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NAMD: Practical Supercomputlng

* 25,000 users can’t all be computer experts. & ba el T
— 18% are NIH-funded; many in other countries. . N
— 4900 have downloaded more than one version.

o User experience is the same on all platforms.
— No change in input, output, or configuration files.
— Run any simulation on any number of processors.
— Precompiled binaries available when possible.

« Desktops and laptops — setup and testing
— Xx86 and x86-64 Windows, and Macintosh
— Allow both shared-memory and network-based parallelism.

 Linux clusters — affordable workhorses
— X86, x86-64, and Itanium processors
— Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005.
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Our Goal: Practical Acceleration

 Broadly applicable to scientific computing
— Programmable by domain scientists
— Scalable from small to large machines
« Broadly available to researchers
— Price driven by commodity market
— Low burden on system administration
 Sustainable performance advantage

— Performance driven by Moore’s law
— Stable market and supply chain
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Acceleration Options for NAMD

Outlook in 2005-2006:

— FPGA reconfigurable computing (with NCSA)
 Difficult to program, slow floating point, expenswe

— Cell processor (NCSA hardware)

* Relatively easy to program, expensive fi
— ClearSpeed (direct contact with company)

* Limited memory and memory bandW|dth expenswe
— MDGRAPE of|

* Inflexible and expensive

— Graphics processor (GPU)

» Program must be expressed as graphics operations

NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
http://www ks.uiuc.edu/



GPU vs CPU: Raw Performance

— Calculation: 450 GFLOPS vs 32 GFLOPS
— Memory Bandwidth: 80 GB/s vs 8.4 GB/s
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300 G71 = GeForce 7900 GTX
0p) G70 = GeForce 7800 GTX
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CUDA: Practical Performance
November 2006: NVIDIA announces CUDA for G80 GPU.

« CUDA makes GPU acceleration usable:
— Developed and supported by NVIDIA.
— No masquerading as graphics rendering.
— New shared memory and synchronization. Fun to program (and drive)
— No OpenGL or display device hassles.
— Multiple processes per card (or vice versa).

e Resource and collaborators make it useful:

— Experience from VMD development
— David Kirk (Chief Scientist, NVIDIA)
— Wen-mei Hwu (ECE Professor, UIUC)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
Remaareh Rosources http://www ks.uiuc.edu/



GeForce 8800 Graphics Mode
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GeForce 8800 General Computing

v 12,288 threads, 128 cores,
Input Assembler 450 GFLOPS
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768 MB DRAM, 4GB/S bandwidth to CPU
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Calculating Electrostatic Potential Maps

e Used in structure building,
analysis, visualization,
simulation

» Electrostatic potentials
evaluated on a uniformly
spaced 3-D lattice

« Each lattice point contains
sum of electrostatic
contributions of all atoms

Positive potential field

Negative potential field
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Direct Coulomb Summation

« At each lattice point, sum potential
contributions for all atoms in the simulated
structure:

potential[j] += charge[i] / Rij

Lattice point |
being evaluated

L_

Rij: distance
from lattice[j]
to Atom[i]
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S
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NIH Resource for Macromolecular Modeling and Bioinformatics
http://www ks.uiuc.edu/

Atom[i]

Beckman Institute, UIUC



Direct Coulomb Summation on the GPU
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Optimizing for the GPU

* Increase arithmetic intensity, reuse in-register data by “unrolling” lattice
point computation into inner atom loop
« Each atom contributes to several lattice points, distances only differ in the X

component:
potential A += charge[i] / (distanceA to atom[i])
potentialB += charge[i] / (distanceB to atom[i]) ...

\\ A Distances to
\’WS Atom[i]
L
Atom[i] \T
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CUDA Block/Grid Decomposition

Unrolling increases
computational tile size

Thread blocks: t

64-256 threads
ENEEL

N /
\
\\ // k

Threads compute
up to 8 potentials.
Skipping by half-warps
optimizes global mem. perf.

Grid of thread blocks:
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Direct Coulomb Summation Performance

Performance vs. Lattice Size
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GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips.
Proceedings of the IEEE, 2008. In press.
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Direct Coulomb Summation Runtime

Performance vs. Size
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Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.
J. Comp. Chem., 28:2618-2640, 2007.
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Multi-GPU Direct Coulomb Summation

Effective memory bandwidth

scales with the number of GPUs
utilized

PCle bus bandwidth not a
bottleneck for this algorithm

117 billion evals/sec
863 GFLOPS
131x speedup vs. CPU core

Power: 700 watts during
benchmark

T 1
Quad-core Intel Q

X6700

Three NVIDIA GeForce 8800GTX

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www ks.uiuc.edu/
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Multi-GPU Direct Coulomb Summation

4-GPU (2 Quadroplex)
Opteron node at NCSA

157 billion evals/sec n P
1.16 TFLOPS Ll i

=
176x speedup vs. Intel

QX6700 CPU core w/ SSE

- | G
f
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NCSA GPU Cluster

NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
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GPU Application Performa

NCE

(July 2007, current kernels are 20% faster...)

CUDA ion placement lattice
calculation performance:

— 82 times faster for virus (STMV)
structure

— 110 times faster for ribosome

Virus ion placement: 110
CPU-hours on SGI Altix Itanium?2

Same calculation now takes 1.35
GPU-hours

27 minutes (wall clock) if three
GPUs are used concurrently

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www ks.uiuc.edu/

obacco Mosaic Virus (STMV)
lon Placement

Beckman Institute, UIUC



e Smoothing function s(r) is algorithm dependent

Cutoff Summation

e At each lattice point, sum potential contributions for atoms
within cutoff radius:

If (distance to atom[i] < cutoff)
potential += (charge[i] / r) * s(r)

Cutoff radius

—

®

evaluated

Lattice point being —

ast

r: distance to
Atom([i]
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Cutoff Summation on the GPU

Atoms spatially hashed into fixed-
size “bins” in global memory

‘ Atoms ‘
|

Global memory
Potential
map
regions

Constant memory
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Cutoff Summation Runtime

Runtime vs. Lattice Volume
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GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008
Conference On Computing Frontiers, 2008. In press.
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NAMD Parallel Design

Kale et al., J. Comp. Phys. 151:283-312, 1999.
* Designed from the beginning as a parallel program

e Uses the Charm++ idea:;

— Decompose the computation into a large number of objects

— Have an Intelligent Run-time system (of Charm++) assign objects to
processors for dynamic load balancing with minimal communication

Hybrid of spatial and force decomposition:

«Spatial decomposition of atoms into cubes —— >

(called patches) o + 27
AN 7.0

For every pair of interacting patches, create one |

object for calculating electrostatic interactions i‘l:ii‘; : o®eo

Recent: Blue Matter, Desmond, etc. use Qx

this idea in some form i Y
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NAMD Overlapping Execution

Phillips et al., SC2002.

Patches : Integration

[][][] ...................................... m

Example
Configuration
Multicast Point to Point
847 objects 100,000
gx
Compute Objects
=
Transposes
Asynchronous
Reductions l Point to Point

Patches : Integration

OO

U ud

Objects are assigned to processors and queued as data arrives.

NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
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GPU Hardware Special Features

Streaming Processor Array
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Nonbonded Forces on CUDA GPU

« Start with most expensive calculation: direct nonbonded interactions.
« Decompose work into pairs of patches, identical to NAMD structure.
» GPU hardware assigns patch-pairs to multiprocessors dynamically.

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

32-way SIMD Multiprocessor
32-256 multiplexed threads

Texture Unit
Force Table
Interpolation

@ Beckman Institute, UIUC
Center

P Stone et al., J. Comp. Chem. 28:2618-2640, 2007.



texture<float4> force_table;

__constant__ unsigned int exclusions[]; N O n bo n d ed FO rces

__shared__ atom jatom[];
atom iatom;  // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers C U D A COd e
for (intj =0; j <jatom_count; ++j ) {
float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;

float r2 = dx*dx + dy*dy + dz*dz;
if (r2 <cutoff2) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2)); Force Interpolation

bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff ) {
indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}

Exclusions

float f = iatom.half_sigma + jatom[j].half_sigma; // sigma

f=1°f, // sigma’3 Parameters
f*=1; /] sigma™6

f*=(f*ftx +fty); //sigma”rl2 * fi.x - sigma”6 * fi.y

f *=iatom.sqgrt_epsilon * jatom[j].sqrt_epsilon;

float qg = iatom.charge * jatom[j].charge;

if (excluded) { f=qq* ft.w; } // PME correction

else {f+=qq*ft.z; } // Coulomb

iforce.x +=dx * f; iforce.y +=dy *f; iforce.z +=dz *f; Accumulation
iforce.w += 1.f; // interaction count or energy

= }} Stone et al., J. Comp. Chem. 28:2618-2640, 2007. eckman st UIEE



Why Calculate Each Force Twice?

 Newton’s 3rd Law of Motion: F; = F;
— Could calculate force once and apply to both atoms.

 Floating point operations are cheap:
— Would save at most a factor of two.

« Almost everything else hurts performance:
— Warp divergence
— Memory access
— Synchronization
— Extra registers
— Integer logic

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
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What About Pairlists?

o Generation works well under CUDA
— Assign atoms to cells
— Search neighboring cells
— Write neighbors to lists as they are found
— Scatter capability essential
— 10x speedup relative to CPU

 Potential for significant performance boost
— Eliminate 90% of distance test calculations

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
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Why Not Pairlists?

e Changes FP-limited to memory limited:
— Limited memory to hold pairlists
— Limited bandwidth to load pairlists
— Random access to coordinates, etc.
— FP performance grows faster than memory

 Poor fit to NAMD parallel decomposition:
— Number of pairs in single object varies greatly

@ NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
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NCSA GPU Cluster Performance

STMYV Performance
7X speedup
5 -
Large system (1M atoms)
: E CPU only
Overlap with CPU 4 - W with GPU |—
. (@N
Off-node results done first 2 O GPU
.. “ 3
Infiniband scales well 8
Plans for better performance g 2
— Tune or port remaining work 2
— Balance GPU load (?) 1
O _
1 2 4 8 16 32 48
2.4 GHz Opteron + Quadro FX 5600
Thanks to NCSA and NVIDIA
NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
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GPU Performance Results, March 2008
GeForce 8800GTX w/ CUDA 1.1, Driver 169.09

Calculation / Algorithm Algorithm class Speedup vs. Intel
QX6700 CPU core

Fluorescence microphotolysis | Iterative matrix / stencil 12X

Pairlist calculation Particle pair distance test | 10-11x

Pairlist update Particle pair distance test | 5-15x

Molecular dynamics non- N-body cutoff force 10x

bonded force calculation calculations 20x (w/ pairlist)

Cutoff electron density sum Particle-grid w/ cutoff 15-23x

Cutoff potential summation Particle-grid w/ cutoff 12-21x

Direct Coulomb summation Particle-grid 44x

http://www.ks.uiuc.edu/Research/gpu/
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| essons Learned

GPU algorithms:need fine-grained parallelism and
sufficient work to fully utilize hardware

Much of GPU algorithm optimization revolves around
efficient use of multiple memory systems

Amdahl’s Law can prevent applications from achieving
peak speedup with shallow GPU acceleration efforts

Overlapping CPU work with GPU can hide some
communication and unaccelerated computation

CUDA and MPI will fight'over.page-locked memory
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