GPU Acceleration of Molecular
Modeling Applications

. y 8 N, = x

James Phillips '
John Stone
http://www.ks.uiuc.edu/Research/gpu/

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
Hosacrih Rosounton http://www.ks.uiuc.edu/

NAMD: Practical Supercomputlng

* 25,000 users can’t all be computer experts. & ba el T
— 18% are NIH-funded; many in other countries. . N
— 4900 have downloaded more than one version.

o User experience is the same on all platforms.
— No change in input, output, or configuration files.
— Run any simulation on any number of processors.
— Precompiled binaries available when possible.

« Desktops and laptops — setup and testing
— Xx86 and x86-64 Windows, and Macintosh
— Allow both shared-memory and network-based parallelism.

 Linux clusters — affordable workhorses
— X86, x86-64, and Itanium processors
— Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005.

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
Research Rosourcss http://www ks.uiuc.edu/

Our Goal: Practical Acceleration

 Broadly applicable to scientific computing
— Programmable by domain scientists
— Scalable from small to large machines
« Broadly available to researchers
— Price driven by commodity market
— Low burden on system administration
 Sustainable performance advantage

— Performance driven by Moore’s law
— Stable market and supply chain

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
Research Rosourcss http://www ks.uiuc.edu/

Acceleration Options for NAMD

Outlook in 2005-2006:

— FPGA reconfigurable computing (with NCSA)
 Difficult to program, slow floating point, expenswe

— Cell processor (NCSA hardware)

* Relatively easy to program, expensive fi
— ClearSpeed (direct contact with company)

* Limited memory and memory bandW|dth expenswe
— MDGRAPE of|

* Inflexible and expensive

— Graphics processor (GPU)

» Program must be expressed as graphics operations

NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
http://www ks.uiuc.edu/

GPU vs CPU: Raw Performance

— Calculation: 450 GFLOPS vs 32 GFLOPS
— Memory Bandwidth: 80 GB/s vs 8.4 GB/s

G809 G80 = GeForce 8800 GTX
300 G71 = GeForce 7900 GTX
0p) G70 = GeForce 7800 GTX
an NV40 = GeForce 6800 Ultra
O 200
7 NV35 = GeForce FX 5950 Ultra
LL NV30 = GeForce FX 5800
O 100 3.0 GHz
Intel Corg2 Duo
NV3 o
0 | I I I I I]
Jan Jun Apr May Nov Mar Nov
2003 2004 2005 2006
@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC

Research Rosourcss http://www ks.uiuc.edu/

CUDA: Practical Performance
November 2006: NVIDIA announces CUDA for G80 GPU.

« CUDA makes GPU acceleration usable:
— Developed and supported by NVIDIA.
— No masquerading as graphics rendering.
— New shared memory and synchronization. Fun to program (and drive)
— No OpenGL or display device hassles.
— Multiple processes per card (or vice versa).

e Resource and collaborators make it useful:

— Experience from VMD development
— David Kirk (Chief Scientist, NVIDIA)
— Wen-mei Hwu (ECE Professor, UIUC)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
Remaareh Rosources http://www ks.uiuc.edu/

GeForce 8800 Graphics Mode

[se] |
LI
LI

] .

O]

[sel]
L]
L]

L]
N
N
L]

v

[sell_J|lse
L[]
L[]

[

[se)l]
L]

v

[

I

[se]
LI

N O (O

[se]l
L]
L]

Beckman Institute, UIUC

—> Rl

sl g |ls2
I ¢

[se] |
LI

IO
ElNNN| S

se)l]
Lo

[se) |
LI

NIH Resource for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

National Center for
Reseanch Resources

GeForce 8800 General Computing

v 12,288 threads, 128 cores,
Input Assembler 450 GFLOPS

<
v v v v | 4 v
|| 1] |] O || HE{NE R
|| 1] |] O || HE{NE R
|| || HiNE) (NN || || {0
|| O T N BN (NN e
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

[voure [frevure Y Trocurs [revre T remorel i resel i resre o [
T A | A | A | A | A | A | A |

Global Memory

768 MB DRAM, 4GB/S bandwidth to CPU

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
Hosacrih Rosounton http://www.ks.uiuc.edu/

Calculating Electrostatic Potential Maps

e Used in structure building,
analysis, visualization,
simulation

» Electrostatic potentials
evaluated on a uniformly
spaced 3-D lattice

« Each lattice point contains
sum of electrostatic
contributions of all atoms

Positive potential field

Negative potential field

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
Hatiousl Contaefor http://www.ks.uiuc.edu/

Direct Coulomb Summation

« At each lattice point, sum potential
contributions for all atoms in the simulated
structure:

potential[j] += charge[i] / Rij

Lattice point |
being evaluated

L_

Rij: distance
from lattice[j]
to Atom[i]

1

W

S

llllllllllllll

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www ks.uiuc.edu/

Atom[i]

Beckman Institute, UIUC

Direct Coulomb Summation on the GPU

Host

Atomic

Coordinates

Charges

A 4

Constant Memory | GPU

\ |\
\j

v

Parallel Dataj |Parallel Data| [Parallel Datal |Parallel Data| |Parallel Data
Cache Cache Cache Cache Cache
Hrexture HlHrewurel [rexturel il Hrexturel P Hrexture]

Global Memory

Para
C

[|{Texture} ||

llel Data

ache
Xture

Parallel Data
Cache
rexturel]

Parallel Data
Cache
xture]

| [Texture} |-

NIH Resource for Macromolecular Modeling and Bioinformatics

http://www ks.uiuc.edu/

Beckman Institute, UIUC

Optimizing for the GPU

* Increase arithmetic intensity, reuse in-register data by “unrolling” lattice
point computation into inner atom loop
« Each atom contributes to several lattice points, distances only differ in the X

component:
potential A += charge[i] / (distanceA to atom[i])
potentialB += charge[i] / (distanceB to atom[i]) ...

\\ A Distances to
\’WS Atom[i]
L
Atom[i] \T

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
http://www ks.uiuc.edu/

aaaaaaaaaaaaaaaa

CUDA Block/Grid Decomposition

Unrolling increases
computational tile size

Thread blocks: t

64-256 threads
ENEEL

N /
\
\\ // k

Threads compute
up to 8 potentials.
Skipping by half-warps
optimizes global mem. perf.

Grid of thread blocks:

0,0

0,1

/L

1,0

1,1

=

@ NIH Resource for Macromolecular Modeling and Bioinformatics

aaaaaaaaaaaaaaaa

http://www ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation Performance

Performance vs. Lattice Size

40 T T =% | T) Q CU DA_UnrOI I8CIX:
g 2 | S N B L . \ fastest GPU kernel,
5 . ,;\ -m; A ,xiv:\:m’m s 44x faster than CPU,
s/ \"3 SET cupa-Simple Kemel - 291 GFLOPS on
c Y X nrolldx Kerne x
g 25 [CUDA-Unroligx Kemel = | | GeForce 8800GTX
3 20 L [p CUDA-Unroll8clx Kernel —=—
5 K /X CUDA-Unroll8csx Kernel =
o 5L]/ Intel QX6700 SSE3 Kernel <1] _
(_(g +* *, /++++++++-++++-+-++++++-++++++++++++++++++++< CUDA_SlmpIe
o 1 14.8x faster,
5 | 33% of fastest
< GPU kernel

1 1 1

0 100 200 300 400 500 600 700 800
Side length of 2-D potential map slice

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips.
Proceedings of the IEEE, 2008. In press.

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
Research Rosourcss http://www ks.uiuc.edu/

Direct Coulomb Summation Runtime

Performance vs. Size

100 X 1
3
S
3 GPU P
p= 10 - . .
c underutilized _
E J & GPU fully utilized,
) 1F 7 ~
3 7 e 40x faster than CPU
I ,%*/" o . . .
% ,,,,X,,@-x—x-xxx" : _direct summation, GPU +
= - direct summation, 1 GPU - |
< 0.1 1
©
(m

0.01 —) — '

100 1000 10000 100000

Number of atoms

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.
J. Comp. Chem., 28:2618-2640, 2007.

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC

aaaaaaaaaaaaaaaa

http://www ks.uiuc.edu/

Multi-GPU Direct Coulomb Summation

Effective memory bandwidth

scales with the number of GPUs
utilized

PCle bus bandwidth not a
bottleneck for this algorithm

117 billion evals/sec
863 GFLOPS
131x speedup vs. CPU core

Power: 700 watts during
benchmark

T 1
Quad-core Intel Q

X6700

Three NVIDIA GeForce 8800GTX

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Direct Coulomb Summation

4-GPU (2 Quadroplex)
Opteron node at NCSA

157 billion evals/sec n P
1.16 TFLOPS Ll i

=
176x speedup vs. Intel

QX6700 CPU core w/ SSE

- | G
f
A O o
{] | =
8. "

NCSA GPU Cluster

NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
http://www.ks.uiuc.edu/

GPU Application Performa

NCE

(July 2007, current kernels are 20% faster...)

CUDA ion placement lattice
calculation performance:

— 82 times faster for virus (STMV)
structure

— 110 times faster for ribosome

Virus ion placement: 110
CPU-hours on SGI Altix Itanium?2

Same calculation now takes 1.35
GPU-hours

27 minutes (wall clock) if three
GPUs are used concurrently

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www ks.uiuc.edu/

obacco Mosaic Virus (STMV)
lon Placement

Beckman Institute, UIUC

e Smoothing function s(r) is algorithm dependent

Cutoff Summation

e At each lattice point, sum potential contributions for atoms
within cutoff radius:

If (distance to atom[i] < cutoff)
potential += (charge[i] / r) * s(r)

Cutoff radius

—

®

evaluated

Lattice point being —

ast

r: distance to
Atom([i]

I\/'

2

llllllllllllll

NIH Resource for Macromolecular Modeling and Bioinformatics

http://www ks.uiuc.edu/

Atom[i]

Beckman Institute, UIUC

Cutoff Summation on the GPU

Atoms spatially hashed into fixed-
size “bins” in global memory

‘ Atoms ‘
|

Global memory
Potential
map
regions

Constant memory

Sphere of atoms that belong
|||||

3\ 1

=R

Current region

71

Bin-Region [t
neighborlist [t
/

Bin containing region center

A 4

Shared memory

v

Process atom bins
for current potential
map region

‘ Atom bin I

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC

Research Rosourcss http://www ks.uiuc.edu/

Cutoff Summation Runtime

Runtime vs. Lattice Volume

1000 | I . 1 -
' CPU-SSE3 — //
GPU R ‘/’ ..*"".‘--‘r |
%) 100] GPU-Overlap o /_,..E” g j
2 GPU-DirectSum a P !
3 10 + = e
&) _/Bf,ﬁf’?a BT
o P LA L .
£ T - \ " GPU cutoff with
S | AT ™~ CPU overlap:
3 01y P e - 1 | 12x-21x faster than
@ - w 8
0 = E | CPU core
L 0.01 '_.‘__'_.:J_./_,ﬁfiﬂ 41!!I';'l]
lr/ -—..‘_,..ﬁ-‘
0.001 L - - ' -
1000 8000 64000 1e+06 8e+06

Volume of potential map (Angstrom3)

GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008
Conference On Computing Frontiers, 2008. In press.

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
""""""""""""" http://www ks.uiuc.edu/

NAMD Parallel Design

Kale et al., J. Comp. Phys. 151:283-312, 1999.
* Designed from the beginning as a parallel program

e Uses the Charm++ idea:;

— Decompose the computation into a large number of objects

— Have an Intelligent Run-time system (of Charm++) assign objects to
processors for dynamic load balancing with minimal communication

Hybrid of spatial and force decomposition:

«Spatial decomposition of atoms into cubes —— >

(called patches) o + 27
AN 7.0

For every pair of interacting patches, create one |

object for calculating electrostatic interactions i‘l:ii‘; : o®eo

Recent: Blue Matter, Desmond, etc. use Qx

this idea in some form i Y

@ NIH Resource for Macromolecular Modeling and Bioinformatics
""""""""""""" http://www ks.uiuc.edu/

Beckman Institute, UIUC

NAMD Overlapping Execution

Phillips et al., SC2002.

Patches : Integration

[][][] m

Example
Configuration
Multicast Point to Point
847 objects 100,000
gx
Compute Objects
=
Transposes
Asynchronous
Reductions l Point to Point

Patches : Integration

OO

U ud

Objects are assigned to processors and queued as data arrives.

NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC

http://www ks.uiuc.edu/

GPU Hardware Special Features

Streaming Processor Array

TPC

TPC

TPC

TPC

TPC TPC TPC

Constant
Cache

64kB read-only

L

Texture Processor

Cluster

Texture Unit

SM

\

N

SM

— \

llllllllllllll

read-only
interpolation

Streaming Multiprocessor M

Instruction L1 Data L1

Super Function
uUnit

Instruction Fetch/Dispatch

SIN
RSQRT
EXP
Etc...

Shared Memory

=

SFU

psource for Macromolecular Modeling and Bioinformatics

http://www ks.uiuc.edu/

Processor

Beckman Institute, UIUC

Nonbonded Forces on CUDA GPU

« Start with most expensive calculation: direct nonbonded interactions.
« Decompose work into pairs of patches, identical to NAMD structure.
» GPU hardware assigns patch-pairs to multiprocessors dynamically.

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

32-way SIMD Multiprocessor
32-256 multiplexed threads

Texture Unit
Force Table
Interpolation

@ Beckman Institute, UIUC
Center

P Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

texture<float4> force_table;

__constant__ unsigned int exclusions[]; N O n bo n d ed FO rces

__shared__ atom jatom[];
atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers C U D A COd e
for (intj =0; j <jatom_count; ++j) {
float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;

float r2 = dx*dx + dy*dy + dz*dz;
if (r2 <cutoff2) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2)); Force Interpolation

bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) {
indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}

Exclusions

float f = iatom.half_sigma + jatom[j].half_sigma; // sigma

f=1°f, // sigma’3 Parameters
f*=1; /] sigma™6

f*=(f*ftx +fty); //sigma”rl2 * fi.x - sigma”6 * fi.y

f *=iatom.sqgrt_epsilon * jatom[j].sqrt_epsilon;

float qg = iatom.charge * jatom[j].charge;

if (excluded) { f=qq* ft.w; } // PME correction

else {f+=qq*ft.z; } // Coulomb

iforce.x +=dx * f; iforce.y +=dy *f; iforce.z +=dz *f; Accumulation
iforce.w += 1.f; // interaction count or energy

= }} Stone et al., J. Comp. Chem. 28:2618-2640, 2007. eckman st UIEE

Why Calculate Each Force Twice?

 Newton’s 3rd Law of Motion: F; = F;
— Could calculate force once and apply to both atoms.

 Floating point operations are cheap:
— Would save at most a factor of two.

« Almost everything else hurts performance:
— Warp divergence
— Memory access
— Synchronization
— Extra registers
— Integer logic

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
Research Rosourcss http://www ks.uiuc.edu/

What About Pairlists?

o Generation works well under CUDA
— Assign atoms to cells
— Search neighboring cells
— Write neighbors to lists as they are found
— Scatter capability essential
— 10x speedup relative to CPU

 Potential for significant performance boost
— Eliminate 90% of distance test calculations

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
Research Rosourcss http://www ks.uiuc.edu/

Why Not Pairlists?

e Changes FP-limited to memory limited:
— Limited memory to hold pairlists
— Limited bandwidth to load pairlists
— Random access to coordinates, etc.
— FP performance grows faster than memory

 Poor fit to NAMD parallel decomposition:
— Number of pairs in single object varies greatly

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
""""""""""""" http://www ks.uiuc.edu/

NCSA GPU Cluster Performance

STMYV Performance
7X speedup
5 -
Large system (1M atoms)
: E CPU only
Overlap with CPU 4 - W with GPU |—
. (@N
Off-node results done first 2 O GPU
.. “ 3
Infiniband scales well 8
Plans for better performance g 2
— Tune or port remaining work 2
— Balance GPU load (?) 1
O _
1 2 4 8 16 32 48
2.4 GHz Opteron + Quadro FX 5600
Thanks to NCSA and NVIDIA
NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC

http://www ks.uiuc.edu/

GPU Performance Results, March 2008
GeForce 8800GTX w/ CUDA 1.1, Driver 169.09

Calculation / Algorithm Algorithm class Speedup vs. Intel
QX6700 CPU core

Fluorescence microphotolysis | Iterative matrix / stencil 12X

Pairlist calculation Particle pair distance test | 10-11x

Pairlist update Particle pair distance test | 5-15x

Molecular dynamics non- N-body cutoff force 10x

bonded force calculation calculations 20x (w/ pairlist)

Cutoff electron density sum Particle-grid w/ cutoff 15-23x

Cutoff potential summation Particle-grid w/ cutoff 12-21x

Direct Coulomb summation Particle-grid 44x

http://www.ks.uiuc.edu/Research/gpu/

llllllllllllll

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www ks.uiuc.edu/

Beckman Institute, UIUC

| essons Learned

GPU algorithms:need fine-grained parallelism and
sufficient work to fully utilize hardware

Much of GPU algorithm optimization revolves around
efficient use of multiple memory systems

Amdahl’s Law can prevent applications from achieving
peak speedup with shallow GPU acceleration efforts

Overlapping CPU work with GPU can hide some
communication and unaccelerated computation

CUDA and MPI will fight'over.page-locked memory

Acknowledgements

Theoretical and Computational
Biophysics Group, University of [Hlinois
at Urbana-Champaign

Prof. Wen-mel Hwu;-Chris Rodrigues,
IMPACT Group, University of lllinois
at. Urbana-Champaign

David Kirk and the CUDA team at
NVIDIA

NIH support: P41-RR05969

C‘qntlnﬁe&&!ﬂ;@ Oresce

93:4006-4017, 20

s
‘the IEEE, 2008

air potentials for molecular moc

.\\l
™
wd B
ix
N, i b "_‘_

I . ' RS .5'_2::' K. SCh Itén,
)nference On Comp ti‘;{ ntiers, 20(
1 s & b

—~—

	GPU Acceleration of Molecular Modeling Applications
	NAMD: Practical Supercomputing
	Our Goal: Practical Acceleration
	Acceleration Options for NAMD
	GPU vs CPU: Raw Performance
	CUDA: Practical Performance
	GeForce 8800 Graphics Mode
	GeForce 8800 General Computing
	Calculating Electrostatic Potential Maps
	Direct Coulomb Summation
	Direct Coulomb Summation on the GPU
	Optimizing for the GPU
	CUDA Block/Grid Decomposition
	Direct Coulomb Summation Performance
	Direct Coulomb Summation Runtime
	Multi-GPU Direct Coulomb Summation
	Multi-GPU Direct Coulomb Summation
	GPU Application Performance�(July 2007, current kernels are 20% faster...)
	Cutoff Summation
	Cutoff Summation on the GPU
	Cutoff Summation Runtime
	NAMD Parallel Design
	GPU Hardware Special Features
	Nonbonded Forces on CUDA GPU
	Why Calculate Each Force Twice?
	What About Pairlists?
	Why Not Pairlists?
	NCSA GPU Cluster Performance
	GPU Performance Results, March 2008�GeForce 8800GTX w/ CUDA 1.1, Driver 169.09
	Lessons Learned
	Acknowledgements
	Publications

