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VMD
• VMD – “Visual Molecular Dynamics”
• Visualization of molecular dynamics simulations, 

sequence data, volumetric data
• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Overview

• Will be showing a lot of VMD images, feel 
free to ask questions

• General visualization concepts and methods 
• Specific visualization examples for molecular 

dynamics trajectories, CryoEM maps, etc.
• Graphics technology driving molecular 

visualization capabilities and performance
• Challenges encountered exploiting these 

technologies for our purposes
• Where things are headed…
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What is Visualization?

Visualize:
"to form a mental vision, image, or 
picture of (something not visible or 
present to sight, or of an abstraction); to 
make visible to the mind or imagination"
[The Oxford English Dictionary] 
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Goals of Visualization

• Exploring data, making the invisible 
visible

• Gaining insight and understanding, 
interpret the meaning of the data

• Interactivity
• Communicating with others
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Attributes of the Data We’re 
Interested in Visualizing

• Multiple types of data
– Atomic structures 
– Sequence Data
– Volumetric data 

• Many attributes per-atom
• Millions of atoms, voxels
• Time varying (simulation trajectories)
• Multiple structures
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Visualizing Data with Shape 

• Direct rendering of 
geometry from physical 
data (e.g. atomic 
structures)

• Indirect rendering of 
data, feature extraction 
(e.g. density 
isosurfaces)

• Reduced detail 
representations of data 
(e.g. ribbons, cartoon)

• Use size for emphasis
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Schematic Representations

• Extract and render 
pores, cavities, 
indentations 

• Simplified 
representations of 
large structures
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Visualizing Data with 
Texture and Color

• Direct mapping of properties/values to colors 
(e.g. color by electrostatic potential)

• Indirect mapping via feature extraction (e.g. 
color by secondary structure)

• Use saturated colors to draw attention
• Use faded colors and transparency to de-

emphasize
• Use depth cueing/fog to de-emphasize 

background environment
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Visualizing Data Topologically

• Data relationships 
indicated by 
grouping (e.g. 
phylogenetic trees)

• Abstract or 
schematic 
representation (e.g. 
Ramachandran plot)
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Bringing it all together…
• Aligned sequences and 

structures, phylogeny
• Simultaneous use of 

shape, color, topology, 
and interactivity

• Multiple simultaneous 
representations

• Multiple data display 
modalities

• Selections in one 
modality can be used to 
highlight or select in 
others
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What else can we do?

• Enhance visual perception 
of shape
– Motion, interactive rotation
– Stereoscopic display
– High quality surface shading 

and lighting
• Enhance tactile perception 

of shape
– Print 3-D solid models
– Interactive exploration using 

haptic feedback



Beckman Institute, UIUCNIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

VMD Representation Examples
• Draw atomic structure, protein backbone, secondary structure, 

solvent-accessible surface, window-averaged trajectory positions, 
isosurfaces of volumetric data, much more…

• Color by per-atom or per-residue info, position, time, electrostatic 
potential, density, user-defined properties, etc…

Ribosome, J. Frank GroEL /w Situs 4HRV, 400K atoms
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Multiple Representations, Cut-away Views

• Multiple reps are 
often used 
concurrently
– Show selected 

regions in full 
atomic detail

– Simplified cartoon-
like or schematic 
form

• Clipping planes can 
slice away structure 
obscuring interesting 
features
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GroEL: Docked Map and Structure

• SITUS + VMD since 1999
• SITUS: 

– Dock map+structure
– Synthesize map from PDB
– Calculate difference between 

EM map and PDB
• VMD:

– Load SITUS maps or meshes
– Display isosurfaces
– Display map/structure 

alignment error as isosurfaces
– Texture reps by density or 

map/structure alignment error
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GroEL: Display of Difference, Error

Ribbons textured by difference map …with difference isosurfaces
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GroEL: Select Atoms by Map Values

• Superimpose the 
difference map isosurface 
with VDW rep of atoms in 
difference areas

• Atoms can be selected by 
map values:
– Nearest voxel
– Interpolated voxel value
– Selections can be used for 

purposes other than 
visualization, scripting, etc.
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RDV: Fast, Coarse Map Display

• Shaded points can be 
rendered very efficiently

• Normals are retrieved from 
a volume gradient map 
that VMD generates when 
maps are loaded

• Effective for dense 
surfaces

• Even a 3 yr. old laptop can 
interactively rotate a 
shaded points isosurface 
of the 230x230x140 RDV 
map
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Trajectory Animation
• Motion aids perception of 

shape, understanding of 
dynamic processes

• Animate entire model, or just 
the parts where motion 
provides insight

• Window-average positions on-
the-fly to focus on significant 
motions

• Selected atoms updated on-
the-fly (distance constraints, 
etc)
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Visualization of Large All Atom Molecular 
Dynamics Simulations (1)

• All-atom models of proteins, 
membranes, DNA, in water 
solution

• 100K to 2M atoms
• 512 CPU jobs run on remote 

supercomputers for weeks at 
a time for a 10ns simulation

• Visualization and analysis 
require workstations with 
4-32 GB of RAM, 1-4 CPUs, 
high-end graphics 
accelerators
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• Multiple representations 
show areas in appropriate 
detail

• Large models:       
1,00,000 atoms and up

• Long trajectories:   
thousands of timesteps

• A 10 ns simulation of 
100K atoms produces a 
12GB trajectory

• Multi-gigabyte data sets 
break 32-bit addressing 
barriers

F1 ATPase
327,000 Atoms

Purple 
Membrane

150,000 Atoms

Visualization of Large All Atom Molecular 
Dynamics Simulations (2)
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Visualization of Large All Atom Molecular 
Dynamics Simulations (3)

Satellite Tobacco Mosaic Virus 932,508 atoms

Coarse Representation
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Visualizing Coarse-Grain Simulations

• Visualization techniques 
can be used for both all-
atom and CG models

• Groups of atoms 
replaced with “beads”, 
surface reps, or other 
geometry

• Display 1/20th the data
• No standard file formats 

for CG simulation 
trajectories yet, done 
with scripting currently

Satellite Tobacco Mosaic Virus, CG Model
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User Interface Issues

• Ease of use is important
• Graphical picking and text-based selection 

languages need higher level selection 
keywords to work well with huge complexes

• Viewing huge structures involves more 
clutter, even with coarse reps, software must 
do more to help you see what you want to 
see automatically

• Software needs to know what’s “important” at 
a higher level, much of this information must 
come from the structure/map files themselves
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Comparison of Molecular Visualization with 
Other Graphics Intensive Applications

• Geometric complexity 
limits molecular 
visualization performance

• All atoms move every 
simulation timestep, 
thwarts many 
simplification techniques

• Commodity graphics 
hardware is tuned for 
requirements of games

• Solution: Use 
sophisticated shading 
instead of geometry 
where possible Geometric Complexity

Texture/Shading Complexity

Flight Simulation

CAD

Games PIXAR, ILM
Movie Studios

Biomolecular
Visualization

HW 
Trend
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Timeline: Graphics Hardware Used for 
Molecular Visualization

60’s and 70’s: 
Mainframe-based vector graphics on Tektronix terminals
Evans & Sutherland graphics machines

80’s: 
Transition to raster graphics on Unix workstations, Mac, PC
Space-filling molecular representations
Stereoscopic rendering

90’s - 2002: 
3rd-generation raster graphics systems
Depth-cueing
Texture mapping: coloring by potential, density, etc
Full-scene antialiasing
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Programmable Graphics Hardware
Groundbreaking research systems:

AT&T Pixel Machine (1989): 
82 x DSP32 processors

UNC PixelFlow (1992-98): 
64 x (PA-8000 + 

8,192 bit-serial SIMD)
SGI RealityEngine (1990s):

Up to 12 i860-XP processors 
perform vertex operations 
(ucode), fixed-func fragment 
hardware

Most graphics boards now incorporate 
programmable processors at some 
level

Reality Engine Vertex Processors

UNC PixelFlow Rack
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GPUs Already Outperformed CPUs for Raw 
Arithmetic In 2004.

The Performance Gap Continues to Widen..…

G
FL

O
PS

Floating point multiply-add performance (Data courtesey Ian Buck)

NVIDIA NV30, 35, 40

ATI R300, 360, 420

Intel Pentium 4

July 01 Jan 02 July 02 Jan 03 July 03 Jan 04
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Programmable Shading: Computational Power 
Enables New Visualization and Analysis Techniques

Courtesy Ian Buck, John Owens

3.0 GHz dual-
core Pentium4

NVIDIA 
GeForceFX 7800

Multiply Add Performance
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Early Experiments with 
Programmable Graphics Hardware in VMD

• Sun XVR-1000/4000 (2002)
– 4xMAJC-5200 CPUs
– 1GB Texture RAM
– 32MB ucode RAM
– 1 Teraflop Antialiasing Filter 

Pipeline
• Custom ucode and OpenGL 

extension for rendering spheres 
– Draw only half-spheres, with 

solid side facing the viewer
– 1-sided lighting
– Host CPU only sends arrays of 

radii, positions, colors
– fast DMA engines copy arrays 

from system memory to GPU
– Overall performance twice as 

fast, host CPU load significantly 
decreased
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Benefits of Programmable Shading (1)

• Potential for 
superior image 
quality with better 
shading algorithms

• Direct rendering of:
– Quadric surfaces
– Density map data, 

solvent surfaces
• Offload work from 

host CPU to GPU

Fixed-Function 
OpenGL

Programmable Shading: 
- same tessellation

-better shading
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Benefits of Programmable Shading (2)

Single-level OpenGL screen-door 
transparency obscures internal surfaces

Programmable shading shows 
transparent nested probability density 

surfaces with similar performance

Myoglobin cavity “openness” (time averaged spatial occupancy)
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Rendering Non-polygonal Data with 
Present-day Programmable Shading

• Algorithms mapped to 
vertex/fragment shading 
model available in 
current hardware

• Render by drawing 
bounding box or a 
viewer-directed quad 
containing shape/data

• Vertex shader sets up
• Fragment shader 

performs all the work

Fragment shader is evaluated for all 
pixels rasterized by bounding box.

Contained object could be anything one 
can render in a point-sampled manner 

(e.g. scanline rendering or ray tracing of 
voxels, triangles, spheres, cylinders, 
tori, general quadric surfaces, etc…)
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Ray Traced Sphere Rendering with 
Programmable Shading

• Fixed-function OpenGL requires 
curved surfaces to be tessellated with 
triangles, lines, or points

• Fine tessellation required for good 
results with Gouraud shading; 
performance suffers

• Static tessellations look bad when 
one zooms in

• Dynamic tessellation too costly when 
animating huge trajectories

• Programmable shading solution: 
– Ray trace spheres in fragment shader 
– GPU does all the work
– Spheres look good at all zoom levels
– Rendering time is proportional to pixel 

area covered by sphere
– Overdraw is a bigger penalty than for 

triangulated spheres

Fixed-Function OpenGL:
512 triangles per sphere

Programmable Shading:
12 triangle bounding box,
or 1 viewer-directed quad
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Sphere Fragment Shader

• Written in OpenGL 
Shading Language

• High-level C-like 
language with vector 
types and operations

• Compiled dynamically 
by the graphics driver at 
runtime

• Compiled machine code 
executes on GPU
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Efficient 3-D Texturing of Large Datasets

• MIP mapping, compressed map data
• Non-power-of-two 3-D texture dimensions

– Reduce texture size by a factor of 8 for worst-case 
(e.g. 2^N-1 dimensions on 3-D potential map)

• Perform volumetric color transfer functions on 
GPU rather than on the host CPU 
– perform all range clamping and density-to-color 

mapping on GPU
– update color transfer function without re-

downloading large texture maps
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Strategies for Working Within Current 
Hardware Constraints

• GPUs <= 512MB RAM currently
• Use bricked data, multi-level grids, 

view-dependent map resolution
• Use occlusion culling to prevent 

rendering of bricks that aren’t visible, 
thus avoiding texture download/access

• Use reduced precision FP types for 
surface normal / gradient maps
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Near Term Possibilities with More 
Flexible / Powerful GPUs

• Atomic representation tessellation and 
spline calculations done entirely on 
GPU

• Direct rendering of isosurfaces from 
volumetric data via ray casting (e.g. 
electron density surfaces, demo codes 
exist already)

• Direct rendering of metaball (“Blob”) 
approximation of molecular surfaces via 
ray casting (demo codes exist already)
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The Wheel of Reincarnation:
Revival of Old Rendering Techniques?

• Graphics hardware is making 
another trip around Myer and 
Sutherland’s wheel (CACM ’68)

• Visualization techniques that 
weren’t triangle-friendly lost favor 
in the 90’s may return

• Some algorithms that mapped 
poorly to the OpenGL pipeline are 
trivial to implement with 
programmable shading 

• Non-polygonal methods get their 
first shot at running on graphics 
accelerator hardware rather than 
the host CPU
– increased parallelism
– higher memory bandwidth

Connolly surface consisting 
of sphere/torus patches
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Data Structures for Display of
10M Atom Complexes

• Uncompressed atom coordinates120MB (float)
• Avoid traversing per-atom data, hierarchical data 

structure traversal is a must
• Caching, lazy evaluation, multithreading, overlapped 

rendering with computation
• Geometry caching, symmetry/instancing accelerate 

static structure display
• Representation geometry may be 10-50x size of 

atom coordinate data
• GPU must generate geometry itself, not enough 

CPU->GPU bandwidth otherwise, particularly for 
trajectory animation
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Next-Gen Graphics Architectures

• Short Term:
– “Unlimited” shader instruction count
– Full IEEE floating point pipelines, textures, render 

targets
– Virtualized texture / render target RAM

• Later:
– New programmable pipeline stages: geometry 

shader, pre-tessellation vertex shader
– Predicated rendering commands, conditions 

evaluated in hardware (culling operations, etc)
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Next-Gen GPUs

• Increased parallelism in GPUs
– Fragment processors: 48-way now (ATI 

x1900), what next???
– Multiple boards (NVIDIA “SLI”, ATI 

“Crossfire”, etc)
• Double (64-bit) and quad-precision 

(128-bit) floating point on GPUs
• Improved flexibility in on-GPU data 

structures, algorithms
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