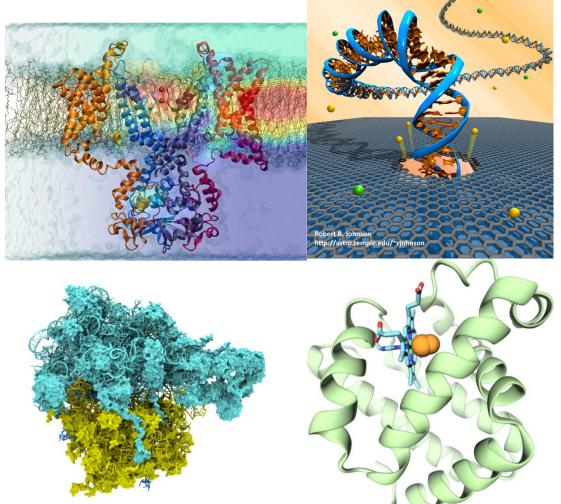
Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics Trajectories

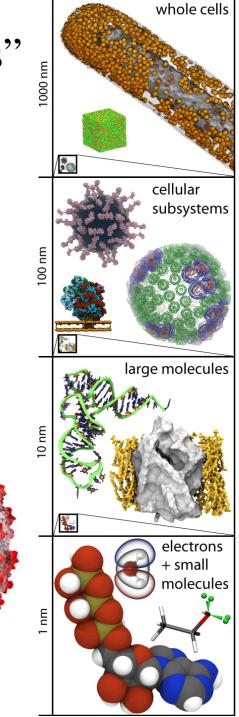
J. Stone, K. Vandivort, K. Schulten


Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign http://www.ks.uiuc.edu/Research/vmd/

7th International Symposium on Visual Computing
Special Track: Immersive Visualization
Las Vegas, NV, September 26, 2011

Visualizing Biomolecules

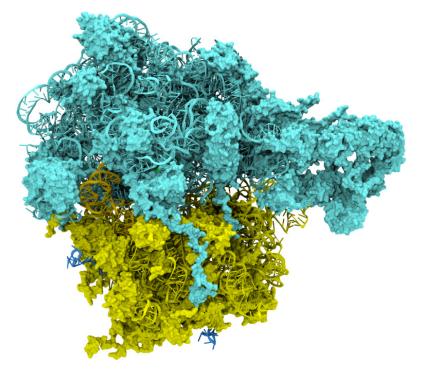
- Simplified structure representations
- Coloring by structural properties, volumetric fields, similarity to related structures, ...
- High quality shading
- Depth cueing, ambient occlusion lighting
- Stereoscopic display
- Motion, animation of molecular dynamics



NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/ Beckman Institute, UIUC

VMD – "Visual Molecular Dynamics"

- Visualization and analysis of:
 - molecular dynamics simulations
 - quantum chemistry simulations
 - particle systems and whole cells
 - sequence data
 - volumetric data
- User extensible w/ scripting and plugins
- http://www.ks.uiuc.edu/Research/vmd/

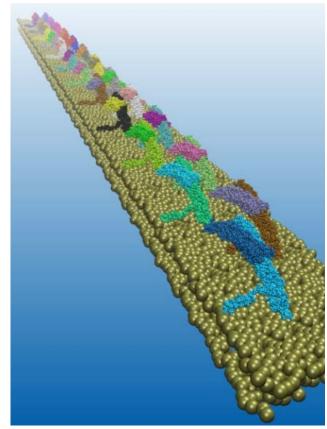


NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

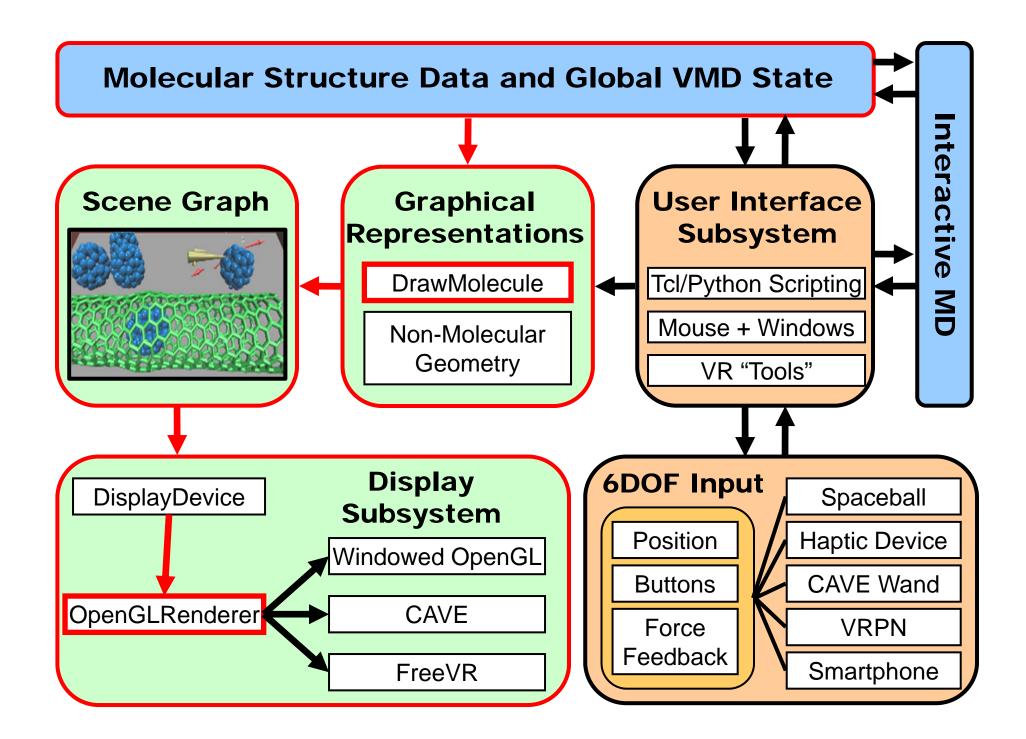
Goal: A Computational Microscope

- Study the molecular machines in living cells
- Health-relevant biomolecules are often large **multi-million atom complexes**
- Computer simulations on large parallel computers enable views of **dynamics** inaccessible to experiment
- Simulation trajectories (output) are many **terabytes** in size, far too large to load in memory, users juggle subsets of data...
- Out-of-core techniques can address size limitations, but achieving interactive performance is difficult
- By optimizing file formats, data structures, selection traversal, OpenGL rendering, and by using SSDs for fast I/O, out-of-core immersive visualization becomes feasible

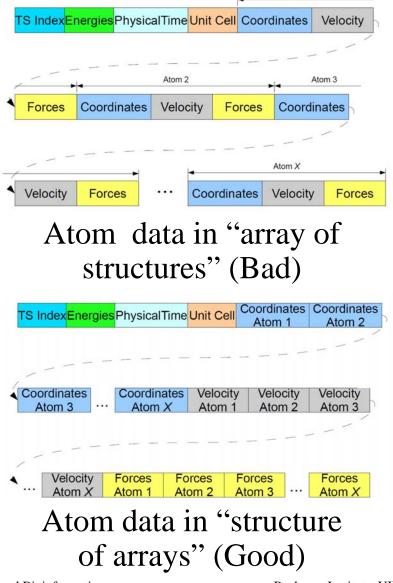
Ribosome: synthesizes proteins from genetic information, target for antibiotics


Data Challenges for Immersive Visualization of Dynamics of Large Structures

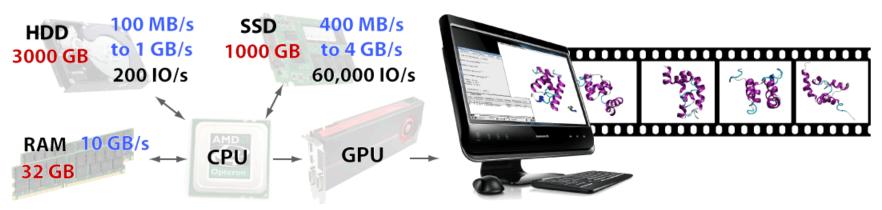
- Molecular dynamics trajectories store (at least) 12 bytes per atom, per timestep, for thousands to millions of timesteps
- 100M atom simulation stores **1.2GB per timestep!**
- Host CPU memory bandwidth is on the order ~10GB/sec, even rendering straight from RAM we **cannot** afford to traverse every atom during rendering
- Aggregate host memory bandwidth for all CPUs and PCIe controllers is less than ~20GB/sec
- Even with multithreading for I/O, computing scene graph, rendering to multiple GPUs, we must minimize data accesses, and **eliminate data copies** wherever possible


Challenges for Immersive Visualization of Dynamics of Large Structures

- Graphical representations re-generated for each simulation timestep:
 - Dependent on user-defined atom selections
- Although visualizations often focus on interesting regions of substructure, fast display updates require rapid traversal of molecular data structures
- Optimized per-frame atom selection traversal:
 - Increased performance of per-frame updates by ~10x for 116M atom BAR case with 200,000 selected atoms
- New GLSL point sprite sphere shader:
 - Reduce host-GPU bandwidth for displayed geometry
 - Over 20x faster than old GLSL spheres drawn using display lists drawing time is now inconsequential
- Optimized all graphical representation generation routines for large atom counts, sparse selections


116M atom BAR domain test case: 200,000 selected atoms, stereo trajectory animation 70 FPS, static scene in stereo 116 FPS

I/O Challenges for Out-of-Core Visualization


- Existing molecular dynamics trajectory file formats:
 - Not optimized for peak I/O performance
 - Sometimes haphazardly organized such that data fields may have to be transposed or reorganized on-the-fly by visualization tools
- Performance of magnetic disks is inadequate for smooth trajectory animation, except large RAID arrays, which are unwieldy, loud, and expensive, limiting their applicability
- Portable I/O APIs only achieve half of peak hardware performance on high-performance I/O devices

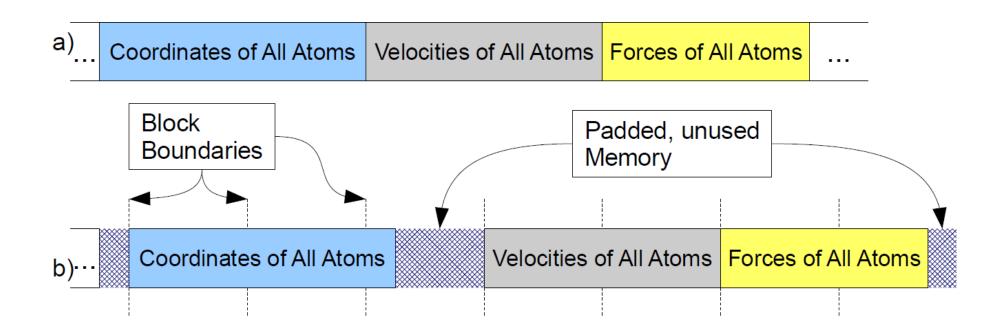
NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Performance of Solid State Disks vs. Magnetic Hard Drives

• SSDs offer sequential I/O rates 4x faster than high-end magnetic disks, and random I/O rates as high as 300x faster

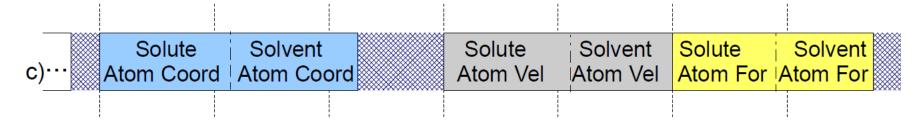
Use of SSDs for High-Performance Molecular Dynamic Trajectory I/O

- A single SSD can achieve trajectory I/O rates that previously required a RAID array
- Well-suited for laptops
- A small SSD RAID array (~8 SSDs) can saturate a PCIe x8 RAID controller, delivering over 2GB/sec to application code, using direct I/O
- New PCIe-based SSDs achieve I/O rates similar to a RAID array, but with all components on a single PCIe card
- Using two RAIDs and doing parallel I/O with multiple threads, we have achieved I/O rates up to 4GB/sec in a test code



Buffered vs. Direct Operating System I/O APIs

- Standard cross-platform C/C++ I/O APIs use "buffered" I/O:
 - OS reads disk blocks into kernel buffers, then copies into user destination buffers
 - Performance often half of what state-of-the-art storage hardware is capable of
 - During heavy I/O, aggressive kernel buffer allocation can cause paging of application data — a disaster for interactive rendering performance...
- Direct I/O benefits and complexities:
 - Direct I/O APIs read disk blocks straight to the user process destination buffer a zero copy approach that conserves memory bandwidth and yields peak performance
 - Non-portable: different among Linux, MacOS X, and Windows, and minor differences between various Unix implementations
 - I/O size must be a multiple of the OS disk block- or VM page-size
 - File pointers and target memory buffers must always be aligned to block or page boundaries
 - Requires changes to both on-disk file formats and to application code

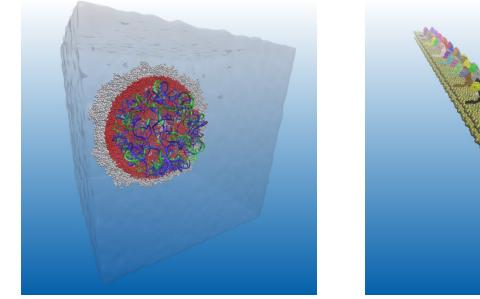

Trajectory File Format Changes for Direct I/O

Random Access I/O for Selective Loading of Trajectory Data

- Typical molecular simulations include many components that may not need to be displayed in typical cases (e.g. bulk solvent)
- SSDs provide very high random access I/O rates, allowing selective reads of only the atom data required for the current view, as determined by user's selections
- By skipping reads of just bulk solvent, we can often gain at least 2x performance, sometimes much more...

Single SSD Direct I/O Performance Results

Hard-	Test Case	I/O Method	Atoms	Rate	Bandwidth	Speed	vs. I	DCD
ware			Loaded	(TS/s)	(MB/s)	RAID	SSD	HD
HD	STMV	DCD, Normal	$0.955 \mathrm{M}$	9.3	102	0.14	0.39	1.0
	Ribosome	DCD, Normal	2.94M	3.0	105	0.12	0.38	1.0
SSD	STMV	DCD, Normal	$0.955 \mathrm{M}$	23.7	259	0.35	1.0	2.5
		OOC, Normal	$0.955 \mathrm{M}$	29.6	323	0.30	1.2	3.2
		OOC, Direct	$0.955 \mathrm{M}$	37.2	406	0.20	1.6	4.0
		OOC, Direct, NoSolv	$0.178 \mathrm{M}$	174.3	355	0.45	7.3	18.7
	Ribosome	DCD, Normal	$2.94\mathrm{M}$	7.8	262	0.32	1.0	2.6
		OOC, Normal	$2.94 \mathrm{M}$	9.5	319	0.28	1.2	3.2
		OOC, Direct	$2.94 \mathrm{M}$	12.2	409	0.20	1.6	4.1
		OOC, Direct, NoSolv	1.55M	23.0	408	0.24	2.9	7.7



SSD RAID Direct I/O Performance Results

Hard-	Test Case	I/O Method	Atoms	Rate	Bandwidth	Speed	vs. I	DCD
ware			Loaded	(TS/s)	(MB/s)	RAID	SSD	HD
	STMV	DCD, Normal	$0.955 \mathrm{M}$	67	754	1.0	2.83	7.2
		OOC, Normal	$0.955 \mathrm{M}$	98	1,075	1.5	3.31	10.5
		OOC, Direct	$0.955 \mathrm{M}$	182	1,998	2.7	4.89	19.5
		OOC, Direct, NoSolv	$0.178 \mathrm{M}$	386	787	5.8	2.21	41.5
	Ribosome	DCD, Normal	$2.94\mathrm{M}$	24.3	815	1.0	3.12	8.1
		OOC, Normal	$2.94\mathrm{M}$	33.7	1,133	1.4	3.55	11.2
RAID		OOC, Direct	$2.94\mathrm{M}$	60.7	2,037	2.5	4.98	20.2
		OOC, Direct, NoSolv	$1.55 \mathrm{M}$	96.4	1,711	4.0	4.12	32.1
INAID	Membrane	DCD, Normal	$22.8\mathrm{M}$	3.0	781	1.0	-	-
		OOC, Normal	$22.8\mathrm{M}$	4.6	1,207	1.5	-	-
		OOC, Direct	$22.8\mathrm{M}$	8.0	2,087	2.6	-	-
		OOC, Direct, NoSolv	2.83M	46.5	1,508	15.5	-	-
	BAR	DCD, Normal	116M	0.6	708	1.0	-	-
		OOC, Normal	116M	0.9	$1,\!189$	1.5	-	-
-		OOC, Direct	116M	1.6	2,130	2.6	-	-
		OOC, Direct, NoSolv	$1.98 \mathrm{M}$	76.3	1,725	127.2	-	-

Immersive Visualization Performance Results

		N.	
Test Case	Visualization Mode	Atoms	Display Rate
		Loaded	(frames/s)
STMV	Stereo, static scene	0.955M	105
STMV	Stereo, in-core trajectory animation		48
STMV	Stereo, out-of-core trajectory animation	0.955M	44
BAR domain	Stereo, static scene	116M	116
BAR domain	Stereo, in-core trajectory animation	116M	70
BAR domain	Stereo, out-of-core trajectory animation	$1.98 \mathrm{M}$	67

Beckman Institute, UIUC

Summary

- Out-of-core performance better than 91% of in-core
- Results a combination of:
 - Improved trajectory rendering pipeline, fast GLSL shaders
 - Selective reads of atom data
 - Revised trajectory file format
 - Zero-copy direct I/O
 - SSD storage hardware

Beckman Institute, UIUC

Future Work

- Extend "selective read" feature to finer granularity atom selections
- Trajectory file formats with "packed" blocks of frequentlyneeded data that is otherwie too sparse for the "selective read" approach to be successful
- Multi-level atom selection flag data structures
- Custom GLSL shaders for ribbon and surface representations
- Optimize data broadcasts for multi-GPU immersive systems

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements

- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
- Beckman Institute
- NVIDIA CUDA Center of Excellence, University of Illinois at Urbana-Champaign
- The CUDA team at NVIDIA
- NIH support: P41-RR005969

