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Overview
• Brief intro to VMD
• Challenges presented by the driving science 

projects
• Graphics technology driving molecular 

visualization capabilities and performance
• Future directions for molecular visualization
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VMD
• VMD – “Visual Molecular Dynamics”
• Visualization of molecular dynamics simulations, sequence data, 

volumetric data, quantum chemistry data, particle systems
• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Volumetric Data:
Density maps,

Electron orbitals,
Electrostatic potential, …

Sequence Data:
Multiple Alignments,
Phylogenetic TreesAnnotations

VMDGraphics, Geometry

Atomic, CG, Particle:
Coordinates, Trajectories,

Energies, Forces, 
Secondary Structure, …

VMD Advanced Data Handling

GroEL Ethane

Whole cell
Lipoprotein particle
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VMD Takes Advantage of Emerging 
Technological Opportunities

• 8- and 12-core CPUs common by 2010…
• Graphics processors (GPUs) have over 240 

processing units, and frequently achieve 
speedups of 8-30x vs. CPUs

• Parallel processing is now required to increase 
performance

• Several VMD algorithms are now parallelized
for multi-core CPUs and GPUs

• Continued developments will more broadly 
benefit rendering and analysis features of VMD
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Goal: A Computational Microscope
• Study the molecular machines in living cells
Ribosome: synthesizes proteins 
from genetic information, target 

for antibiotics

Silicon nanopore: 
bionanodevice for sequencing 

DNA efficiently
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What the Computational Microscope Sees

• Sees the calculated 
motions of the 
molecular machines

• Ankyrin repeat protein 
being stretched out…

• Results compared 
between computer 
simulation and atomic 
force microscope 
experiments



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Structure Building, Simulation Preparation

• Obtain atomic 
structure, e.g. from the 
Protein Data Bank

• Integrate structure into 
its native biological 
environment: 
– Membrane
– Water
– Ions

• Display and analyze 
the prepared system
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Molecular Dynamics
• Classical mechanical 

simulation of atomic 
motions (F=ma)

• Molecular dynamics 
calculations save 
trajectories of atomic 
coordinates as the 
simulation progresses

• Researchers study 
trajectories by analyzing 
force profiles, energies, 
structural changes etc
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Simulation of Biological Molecules
• All-atom models of proteins, 

membranes, DNA, in water solution
• Classical mechanics N-body 

algorithms are O(N log N) at best
• N = 100K to 10M atoms today, soon 

up to 100M atoms
• 512 CPU jobs often run on remote 

supercomputers for weeks at a time 
for a 10ns simulation

• Visualization and analysis require  
workstations with   4-32 GB of 
RAM, 1-4 CPUs, high-end graphics 
accelerators
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• Simulations lead to better 
understanding of the 
mechanics of viral 
infections

• Better understanding of 
infection mechanics at the 
molecular level may result 
in more effective treatments 
for diseases

• Since viruses are large, their 
computational viewing 
requires tremendous 
resources, in particular large 
parallel computers

The Computational Microscope in Virology
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Building, Viewing, Analyzing the Virus: 
VMD Software
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• Key task: placement of ions inside 
and around the virus

• Virus ion placement ran for      110 
CPU-hours on SGI Altix Itanium2

• Same calculation took 27 GPU-
minutes on GeForce 8800GTX 
with CUDA implementation

• Over 240 times faster: ion 
placement can now be done on a 
desktop machine!

• New linear-time GPU algorithm 
(multilevel summation) will speed 
this up even further

Preparing the Virus for Simulation
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Complete Virus Model

Satellite Tobacco Mosaic Virus 932,508 atoms
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Simulating the Virus: NAMD Software
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STMV simulation with 1M atoms:
5.93 ns per day on 2,000 processors 
of Cray XT3
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Timeline: Graphics Hardware Used for Molecular 
Visualization

60’s and 70’s: 
Mainframe-based vector graphics on Tektronix terminals,
Evans & Sutherland image generators

80’s: 
Transition to raster graphics on Unix workstations, Mac, PC
Space-filling molecular representations
Stereoscopic rendering

90’s - 2002: 
3rd-generation raster graphics systems
Depth-cueing
Texture mapping: coloring by potential, density, etc
Full-scene antialiasing

2002-present:
Programmable shading, GPU-acceleration of geometry calculations, …
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Comparison of Molecular Visualization with 
Other Graphics Intensive Applications

• Geometric complexity 
often limits molecular 
visualization 
performance

• All atoms move every 
simulation timestep, 
thwarts many LOD 
simplification techniques

• Commodity graphics 
hardware is tuned for 
requirements of games

• Solution: Use 
sophisticated shading 
instead of explicit 
geometry where possible

Geometric Complexity

Texture/Shading Complexity

Flight Simulation

CAD

Games PIXAR, ILM
Movie Studios

Biomolecular
Visualization

HW 
Trend
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VMD Visualization Engine

Molecule

Molfile
Plugins

Selection

DrawMolItem

VMD Display List Renderer

User Interfaces OpenGL

Tachyon

POV-Ray

•Simplified diagram only illustrates key stages
•VMD caches reusable data at each stage

CAVEX11
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Multi-modal Visualization
• Aligned sequences and 

structures, phylogeny
• Simultaneous use of 

shape, color, topology, 
and interactivity

• Multiple simultaneous 
representations

• Multiple data display 
modalities

• Selections in one 
modality can be used 
to highlight or select 
in others
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Displaying 10M Atom Complexes

• Uncompressed atom coordinates 120MB              
(3 floats/atom)

• Avoid traversal of per-atom data, hierarchical data 
structures are a must

• Caching, lazy evaluation, multithreading, 
overlapped rendering with computation

• Geometry caching, symmetry/instancing 
accelerate static structure display

• Representation geometry often 10-50x size of 
atom coordinate data, but is largely ephemeral
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Programmable Graphics Hardware
Groundbreaking research systems:

AT&T Pixel Machine (1989): 
82 x DSP32 processors

UNC PixelFlow (1992-98): 
64 x (PA-8000 + 

8,192 bit-serial SIMD)
SGI RealityEngine (1990s):

Up to 12 i860-XP processors perform 
vertex operations (ucode), fixed-
func. fragment hardware

All mainstream GPUs now incorporate 
programmable processors

Reality Engine Vertex Processors

UNC PixelFlow Rack
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Early Experiments with 
Programmable Graphics Hardware in VMD

• Sun XVR-1000/4000 (2002)
– 4xMAJC-5200 CPUs
– 1GB Texture RAM
– 32MB ucode RAM
– 1 Teraflop Antialiasing Filter 

Pipeline
• Custom ucode and OpenGL 

extension for rendering spheres 
– Draw only half-spheres, with solid 

side facing the viewer
– 1-sided lighting
– Host CPU only sends arrays of radii, 

positions, colors
– Fast DMA engines copy arrays from 

system memory to GPU
– Overall performance was over twice 

as fast, host CPU load significantly 
decreased
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Peak Single-precision Arithmetic 
Performance Trend, GPU vs. CPU
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Evolution of Molecular Graphics 
Software Design

• Given ongoing trends:
– Increasing size and complexity of  simulations
– Increased demand for interactivity in all stages of 

modeling, visualization, and analysis
– Relative floating point performance and memory 

bandwidth of GPUs vs CPUs
• Highly parallelizable work must shift to GPUs
• CPU cores retain high level functions and coarse 

parallelism not suited to GPUs
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Offloading More of Molecular Graphics 
and Modeling Work to the GPU

• Graphics related work first to go, adjust 
algorithms to favor higher GPU utilization:
– GPU must generate geometry itself, not enough CPU-

GPU bandwidth otherwise, particularly for trajectory 
animation

– Use programmable shading rather than finely 
tessellated surface geometry

– Proxy objects, ray casting
• Begin moving highly parallel modeling algorithms 

to the GPU (e.g. CUDA)
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Benefits of Programmable Shading

• Potential for superior 
image quality with 
better shading 
algorithms

• Direct rendering of:
– Quadric surfaces
– Density map data, 

solvent surfaces
• Offload work from 

host CPU to GPU

Fixed-Function 
OpenGL

Programmable Shading: 
- same tessellation

-better shading
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Rendering Non-polygonal Data with 
Present-day Programmable Shading

• Algorithms mapped to 
vertex/fragment 
shading model 
available in current 
hardware

• Render by drawing 
bounding box or a 
viewer-directed quad 
containing shape/data

• Vertex shader sets up
• Fragment shader 

performs all the work

Fragment shader is evaluated for all 
pixels rasterized by bounding box.

Contained object could be anything one 
can render in a point-sampled manner 

(e.g. scanline rendering or ray tracing of 
voxels, triangles, spheres, cylinders, 
tori, general quadric surfaces, etc…)
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Ray Traced Sphere Rendering with Programmable Shading
• Fixed-function OpenGL requires 

curved surfaces to be tessellated with 
triangles, lines, or points

• Fine tessellation required for good 
results with Gouraud shading; 
performance suffers

• Static tessellations look bad when 
viewer zooms in

• Dynamic tessellation too costly when 
animating huge trajectories

• Programmable shading solution: 
– Ray trace spheres in fragment shader 
– GPU does all the work
– Spheres look good at all zoom levels
– Rendering time is proportional to 

pixel area covered by sphere
– Overdraw is a bigger penalty than 

for triangulated spheres

Fixed-Function OpenGL:
512 triangles per sphere

Programmable Shading:
12 triangle bounding box,
or 1 viewer-directed quad
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Sphere Fragment Shader

• Written in OpenGL 
Shading Language

• High-level C-like language 
with vector types and 
operations

• Compiled dynamically by 
the graphics driver at 
runtime

• Compiled machine code 
executes on GPU
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Shading Comparison: EF-Tu
“Goodsell” 

Shader
Glossy 
Shader

Outline
Shader

Ambient Occlusion, 
Shadowing

VMD Interactive OpenGL Rendering VMD/Tachyon
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Efficient 3-D Texturing of Large Datasets

• MIP mapping, compressed map data
• Perform volumetric color transfer functions 

on GPU rather than on the host CPU 
– perform all range clamping and density-to-color 

mapping on GPU
– update color transfer function without re-

downloading large texture maps
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Strategies for Working Within GPU 
Hardware Constraints

• Most GPUs <= 1GB RAM currently
• Use bricked data, multi-level grids, view-

dependent map resolution
• Use occlusion culling to prevent rendering 

of bricks that aren’t visible, thus avoiding 
texture download/access

• Use reduced precision FP types for surface 
normal / gradient maps
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Further GPU Acceleration
• Atomic representation tessellation, spline

calculations, atom selections, spatial queries 
computed entirely on GPU

• Direct rendering of isosurfaces from volumetric 
data via ray casting (e.g. electron density surfaces, 
codes exist already)

• Computation and direct rendering of metaball 
(“Blob”) approximation of molecular surfaces via 
ray casting (codes exist already)
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Computing Volumetric Properties

• Compute density, distance, 
occupancy, potential maps 
for a frame or averaged 
over a trajectory

• Well suited to GPU 
acceleration

• Example: display binding 
sites for diffusively bound 
ions as probability density 
isosurfaces tRNA magnesium ion occupancy
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VMD Visualization Engine, 
GPU Acceleration Opportunities

Molecule

Molfile
Plugins

Selection

DrawMolItem

VMD Display List Renderer

User Interfaces OpenGL

Tachyon

POV-Ray

CAVEX11
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The Wheel of Reincarnation:
Revival of Molecular Graphics Techniques?

• Graphics hardware is making 
another trip around the wheel of 
reincarnation (Myer and 
Sutherland CACM ’68)

• Visualization techniques that 
weren’t triangle-friendly lost 
favor in the 90’s may return

• Algorithms that mapped poorly 
to fixed-function OpenGL are 
often easier to implement with 
programmable shading 

• Non-polygonal geometry can 
now be rendered entirely on the 
GPU itself

Connolly surface consisting 
of sphere/torus patches
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Next-Gen Graphics Architectures

• New programmable pipeline stages: 
geometry shader, pre-tessellation vertex 
shader

• Predicated rendering commands, conditions 
evaluated in hardware (culling operations, 
etc)

• Mixed OpenGL, CUDA, etc.
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• Omnidirectional
diffuse lighting

• Improved shape 
perception

• Tachyon tuned for 
use by VMD

• Tachyon AO 
lighting works 
with all VMD 
representations

Higher Quality Rendering:
VMD/Tachyon Ambient Occlusion Lighting
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Exportin Cse1p Nanopore
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Interactive Display with AO and Other 
Demanding Techniques

• Ultimately the user wants to be able to display 
their structures at interactive rates

• Ambient occlusion lighting computationally 
costly:
– Usable on very small static molecular structures, with 

some limitations
– Published GPU algorithms don’t scale well for large 

all-atom trajectories yet
– Future GPUs and improved algorithms will likely make 

interactive AO usable for large structures in a few years
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Upcoming Challenges

• Petascale simulations will generate 
trajectories too large to download from the 
supercomputers

• Much more analysis will have to be done 
prior to visualization of the results, to help 
focus on the interesting data
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