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MD Simulation 

VMD – “Visual Molecular Dynamics” 

Cell-Scale Modeling 

• Visualization and analysis of: 

– Molecular dynamics simulations 

– Lattice cell simulations 

– Quantum chemistry calculations 

– Sequence information 

• User extensible scripting and plugins 

• http://www.ks.uiuc.edu/Research/vmd/ 
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• Visualization of MOs aids in understanding the 
chemistry of molecular system 

• MO spatial distribution is correlated with 
probability density for electron(s) 

• Animation of (classical mechanics) molecular 
dynamics trajectories provides insight into 
simulation results 

– To do the same for QM or QM/MM simulations 
MOs must be computed at 10 FPS or more 

– Large GPU speedups over existing tools makes 
this possible! 

High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-

core CPUs.  J. E. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten,   2nd Workshop on 

General-Purpose Computation on Graphics Processing Units (GPGPU-2), ACM International Conference 

Proceeding Series, volume 383, pp. 9-18, 2009. 
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VMD: Visualization of Molecular Orbitals 



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics 

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu 

Adapting VMD for HiHat 

PoC Implementations 
• VMD QM molecular orbital (MO) viz. algorithms 

– Existing code targets both many-core CPUs and GPUs 

– Incrementally adapt for HiHat PoC data movement, and tasking APIs 
as implementations progress 

– Algorithm variants map different data to different memory systems 

– Proxy for other algorithms in VMD, Lattice Microbes, that have more 
complex data movement needs 

– Adaptation of GPU code to HiHat PoC APIs should be largely non-
invasive 

– Standalone code variant already exists from past work, easy to share 
with others as an example 
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Padding optimizes global memory 

performance, guaranteeing coalesced 

global memory accesses Grid of thread blocks 

Small 8x8 thread blocks afford large  

per-thread register count, shared memory 

              

MO 3-D lattice decomposes into 2-D slices 

(CUDA grids) 

Key data are stored in multiple GPU 

memory systems, const mem, shared mem, 

global mem, and w/ read-only cache 
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MO Kernel for One Grid Point  (Naive C) 

Loop over atoms 

Loop over shells 

Loop over primitives: 

largest component of 

runtime, due to expf() 

Loop over angular 

momenta 

(unrolled in real code) 

…  

for (at=0; at<numatoms; at++) { 

    int prim_counter = atom_basis[at]; 

    calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv); 

    for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) { 

        int shell_type = shell_symmetry[shell_counter]; 

        for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) { 

            float exponent         = basis_array[prim_counter       ]; 

            float contract_coeff = basis_array[prim_counter + 1]; 

            contracted_gto += contract_coeff * expf(-exponent*dist2); 

            prim_counter += 2; 

        } 

        for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) { 

           int imax = shell_type - j;  

           for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv) 

              tmpshell += wave_f[ifunc++] * xdp * ydp * zdp; 

        } 

        value += tmpshell * contracted_gto; 

        shell_counter++; 

   }  

} ….. 
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Adapting VMD MO Algorithms for  

HiHat Data Movement PoC 

• Three different CUDA kernel variants, different approaches 
to use of GPU memory systems 

• First HiHat PoC port will be “L1 Cache” algorithm variant 
favored by “Fermi” and “Volta” GPUs 
– Simplest use of data movement APIs, minimal changes to 

original code 

• Ports of algorithms that use GPU constant memory and 
shared memory tiling next 

• Try managed memory variants, NVLink performance, ... 

 
 


