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Abstract

Marching Cubes’ methods first offered visual access to experimental
and theoretical data. The implementation of this method usually relies on
a small lookup table. Many enhancements and optimizations of March-
ing Cubes still use it. However, this lookup table can lead to cracks
and inconsistent topology. This paper introduces a full implementation
of Chernyaev’s technique to ensure a topologically correct result, i.e. a
manifold mesh for any input data. It completes the original paper for the
ambiguity resolution and for the feasibility of the implementation. More-
over, the cube interpolation provided here can be used in a wider range
of methods. The source code is available online.
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Figure 1: Implicit surface of linked tori generated by the classical Marching
Cubes algorithm, and ours.

1 Introduction

Isosurface extractors and implicit surface tilers opened up visual access to
experimental and theoretical data, such as medical images, mechanical pieces,
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sculpture scans, mathematical surfaces, and physical simulation by finite ele-
ments methods. Among those techniques, the Marching Cubes [5] produces a
surface out of a sampling of a scalar field f : R3 → R. It has been enhanced to a
wide range of applications, from geological reconstruction [10], medical images
to to 3D scanning (see [4] for an original use in the Digital Michelangelo Project).
Although this paper focuses on surface reconstruction from sampled data, the
tilings of cubes introduced here can be used in simple reconstruction methods
for synthetic data [2, 13] in order to guarantee the topological consistency of
the result when the precision of the result is limited.

Marching Cubes [5] has become the reference method when the sampled
scalar field is structured on a cuberille grid. It classifies vertices as positive or
negative, according to their comparison with a given isovalue. Then, it uses a
lookup table to tile the surface inside the cube. This method has been enhanced
and generalized in various directions, especially to reduce the number of cubes
to be evaluated. However, most of those modern techniques still use a simple
lookup table, which does not ensure the topological consistency of the result.

Figure 2: Original Marching Cubes’ lookup table.

Prior work. The main obstacles of the Marching Cubes’ derived methods are
the ambiguities inherent to data sampling. Those ambiguities can appear on
the faces of a cube, or inside the cube. The ambiguities on faces have been
resolved in [8], supposing the scalar field f is trilinear over each cube, which
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gave a modified lookup table [6]. Within the same hypothesis, it is possible
to resolve internal ambiguity as done in [7, 3]. Further approaches [12, 1, 14]
computes the topology of f as a volume, giving rise to more complex algorithms
that need, at the end, to tile each cube.

Contribution. In this paper, we describe an efficient and robust implementa-
tion of Chernyaev’s Marching Cubes 33 algorithm [3] (see figure 1). We needed
to complete Chernyaev’s paper on the internal ambiguity resolution. We com-
puted and tested the 730 subcases of the enhanced lookup table. This table
can be used as is into Marching Cubes’ improvements (in particular, those who
avoid empty cell tests). Our result is guaranteed to be a manifold surface, with
no crack, with the topology of the trilinear interpolation of the scalar field over
each cube. The complete source code is available online at the address listed at
the end of this paper.

Cube vs. tetrahedron. Another range of techniques for isosurface genera-
tion is based on tetrahedra [11], as opposed to cubes. Those methods guarantee
the topological consistency, and have a small lookup table. However, they have
many drawbacks. They generate much more triangles, with a weaker geomet-
rical accuracy of the result: the cubes’ tiling are segmented even in obvious
configuration, and the vertex position cannot be adjusted to fit the geometrical
trilinear approximation as we do with cubes. Moreover, the ambiguity reso-
lution which is hidden in those methods leads to slower algorithms, which are
more difficult to speed up with hardware implementation. Our technique uses a
complex lookup table, that only needs to be stored, which enable our algorithm
to be efficiently hardware accelerated. This technique allows a topologically
correct result with a single entry cubical lookup table, by a low complexity
algorithm. This is a significant practical improvement compared to the former
state of the art of isosurface tilers [9].

2 Marching Cubes with topological guarantees

Marching Cubes. The Marching Cubes method produces a triangle mesh of
the preimage f−1 (α) of an isovalue α by a scalar function f : R3 → R. We will
consider α = 0 for the rest of the paper (considering f − α). This scalar field
is given by samples over a cuberille grid. The original method sweeps the grid,
and tiles the surface cube per cube. Each vertex v of the cube is classified into
positive and negative vertices, depending if f (v) is greater than α or not. Thus,
there are 28 = 256 possible configurations of a cube. The usual implementation
stores those 256 in a lookup table that encodes the tiling of the cube in each
case (see figure 2).

Correct topology. However, this simple algorithm can leads to cracks, as
shown on figure 3. The same configuration can be tiled in various ways, and
the 256– entries lookup table does not distinguish between those. Among the
different tilings, some approximate a trilinear interpolation of the scalar field
f over the cube. We will say a resulting mesh has the correct topology if it is
homeomorphic to F−1 (α), where F is equal to f at the sample vertices, and
trilinear over each cube of the grid. This allows avoiding cracks, by applying
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topological test on ambiguous faces of a cube. The same test will be done on
the adjacent cube, allowing a coherent transition from one cube to the other
one. Nielson and Hamann [8] introduced the usual face test to resolve those
face ambiguities.

Figure 3: A crack occurring on an ambiguous face in-between cases 12 and 3
with the 256–lookup table.

By resolving face ambiguities, we avoid cracks. Nevertheless, this does not
guarantee the correct topology, as with the same cube configuration and the
same resolution of ambiguous faces, there are topologically different trilinear in-
terpolations (see figure 4). Therefore, we also need to resolve internal ambiguity
to guarantee the topology. The technique described in this paper guarantees
the topology by providing an extended lookup table and an enhanced analysis
of each cube.

Figure 4: Two trilinear tilings of the 6th case, with the same resolution of faces’
ambiguity.

Marching Cubes 33. Chernyaev described, with the Marching Cubes 33
[3], the different possible topologies of a trilinear function over a cube. He
gave a tiling for each case, adding some extra points for better geometrical
approximation if necessary. He also proposed a method for resolving internal
ambiguity, although it was not complete. We completed and enhanced this
method, adding some tricks to avoid useless tests. We computed and tested the
complete lookup table described by Chernyaev (see figure 5).

4



Case 0 Case 1 Case 2 Case 3.1

Case 3.2 Case 4.1 Case 4.2 Case 5

Case 6.1.1 Case 6.1.2 Case 6.2 Case 7.1

Case 7.2 Case 7.3 Case 7.4.1 Case 7.4.2

Case 8 Case 9 Case 10.1.1 Case 10.1.2

Case 10.2 Case 11 Case 12.1.1 Case 12.1.2

Case 12.2 Case 13.1 Case 13.2 Case 13.3

Case 13.4 Case 13.5.1 Case 13.5.2 Case 14

Figure 5: Chernyaev’s lookup table.
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3 Algorithm and implementation

The simplicity of the algorithm relies on both the lookup table and the case
table. The lookup table stores the tiling for each subcase identified by the case
table, with no need for computing any geometrical transformation.

3.1 Case mapping

Figure 6: Labeling of vertices, edges and faces.

The classical Marching Cubes lookup table has 256 entries, but only 15 of
them are geometrically different1. The configuration of a cube is identified by
an 8-bit word (256 possibilities) and the topological tests we eventually perform
on its faces and on its interior. The 8–bit word is computed as for classical
Marching Cubes lookup table: its i–th bit is set to 1 (resp. 0) if the i–th vertex
of the cube is positive (resp. negative). Figure 6 details the label of the cube’s
elements. For the topologically ambiguous cases (cases 3,4,6,7,10,12 and 13), a
case table (see table 1) stores the label of each face to be tested (7 stands for
the interior), and maps the results of those tests to the corresponding subcase.
Finally, each subcase corresponds to one of the 730 entries of Chernyaev’s lookup
table (see figure 5).

Figure 7: Case 3, configuration 3: two different tilings of the ambiguous face 4.

For example, b = 129 means that only vertices 1 and 7 are positive, which
is numbered as the 3rd configuration of the case 3 (see figure 7). The 3rd entry
of the case table of case 3 is just ’4’, its entry in the lookup table is

{ 3,0,8,11,7,6, 7,8,6,8,0,6,3,11,6,3,6,0 }

1i.e. that cannot be deduced by solid transformations.
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This means that face 4 has to be tested. According to table 1, if the test is
negative, the cube corresponds to subcase 3.1, and to subcase 3.2 otherwise.
Subcase 3.1 corresponds to the first sequence of the lookup table, and subcase
3.2 to the second, as shown on figure 7. As each tiling of the same subcase has
the same number of triangles, those sequences are easily distinguished even if
stored in the same table. Each code of the lookup sequences identifies an edge of
the cube (see figure 6) on which a vertex of the cube’s tiling will be computed.
The 12th code means interior vertex. The vertices of the final triangulation are
computed by barycentric interpolations on the edges of the cube.

3.2 Resolution of faces ambiguities

Figure 8: Face ambiguity test (Chernyaev’s illustration [3]).

Face ambiguity arise when two opposite vertices A and C of the face are
positive, and the two others B and D are negatives. We supposed the scalar
field F is trilinear on each cube, thus, bilinear on each face. Therefore, F−1 (α)
restricted to the face is a hyperbola (see figure 8). Testing whether the center
of the hyperbola is positive or negative (i.e. whether the positive vertices are
connected inside the face) reduces to testing the sign of F (A)·F (C)−F (B)·F (D)
(for α = 0).

The sign of the center of the hyperbola is the sign of the above expression
if A is positive, and the opposite if A is negative. In addition, for some con-
figuration, we want the opposite of the result. This is encoded by a negative
face label in the case table. Therefore, the implemented test returns the sign
of: sign (face label · F (A) · (F (A) · F (C)− F (B) · F (D))).

3.3 Resolution of internal ambiguities

An internal ambiguity arises when two diagonally opposite vertices A0 and
C1 of a cube can be connected through the interior of the cube, creating a kind
of tunnel (see figure 4). Let say those two vertices A0 and C1 are positive (the
description holds for negative vertices also). We first resolve face ambiguity,
according to section 3.2. If there is a chain of positive vertices joining A0 to C1,
connected by edges or crossing ambiguous faces resolved as positive, then there
is no internal ambiguity. Otherwise, we have to test if A0 and C1 are connected
only through the cube.

Suppose A0 and C1 are connected through the interior of the cube. As F is
trilinear, F cannot change sign more than once along segment. Thus, there is a
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Case Face tests Interior Test Subcase # triangles
1st 2nd 3rd

0 0
1 1
2 2
3 - 3.1 2

+ 3.2 4
4 - 4.1 2

+ 4.2 6
5 3
6 - - 6.1.1 3

- + 6.1.2 7
+ 6.2 5

7 - - - 7.1 3
+ - - 7.2 5
- + - 7.2 5
- - + 7.2 5
+ + - 7.3 9
+ - + 7.3 9
- + + 7.3 9
+ + + + 7.4.1 9
+ + + - 7.4.2 9

8 2
9 4
10 + + 10.1.1 4

- - - 10.1.1 4
- - + 10.1.2 8
+ - 10.2 8
- + 10.2 8

11 4
12 + + 12.1.1 4

- - - 12.1.1 4
- - + 12.1.2 8
+ - 12.2 8
- + 12.2 8

13 45 subcases, testing all the 6 faces and eventually the interior
14 4

Table 1: A reduced representation of the case table. Case 13 has 45 entries to
map the results of all the possible tests to the right subcase.
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Figure 9: Internal ambiguity test for cases 4 and 10 (Chernyaev’s illustration
[3]).

plane P = (At, Bt, Ct, Dt), parallel to one of the faces, where the two edges A0A1

and C1C0 perpendicular to P , are connected inside the square At, Bt, Ct, Dt (see
figure 9). Therefore, for each case, we must find the direction of P , compute
the height t of P along the edge, and resolve the ambiguity inside the square
At, Bt, Ct, Dt.

Cases 4 and 10 have enough symmetry to choose always the same direction,
independently of the configuration. The height t is the solution of the second
order equation, as described in [3]. For the other cases, the direction of P is
encoded as an edge e inside one particular sequence of the lookup table: the
17th edge for cases 6, 7, and 12; the 2nd edge for the case 13.5. In that case,
the height of the plane is the barycenter of the end vertices of e, ponderated by
F .

In both case, the intersection of P with the cube is a square, with vertices
At, Bt, Ct, Dt. There is no ambiguity inside this square if 0 or 1 vertex is positive
(negative vertices are connected through the cube), if 3 or 4 vertices are positive
(positive vertices are connected through the cube), or if 2 consecutive vertices
are positive (no diagonal connection). In the other case, the square is ambiguous,
and we resolve it in the same way as for face ambiguity.

3.4 Tips and tricks

The vertices of the final mesh are interpolated along an edge. To avoid
computing them more than once, they can be all computed first. To store them,
we used 3 arrays, which assign respectively to each grid vertex an eventual index
to the mesh vertex on the edge parallel to the x, y and z axis.

The normal at each grid vertex −→p can be computed as F
(−→p +−→

δ
)
−

F
(−→p −−→δ

)
. The normal at each point is then interpolated linearly.

A low resolution extraction can be obtained by considering a lower resolution
grid, i.e. taking into account every other vertex or every n–th vertex.

This algorithm is guaranteed to produce manifold meshes for any sample
data, which allows to work on previews with the same tools as on the final
mesh.

This algorithm can be used for implicit surface tiling to construct fixed pre-
cision or exact result. In the latter case, it allows an economic use of exact
arithmetic: when an evaluation of the surface inside a cube is ambiguous, the
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cube needs to be subdivided and the implicit function is evaluated again on the
subdivision cubes. The tests we provided here can be substituted to avoid sub-
dividing cubes guaranteeing a manifold result. For example, an exact evaluation
of the contour graph of F [1] gives the number of connected components inside
a cube. This topological information is a powerful test to distinguish between
subcases.

Web information

A C++ implementation together with the lookup and the case tables are
available online at http://www.acm.org/jgt/papers/LewinerEtAl03. A small
interface allows to examine each entry of those tables.
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