GPU Acceleration of Molecular Modeling Applications

James Phillips
John Stone

http://www.ks.uiuc.edu/Research/gpu/
NAMD: Practical Supercomputing

• 25,000 users can’t all be computer experts.
 – 18% are NIH-funded; many in other countries.
 – 4900 have downloaded more than one version.

• User experience is the same on all platforms.
 – No change in input, output, or configuration files.
 – Run any simulation on any number of processors.
 – Precompiled binaries available when possible.

• Desktops and laptops – setup and testing
 – x86 and x86-64 Windows, and Macintosh
 – Allow both shared-memory and network-based parallelism.

• Linux clusters – affordable workhorses
 – x86, x86-64, and Itanium processors
 – Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Our Goal: Practical Acceleration

• Broadly applicable to scientific computing
 – Programmable by domain scientists
 – Scalable from small to large machines

• Broadly available to researchers
 – Price driven by commodity market
 – Low burden on system administration

• Sustainable performance advantage
 – Performance driven by Moore’s law
 – Stable market and supply chain
Acceleration Options for NAMD

• Outlook in 2005-2006:
 – FPGA reconfigurable computing (with NCSA)
 • Difficult to program, slow floating point, expensive
 – Cell processor (NCSA hardware)
 • Relatively easy to program, expensive
 – ClearSpeed (direct contact with company)
 • Limited memory and memory bandwidth, expensive
 – MDGRAPE
 • Inflexible and expensive
 – Graphics processor (GPU)
 • Program must be expressed as graphics operations
GPU vs CPU: Raw Performance

- Calculation: 450 GFLOPS vs 32 GFLOPS
- Memory Bandwidth: 80 GB/s vs 8.4 GB/s
CUDA: Practical Performance

November 2006: NVIDIA announces CUDA for G80 GPU.

• CUDA makes GPU acceleration usable:
 – Developed and supported by NVIDIA.
 – No masquerading as graphics rendering.
 – New shared memory and synchronization.
 – No OpenGL or display device hassles.
 – Multiple processes per card (or vice versa).

• Resource and collaborators make it useful:
 – Experience from VMD development
 – David Kirk (Chief Scientist, NVIDIA)
 – Wen-mei Hwu (ECE Professor, UIUC)

GeForce 8800 Graphics Mode
GeForce 8800 General Computing

12,288 threads, 128 cores, 450 GFLOPS

768 MB DRAM, 4GB/S bandwidth to CPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC
Calculating Electrostatic Potential Maps

- Used in structure building, analysis, visualization, simulation
- Electrostatic potentials evaluated on a uniformly spaced 3-D lattice
- Each lattice point contains sum of electrostatic contributions of all atoms

Positive potential field

Negative potential field
Direct Coulomb Summation

- At each lattice point, sum potential contributions for all atoms in the simulated structure:

\[\text{potential}[j] \leftarrow \text{charge}[i] / R_{ij} \]

Lattice point \(j \) being evaluated

\(R_{ij} \): distance from lattice \(j \) to Atom \(i \)

Atom \(i \)
Direct Coulomb Summation on the GPU

Parallel Data Cache

Atomic Coordinates Charges

Host

Constant Memory

GPU

Global Memory

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC
Optimizing for the GPU

• Increase arithmetic intensity, reuse in-register data by “unrolling” lattice point computation into inner atom loop
• Each atom contributes to several lattice points, distances only differ in the X component:

 potentialA += charge[i] / (distanceA to atom[i])
 potentialB += charge[i] / (distanceB to atom[i]) …
CUDA Block/Grid Decomposition

Unrolling increases computational tile size

Thread blocks: 64-256 threads

Threads compute up to 8 potentials. Skipping by half-warps optimizes global mem. perf.

Padding waste

Grid of thread blocks:
Direct Coulomb Summation Performance

CUDA-Unroll8clx: fastest GPU kernel, 44x faster than CPU, 291 GFLOPS on GeForce 8800GTX

CUDA-Simple: 14.8x faster, 33% of fastest GPU kernel

Direct Coulomb Summation Runtime

Multi-GPU Direct Coulomb Summation

- Effective memory bandwidth scales with the number of GPUs utilized
- PCIe bus bandwidth not a bottleneck for this algorithm
- 117 billion evals/sec
- 863 GFLOPS
- 131x speedup vs. CPU core
- Power: 700 watts during benchmark

Quad-core Intel QX6700
Three NVIDIA GeForce 8800GTX
Multi-GPU Direct Coulomb Summation

- 4-GPU (2 Quadroplex) Opteron node at NCSA
- 157 billion evals/sec
- 1.16 TFLOPS
- 176x speedup vs. Intel QX6700 CPU core w/ SSE

NCSA GPU Cluster
GPU Application Performance
(July 2007, current kernels are 20% faster...)

- CUDA ion placement lattice calculation performance:
 - 82 times faster for virus (STMV) structure
 - 110 times faster for ribosome
- Virus ion placement: 110 CPU-hours on SGI Altix Itanium2
- Same calculation now takes 1.35 GPU-hours
- 27 minutes (wall clock) if three GPUs are used concurrently
Cutoff Summation

- At each lattice point, sum potential contributions for atoms within cutoff radius:

 \[
 \text{if (distance to atom}[i]\text{ < cutoff)}
 \]

 \[
 \text{potential } += \text{(charge}[i]\text{ / r)} \times s(r)
 \]

- Smoothing function \(s(r) \) is algorithm dependent
Cutoff Summation on the GPU

Atoms spatially hashed into fixed-size “bins” in global memory

- Atoms
- Global memory
 - Potential map regions
- Shared memory
 - Atom bin

Constant memory
- Bin-Region neighborlist

Process atom bins for current potential map region
Cutoff Summation Runtime

GPU acceleration of cutoff pair potentials for molecular modeling applications.
NAMD Parallel Design

- Designed from the beginning as a parallel program
- Uses the Charm++ idea:
 - Decompose the computation into a large number of objects
 - Have an Intelligent Run-time system (of Charm++) assign objects to processors for dynamic load balancing with minimal communication

Hybrid of spatial and force decomposition:

- Spatial decomposition of atoms into cubes (called patches)
- For every pair of interacting patches, create one object for calculating electrostatic interactions
- Recent: Blue Matter, Desmond, etc. use this idea in some form
NAMD Overlapping Execution

Phillips et al., SC2002.

Example Configuration

847 objects

Offload to GPU

Objects are assigned to processors and queued as data arrives.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC
GPU Hardware Special Features
Nonbonded Forces on CUDA GPU

- Start with most expensive calculation: direct nonbonded interactions.
- Decompose work into pairs of patches, identical to NAMD structure.
- GPU hardware assigns patch-pairs to multiprocessors dynamically.

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

- Texture Unit
 - Force Table
 - Interpolation
- 16kB Shared Memory
 - Patch A Coordinates & Parameters
- 32kB Registers
 - Patch B Coords, Params, & Forces
- 32-way SIMD Multiprocessor
 - 32-256 multiplexed threads
- Constants
 - Exclusions
- 8kB cache
- 768 MB Main Memory, no cache, 300+ cycle latency

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];

atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers

for (int j = 0; j < jatom_count; ++j) {
 float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
 float r2 = dx*dx + dy*dy + dz*dz;
 if (r2 < cutoff2) {
 float4 ft = texfetch(force_table, 1.f/sqrt(r2));

 bool excluded = false;
 int indexdiff = iatom.index - jatom[j].index;
 if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) {
 indexdiff += jatom[j].excl_index;
 excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);
 }

 float f = iatom.half_sigma + jatom[j].half_sigma; // sigma
 f *= f*f; // sigma^3
 f *= f; // sigma^6
 f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y
 f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
 float qq = iatom.charge * jatom[j].charge;
 if (excluded) { f = qq * ft.w; } // PME correction
 else { f += qq * ft.z; } // Coulomb
 iforce.x += dx * f; iforce.y += dy * f; iforce.z += dz * f;
 iforce.w += 1.f; // interaction count or energy
 }
}
Why Calculate Each Force Twice?

• Newton’s 3rd Law of Motion: \(F_{ij} = F_{ji} \)
 - Could calculate force once and apply to both atoms.

• Floating point operations are cheap:
 - Would save at most a factor of two.

• Almost everything else hurts performance:
 - Warp divergence
 - Memory access
 - Synchronization
 - Extra registers
 - Integer logic
What About Pairlists?

• Generation works well under CUDA
 – Assign atoms to cells
 – Search neighboring cells
 – Write neighbors to lists as they are found
 – Scatter capability essential
 – 10x speedup relative to CPU

• Potential for significant performance boost
 – Eliminate 90% of distance test calculations
Why Not Pairlists?

• Changes FP-limited to memory limited:
 – Limited memory to hold pairlists
 – Limited bandwidth to load pairlists
 – Random access to coordinates, etc.
 – FP performance grows faster than memory

• Poor fit to NAMD parallel decomposition:
 – Number of pairs in single object varies greatly
NCSA GPU Cluster Performance

- 7x speedup
- Large system (1M atoms)
- Overlap with CPU
- Off-node results done first
- Infiniband scales well
- Plans for better performance
 - Tune or port remaining work
 - Balance GPU load (?)

STMV Performance

2.4 GHz Opteron + Quadro FX 5600
Thanks to NCSA and NVIDIA

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC
<table>
<thead>
<tr>
<th>Calculation / Algorithm</th>
<th>Algorithm class</th>
<th>Speedup vs. Intel QX6700 CPU core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence microphotolysis</td>
<td>Iterative matrix / stencil</td>
<td>12x</td>
</tr>
<tr>
<td>Pairlist calculation</td>
<td>Particle pair distance test</td>
<td>10-11x</td>
</tr>
<tr>
<td>Pairlist update</td>
<td>Particle pair distance test</td>
<td>5-15x</td>
</tr>
<tr>
<td>Molecular dynamics non-bonded force calculation</td>
<td>N-body cutoff force calculations</td>
<td>10x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20x (w/ pairlist)</td>
</tr>
<tr>
<td>Cutoff electron density sum</td>
<td>Particle-grid w/ cutoff</td>
<td>15-23x</td>
</tr>
<tr>
<td>Cutoff potential summation</td>
<td>Particle-grid w/ cutoff</td>
<td>12-21x</td>
</tr>
<tr>
<td>Direct Coulomb summation</td>
<td>Particle-grid</td>
<td>44x</td>
</tr>
</tbody>
</table>

http://www.ks.uiuc.edu/Research/gpu/
Lessons Learned

• GPU algorithms need fine-grained parallelism and sufficient work to fully utilize hardware
• Much of GPU algorithm optimization revolves around efficient use of multiple memory systems
• Amdahl’s Law can prevent applications from achieving peak speedup with shallow GPU acceleration efforts
• Overlapping CPU work with GPU can hide some communication and unaccelerated computation
• CUDA and MPI will fight over page-locked memory
Acknowledgements

• Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
• Prof. Wen-mei Hwu, Chris Rodrigues, IMPACT Group, University of Illinois at Urbana-Champaign
• David Kirk and the CUDA team at NVIDIA
• NIH support: P41-RR05969
Publications

- http://www.ks.uiuc.edu/Research/gpu/