
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Acceleration of Molecular
Modeling Applications

James Phillips
John Stone
http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD: Practical Supercomputing
• 25,000 users can’t all be computer experts.

– 18% are NIH-funded; many in other countries.
– 4900 have downloaded more than one version.

• User experience is the same on all platforms.
– No change in input, output, or configuration files.
– Run any simulation on any number of processors.
– Precompiled binaries available when possible.

• Desktops and laptops – setup and testing
– x86 and x86-64 Windows, and Macintosh
– Allow both shared-memory and network-based parallelism.

• Linux clusters – affordable workhorses
– x86, x86-64, and Itanium processors
– Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Our Goal: Practical Acceleration

• Broadly applicable to scientific computing
– Programmable by domain scientists
– Scalable from small to large machines

• Broadly available to researchers
– Price driven by commodity market
– Low burden on system administration

• Sustainable performance advantage
– Performance driven by Moore’s law
– Stable market and supply chain

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acceleration Options for NAMD

• Outlook in 2005-2006:
– FPGA reconfigurable computing (with NCSA)

• Difficult to program, slow floating point, expensive
– Cell processor (NCSA hardware)

• Relatively easy to program, expensive
– ClearSpeed (direct contact with company)

• Limited memory and memory bandwidth, expensive
– MDGRAPE

• Inflexible and expensive
– Graphics processor (GPU)

• Program must be expressed as graphics operations

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

– Calculation: 450 GFLOPS vs 32 GFLOPS
– Memory Bandwidth: 80 GB/s vs 8.4 GB/s

G
FL

O
P

S

G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

GPU vs CPU: Raw Performance

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA: Practical Performance

• CUDA makes GPU acceleration usable:
– Developed and supported by NVIDIA.
– No masquerading as graphics rendering.
– New shared memory and synchronization.
– No OpenGL or display device hassles.
– Multiple processes per card (or vice versa).

• Resource and collaborators make it useful:
– Experience from VMD development
– David Kirk (Chief Scientist, NVIDIA)
– Wen-mei Hwu (ECE Professor, UIUC)

November 2006: NVIDIA announces CUDA for G80 GPU.

Fun to program (and drive)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

GeForce 8800 Graphics Mode

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

12,288 threads, 128 cores,
450 GFLOPS

GeForce 8800 General Computing

768 MB DRAM, 4GB/S bandwidth to CPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Calculating Electrostatic Potential Maps
• Used in structure building,

analysis, visualization,
simulation

• Electrostatic potentials
evaluated on a uniformly
spaced 3-D lattice

• Each lattice point contains
sum of electrostatic
contributions of all atoms

Positive potential field

Negative potential field

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation
• At each lattice point, sum potential

contributions for all atoms in the simulated
structure:

potential[j] += charge[i] / Rij

Atom[i]

Rij: distance
from lattice[j]

to Atom[i]
Lattice point j

being evaluated

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation on the GPU
Host

Atomic
Coordinates

Charges

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

• Increase arithmetic intensity, reuse in-register data by “unrolling” lattice
point computation into inner atom loop

• Each atom contributes to several lattice points, distances only differ in the X
component:

potentialA += charge[i] / (distanceA to atom[i])
potentialB += charge[i] / (distanceB to atom[i]) …

Optimizing for the GPU

Atom[i]

Distances to
Atom[i]

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Block/Grid Decomposition
Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:
64-256 threads

…

Unrolling increases
computational tile size

Threads compute
up to 8 potentials.

Skipping by half-warps
optimizes global mem. perf.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation Performance

CUDA-Simple:
14.8x faster,

33% of fastest
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU,
291 GFLOPS on

GeForce 8800GTX

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips.
Proceedings of the IEEE, 2008. In press.

CPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation Runtime

GPU
underutilized

GPU fully utilized,
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Direct Coulomb Summation
• Effective memory bandwidth

scales with the number of GPUs
utilized

• PCIe bus bandwidth not a
bottleneck for this algorithm

• 117 billion evals/sec
• 863 GFLOPS
• 131x speedup vs. CPU core
• Power: 700 watts during

benchmark

Quad-core Intel QX6700
Three NVIDIA GeForce 8800GTX

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Direct Coulomb Summation
• 4-GPU (2 Quadroplex)

Opteron node at NCSA
• 157 billion evals/sec
• 1.16 TFLOPS
• 176x speedup vs. Intel

QX6700 CPU core w/ SSE

NCSA GPU Cluster

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Application Performance
(July 2007, current kernels are 20% faster...)

• CUDA ion placement lattice
calculation performance:
– 82 times faster for virus (STMV)

structure
– 110 times faster for ribosome

• Virus ion placement: 110
CPU-hours on SGI Altix Itanium2

• Same calculation now takes 1.35
GPU-hours

• 27 minutes (wall clock) if three
GPUs are used concurrently

Satellite Tobacco Mosaic Virus (STMV)
Ion Placement

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation
• At each lattice point, sum potential contributions for atoms

within cutoff radius:
if (distance to atom[i] < cutoff)

potential += (charge[i] / r) * s(r)
• Smoothing function s(r) is algorithm dependent

Cutoff radius r: distance to
Atom[i]

Lattice point being
evaluated Atom[i]

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Process atom bins
for current potential

map region

Cutoff Summation on the GPU

Atoms

Atoms spatially hashed into fixed-
size “bins” in global memory

Global memory

Constant memory

Bin-Region
neighborlist

Shared memory
Atom bin

Potential
map

regions

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation Runtime

GPU cutoff with
CPU overlap:

12x-21x faster than
CPU core

GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008

Conference On Computing Frontiers, 2008. In press.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Hybrid of spatial and force decomposition:

•Spatial decomposition of atoms into cubes
(called patches)

•For every pair of interacting patches, create one
object for calculating electrostatic interactions

•Recent: Blue Matter, Desmond, etc. use
this idea in some form

NAMD Parallel Design

• Designed from the beginning as a parallel program
• Uses the Charm++ idea:

– Decompose the computation into a large number of objects
– Have an Intelligent Run-time system (of Charm++) assign objects to

processors for dynamic load balancing with minimal communication

Kale et al., J. Comp. Phys. 151:283-312, 1999.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

847 objects 100,000

NAMD Overlapping Execution

Example
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor
Cluster

SM
Shared Memory

TPC TPC TPC TPC TPC TPC TPC TPC

Streaming Processor Array

Streaming Multiprocessor

Te
xt

ur
e

U
ni

t

Streaming
Processor

ADD
SUB
MAD
Etc…

GPU Hardware Special Features

Super Function
Unit

SIN
RSQRT
EXP
Etc…

Constant
Cache

64kB read-only

read-only
interpolation

SM

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Nonbonded Forces on CUDA GPU
• Start with most expensive calculation: direct nonbonded interactions.
• Decompose work into pairs of patches, identical to NAMD structure.
• GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers
for (int j = 0; j < jatom_count; ++j) {

float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if (r2 < cutoff2) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) {
indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma; // sigma
f *= f*f; // sigma^3
f *= f; // sigma^6
f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if (excluded) { f = qq * ft.w; } // PME correction
else { f += qq * ft.z; } // Coulomb
iforce.x += dx * f; iforce.y += dy * f; iforce.z += dz * f;
iforce.w += 1.f; // interaction count or energy

}
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Nonbonded Forces
CUDA Code

Force Interpolation

Exclusions

Parameters

Accumulation

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Why Calculate Each Force Twice?

• Newton’s 3rd Law of Motion: Fij = Fji
– Could calculate force once and apply to both atoms.

• Floating point operations are cheap:
– Would save at most a factor of two.

• Almost everything else hurts performance:
– Warp divergence
– Memory access
– Synchronization
– Extra registers
– Integer logic

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

What About Pairlists?

• Generation works well under CUDA
– Assign atoms to cells
– Search neighboring cells
– Write neighbors to lists as they are found
– Scatter capability essential
– 10x speedup relative to CPU

• Potential for significant performance boost
– Eliminate 90% of distance test calculations

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Why Not Pairlists?

• Changes FP-limited to memory limited:
– Limited memory to hold pairlists
– Limited bandwidth to load pairlists
– Random access to coordinates, etc.
– FP performance grows faster than memory

• Poor fit to NAMD parallel decomposition:
– Number of pairs in single object varies greatly

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NCSA GPU Cluster Performance

• 7x speedup
• Large system (1M atoms)
• Overlap with CPU
• Off-node results done first
• Infiniband scales well
• Plans for better performance

– Tune or port remaining work
– Balance GPU load (?)

0

1

2

3

4

5

1 2 4 8 16 32 48

se
co

nd
s p

er
 st

ep

CPU only
with GPU
GPU

2.4 GHz Opteron + Quadro FX 5600
Thanks to NCSA and NVIDIA

STMV Performance

fa
st

er

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Performance Results, March 2008
GeForce 8800GTX w/ CUDA 1.1, Driver 169.09

Calculation / Algorithm Algorithm class Speedup vs. Intel
QX6700 CPU core

Fluorescence microphotolysis Iterative matrix / stencil 12x
Pairlist calculation Particle pair distance test 10-11x
Pairlist update Particle pair distance test 5-15x

Cutoff electron density sum Particle-grid w/ cutoff 15-23x

Direct Coulomb summation Particle-grid 44x

Molecular dynamics non-
bonded force calculation

N-body cutoff force
calculations

10x
20x (w/ pairlist)

Cutoff potential summation Particle-grid w/ cutoff 12-21x

http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Lessons Learned

• GPU algorithms need fine-grained parallelism and
sufficient work to fully utilize hardware

• Much of GPU algorithm optimization revolves around
efficient use of multiple memory systems

• Amdahl’s Law can prevent applications from achieving
peak speedup with shallow GPU acceleration efforts

• Overlapping CPU work with GPU can hide some
communication and unaccelerated computation

• CUDA and MPI will fight over page-locked memory

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements
• Theoretical and Computational

Biophysics Group, University of Illinois
at Urbana-Champaign

• Prof. Wen-mei Hwu, Chris Rodrigues,
IMPACT Group, University of Illinois
at Urbana-Champaign

• David Kirk and the CUDA team at
NVIDIA

• NIH support: P41-RR05969

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Publications
• http://www.ks.uiuc.edu/Research/gpu/
• Accelerating molecular modeling applications with graphics processors. J.

Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp.
Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A.
Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal,
93:4006-4017, 2007.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J.
Phillips. Proceedings of the IEEE, 2008. In press.

• GPU acceleration of cutoff pair potentials for molecular modeling
applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu.
Proceedings of the 2008 Conference On Computing Frontiers, 2008. In press.

	GPU Acceleration of Molecular Modeling Applications
	NAMD: Practical Supercomputing
	Our Goal: Practical Acceleration
	Acceleration Options for NAMD
	GPU vs CPU: Raw Performance
	CUDA: Practical Performance
	GeForce 8800 Graphics Mode
	GeForce 8800 General Computing
	Calculating Electrostatic Potential Maps
	Direct Coulomb Summation
	Direct Coulomb Summation on the GPU
	Optimizing for the GPU
	CUDA Block/Grid Decomposition
	Direct Coulomb Summation Performance
	Direct Coulomb Summation Runtime
	Multi-GPU Direct Coulomb Summation
	Multi-GPU Direct Coulomb Summation
	GPU Application Performance�(July 2007, current kernels are 20% faster...)
	Cutoff Summation
	Cutoff Summation on the GPU
	Cutoff Summation Runtime
	NAMD Parallel Design
	GPU Hardware Special Features
	Nonbonded Forces on CUDA GPU
	Why Calculate Each Force Twice?
	What About Pairlists?
	Why Not Pairlists?
	NCSA GPU Cluster Performance
	GPU Performance Results, March 2008�GeForce 8800GTX w/ CUDA 1.1, Driver 169.09
	Lessons Learned
	Acknowledgements
	Publications

