
John E. Stone, University of Illinois

VMD adaptation for HiHAT Proof of Concept implementations

HiHAT: A New Way Forward
for Hierarchical Heterogeneous Asynchronous Tasking

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

MD Simulation

VMD – “Visual Molecular Dynamics”

Cell-Scale Modeling

• Visualization and analysis of:

– Molecular dynamics simulations

– Lattice cell simulations

– Quantum chemistry calculations

– Sequence information

• User extensible scripting and plugins

• http://www.ks.uiuc.edu/Research/vmd/

6

Simple VMD Analysis
Workflow Examples

Out-of-Core

Trajectory

I/O

Periodic Cell

Un/Rewrapping

Best-fit RMS

Alignment

(Kabsh / QCP)

Run K-Medoids

Clustering Analysis on

Difference Matrix,

looping over Ks for

best clustering results

Compute RMSD

Difference Matrix

(N^2/2)

Eigensolver for

top N components

Compute PCA

tensors

Trajectory frame analysis
 preprocessing pipeline

Compute solvent-

accessible molecular

surface area on S

selections

In-situ visualization:

multiple graphical

representation

pipelines

Evaluate

interaction

energies,

collective

variables, …

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

• Visualization of MOs aids in understanding the
chemistry of molecular system

• MO spatial distribution is correlated with
probability density for electron(s)

• Animation of (classical mechanics) molecular
dynamics trajectories provides insight into
simulation results

– To do the same for QM or QM/MM simulations
MOs must be computed at 10 FPS or more

– Large GPU speedups over existing tools makes
this possible!

High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-

core CPUs. J. E. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd Workshop on

General-Purpose Computation on Graphics Processing Units (GPGPU-2), ACM International Conference

Proceeding Series, volume 383, pp. 9-18, 2009.

C60

VMD: Visualization of Molecular Orbitals

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Adapting VMD for HiHat

PoC Implementations
• VMD QM molecular orbital (MO) viz. algorithms

– Existing code targets both many-core CPUs and GPUs

– Incrementally adapt for HiHat PoC data movement, and tasking APIs
as implementations progress

– Algorithm variants map different data to different memory systems

– Proxy for other algorithms in VMD, Lattice Microbes, that have more
complex data movement needs

– Adaptation of GPU code to HiHat PoC APIs should be largely non-
invasive

– Standalone code variant already exists from past work, easy to share
with others as an example

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Padding optimizes global memory

performance, guaranteeing coalesced

global memory accesses Grid of thread blocks

Small 8x8 thread blocks afford large

per-thread register count, shared memory

MO 3-D lattice decomposes into 2-D slices

(CUDA grids)

Key data are stored in multiple GPU

memory systems, const mem, shared mem,

global mem, and w/ read-only cache

… 0,0 0,1

1,1

… …

…

…

Threads
producing
results that are
discarded

Each thread

computes one

MO lattice point.

Threads
producing
results that
are used

1,0

…

GPU 2

GPU 1

GPU 0

Lattice computed

using multiple GPUs

MO GPU Parallel Decomposition

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

MO Kernel for One Grid Point (Naive C)

Loop over atoms

Loop over shells

Loop over primitives:

largest component of

runtime, due to expf()

Loop over angular

momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

 int prim_counter = atom_basis[at];

 calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

 for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

 int shell_type = shell_symmetry[shell_counter];

 for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {

 float exponent = basis_array[prim_counter];

 float contract_coeff = basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * expf(-exponent*dist2);

 prim_counter += 2;

 }

 for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

 int imax = shell_type - j;

 for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

 tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

 }

 value += tmpshell * contracted_gto;

 shell_counter++;

 }

} …..

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Adapting VMD MO Algorithms for

HiHat Data Movement PoC

• Three different CUDA kernel variants, different approaches
to use of GPU memory systems

• First HiHat PoC port will be “L1 Cache” algorithm variant
favored by “Fermi” and “Volta” GPUs
– Simplest use of data movement APIs, minimal changes to

original code

• Ports of algorithms that use GPU constant memory and
shared memory tiling next

• Try managed memory variants, NVLink performance, ...

