the right of the colon (”:”). This has been
padded with zeros to make it a 3 digit number, so molecule id 0 is expressed as 000. The id can
also be the word ”top”, which indicates the top molecule.

The ”selection text” is the same as the selection language used in the Graphics form [§ 3.3.4]
and described in Chapter §7. It is used to pick a given subset of the atom. The text cannot be

141

changed once a selection is made. Some of the terms in the selection depend on data that change
during a trajectory (so far only the keywords 'x’, ’y’, and 'z’ can change over time). For these,
the optional 'frame value’ is used to determine which specific frame to use. The frame number can
be a non-negative integer, the word "now” (the current frame), the word ”first” (for frame 0) and
"last” (for the last frame).

In terms of usage, the form of the atom selection command is:
e atomselect molecule_id selection_text [frame frame_number]
Some examples are:

vmd> atomselect top '"name CA"

atomselectO

vmd> atomselect 3 "resid 25" frame last

atomselectl

vmd> atomselect top "within 5 of resname LYR" frame 23
atomselect?2

The name returned is a function name, and you can use it like any other functions. There are
several parameters to these, as shown in the following;:

Number of atoms in the selection

vmd> atomselectl num

13

The selection text used to create the selection
vmd> atomselectl text

{resid 25}

list of atom indicies in the selection

vmd> atomselectO list

0 5 11 17 23 29 35 41 47 53 59 65

The ”resid 25” is in braces because it is one element of a Tcl list. This is an important point to
notice, for reasons to be discussed after multiple attributes are introduced.

The way to use the function created by the atomselect command is to store the name into a
variable, then use the variable to get the name when needed.

vmd> set sel [atomselect top "water"]
atomselect3

vmd> $sel text

water

This is equivalent to saying
vmd> atomselect3 text

The easiest way of thinking about this is that the atomselect command creates an object.
To get information from the object you have to send it a command. Thus, in the example above
(atomselectl num) the object ”atomselectl” was sent the command ”num”, which asks the object
to return the number of atoms in the selection.

These derived object functions (the ones with names like atomselect3) take many options. They
are listed in Table 13.2.

142

You already saw some examples of the first few of these commands. The second half of the
commands allows you to get or set atom information. The information that can be returned are
the same keywords available in the selection command (eg, "resid”, ”x”, ”segname”) as well as the
boolean words like ”water” and ”backbone” (these are returned as 1 if true and 0 if false).

For instance, given the selection

vmd> set sel [atomselect top "resid 4"]
atomselect4

you can get the atom names for each of the atoms in the selection with

vmd> $sel get name

{n} {H} {cA} {cB} {c} {0}
(which, remember, is the same as

vmd> atomselect4 get name

)

Multiple attributes can be requested by submitting a list, so if you want to see which atoms are
on the backbone,

vmd> $sel get {name backbone}
{Nv 1} {H 0} {CA 1} {CB 0} {C 1} {0 1}

and the atom coordinates with

vmd> $sel get {x y z}

{0.710000 4.211000 1.093000} {-0.026000 3.700000 0.697000} {0.541000
4.841000 2.388000} {-0.809000 4.462000 2.976000} {1.591000 4.371000
3.381000} {2.212000 5.167000 4.085000%}

It is very important to note that the information returned by one of these commands is a list
of lists. Specifically, it is a list of size n where each element is itself a list of size ¢, where n is the
number of atoms in the selection and ¢ is the number of attributes requested.

One quick function you can build with the coordinates is a method to calculate the geometrical
center (not quite the center of mass; that’s a bit harder). This also uses some of the vector
commands discussed in the section about vectors and matrices [§11], but you should be able to
figure them out from context.

proc geom_center {selection} {
set the geometrical center to O
set gc [veczero]
[$selection get {x y z}] returns a list of {x y z}
values (one per atoms) so get each term one by one
foreach coord [$selection get {x y z}] {
sum up the coordinates
set gc [vecadd $gc $coord]
}
and scale by the inverse of the number of atoms
return [vecscale [expr 1.0 /[$selection num]] $gc]

143

With that defined you can say (assuming $sel was created with the previous atomselection
example)

vmd> geom_center $sel
0.703168 4.45868 2.43667

I’ll go through the example line by line. The function is named geom center and takes one param-
eter, the name of the selection. The first line sets the variable “gc” to the zero vector, which is 0 0
0. On the second line of code, two things occur. First, the command

$selection get {x y z}
is executed, and the string is replaced with the result, which is

{0.710000 4.211000 1.093000} {-0.026000 3.700000 0.697000} {0.541000
4.841000 2.388000} {-0.809000 4.462000 2.976000} {1.591000 4.371000
3.381000} {2.212000 5.167000 4.085000%}

This is a list of 6 terms (one for each atom in the selection), and each term is a list of three elements,
the x, y, and z coordinate, in that order.

The ”foreach” command splits the list into its six terms and goes down the list term by term,
setting the variable ”coord” to each successive term. Inside the loop, the value of $coord is added
to total sum.

The last line returns the geometrical center of the atoms in the selection. Since the geometrical
center is defined as the sum of the coordinate vectors divided by the number of elements, and so
far I have only calculated the sum of vectors, I need the inverse of the number of elements, which
is done with the expression

expr 1.0 / [$selection num]

The decimal in ”1.0” is important since otherwise Tcl does integer division. Finally, this value is
used to scale the sum of the coordinate vectors (with vecscale), which returns the new value, which
is itself returned as the result of the procedure.

The center of mass function is slightly harder because you have to get the mass as well as
the x, y, z values, then break that up into to components. The formula for the center of mass is

Y mx;/ Y mass;

proc center_of_mass {selection} {

some error checking

if {[$selection num] <= 0} {

error "center_of_mass: needs a selection with atoms"

}

set the center of mass to O

set com [veczero]

set the total mass to O

set mass 0

[$selection get {x y z}] returns the coordinates {x y z}

[$selection get {mass}] returns the masses

so the following says "for each pair of {coordinates} and masses,
do the computation ..."

144

foreach coord [$selection get {x y z}] m [$selection get mass] {
sum of the masses
set mass [expr $mass + $m]
sum up the product of mass and coordinate
set com [vecadd $com [vecscale $m $coord]]
}
and scale by the inverse of the number of atoms
if {$mass == 0} {
error "center_of_mass: total mass is zero"
}
The "1.0" can’t be "1", since otherwise integer division is done
return [vecscale [expr 1.0/$mass] $coml]

vmd> center_of_mass $sel
Info) 0.912778 4.61792 2.78021

M M

The opposite of "get” is "set”. A few of the keywords (most notably, ”x”, ”y”, and ”z”) can be
set to new values. This allows, for instance, atom coordinates to be changed, the occupancy values
to be updated, or user forces to be added. Right now the only things that can be changed are the
coordinates, the beta and occupancy values and user forces.

set sel [atomselect top "index 5"]
$sel get {x y z}

{1.450000 0.000000 0.000000}
$set set {x y z} {{1.6 0 0}}

Note that just as the get option returned a list of lists, the set option needs a list of lists, which
is why the extra set of curly braces were need. Again, this must be a list of size n containing
elements which are a list of size ¢. The exeception is if n is 1, the list is duplicated enough times
so there is one element for each atom.

get two atoms and set their coordinates
set sel [atomselect top "index 6 7"]
$sel set {x y z} { {6 0 0} {7.6 5.4 3.2} }

In this case, the atom with index 6 gets its (x, y, z) values set to 5 0 0 and the atom with index
7 has its coordinates changed to 7.6 5.4 3.2.

It is possible to move atoms this way by getting the coordinates, changing them (say by adding
some offset) and replacing it. Following is a function which will do just that:

proc moveby {sel offset} {
set newcoords {}
foreach coord [$sel get {x y z}] {
lvarpush newcoords [vecadd $coord $offset]

}

$sel set $newcoords

145

And to use this function (in this case, to apply an offset of (x y z) = (0.1 -2.8 9) to the selection
”$movesel”):

moveby $movesel {0.1 -2.8 9}

However, to simplify matters some options have been added to the selection to deal with movements
(these commands are also implemented in C++ and are much faster than the Tcl versions). These
functions are moveby, moveto, and move. The first two take a position vector and the last takes a
transformation matrix.

The first command, moveby, moves each of the atoms in the selection over by the given vector
offset.

$sel moveby {1 -1 3.4}

The second, moveto, moves all the atoms in a selection to a given coordinate (it would be strange
to use this for a selection of more than one atom, but that’s allowed). Example:

$sel moveto {-1 1 4.3}

The last of those, move, applies the given transformation matrix to each of the atom coordinates.
This is best used for rotating a set of atoms around a given axis, as in

$sel move [trans x by 90]

which rotates the selection 90 degrees about the x axis. Of course, any transformation matrix may
be used.

A more useful example is the following, which rotates the side chain atoms around the CA-CB
bond by 10 degrees.

get the sidechain atoms (CB and onwards)

set sidechain [atomselect top "sidechain residue 22"]

get the CA coordinates —- could do next two on one line ...
set CA [atomselect top "name CA and residue 22"]

set CAcoord [lindex [$CA get {x y z}] 0]

and get the CB coordinates

set CB [atomselect top "name CB and residue 22"]

set CBcoord [lindex [$CB get {x y z}] 0]

apply a transform of 10 degrees about the given bond axis
$sidechain move [trans bond $CAcoord $CBcoord 10 degl

13.3 Analysis scripts

Following are some more examples of routines that could be used for analysing molecules. These
are not the best routines to used since many of these are implemented with the measure command,
which calls a much faster built-in function.

Get the total mass given a selection.

proc total_mass {selection} {
set sum O
foreach mass [$selection get mass] {

146

set sum [expr $sum + $mass]
}
return $sum

}

Here’s another (slower) way to do the same thing. This works because the mass returned from the
selection is a list of lists. Putting it inside the quotes of the eval makes it a sequence of vectors, so
the vecadd command will work on it.

proc total_massl {selection} {
set mass [$selection get mass]
eval "vecadd $mass"

¥

Find the min and max coordinate values of a given molecule in the x, y, and z directions (see
also the measure command 'minmax’). The function takes the molecule id and returns two vectors;
the first contains the min values and the second contains the max.

proc minmax {molid} {

set sel [atomselect $molid all]

set coords [$sel get {x y z}]

set coord [lvarpop coords]

lassign $coord minx miny minz

lassign $coord maxx maxy maxz

foreach coord $coords {
lassign $coord x y z
if {$x < $minx} {set minx $x} else {if {$x > $maxx} {set maxx $x}}
if {$y < $miny} {set miny $y} else {if {3y > $maxy} {set maxy $y}}
if {$z < $minz} {set minz $z} else {if {$z > $maxz} {set maxz $z}}

}

return [list [list $minx $miny $minz] [list $maxx $maxy $maxz]]

Compute the radius of gyration for a selection (see also measure rgyr). The square of the
radius of gyration is defined as Y, m;(7; — 7.)?/ > ; m;. This uses the center_of mass function
defined earlier in this chapter; a faster version would replace that with measure center.

proc gyr_radius {sel} {
make sure this is a proper selection and has atoms
if {[$sel num] <= 0} {
error "gyr_radius: must have at least one atom in selection"
}
gyration is sqrt(sum((r(i) - r(center_of_mass))~2) / N)
set com [center_of_mass $sell
set sum O
foreach coord [$sel get {x y z}] {
set sum [vecadd $sum [veclength2 [vecsub $coord $coml]]
}
return [expr sqrt($sum / ([$sel num] + 0.0))]

147

Applying this to the alanin.pdb coordinate file

vmd > mol load pdb alanin.pdb

vimd > set sel [atomselect top all]
vmd > gyr_radius $sel

Info) 5.45443

Compute the rms difference of a selection between two frames of a trajectory. This takes a
selection and the values of the two frames to compare.

proc frame_rmsd {selection framel frame2} {

set mol [$selection molindex]

check the range

set num [molinfo $mol get numframes]

if {$framel < O || $framel >= $num || $frame2 < 0 || $frame2 >= $num} {
error "frame_rmsd: frame number out of range"

}

get the first coordinate set

set sell [atomselect $mol [$selection text] frame $framel]

set coordsl [$sell get {x y z}]

get the second coordinate set

set sel2 [atomselect $mol [$selection text] frame $frame2]

set coords2 [$sel2 get {x y z}]

and compute the rmsd values

set rmsd O

foreach coordl $coordsl coord2 $coords2 {
set rmsd [expr $rmsd + [veclength2 [vecsub $coord2 $coordi]]]

}

divide by the number of atoms and return the result

return [expr $rmsd / ([$selection num] + 0.0)]

The following uses the frame rmsd function to list the rmsd of the molecule over the whole
trajectory, as compared to the first frame.

vmd > mol load psf alanin.psf dcd alanin.dcd
vimd > set sel [atomselect top all]
vmd > for {set i 0} {$i < [molinfo top get numframes]} {incr i} {

? puts [list $i [frame_rmsd $sel $i 0]]
?}

0 0.0

1 0.100078

2 0.291405

3 0.523673

97 20.0095

98 21.0495

99 21.5747

148

The last example shows how to set the beta field. This is useful because one of the coloring
methods is 'Beta’, which uses the beta values to color the molecule according to the current color
scale. (This can also be done with the occupancy field.) Thus redefining the beta values allows you
to color the molecules based on your own definition. One useful example is to color the molecule
based on the distance from a specific point (for this case, coloring a poliovirus protomer based on
its distance to the center of the virus (0, 0, 0) helps bring out the surface features).

proc betacolor_distance {$sel point} {
set newbeta {}
get the coordinates
foreach coord [$sel get {x y z}] {

get the distance and put it in the "newbeta" list
set dist [veclength2 [vecsub $coord $point]]
lvarpush newbeta $dist

}

set the beta term

$sel set beta $newbeta
}

And here’s one way to use it:

load pdb2plv.ent using anonymous ftp to the PDB

(this assumes the url_get program was set up correctly (see ...)
vmd > mol pdbload 2plv

vind > set sel [atomselect top all]

vmd > betacolor_distance $sel {0 0 0}

Then go to the graphics menu and set the 'Coloring Method’ to ’Beta’.

149

‘ Keyword ‘ Aliases ‘ Arg ‘Set‘ Description

id int N | molecular id

index int N | index on the molecule list

numatoms int N | number of atoms

source str N | one of File, Graphics, Remote, or Sigma
name str N | the name of the molecule (usually the name of the file)
filename str N | full filename (if two files, the topology file)
filetype str N | corresponding file type (PSF, PDB, XYZ, ...)
filename2 str N | full filename of coordinate file (if two files)
filetype2 str N | corresponding file type (DCD or PDB)
active bool Y | is/make the molecule active

drawn displayed | bool Y | is/make the molecule drawn

fixed bool Y | is/make the molecule fixed

top bool Y | is/make the molecule top

center vector | Y | get/set the coordinate used as the center
center_matrix matriz | Y get/set the centering matrix
rotate_matrix matriz | Y | get/set the rotation matrix

scale_matrix matriz | Y | get/set the scaling matrix

global matrix matriz | Y | get/set the global (rotation/scaling) matrix
view_matrix matriz | N | get/set the overall viewing matrix
numreps int N | the number of representations

selection 1% string | N | the string for the i’th selection

rep 14 string | N | the string for the i’th representation

color ¢ colour string | N | the string for the i’th coloring method
numframes int N | number of animation frames

frame int Y | current frame number

bond float N | the bond energy (for the current frame)
angle float N | the angle energy

dihedral float N | the dihedral energy

improper float N | the improper energy

vdw float N | the van der Waal energy

electrostatic | elec float N | the electrostatic energy

hbond float N | the hydrogen bond energy

kinetic float N | the total kinetic energy

potential float N | the total potential energy

energy float N | the total energy

temperature | temp float N | the overall temperature

Table 13.1: molinfo keywords

150

Option

Description

num
list
text
molid
type
delete
global
uplevel
get

set

move
moveby
lmoveby
moveto
Imoveto
writepdb

return the number of atoms in the selection

return a list of the atom indicies in the selection (BTW, this is the same as ”get index”)
return the text used to create this selection

returns the molecule id used to create this

returns the string ’atomselect’

delete this object (removes the function)

moves the object into the global namespacee

moves the object to another level

given a list of attributes, return the list containing the list of attribute values (see
examples)

the complimentary functions (currently only works for a few terms)

move the selection by a a 4x4 tranformation matrix

move all the atoms by a given offset

move each atom by an offset given in the list

move all the atoms to a given location

move each atom to a point given by the appropriate list element

write the selected atoms in a pdb file

Table 13.2: atomselect keywords

151

Chapter 14

Tips and Tricks

This chapter is a “how to” collection of some of the various ways to use VMD in different situations.

14.1 Customizing the Popup Menu and the Hot Keys

When the mouse is in the graphics display window, you can perform commands by selecting items
from the VMD popup menu (accessed by pressing the right mouse button), and by using keyboard
hot keys. This section describes how to customize the popup menu and hot keys to your individual
preference.

14.1.1 Customizing the popup menu

The popup menu in VMD has a number of default menu items and submenus, which cannot be
changed. These are described in an earlier section § 3.1. But you can add new submenus and items
to this menu, and assign text commands to those items. When the items are selected by the user,
the assigned text command will be executed as if it had been typed in at the console. In fact, with
Tcl you can assign arbitrarily complex commands (such as scripts) to a single menu selection.

To add a menu to the main pop-up menu, use:

e user add menu name

where name is the name of the menu entry as it will appear in the Popup menu.
For example, lets suppose we want to make a menu of our most often used structures. Then the
command to accomplish this is:

user add menu Favorites

Since there isn’t anything in the menu, it doesn’t appear in the popup menu yet. To add items to
the menu, use:

e user add subitem menu name command

where command can either be a list of T'cl commands to execute or the name of a script that is to be
processed when the menu item is chosen. For instance, we often load the structures “alanin.pdb”
and “brH.pdb” and remotely download the 9pti structure from the PDB FTP site, so we’ll add:

152

user add subitem Favorites BPTI {mol pdbload 9pti}
user add subitem Favorites alanin {mol load pdb alanin.pdb}
user add subitem Favorites bR {mol load pdb brH.pdb}

Enter these three lines and then bring up the popup menu. You should see the new menu item
just above the “Help” lines. Unless you also happen to have these molecules available, the last two
items probably won’t work, but the first one should. Try it out.

You can also add a separator in the menu, using:

e user add subseparator menu

So if you wanted a separation between the first three molecules and a fourth, say the poliovirus
2PLV structure, then you would type:

user add subseparator Favorites
user add subitem Favorites Polio {mol pdbload 2plv}

As a second complete example, the code below will produce a cascading menu which allows you
to quickly adjust the degree of transparency for transparenent objets (i.e. the default is .3, where
1.0 is opaque and 0.0 is invisible).

Set the alpha value of the "transparent" materials
proc set_transparency_value {alpha} {
display update off
change the opaquicity of the transparent colors
for {set color 17} {$color < 34} {incr color} {
color change alpha $color $alpha
}
and the transparent color scale (66 to 97)
for {set color 66} {$color < 98} {incr color} {
color change alpha $color $alpha
}
display update on
}
user add menu Transparency
for {set i 1.0} {$i >= 0.0} {set i [expr $i - 0.11} {
eval "user add subitem Transparency $i {
set_transparency_value $il}"

}

Unfortunately, the user modifiable popup menus are not hierarchical. There is no way to add a
submenu to one of your own menus. They can only be added to the main popup menu. However,
there is another place to add new menu items, the ‘User Commands’ submenu of the main menu.
“Where is it?” you ask? It doesn’t contain anything, so it isn’t displayed. You can add items to it
just as you can to the main menu, but the commands are slightly different. Admittedly this is not
an optimal solution. Future versions of VMD will use Tk menus to alleviate this problem. Until
then though, here is a specification of the syntax.

To add an item to the ‘User Commands’ menu:

e user add item name command

153

To add a separator to the 'User Commands’ menu:
e user add separator

The usage is the same as their related commands, so we won’t give a detailed example, but to see
how it works, try this:

Turn off the axis
user add item {Axes Off} axes location off
user add item {Axes On} axes location LowerLeft
a break
user add separator
delete all the loaded molecule
user add item {Zap Everythingl} {

foreach molecule [molinfo list] {

mol delete $molecule

}

Finally, if you wish to see the current definitions of the user-customized menu items, use the
command

e user print menus

This will print out to the console the names and associated text commands for all menu items
added by the user.

14.1.2 Customizing the Hot Keys

In a similar fashion, VMD keeps a list of user hot keys, which when pressed will result in an
associated text command being executed as if it had been typed at the console. There are a
number of predefined hot keys, as listed in tables 3.1, 3.2, 3.3, and 3.4. The current state of these
can be printed out with the command

e user print keys

And in the same fashion as for the popup menu, the commands attached to these hot keys can be
customized by the user.
To add/modify a hot key, use the command

e user add key key command

key must be a single character. When that key is pressed while the mouse cursor is in the graphics
display window, the associated command will be executed.

14.1.3 Automatically loading customization commands

Once you have discovered a set of commands which are particularly useful and familiar for you,
you will want to have these popup menu commands and hot key commands automatically available
every time you run VMD. This can be done by placing the commands to add these items in your
.vmdrc file, which is a file containing VMD text commands that is executed every time VMD starts
up. The basic method for setting up this file is described in section §17.3.4. Once you have such
a file, just put the user add commands in it, and you will have your own specialized version of

VMD.

154

14.2 Using VMD as a WWW Client (for chemical/* documents)

Mosaic, Netscape, and possibly other browsers can be configured to use VMD as a helper application
for viewing some chemical/* documents.

14.2.1 MIME types

When a web browser receives a document from a server it actually gets two pieces of information:
the header and the body. The header contains information about the message and body. One of
the most important pieces of data, called the MIMFE type specifies what the body of text describes.
For instance, a GIF image is given the MIME type of image/gif, a JPEG image is image/jpg,
and postscript is application/postscript. A class of types, chemical/*, has been created for
chemical models so the MIME type for PDB files is chemical/pdb, for XYZ is chemical/xyz, etc.

Helper Applications

The web browser uses the MIME type to determine how to view the body of the message. Some of
the documents are viewed by the browser itself, like text/html which describes HTTML documents.
In other cases, the browser has to start up another application. From here on, we’ll describe how
Mosaic and Netscape do this. First, it saves the incoming message body to a temporary file. It
then scans the global and local mailcap files to determine which application is used to view the
given MIME type. The application, which must take a file name on the command line, is then
executed. When the application exits, the temporary file is deleted.

14.2.2 Setting up your .mailcap

In the VMD installation directory (§VMDDIR /scripts/vmd/) there is a perl script called chemi-
cal2vmd which will create a VMD command file. Since

then start VMD with the -e command line option to read that file. The file contains the
necessary commands to convert

It is also possible to install the previous script in the global .mailcap file to make it accessible
to everyone. You will have to consult the documentation for your web browser(s) to find out how.

14.2.3 Example sites

Some web sites that send chemical/pdb types are the Protein Data Bank at http://www.rcsb.org/
and “Molecules R US” at http://www.nih.gov/htbin/pdb.

14.3 Making a Movie

It is possible to make movies with VMD, though the interface is not well developed. This section
is not written for the casual user!

The following Tcl script uses the mpeg encoder available from ftp.cs.berkeley.edu, the image
converter toppm, and successive Raster3D runs (though it is possible to do screen grabs as well)
to make a movie of a spinning molecule. The script rotates the system 35 times by 10 degrees
each time. For each orientation, it saves the image as a Raster3D input file, runs Raster3D on
it to get an RGB raster image, then converts the RGB file to a ppm graphics file for use by the
mpeg encoder. Once all the files are made, the mpeg is created. The temporary files are saved in

155

./images and the full process could take up a lot of disk space, depending on the size of the VMD
graphics window. This script does not automatically delete the files or the directory.

The encoder input file is given after the Tcl script.

VMD script to make a movie of a rotating system

for { set 1 0 } { $i < 360 } { set i [expr $i + 11 } {
render Raster3D out.r3d
catch { exec render < out.r3d -sgi out.rgb }
get the right format for the number (only works up to 99)
if {81i<11}{
set nm "00"
} elseif { $i < 10 } {
set nm "0$i"
} else {
set nm $i
}
convert from RGB to PPM
catch { exec toppm out.rgb $nm.ppm }
delete the RGB file
catch { exec rm out.r3d out.rgb }
and rotate by 10 degrees
rot y by 10
}
now make the mpeg
catch { exec mpeg_encode-1.3.sgi.bin mpeg.input }

The mpeg encoder script follows, but be careful as we guessed at most of the values.

PATTERN I

OUTPUT spin.mpg
INPUT_DIR .

INPUT

*.ppm [00-89]

END_INPUT
BASE_FILE_FORMAT PPM
INPUT_CONVERT cat *
GOP_SIZE 4
SLICES_PER_FRAME 2
PIXEL FULL

RANGE 5

PSEARCH_ALG LOGARITHMIC
BSEARCH_ALG SIMPLE
IQSCALE 1

PQSCALE 1

BQSCALE 1
REFERENCE_FRAME DECODED

You would use this by first loading a molecule, changing to the directory you wish to use to
store the image files, and entering the command

156

play <Tcl script filename>

It does work. Honest.

14.4 Coloring Trick - Override a Coloring Category

There is currently no user-defined coloring method. This makes it hard to color residues by property
“X” if X is not already defined in VMD. It is possible to get around this limitation somewhat by
overriding one of the values in the PDB or PSF. For instance, suppose you wanted to color the
atoms by the distance of the atom from a given point. One way is to compute the distance and
put it in either the occupancy or beta field of the PDB file. Then when the molecule is colored by
occupancy it is actually coloring by distance.

You could also override, say, the segment name field or even the residue name. Don’t override
the atom name unless you are really desperate as VMD uses it to determine which residues are
proteins and nucleic acids, and hence which residues can be drawn as a tube or ribbon.

14.5 Some Nice Represenations
The following views are quite nice for displaying proteins and nucleic acids:

selection: all

drawing method: tube

coloring method: segname (or chain)

why? This show the backbone of the protein and nucleic acid strands

selection: protein and (name CA or not backbone)

drawing method: lines

coloring method: segname (or chain)

why? shows where the side chains are located, but they are thin so the
backbone is still visible and the scene is quickly drawn

selection: (numbonds = 0) and not waters

drawing method: vdw

coloring method: name

why? shows ions. The "not waters" omits cases where a water’s oxygen is
known but not the hydrogen.

selection: not (waters or protein or nucleic)
drawing method: lines

coloring method: name
why? shows whatever is left; usually ligands and crystallizing agents

14.6 Finding Contact Residues

Suppose you want to view the atoms in “A” which are in contact with “B”. Use the within
<distance> of <selection> selection command. For purposes of demonstration, let A be protein,

157

B be nucleic, and define contact as an atom in A which is within 2 A of an atom in B. Then the
selection command is

protein within 2 of nucleic
If you want to see all the residues of A which have at least one atom in contact with B, use

same residue as (protein within 2 of nucleic)

14.7 Tcl Logging

Every issued command which changes the state of VMD (loading a molecule, rotation, opening a
form, etc.) can be saved to a file via the log command. In addition, if the Tcl command vmdlog
exists, it is called with the issued command as its only term. One use for this is to filter out some
of the commands.

One practical use of this feature is to filter out the menu commands so they don’t constantly
disappear and reappear on playback. In addition, this adds wait command if the time between
succesive commands was more than a second so the playback will emulate the timings of original
actions.

set things up to record commands to the file ¢

proc start_recording {} {
global recording_fileid
set recording fileid [open session_log.vmd w]

‘session_log.vmd’’

set up the vmdlog proc

proc vmdlog s {

if {[regexp {"menu } $s] != 1} {
global recording fileid
global recording_time
set now [getclock]
set delay [expr $now - $recording_time]
if {$delay > 1} {

puts $recording fileid "wait $delay"

}
puts $recording fileid $s
flush $recording_fileid
set recording_time $now

proc stop_recording {} {
global recording_fileid
unset recording_fileid -1
rename vmdlog {}

158

14.8 Remote Control of VMD

As part of our research on developing new types of user interfaces for molecular modelling, we have
added a simple way for other programs to send information to a VMD process via the T'cl-DP RPC
mechanism. (See sections § 3.4.1 and §10.3.9). As an example of use, here’s how to control one
VMD session from another program.

For now, I'll assume that both programs are on the same computer. Start VMD and execute
external on. This tells VMD to start listening for commands from one of the machine ports. (For
those interested in the details, this function disables acceptance of commands from other machines
(dp_Host -; dp_Host +[exec hostname]) then starts the server as dp_MakeRPCServer 8639.)

SECURITY WARNING: Once the external option is enabled, VMD will allow any program to
connect to it and execute a Tcl script as you. By default, VMD limits its connections to other
processes on the same machine, so you are reasonably safe if you trust the other users. However,
it is easy to modify the settings to allow anyone in the world to connect and do whatever they
wanted. It is possible to make the connection more secure, but since VMD is designed for an
academic environment where different users trust each other, we have not implemented it. (See the
Tcl-DP distribution for documentation of how to do so.)

Start up another program that uses Tcl-DP, like dpwish or another instance of VMD. (Remem-
ber, you can start VMD without a display with vmd -dispdev none.) Execute the command

set vmd_server [dp_MakeRPCClient [exec hostname] 8639]

This should return a name like “file7” if successful. To send a command (in this case, rotate x by 90)
to VMD, enter

dp_RPC $vmd_server rotate x by 90
To simplify matters you might want to implement a new procedure to handle these messages

proc tell_vmd {args} {

global vmd_server

dp_RPC $vmd_server eval $args
X
tell_vmd rotate x by 90

Where the last line is an example of how this procedure is used.
If you want to control VMD on from machine, on the controlling process, replace the [exec
hostname] with the name of the machine with VMD.

14.9 Controlling One VMD With Another

The previous example showed how to control VMD from another process and the one before that
showed how to get access to all the VMD display commmands. These can be combined to have
one instance of VMD control another. Here’s how.

On the VMD to be controlled (on the machine named foo), allow external communications by
executing external on. On the controlling VMD enter these lines:

external connect foo
proc vmdlog s {
external send $s

}

159

Chapter 15

Interactive Molecular Dynamics

VMD has the capability to work with a molecular dynamics program running on another computer,
in order to display the results of a simulation as they are calculated; we refer to this capability as
Interactive Molecular Dynamics (IMD). As new atomic coordinates are generated by the simulation
process, they can be transferred directly over the network to VMD, which can then animate the
molecule. A major feature in VMD is the ability to add perturbative steering forces to a running
simulation, which are incorporated directly into the dynamics calculation.

In order for VMD to work in this fashion as a graphical front end and control console for a
remote molecular dynamics simulation, it is necessary to have a version of a molecular dynamics
program configured for IMD communication. The program NAMD, developed the the University
of Illinois Theoretical Biophysics Group, will support IMD beginning with release 2.1. See the
NAMD WWW home page! for information on obtaining a copy of NAMD. NAMD is a parallel
molecular dynamics program written in C4++, which implements the CHARMM energy function.
It is compatible with X-PLOR style PSF, PDB, and parameter files. The rest of the discussion in
this chapter assumes you are using NAMD.

15.1 How the Connection Works

IMD works by establishing a TCP connection between VMD and NAMD. NAMD, or whichever
molecular dynamics program is being used, acts as the server. In order to prepare NAMD to accept
VMD’s connection request, NAMD must be instructed at the time the program starts to listen for
incoming connections on a particular port. Once NAMD has started up, it will wait for the user
to connect through VMD through that port. VMD and NAMD perform a handshake sequence to
determine things such as the relative endianness of the machines, then the simulation commences.

Before connecting to the remote simulation, the VMD user must first load a molecule corre-
sponding to the system being simulated. This can be done within the Load Files form by selecting
"IMD” as the molecule type, then choosing a psf and pdb file for loading. It is not necessary
that the coordinates in the pdb file bear any relation to the simulation coordinates, since they will
immediately be replaced when VMD starts receiving coordinates from NAMD. However, the psf
file should be the same file used in the NAMD configuration file. The pdb and psf files can also be
loaded at the command line in the VMD console, using the command "mol load imd jpsffile; pdb
ipdbfile;”. Note that a molecule must be loaded in one of these two ways for a connection to be
established.

"http://www.ks.uiuc.edu/Research/namd/

160

Once the molecule is loaded and NAMD has been started and is listening for a connection, the
user is ready to connect to the simulation and start receiving coordinates. To establish a connection,
type the following at the command line: ”imd connect jhost; jport;”. jhost; is the name of the
machine on which NAMD started; if NAMD is running on several distributed nodes, VMD must
connect to the root node on which NAMD initially started out.

VMD can connect to only one molecular dynamics simulation at a time. To pause, detach, or
kill a running simulation, see the Sim Form section 3.3.12.

161

Chapter 16

Advanced Script Writing

The biggest improvement in VMD 1.1 has been the addition of commands for analyzing atomic
and molecular information. This chapter describes through examples how to put those commands
together to write scripts. We assume at this point you already read through the other chapters
which describe the various commands, including;:

e how to use Tcl (see Chapter §10)

e which commands are/are not “core” commands (see section §10.3)

e the Tcl vector and matrix extensions (see Chapter §11)

e the atomselect, molinfo, and colinfo commands (see Chapter § 13 and section §10.3.4)

The examples used will not be described in detail, but will only explain some of the more
unusual or novel features of the VMD scripting language. The source of the examples can be found
in the VMD script library at http://www.ks.uiuc.edu/Research/vmd/script_library/.

Many of these scripts use the trace command from Tcl. This does not mean all good scripts
must use that command, but rather that putting a trace on a variable is a nice way to add an
automatic action.

16.1 Drawing a distance matrix

This example creates a distance matrix made of the distance between the CAs of two residues. The
only input value is selection used to find the CAs. The distances are stored in the 2D array “dist”,
which is indexed by the atom indices of the CAs (remember, atom indices start at 0).

The distance matrix is a new graphics molecule. It consists of two triangles for each element
of the matrix (to make up a square). The color for each pair is one of the 32 elements in the color
scale and is determined so the range of distance values fits linearly between 34 and 66 (excluding 66
itself). The name of the graphics is “CA_distance(n)” where “n” is the molecule id of the selection
used to create the matrix.

The first graphics command, “materials off” is to keep the lights from reflecting off the matrix
(otherwise there is too much glare). At the end, the corners of the matrix are labeled in yellow
with the resid values of the CAs.

One extra procedure, “vecdist”, is created. This computes the difference between two vectors
of length 3. It is not as general as the normal method (vecnorm [vecsub $vi $v2]) but is almost

162

twice as fast, which speeds up the overall subroutine by almost 10%. The script is not very fast;
after all, for a 234 residue protein, 27495 distance calculations are made and 54756*2 triangles
generated. Nearly all of that is done in Tcl. In terms of times, about 1/3 is spent in the distance
calculations, another 1/3 in the math to make the triangles, and another 1/3 in the three “graphics”
calls. The residue 234 example protein took 70 seconds to do everything on a Crimson.

Example usage:

mol load pdb $env(VMDDIR)/proteins/alanin.pdb
set sel [atomselect top all]
ca_distance $sel

Input: two vectors of length three (vl and v2)
Returns: ||v2-v1]|
proc vecdist {vl v2} {
lassign $v1 x1 x2 x3
lassign $v2 y1 y2 y3
return [expr sqrt(pow($x1-$y1,2) + pow($x2-$y2,2) + pow($x3-$y3, 2))]

\index{atom!coordinates}
\index{atomselect!command}
Input: a selection
Does: finds the CAs in the selection then computes and draws the
CA-CA distance grid with colors based on the color scale
Returns: the id of the new graphics molecule containing the grid
proc ca_distance {main_sel} {
get the CA atoms from the selection
set mol [$main_sel molindex]
set sel [atomselect $mol "@$main_sel and name CA"]

find distances between each pair
set coords [$sel get {x y z}]

set max O

set 1list2 [$sel list]

foreach atoml $coords idl [$sel list] {

foreach atom2 $coords id2 $1list2 {
set dist($id1,$id2) [vecdist $atom2 $atomi]
set dist($id2,$id1) $dist($id1,$id2)
set max [max $max $dist($id1,$id2)]

}

lvarpop list2

lvarpop coords

163

draw the pretty graphic
puts "Distances calculated, now drawing the distance map ..."
mol load graphics "CA_distance($mol)"
set gmol [molinfo top]
turn material characteristics off
graphics $gmol materials off
i1 and j1 are i+l and j+1; this speeds up construction of x{01}{01}
set 1 0
set i1 1
preset the scaling factor (31.95 instead of 32 ensures there will be
no color 66 (for the max color), which is transparent)
set scale [expr 31.95 / ($max + 0.)]
set list2 [$sel list]
foreach idl [$sel list] {
set j O
set j1 1
set x00 "$i $j 0"
set x10 "$il $j O"
set x11 "$i1 $j1 O"
set x01 "$i $j1 0"
foreach id2 $list2 {
set col [expr int($scale * $dist($idl,$id2)) + 34]
graphics $gmol color $col
graphics $gmol triangle $x00 $x10 $x11
graphics $gmol triangle $x00 $x11 $x01
incr j
incr j1
set x00 $x01
set x10 $x11
set x11 "$i1 $j1 o"
set x01 "$i $j1 O"
}
incr i
incr i1l
}
put some numbers down to give an idea of what is where
set resids [$sel get resid]
set num [llength $resids]
set start [lindex $resids O]
set end [lindex $resids [expr $num - 1]]
graphics $gmol color yellow
graphics $gmol text "O O O" "$start,$start"
graphics $gmol text "$num O 0" "$end,$start"
graphics $gmol text "O $num 0" "$start,$end"
graphics $gmol text "$num $num 0" "$end, $end"
return $gmol

164

16.2 Analysis of PDB files

The VMD atom selection commands were prototypes in two in-house programs developed previ-
ously, pdblang, which showed the need for an easy-to-use language for manipulating structures,
and parse which tested the usefulness of Tcl for analyzing large numbers of structures.

Specifically, the goal of the second project was to find what features were needed to write a
script to analyze the propensity of various residues to be located near metal ions. Such a script
would need to do the following;:

e given a list of representative PDB files, get them from the PDB
e find if a metal ion is present

e find the residues within 3, 5, and 7 A from the ion

e keep track of the results

The hardest part of the script is determining if a metal ion is present, as it is hard to distinguish
between a CA calcium and a CA alpha carbon. That still hasn’t been solved, though the method
below should work for nearly all cases, except when ions are inadvertently bonded to other atoms.
The new PDB definition has a new field for element type, but VMD does not yet recognize it.

There are several uncommon methods used here. They are described in the comment statements.
Note that this uses the 'pdbload’ command to ftp the structure files directly from the PDB ftp site.

adds the given (floating point) value to the value
if the value doesn’t exist, sets it to O
This procedure is used because "incr" fails if the variable doesn’t exist
proc myincr {var val} {

regexp {"["(1*} $var prefix

global $prefix

if {![info exists $varl} {

set $var O
}

set $var [eval "expr $var + $val"]

given the atom index, find the ions within the given distance
return
proc find_nearby_residues {index ion distance} {
set nearby [atomselect top "(within $distance of index $index) \
and not index $index"]

I need to count each residue once, but I need to distinguish

two successive residues, so using just the residue name is not
enough. '"resname residue" is unique and, since atoms on the

165

same residue have successive indices, the luniq gets just one
of them.
foreach res_pair [luniq [$nearby get {resname residue}]] {
lassign $res_pair resname
myincr count($ion,$distance,$resname) 1
}
}

proc analyze_ion_propensity {pdblist metals} {
global count
get each of the entries from the list of PDB files
foreach entry $pdblist {
load them from the PDB ftp site
mol pdbload $entry
go through the search list of metal names
foreach ion $metals {
set sel [atomselect top "name $ion and numbonds == 0"]
foreach atom [$sel list] {
find neighbors for each of the test ranges
find_nearby_residues $atom $ion 3
find_nearby_residues $atom $ion 5
find_nearby_residues $atom $ion 7

save memory space by forcing the deletion of the
temporary selection. (Otherwise they wouldn’t be purged
until the end of the procedure.)
$sel delete
X
mol delete top
}
the array
(ion name,distance,residue name)
For now just print the values for the normal residues within
7A of a Zn. Use a histogram of ’*’
set resnames {ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE LEU LYS MET \
PHE PRO SER THR TRP TYR VAL}
foreach resname $resnames {
puts —nonewline "$resname
myincr count(ZN,7,$resname) O
puts [replicate * $count(ZN,7,$resname)]

}

H O H H Y

‘‘count’’ contains the data in the form

For the example, the files 1'TRZ, 1ILND, and 1EZM contain zincs.

vind> unset count

166

vmd> analyze_ion_propensity {1ltrz 1lnd lezm} ZN

ALA :*%kkk
ARG :**%
ASN :*%kkk
ASP k%%
CYS :*x

GLN :

GLU :*kkkkxk
GLY :

HIS :skkskokskokokkokokk
ILE :

LEU :=*

LYS :*x*

MET :

PHE :*

PRO :

SER :***xx%
THR :

TRP :

TYR :**x%
VAL k%%

As expected, histidines were one of the most common zinc neighbors. Of course, there will still
be problems of missampling (for instance, overcounting molecules with zinc finger dimers) so you
should be very sure of what you are doing when using this type of automated analysis.

16.3 save/load VMD state information

One of the more frequently requested options is the ability to save the current state of VMD to a
file so it can be recovered. It is possible to log the core commands to a file and play them back later,
and reconstruct everything that way. However, that is quite cumbersome and slow, so a better way
is needed.

Because we are making much of the VMD data accessible at the Tcl script level, we decided
to implement the save/restore option as a Tcl command. This is actually a rather complicated
process and some of the things to watch out for are:

e A loaded molecule could be from a coordinate file or a coordinate and a topology file

e The molecule could have been converted with Babel

The molecule could be a “graphics” molecule (see Chapter §12)

e Each molecule has a list of selections, colors, and drawing methods

The mapping of a color category item to color can be changed

Color definitions can be redefined

Each molecule has its own viewing matrix

167

e Loading a new molecule resets all the viewing matrices

Ivo Hofacker has graciously struggled through all the above caveats to write a set of Tcl com-
mands which will save nearly all of the current VMD state to a file, and restore it back again. The
commands are

e save_state file_name — saves the vind state in the form of a script in file file_name. Restarting
vind as vmd -e file_name should restore most of the previous session. Essentially everything
that can be changed from the graphics and mol and color forms will be saved, but nothing
else. In particular, the script will restore:

— molecules read in from files

— graphics objects (spheres, cylinders...)

— all representations

— the transformation matrices for each molecule

— which color to use for which representation, definitions of colors 0..33

It will not restore:

trajectories loaded via the edit menu
labels

interactive MD sessions

— anything in the display form, such as lighting, axes, stage, ...

e save_viewpoint — saves the center, rotation, scaling and global matrices (in this order) in
a global variable viewpoints

e restore_viewpoint - restores the viewpoint saved in variable viewpoints
e save_reps —saves the current molecule(s) representations in a global array representations.

e restore_reps — replaces current representations by the representations stored in the global
array representations. Note, that save_reps saves molecule Ids along with the representa-
tions, so if the molld of a currently loaded molecule is different from that saved, this command
will not work properly.

e save_colors file_descriptor — writes color definitions to a file specified by a file_descriptor.
This file can later be sourced to restore the definitions. To save the color definitions, the
following procedure can be used.

save the color definitions in a file
argument: file name
proc savcol {file} {

save_colors [open $file wl

close $filedesc

}
This procedure takes the file name as a parameter (as opposed to file descriptor in save_colors).

If you plan to write scripts which interact with VMD itself (not just the analysis commands), you
are highly advised to look at the commands, which are defined in $VMDDIR/scripts/vmd/save_state.tcl
(The code is too long to be included in this section.)

168

16.4 Currently picked molecule/atom

Every time an atom is picked, the Tcl variables vmd_pick mol and vmd pick_atom are set to the
molecule id and atom index of the picked atom. This is useful for scripts that need to act on used
defined atom.

For example, the following procedure takes the picked atom and finds the molecular weight of
residue it is on.

proc mol_weight {} {
use the picked atom’s index and molecule id
global vmd_pick_atom vmd_pick_mol
set sel [atomselect $vmd_pick_mol "same residue as index $vmd_pick_atom"]
set mass O
foreach m [$sel get mass] {
set mass [expr $mass + $m]
}
get residue name and id
set atom [atomselect $vmd_pick_mol "index $vmd_pick_atom"]
lassign [$atom get {resname resid}] resname resid
print the result
puts "Mass of $resname $resid = $mass"

}
Once an atom has been picked, run the command mol_weight to get output like:

Mass of ALA 7 : 67.047

16.5 Trace on the pick variables

Tcl has the “trace” command which registers a procedure to be called when a variable is read,
changed, or deleted. (Please see one of the various Tcl books for examples on how to use this.)
Since VMD sets the vimd_pick_atom and vmd_pick_mol variables, they can be traced.

16.5.1 Information about the picked atom

As a simple example, the following procedure calls the “mol weight” command (in the previous
section).

proc mol_weight_trace_fctn {args} {
mol_weight
}

(This function is needed because the functions registered with trace take three arguments, but
“mol_weight” only takes one.)
The trace function is registered as:

trace variable vmd_pick_atom w mol_weight_trace_fctn

And now the residue masses will be printed automatically when an atom is picked. To turn this
off,

trace vdelete vmd_pick_atom w mol_weight_trace_fctn

169

16.5.2 Making a sphere appear when an atom is picked

Similarly, you can use the callback to generate a sphere when an atom is picked.

proc pick_sphere {args} {
global vmd_pick_atom vmd_pick_mol
get the coordinates
lassign [[atomselect $vmd_pick_mol "index $vmd_pick_atom"] \
get {x yz}] xy z
draw the sphere
draw sphere "$x $y $z" radius 1

X
and establish the trace:
trace variable vmd_pick_atom w pick_sphere

Whenever you click on an atom, a sphere will appear at the same location. Since the graphics
and the molecule aren’t the same graphics object, you may need to reset view to make them aligned.
To turn the trace off:

trace vdelete vmd_pick_atom w pick_sphere

16.5.3 Drawing a line from the eye to the picked atom

This last example of a trace on the picked atom draws a line from the picked atom to the user’s eye.
It is a good example of how to use matrices in VMD. The limitation to the following procedure is
that it doesn’t understand perspective viewing, so to make it work, use the orthographic mode.

This was used to find the direction to pull a ligand from its bound position out of the protein.
The molecule was rotated until the user could look straight down to the ligand. The user then
picked an atom on the ligand, causing a line (actually, a cylinder) to be drawn from the atom past
the eye location, and the start and end points of the cylinder were printed for later use.

proc eye_line {} {
global vmd_pick_atom vmd_pick_mol
set sel [atomselect $vmd_pick_mol "index $vmd_pick_atom"]

coordinates of the atom
set coords [lindex [$sel get {x y z}] 0]

position in world space
set mat [lindex [molinfo $vmd_pick_mol get view_matrix] O]
set world [vectrans $mat $coords]

since this is orthographic, just get the projection on z
lassign $world x y

get a coordinate behind the eye

set world2 "$x $y 5"

170

convert back to molecule space

(need an inverse, which is only available with the
measure command)

set inv [measure inverse $mat]

set coords2 [vectrans $inv $world2]

and draw the line
draw cylinder $coords $coords2 radius 0.3

puts "Start: $coords"
puts "End: $coords2"

16.6 Trajectory frames

This section shows examples of how to use vmd_frame ($molecule) and vmd_timestep($molecule).
They both depend on trajectory information, but one is set during playback of an animation while
the other is set only when a new coordinate set has been received from the remote simulation.

16.6.1 Animating the secondary structure

The secondary structure definitions for the molecules in VMD don’t change during an animation
but they can be made to do so with a trace on the vmd_frame($molecule) Tcl variable. The
simplest way is to call vmd_calculate_structure(molecule) every time the frame changes, e.g.,

proc structure_trace {name index op} {
vmd_calculate_structure $index

}

trace variable vmd_frame w structure_trace

but this isn’t the fastest solution for a couple of reasons. First off, the secondary structure code
is somewhat slow (and about 2/3 of the time is spent in the Tcl interface; mostly in writing a
temporary PDB file). If you don’t plan to modify the coordinates, it is possible to store, or cache,
the secondary structure from one frame to the next. Second, if there are multiple molecules loaded
and animated, the secondary structures of all of them are computed.

The following script, sscache (for “secondary structure cache”) addresses those two problems.
It is turned on with the command start_sscache followed by the molecule number of the molecule
whose secondary structure should be saved (the default is “top”, which gets converted to the correct
molecule index). Whenever the frame for that molecule changes, the procedure sscache is called.

sscache is the heart of the script. It checks if a secondary structure definition for the given
molecule number and frame already exists in the Tcl array sscache_data(molecule,frame). If so,
it uses the data to redefine the “structure” keyword values (but only for the protein residues). If
not, it calls the secondary structure routine to evaluate the secondary structure based on the new
coordinates. The results are saved in the sscache_data array.

171

Once the secondary structure values are saved, the molecule can be animated rather quickly
and the updates can be controlled by the animate form.

To turn off the trace, use the command stop_sscache, which also takes the molecule number.
There must be one stop_sscache for each start_sscache. The command clear_sscache resets
the saved secondary structure data for all the molecules and all the frames.

Cache secondary structure information for a given molecule

reset the secondary structure data cache
proc reset_sscache {{molid top}} {

global sscache_data

if {! [string compare $molid topl} {

set molid [molinfo top]
}
if [info exists sscache_data($molid)] {
unset sscache_data

start the cache for a given molecule
proc start_sscache {{molid top}} {
if {! [string compare $molid topl} {
set molid [molinfo top]
}
global vmd_frame
set a trace to detect when an animation frame changes
trace variable vmd_frame($molid) w sscache
return

remove the trace (need one stop for every start)
proc stop_sscache {{molid top}} {

if {! [string compare $molid topl} {

set molid [molinfo top]

}

global vmd_frame

trace vdelete vmd_frame($molid) w sscache

return

when the frame changes, trace calls this function
proc sscache {name index op} {

name == vmd_frame
index == molecule id of the newly changed frame
op == w

172

global sscache_data

get the protein CA atoms
set sel [atomselect $index "protein name CA"]

get the new frame number
Tcl doesn’t yet have it, but VMD does
set frame [molinfo $index get frame]

see if the ss data exists in the cache

if [info exists sscache_data($index,$frame)] {
$sel set structure $sscache_data($index,$frame)
return

doesn’t exist, so (re)calculate it
vmd_calculate_structure $index

save the data for next time

set sscache_data($index,$frame) [$sel get structurel

return

16.6.2 Viewing selections which change during an animation

One of the researchers here needed a way to see which waters bridged between a protein and a
nucleic acid during a trajectory. The specific waters change during the simulation, so the static
method used in the graphics form doesn’t work. Instead, the vmd frame variable and a caching
method similar to the sscache of the previous section was used for the following solution:

The cache data is stored in the array bridging waters. Unlike sscache, this array is indexed
only by the frame number; you’ll have to modify it to analyze multiple changing selections.

When the frame number changes, the cache is checked and, if no data exists, the selection is
rebuilt. Since the selection is created in a procedure, it must be given by the global command to
make it exist outside that procedure’s context.

The global Tcl variable bridging is set to the selection for this frame.

The first text selection in the graphics form is set to @bridging. This is one of the special
extensions to the selection language which enable the selections to reference a Tcl variable. Note
also that the display updates are temporarily turned off. This is used to keep the display from
being drawn an additional time by the call to mol modselect. This is done every time the frame
changes since that’s the only way to tell VMD the graphics have changed; forcing it to recalculate
that representation’s display.

start the trace
proc start_bridging {{molid top}} {
global vmd_frame bridging_molecule
if {![string compare $molid topl} {
set molid [molinfo top]

173

b
trace variable vmd_frame($molid) w calc_bridging
set bridging molecule $molid

}

stop the trace
proc stop_bridging {} {
global bridging _molecule vmd_frame
trace vdelete vmd_frame($bridging molecule) w calc_bridging

}

do the actual calculation

proc calc_bridging {args} {
global bridging waters bridging molecule bridging
get the current frame number
set frame [molinfo $bridging molecule get frame]

has the selection already been made?
if {! [info exists bridging waters($frame)]} {
puts "Calculating frame $frame for $bridging molecule"
set bridging waters($frame) [atomselect $bridging molecule
{(water within 4 of segname DNA) and (water within 4 of segname PRO1)}
frame $framel
}
set things up for the graphics form to use the precomputed selection
set bridging $bridging_waters($frame)
do this since otherwise the selection is deleted when the proc ends
$bridging global
update the Oth element of the graphics molecule
Note: if the display wasn’t turned off, there would be an extra
update of the animation ... very bad
display update off
mol modselect O $bridging _molecule {@bridging}
display update on

Since the selections are available in the global scope, you can analyze the results at any time.
This simple function prints how many atoms are in each selection of the cache.

proc num_bridging {} {
global bridging_waters
set nums [lsort -integer [array names bridging waters]]
foreach num $nums {
set num_atoms [$bridging waters($num) num]
puts "Frame $num has $num_atoms atoms"

}

174

It would be nice to change the text selection used, support multiple selections, have the “@”
variables in more complicated expressions in the graphics selections, and be able to use this script
for multiple molecules. These are left to the student as an exercise :).

16.6.3 Simulation frames

When a new simulation timestep arrives, the Tcl variable vmd_timestep(molecule) is set to the
value of the new frame. You guessed it — this can be used along with the trace command.
One simple case prints the temperature of the new timestep.

proc timestep_temp_trace {name id op} {
set temp [molinfo $id get temperature]
puts "Temp. of molecule $id is $temp"

trace variable vmd_timestep w timestep_temp_trace

Of course, why do textually what you can do graphically? The following makes a plot of the
last ten temperatures. For simplicity, only one plot is allowed.

The begin_temp_plot sets up the temperature plot variables and calls the trace. The trace
calls timestep_temp_trace which adds the new temperature to the storage list and then calls the
graphics routine. (A list was used here because, while slower than an array, the lvarpop was handy.)
There is nothing new or unusual about the plotting procedure (draw_temps_plot) or the routine
to finish the real-time plotting (end_temp_plot).

proc begin_temp_plot {molid} {
make sure the molecule exists
molinfo $molid get frame

global temps temps_mol temps_trace_mol vmd_timestep

create a new graphics molecule

mol load graphics "Temp.of_$molid"

set temps_mol [molinfo top]

set temps [ldup 10 0]

the molecule to watch

set temps_trace_mol $molid

start the trace

trace variable vmd_timestep($molid) w timestep_temp_trace

proc end_temp_plot {} {
global temps_trace_mol
remove the trace
trace vdelete vmd_timestep($temps_trace_mol) w timestep_temp_trace

175

proc draw_temps_plot {} {
global temps temps_mol
graphics $temps_mol delete all
graphics $temps_mol color red
set tmp $temps
set ptO0 [lvarpop tmp]
set x0 O
set x1 10
foreach ptl $tmp {
graphics $temps_mol line "$x0 $ptO 0" "$x1 $pt1 O"
set x0 $x1
incr x1 10
set pt0 $ptil
}
graphics $temps_mol color green
graphics $temps_mol line {0 0 0} {100 0 0%}
graphics $temps_mol line {0 0 0} {0 500 O}

proc timestep_temp_trace {args} {
global temps temps_mol temps_trace_mol
delete old and add newest value to temps
lvarpop temps
set new_t [molinfo $temps_trace_mol get temp]
set temps "$temps $new_t"
draw_temps_plot

Needless to say, many more options can be added to this for plotting different variables, au-
toscaling, adding text, etc.

By the way, though it has not yet been tested out, we envision that a trace on the vmnd_timestep
variable could be used to modify the user forces as the simulation progresses. This makes the linear
force controls emulate a harmonic well, or let you apply the forces along a path. You could even
make two atoms come towards each other, or draw apply the forces to the atoms on a selection
such that the center of mass of the selection is the important term. If you want to try it out, good
luck!

16.7 RMSD and best-fit alignments

Calculation of RMSD and best-fit alignment of two sets of atoms using the mouse controls were
described in section §3.1.1. The same actions can be taken on the scripting level. Text interface
also gives you more flexibility through the atom selection mechanism allowing to choose the atoms
to fit/compare.

176

16.7.1 RMSD Computation

There are two atom selections needed to do an RMSD computation, the list of atoms to compare
in both molecules. The first atom of the first selection is compared to the first atom of the second
selection, fifth to fifth, and so on. The actual order is identical to the order from the input PDB
file.

Once the two selections are made, the RMSD calculation is a matter of calling the measure
rmsd function. Here’s an example:

set sell [atomselect O "backbone'"]
set sel2 [atomselect 1 "backbone'"]
measure rmsd $sell $sel2

Info) 10.403014

This prints the RMSD between the backbone atoms of molecule 0 with those of molecule 1.
You could also use a weighting factor in these calculations. The best way to understand how to do
this is to see another example:

set weighted_rmsd [measure rmsd $sell $sel2 weight mass]
Info) 10.403022

In this case, the weight is determined by the mass of each atom. Actually, the term is really
one of the standard keywords available to an atom selection. Other ones include index and resid
(which would both be rather strange to use) as well as charge, beta and occupancy. These last
terms useful if you want to specify your own values for the weighting factors.

16.7.2 Computing the Alignment

The best-fit alignment is done in two steps. The first is to compute the 4 x 4 matrix transformation
that takes one set of coordinates onto the other. This is done with the measure fit command.
Assuming the same selections as before:

set transformation_matrix [measure fit $sell $sel2]
Info) {0.971188 0.00716391 0.238206 -13.2877}
{0.0188176 0.994122 -0.106619 3.25415} {-0.23757 0.108029 0.965345 -2.97617}
{0.0 0.0 0.0 1.0}

As with the RMSD calculation, you could also add an optional weight <keyword> term on the
end.

The next step is to apply the matrix to a set of atoms using the move command. So far you have
two coordinate sets. You might think you could do something like $sell move $transformation matrix
to apply the matrix to all the atoms of that selection. You could, but that’s not the right selection.

The thing to recall is that $sell is the selection for the backbone atoms. You really want to
move the whole fragment to which it is attached, or even the whole molecule. (This is where the
discussion earlier comes into play.) So you need to make a third selection containing all the atoms
which are to be moved, and apply the transformation to those atoms.

molecule O is the same molecule used for $sell
set move_sel [atomselect 0 "all"]
$move_sel move $transformation_matrix

177

As a more complicated example, with the mouse you cannot do something like ”align all of
molecule 1 with molecule 9 using only the backbone atoms of residues 4 to 10 in both systems”
with the mouse. However, you can do it with the text command. Here’s how:

compute the transformation matrix

set reference_sel [atomselect 9 "backbone and resid 4 to 10"]

set comparison_sel [atomselect 1 "backbone and resid 4 to 10"]

set transformation_mat [measure fit $comparison_sel $reference_sel]

apply it to all of the molecule 1
set move_sel [atomselect 1 "all"]
$move_sel move $transformation_mat

16.7.3 A simulation example script

Here’s a longer script which you might find useful. The problem is to compute the RMSD between
each timestep of the simulation and the first frame. Usually in a simulation there is no initial
global velocity, so the center of mass doesn’t move, but because of angular rotations and because
of numerical imprecisions that slowly build up, the script aligns the molecule before computing its

RMSD.

Prints the RMSD of the protein atoms between each timestep
and the first timestep for the given molecule id (default: top)
proc print_rmsd_through_time {{mol top}} {

use frame O for the reference

set reference [atomselect $mol "protein" frame 0]

the frame being compared

set compare [atomselect $mol "protein"]

set num_steps [molinfo $mol get numframes]

for {set frame 0} {$frame < $num_steps} {incr frame} {
get the correct frame
$compare frame $frame

compute the transformation

set trans_mat [measure fit $compare $referencel
do the alignment

$compare move $trans_mat

compute the RMSD

set rmsd [measure rmsd $compare $reference]

print the RMSD

puts "RMSD of $frame is $rmsd"

}

To use this, load a molecule with an animation (for example, $VMDDIR/proteins/alanin.DCD
from the VMD distribution). Then run print_rmsd_through time. Example output is shown here:

vmd > print_rmsd_through_time

178

RMSD of 0 is 0.000000
RMSD of 1 is 1.060704
RMSD of 2 is 0.977208
RMSD of 3 is 0.881330
RMSD of 4 is 0.795466
RMSD of 5 is 0.676938
RMSD of 6 is 0.563725
RMSD of 7 is 0.423108
RMSD of 8 is 0.335384
RMSD of 9 is 0.488800

RMSD of 10 is 0.675662
RMSD of 11 is 0.749352
[...]

If you wanted you could do all sorts of things, like graph this value through time.

179

Chapter 17

Customizing VMD Sessions

There are a number of ways to change the behavior of VMD from the default settings, both in how
the program starts up and in how the program behaves during a session. This Chapter describes
the data files, command-line options, and environment variables which are used to customize a
VMD session.

These files control the initial appearance and behavior of VMD at the start, and may be
customized to suit each user’s particular tastes. Default versions of these files are placed in the VMD
installation directory (usually /usr/local/lib/vmd). Each user may specify their own versions of
some of these files, but unless this is done the commands and values in the default files are used. In
this way, an administrator may customize the default behavior of VMD for all users, while giving
each user the option to change the default behavior however they choose.

Several configurable parameters may also be set in a number of ways, including use of command-
line options or environment variables. The order of precedence of these methods is as follows
(highest precedence to lowest):

1. Command-line options.
2. Environment variable settings.
3. Values specified in the initialization file (.vmd_init, section 17.3.3).

4. Built-in defaults, as specified by compilation configurable parameters. These are used only
if no other values are specified by the other methods mentioned in this list. The Installation
Guide describes how to change these default values when compiling VMD.

17.1 Command-Line Options

When started, the following command-line options may be given to VMD. Note that if a command-
line option does not start with a dash (-), and is not part of another option, it is assumed to be a
PDB filename. Thus, the command

vind molecule.pdb

will start VMD and load a molecule from the file molecule.pdb.

e -h | -7 : Print a summary a command-line options to the console.

180

-e filename : After initialization, execute the text commands in filename, and then resume
normal operation.

-psf filename : Load the specified molecule (in PSF format) at startup. The PSF file only
contains the molecular structure; a PDB or DCD file must also be specified when this option
is used.

-pdb filename : Load the specified molecule (in PDB format) at startup.

-dcd filename : Load the specified trajectory file (in binary DCD format) at startup. The
DCD file only contains atomic coordinates; a PDB or PSF file must also be specified when
this option is used.

-dispdev < win | text | cave | caveforms | none > : Specify the type of graphical
display to use. The possible display devices include:

— win: a standard graphics display window.

— text: do not provide any graphics display window.

— cave: use the CAVE virtual environment for display, forms are disabled.

— caveforms: use the CAVE virtual environment for display and with forms enabled. This
is useful with -display machine:0 for remote display of the forms when the CAVE uses
the local screen.

— none: same as text.

It is possible to use VMD as a filter to convert coordinate files into rendered images, by using
the -dispdev text and —e options.

-dist z : Specify the distance to the VMD image plane.
-height y : Specify the height of the VMD image plane.

-pos x y : Specify the position for the graphics display window. The position (x,y) is the
number of pixels from the lower-left corner of the display to the lower-left corner of the
graphics window.

-size x y : Specify the size for the graphics display window, in pixels.
-nt : Do not display the VMD title at startup.

-startup filename : Use filename as the VMD startup command script, instead of the
default .vmdrc file.

-debug [level : Turn on output of debugging messages, and optionally set the current debug
level (1=few messages ... b=many verbose messages). Note this is only useful if VMD has
been compiled with debugging option included.

181

17.2 Environment Variables

Several environment variables are used by VMD to determine the location of certain files and
directories. These variables are accessible to text interface through array env. These variables
include:

e VMDDIR : The directory which contains the VMD data files (such as this help file) and
architecture-specific executables. By default, this is /usr/local/lib/vmd.

e VMDTMPDIR : The directory which VMD should use for temporary data files. By default, this
is /tmp.

e VMDBABELBIN : The complete path and filename for the program babel, which is used by
VMD to convert molecular structure/coordinates files into PDB files which VMD can actually
understand. If this is not set explicitly, the VMD startup script will attempt to find babel in
the current path. If Babel cannot be found or is not installed, VMD will not be able to read
molecular file formats other than PDB, PSF, and binary DCD files.

e VMDCAVEMEM : This overrides the default size of the shared memory arena which is allocated
by VMD when the CAVE starts up. The variable must be an integer number of megabytes.
Since this is the only shared memory pool allocated, and it is done only once, you must
choose a value sufficient to account for the largest scene you intend to render in VMD in
that CAVE session. The default value unless otherwise specified is 80 Megabytes. Values
of 200MB to 512MB are commonly needed for large molecular systems containing several
hundred thousand atoms.

e VMDHTMLVIEWER : The name of the HTML viewer (Netscape, Mosaic, whatever you prefer)
that VMD should use to display HTML documents (such as this help file). By default, this
is Netscape.

e VMDIMAGEVIEWER : The name of the external program to use for displaying VMD snapshots
(or other images), in various formats.

e VMDSCRDIST : Distance to the VMD image plane.

e VMDSCRHEIGHT : Height of the VMD image plane.

e VMDSCRPOS : Position of the VMD graphics window (x,y).
e VMDSCRSIZE : Size of the VMD graphics window (x,y).

e VMDSNAPSHOT : The name of the external program to use for taking snapshots (screen capture)
of VMD graphics window.

17.3 Startup Files

17.3.1 Core Script Files

In the following, the value of $VMDDIR is the vmd installation directory. During the original in-
stallation this is the value of INSTALLLIBDIR. It can also be found by looking at the first few lines

182

of the vind startup script (head ‘which vmd‘) or by starting VMD and using the command set
env (VMDDIR).

As mentioned elsewhere, VMD uses the Tcl interpreter with two language extensions, TclX
and Tcl-DP. Each of these three packages reads Tcl scripts at initialization, which are contained in
VMD distribution; with a different directory for each package. The locations of the directories is
determined by the environment variables defined in the vmd script. In order they are TCL_LIBRARY,
TCLX_LIBRARY, and DP_LIBRARY, which are set in the vind startup script to $VMDDIR/scripts/tcl,
$VMDDIR/scripts/tclX, and $VMDDIR/scripts/dp, respectively. In addition, VMD has its own
directory of core Tcl routines.

The most important of these is tt $VMDDIR /scripts/vmd/vmdinit.tcl. This file sets up the
basic Tecl initialization commands including the commands that catch Ctrl-C interrupts, define
some environment variables, and add the vind script directory to the Tcl autoindex path. Most of
the other files are referenced through the auto_path.

There are a few non-Tcl scripts in this directory. Currently these are perl scripts used for the
urlload command and web client startup (see section § 10.3.16 and section §14.2).

17.3.2 User Script Files

Two user configuration files are available: an initialization file .vmd_init, and a run-time command
file .vmdrc with a list of initial VMD text commands to process. These files may be changed to
customize individual user’s initial screen appearance and to set the proper display characteristics
for displaying in stereo. If they do not exist, default values are used.

17.3.3 .vmd_init File

This file is used to define several configuration variables which must be set before several key objects
(e.g., the display device) can be created. (This is actually a limitation of the VMD implementation
— future versions will not use this file.) Thus this is the first file read by VMD; before even the vm-
dinit.tcl file. VMD searches for this file in three locations; $VMDDIR/.vmd_init, $HOME/.vmd_init,
and ./.vmd_init. Each copy of the file found will be read in and processed in that order. This
allows the administrator to establish a complete set of default values for all users, and then for each
user to selectively change the settings required without having to set ALL parameters.

The lines in the initialization file should be either blank lines, comment lines (beginning with
the # character), or parameter setting lines of the form

<keyword> = <value>

with any amount of whitespace allowed before and after the equal sign. The possible keywords
that may be entered here are:

e BABEL = <filename>
The name (including complete path) of the babel program executable, which is used to
convert various molecular file formats to PDB files which may be read by VMD. See section
§4.1 This parameter should not be used; instead, use environment variable VMDBABELBIN (see
section §17.2)

e DISPLAY = <WIN | CAVE | TEXT>
The type of display device which VMD should use initially. This can be set to either WIN,
CAVE, or TEXT. By default, this is WIN. It can be overridden with the -dispdev command line
option.

183

e HTMLVIEWER = <filename>
The name of the HTML browser which should be used to display HTML files (such as the
VMD on-line help file). Typical examples are Mosaic or Netscape; by default this is Netscape.

e SCRDIST = <walue>

The distance, in ‘world’ coordinates, from the origin to the display screen. If this is zero,
the origin of the coordinate system in which molecules are drawn coincides with the center
of the display. If it is < 0, the origin is located between the viewer and the screen, while if
it is > 0, the screen is located closer to the viewer than the origin. A value < 0 puts any
stereo image in front of the screen, aiding the three-dimensional effect; a value > 0 results in
a stereo image that is behind the screen, a less dramatic (but easier to see, for some people)
stereo effect when stereo display is used. Figure 3.17 describes the relationship between this
parameter and the world coordinate space.

e SCRHEIGHT = <wvalue>

This parameter, with SCRDIST, defines the size and distance of the display screen. SCRHEIGHT
is the default value for the screen height, which is the vertical size of the display screen in
‘world’ coordinates. Each molecule is initially scaled and translated to fit within a 2 x 2 x 2
box centered at the origin; so the height of the screen helps determine how large the molecule
appears initially. If VMD is being displayed on a workstation monitor only, it is best not to
change this value from the default setting. This parameter is used mainly to configure the
VMD display to the dimensions and position of a large-screen display, such as a projector,
that may be used as a stereo display. As for SCRDIST, figure 3.17 describes the relationship
between this parameter and the world coordinate space.

e SCRPOS = <zpos> <ypos>
The position of the lower-left corner of the window used to display images, if the display
type is WIN. Both zpos and ypos are in pixels. If they are not specified, and are not given as
command-line options, the window will have to be interactively placed with the mouse.

e SCRSIZE = <zsize> <ysize>
The size of the window used to display images, if the display type is WIN. Both zpos and
ypos are in pixels. If they are not specified, and are not given as command-line options, the
window will have to be interactively sized with the mouse.

e TITLE = <ON | OFF>
A flag indicating whether to display the VMD title in the main display when the program
starts. This can have the value of ON or OFF. By default, TITLE is set to be ON. If the title is
turned on, it will remain displayed until a molecule is loaded, after which it will be hidden
from view. This can also be set with the command line option -nt.

Here is an example of an initialization file:

display = win
title = on
scrheight = 6.0
scrdist = -2.0
scrpos 596 190
scrsize = 669 834

184

17.3.4 .vmdrc File

After everything is initialized, VMD reads the startup file using the equivalent of the command play
.vmdrc. This file contains text commands for VMD to execute just as if they had been entered at
the VMD text console command prompt. The file can contain any number of commands, including
blank lines and comment lines (which begin with the # character). If an error is encountered while
reading this file, the command in error is skipped and processing of the file continues.

VMD searches for this file in three locations; ./.vmdrc, $HOME/ .vmdrc and $VMDDIR/.vmdrc
Only the first file found will be read in and processed.

See chapter § 10 for a description of the VMD text commands which may be put in this file.
Also, section § 14.1 discusses how to put commands into the .vmdrc file to customize the behavior
of the popup menu and hot keys.

Here is an example of a startup file:

add personalized keyboard shortcuts
user add key E echo on

user add key e echo off

user add key g display reset

user add key A stage location bottom
user add key m mol list

position the stage and axes
axes location lowerleft
stage location off

position and turn on menus
menu main move 5 196

menu display move 386 90
menu animate move 124 7
menu edit move 125 196

menu graphics move 5 455
menu files move 5 496

menu mol move 5 745

menu main on

start the scene a-rockin’
rock y by 1

185

Chapter 18

Future Plans

Following is a list of features we would like to add. They will be implemented as they are needed,
but some will not be done until the next major version.

e Improve PDB reader to read multiple models and the new ”element” field (see 77?7 for a
program to convert CONECT records to a PSF file)

e clement type based on atom name and residue type, if information isn’t given in the PDB
e append and delete specific atoms

e text for raster outputs

e improve surface rendering speeds

e improve sphere rendering speeds

e save more information about current setup (see section § 16.3 for the script commands to
save the current setup)

e standardize nomenclature and usage of keywords and other definitions
e add more selection definitions, like purine

e expand the ability of the mouse to pick atoms

e add atom coloring methods

e rewrite the forms using Tk

e faster calculation of hydrogen bonds

e implement “correct” transparency

e be able to select bonds

e draw molecular and isoelectric surfaces (a la GRASP) 777

e develop the 3D interface

e improve the interactive steering

186

will need to add a new input/output coordinate file (probably GROMOS) because we are
approaching limits to atom and residue number

read in the electron density maps made by X-PLOR and display isosurfaces 777 get the right
name (based on Joel’s comments)

work on an interface to use X-PLOR scripts as subroutines, perhaps via Tcl’s “expect”

187

Index

.mailcap, 164
.vmd_init, 189
.vmdrc, 163, 191
eye_line, 177
sscache, 178

angles, 49
animate
command, 109, 110
form, 46
frames from remote, 59
remote simulation, 59
animation, 19, 29, 178
amount, 48
appending, 48
delete, 48, 111
edit, 47
goto end, 30, 111
goto start, 30, 111
hot keys, 37
jump, 47, 111
movie, 164
of secondary structure, 178
pause, 30
play, 29, 30, 110
read, 48, 111
skip, 46
speed, 46, 111
step, 30
style, 30, 111
loop, 30, 47
once, 30, 47
rock, 30, 47
viewing changes, 180

with user-defined graphics, 142

write, 48, 111
animationduplicate frame, 110
annmm, 90
antialiasing, 51, 114

188

atom
changing properties, 154
coordinates, 122, 123
changing, 21, 154
min and max, 156
info, 32, 150
name lists, 43, 45
picking, 20
selection, 18, 19, 33, 67, 84, 150
comparison, 88
default, 119
examples, 19, 84
keywords, 34, 45, 84, 92, 93
logic, 86
math functions, 94
modes, 84
quoting, 86
references in, 90
regular expression, 87
same, 89
sequence, 89
text, 151
within, 89
atoms
distance between, 20
plotting, 50
atomselect
command, 147, 150, 172
axes, 51
command, 110, 111

Babel, 64

beta values, 158

bonds
determining, 65
label, 49
representation, 68
resolution, 68
unusual, 65

button bar, 39

cartoon representation, 68, 72
center, 32
center of mass, 153
clipping planes, 52
color
access definitions, 112
assignment, 20
background, 53
category, 53, 76, 77, 112, 166
command, 75, 110, 111
form, 20, 53, 75-77
id, 45, 75, 112
in user-defined graphics, 135
map, 53
material properties, 135
names, 75, 113
properties, 75, 113
redefinition, 53, 80, 81, 162
revert to default, 82
scale, 54, 77, 80, 81, 112
changing, 54
transparent, 45, 54, 75, 79, 80, 82, 162
color map, 76
colorinfo
command, 83, 110, 112
coloring
by category, 77
by color scale, 77, 80
by property, 166
methods, 18, 34, 43, 67, 75, 76, 79, 118,
119, 166
command line options, 187
contact residues, 166
copyright, 14
core commands, 63, 109
CPK, 68

debug

command, 110, 113
delete

representation, 34
depth cue, 51, 114
depthsort, 79, 114
detail, 51, 114
display

189

command, 79, 110, 113

crosseyes, 26

crystaleyes, 26

device, 188

form, 51

left, 27

modes, 26

NAMD patches, 59

orthographic, 26

perspective, 26

right, 27

sidebyside, 26

stereo off, 26

update, 81, 82, 113, 114, 150, 180
distance

matrix, 169
distance between atoms, 20
dotted van der Waals representation, 68, 70
draw

command, 134, 145

extensions, 145
drawing

box around molecule, 140

method, 18, 43

drawn, 41

echo
command, 110, 114

environment variables, 188
DP_LIBRARY, 189
SURF_BIN, 72
SURF_TMPDIR, 72
TCL_LIBRARY, 189
TCLX_LIBRARY, 189
VMDBABELBIN, 65, 189
VMDDIR, 189
VMDHTMLVIEWER, 189
VMDTMPDIR, 65, 189

exit
command, 110

external
command, 62, 110, 115, 168
control of VMD, 168
interface, 61

eye separation, 100, 114

file

browser, 38
load, 16
file types
input, 48, 64
output, 48
files
initialization, 189
output, 18
read, 111

reading, 17, 19, 40, 42, 48, 64, 118, 188

startup, 163, 188, 189, 191
writing, 48, 65, 111
fit, 27
example, 28
RMSD, 183, 184
calculate, 27
print, 28
two fragments, 28
two molecules, 28
flat, 51
focal length, 100, 114
form
animate, 19, 46, 59
close, 31
color, 20, 53, 75-77
display, 24, 51
edit animation, 47
files, 16, 42
graphics, 18, 19, 43, 76, 79
hot keys, 37
label, 26, 49
main, 16, 39
molecules, 16, 19, 40
open, 31
remote, 41, 57
render, 18, 54
sim, 59
tracker, 56
forms, 117
frame
delete, 48, 111
duplicate, 110
write, 111
frames, 41
full detail, 51

geometric center, 152

190

grabber, 57
graphics
command, 134, 143, 169
delete, 144
form, 43, 76
loading, 143
primitives, 134
replace, 144
user-defined, 134
gyration, radius of, 156

hbonds representation, 68, 73
help, 31, 40
command, 110, 115
topics, 116
hot keys, 34, 124
animation control, 37
customizing, 163
menu control, 37
mouse control, 35
rotation and scaling, 36
hydrogen bonds, 73

info menu, 32

label
command, 110, 115
labels, 20, 29
categories, 49, 116
delete, 29, 50
delete all, 29
form, 49
hide, 29, 50
picking with mouse, 24
plotting, 50
show, 29, 50
text, 141
licorice representation, 68, 71
light
command, 110, 116
controlling with mouse, 24
toggle, 52
line width, 44, 134
lines representation, 67, 68
logfile
command, 110, 117

logging tcl commands, 114, 117, 124, 167, 174

mass
center of, 153
of residue atoms, 176
total, 155
material properties, 135
matrix routine, 128
trans, 130
transaxis, 129
transidentity, 128
transmult, 129
transoffset, 130
transtranspose, 129
transvec, 129
transvecinv, 130
MDComm, 11, 58, 102
MDScope, 11, 60
measure
command, 155, 156
menu
command, 110, 117
popup, 17, 20, 23, 80, 110, 124
customizing, 161
vs forms, 16
molecular surface, 68, 72, 73
molecule
active, 33, 41, 46
analysis, 155, 172
best-fit alignment, 184
command, 110, 118, 119, 149
data, 159
deleting, 42
drawn, 33, 41
fixed, 21, 33, 41
graphics, 143
id, 118, 144, 147, 150
index, 118, 147
info, 147
list, 41, 149
loading, 17, 19, 40, 143, 158
remote, 59, 122
source, 148
status, 33, 41, 118
changing, 42, 119, 149
top, 31, 33, 41, 47, 147
translation, 21
molinfo

191

command, 147
keywords, 159
setting values with, 149

mouse

mov

command, 110, 119
modes, 17, 20, 23, 35, 119
using, 22

ies, 164

MSMS

representation, 68, 73

NAMD, 58, 102
namd, 11, 123
namd_consumer, 103
namdd, 103

orth

ographic view, 52, 98

output

format, 18

pdbload

command, 172

perspective view, 52, 98
picking, 32, 176

play

plot

angles, 24, 25
atoms, 20, 24, 25
bonds, 20, 24, 25
center, 25
dihedrals, 24, 25
distances, 20, 26
hot keys, 35
modes, 20, 24
move atom, 25
move fragment, 25
move molecule, 26
move residue, 25
query, 25

text command, 120
tracing variables, 141, 176

command, 108, 110, 120, 166, 188
file, 32

data with graphics, 137
geometry monitors, 50
temperature, 182

pointer, 57
points

detail, 51
representation, 68, 69
popup menu, 17, 20, 23, 80, 108, 110, 161
atom specific, 32
customizing, 124
postscript, 96, 97
Pov-Ray, 96

quit, 32, 40
command, 114, 120
quoting, 86

Radiance, 96
radius
of gyration, 156
rapp, 102
raster image creation, 95
Raster3D, 18, 55, 66, 96, 97, 101, 121, 165
RayShade, 96
regular expression, 87, 94
X-PLOR conversion, 94
remote
command, 110, 120
connection, 102, 120
controlling, 59
description, 103
detaching, 60
initializing, 58
installation, 104
killing, 60
modifiable parameters, 60
requirements, 102
starting, 58
troubleshooting, 106
using, 59
form, 57
options, 120
simulation control, 57, 120, 122
remote control of VMD, 168

render
command, 110, 121
form, 18, 54

rendering, 18, 54, 55, 95
caveats, 55, 97
exec command, 121
in background process, 55
method, 34, 96, 121

192

stereo, 101
representation, 43, 67, 118

add new, 43

changing, 19, 43, 45, 119

deleting, 44

examples, 166

info, 148
off, 74
style, 18, 43, 67, 68, 118
options, 44
reset view, 31, 114
resolution

cylinder, 44
level, 51, 114
sphere, 44
restore
representations, 175
viewpoint, 149, 175
vmd state, 174
ribbon representation, 68, 71
RMSD, 157, 183-185
rock, 30, 47
command, 110, 121
rotate
command, 110, 122
side chain, 155
rotation
automatic, 30
rock, 31
spin, 30
stop, 30, 31
continuous, 23
hot keys, 36
stop, 23
transformation matrix, 129, 131
using mouse, 23

save
colors, 175
configuration, 32, 174
representations, 175
viewpoint, 149, 175
vmd state, 32, 174
scale
command, 110, 122
scaling
using mouse, 24

screen parameters, 52, 97
security, 62, 168
selection, 18, 19, 43, 67, 118, 150

comparison, 88

keywords, 45, 84, 92

boolean, 86

logic, 86

math functions, 94

modes, 84

text, 151
short circuit logic, 86, 89
simulation

command, 110, 122

control, 57, 122

form, 59

parameters, 58, 182
solvent accessible surface, 68, 70
solvent representation, 68, 70
source

command, 108
spin, 30
stage, 51

command, 110, 123
startup files, 163, 188, 189, 191
stereo

mode, 98

modes, 26

off, 98

parameters, 52, 100, 114

problems, 100
surf

representation, 68, 72
surface

molecular, 68, 70

solvent accessible, 68, 70
surface plot, 139

Tecl, 109
Tcl-DP, 62, 109, 168
TclX, 109
text
displayed, 135
Tk, 109
top, 31
topology files, 64
trace
variables, 141, 178, 182

193

trace representation, 68, 71
tracker
command, 110, 123
form, 56
trajectory
files, 64
read, 48, 188
write, 48
transformation matrix, 128
align, 129
centering, 131
identity, 128
offset, 130, 131
rotation, 129, 131
translate
command, 110, 123
translation
change atom coordinates, 155
transformation matrix, 130
using mouse, 24

transparency, 45, 75, 79, 80, 82, 162

tube representation, 68, 71

user
command, 110, 123, 161
user interfaces, 60
3D, 61
external, 61, 109, 115, 168
forms, 35
gesture, 62
speech, 62
text, 108

van der Waals representation, 68, 69

variables
env, 188, 189
M_PI, 132
vid _frame, 178
vmd_pick_atom, 141, 176
vmd _pick_mol, 141, 176
vmd _timestep, 178, 182
vector command
coordtrans, 131
vecadd, 126
veccross, 127
vecdot, 127
vecinvert, 128

veclength, 127
veclength2, 128
vecnorm, 128
vecscale, 127
vecsub, 127
vectrans, 131
veczero, 126

vector routines, 126

view, 43, 67, 118
adding, 44
deleting, 44

viewing modes
changing, 98

VMD, 11
as a server, 168
as helper application, 164
command line options, 187
compile options, 124
control from another VMD, 168
copyright, 14
customizing, 163, 187

vmdinfo

command, 110, 124
vmdlog

command, 63, 124
VRML, 96
wait

command, 110, 124
wireframe, 51, 67

194

