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Figure 1: Images generated using interactive ray tracing. From left to right, time step 225 of a Richtmyer-Meshkov instability simulation from
Lawrence Livermore National Labs (Image courtesy of Aaron Knoll), Boeing 777 (Data courtesy The Boeing Company), 2.8 million particle
MPM simulation with direct volume rendered fire, and iso-surface of the Visible Female.

ABSTRACT

We describe the software architecture of the Manta interactive ray
tracer and describe its application in engineering and scientific visu-
alization. Although numerous ray tracing software packages have
been developed, much of the traditional design wisdom needs to be
updated to provide support for interactivity, high degrees of paral-
lelism, and modern packet-based acceleration structures. We dis-
cuss situations that are normally not considered when designing a
batch ray tracer, and present methods to overcome those challenges.
This paper advocates a forward looking programming model for in-
teractive ray tracing that uses reconfigurable components to achieve
flexibility while achieving scalability on large numbers of proces-
sors. Manta employs data structures motivated by modern micro-
processor design that can exploit instruction-level parallelism. We
discuss the design tradeoffs and the performance achieved for this
system.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing I.3.8 [Computer Graph-
ics]: Applications D.2.11 [Software Engineering]: Software
Architectures—Domain-specific architectures D.2.13 [Software
Engineering]: Reusable Software—Reusable libraries

Keywords: ray tracing, interactive ray tracing, software architec-
ture

1 INTRODUCTION

Almost ten years after the first interactive ray tracer was introduced
on a massive super computer, the necessary compute power to solve
the same visualization problems will be available on a workstation
sized system. Early interactive systems [11, 13] were built simi-
lar to batch renderers [7], which traced a single ray at a time and
employed simple mechanisms for parallelism. Modern ray trac-
ing systems [27] have focused on raw performance for single data
structures but sacrificed generality for performance. Based on our
experience with interactive ray tracing over the past several years,

we set out to define an architecture that achieves performance while
maintaining flexibility and accommodates the demands of interac-
tivity in a highly concurrent system.

There are many driving objectives for the ray tracing system de-
scribed in this paper, the most important two are interactivity and
flexibility. The renderer must deliver interactive performance and
at the same time its design and implementation must be flexible
enough to apply to a number of different graphics and visualization
problems. Other objectives include, portability, embedability and
maintainability.

To deliver interactive performance it is necessary for software
to fully leverage the underlying processor and system architecture.
Interactive ray tracing was traditionally performed on large multi-
processor systems, but due to trends in single processor design,
the landscape of multi-processor, multi-threaded systems is shift-
ing from supercomputers to processors that contain a large number
of separate processing cores. Instead of a supercomputer running
threads across several cabinets in a machine room, a multi-core sys-
tem running the same number of threads will fit in a workstation
chassis.

This shift towards multi-core is accompanied by processor de-
sign decisions that affect how programs must be written to achieve
high performance. Multi-core processor designs rely on thread-
level parallelism and explicit instruction stream parallelism, such
as SIMD instruction sets, and less on hardware mechanisms to dis-
cover such parallelism automatically.

We propose a two piece programming model to take advan-
tage of current and upcoming hardware design. The first piece is
a multi-threaded scalable parallel pipeline. The second is a col-
lection of software mechanisms and data structures, based on ray
packets, for exploiting parallelism and performance optimization
from component-based rendering code. This joint model provides
the ray tracer with the opportunity to scale on growing mainstream
multi-core platforms while at the same time taking advantage of the
hardware designs that enable higher degrees of parallelism.

Rendering systems must be flexible enough to solve a variety
of different problems while individual rendering techniques usually
solve a single problem. Manta is a ray tracing system that is applied
to a number of graphics and visualization problems, from triangle
mesh rendering to time-varying multi-modal sphere glyph and vol-
ume rendering. Ray tracing allows for a more direct implementa-
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tion of these techniques than is possible using a textured triangle
based rendering system. In addition the ray tracer implementation
is able to use the same parallel performance model while rendering
different types of primitives. Manta’s programming model provides
this flexibility and has permitted the software to be used in a num-
ber of different ray tracing applications. Manta is available freely
as an open-source software project [1].

The remainder of this paper discusses the challenges encoun-
tered by interactive ray tracing systems and our design philosophy
for interactive ray tracers, discusses the details of Manta’s design
and tradeoffs we encountered, and finally describes several appli-
cations of the architecture to graphics and visualization problems.

2 HARDWARE TRENDS

Ray tracing one frame containing only static scenery with a pre-
computed acceleration structures is an embarrassingly parallel task.
This property has provided a straightforward response to most per-
formance issues: divide the frame into more parallel pieces and
increase the number of processors.

Both cluster and shared memory system configurations may be
scaled in this way. Early interactive ray tracers were implemented
on shared memory supercomputers [14]. This type of system is a
highly tuned cluster of individual systems, usually with special pur-
pose processors, connected by a high performance network. The
topology of the network varies by configuration as does memory
access latency. These systems provide a single-system image to
the application, which simplifies the programming model but still
requires attention to memory locality. Cluster systems composed
of individual commodity workstation or servers have also demon-
strated success in interactive ray tracing [23, 6, 4], but require ex-
plicit communication to be performed at the application level.

Rendering performance may also be increased by improving sin-
gle processor performance. Many single core processors are de-
signed to exploit instruction level parallelism and deep instruction
pipelining within a single thread of execution. These processors in-
crease serial instruction stream performance though increased clock
speed, branch prediction, and various instruction issue strategies.
While Moore’s Law continues, the number of transistors available
on each die increases, but the ability of conventional mechanisms to
extract parallelism from a single thread of execution is diminishing
[2, 8].

Processor designs are turning towards explicit multi-threading
and are using increasing die area for multiple cores instead of more
complex units. At the same time single instruction multiple data
(SIMD) instruction sets are enabling more explicit instruction level
parallelism declaration in the instruction stream. For example a four
wide SIMD add operation would combine four sets of two numbers
and produce four results. Depending on the design of the underly-
ing processor all operations may or may not be executed in parallel.
The instruction only indicates that the vector operations may be
performed in any order. These instructions are a method to explic-
itly specify opportunities for ILP. Making use of SIMD instructions
requires a specific alignment and ordering of data members, and
impacts other aspects of the architecture. It is reasonable to expect
that wider SIMD instruction sets might be available in the future.

3 SOFTWARE DESIGN PHILOSOPHY

The hardware trends described in the previous section guide
our software architecture. Matching anticipated hardware trends,
Manta is designed to provide scalable thread level parallelism on
a multi-core system and allow for instruction stream optimization
on those cores. Instead of requiring the use of a particular accel-
eration structure or sampling technique to achieve interactive per-
formance, we advocate building an interactive ray tracer using a set

of configurable software components that follow a specific design
pattern. These components form the infrastructure in which accel-
eration structures, primitives, material shaders and rendering tech-
niques can be implemented. This provides flexibility but imposes
overhead and presents challenges for parallelism. We overcome
these challenges by utilizing wide ray packets and a pipeline model
for parallelism.

Manta achieves scalable performance on a variety of configu-
rations through the use of a pipeline model for thread level paral-
lelism. Scalable performance means that the rendering speed in-
creases near-linearly as the number of processors increases. Scal-
able performance is important to systems that achieve good perfor-
mance on one or two core systems today because the presence of
bottlenecks will ultimately prevent these systems from taking ad-
vantage of larger systems or upcoming dense multi-core systems.

The parallel pipeline model divides rendering tasks into stages
based on load characteristics of each task. Certain tasks, like send-
ing the image to the graphics card for display, are load imbalanced
(often performed by a single processor), and other tasks, like ray
tracing the frame, can be dynamically load balanced. Synchroniza-
tion between all threads, allowing one thread to change global state,
is constrained to occur only at specific places in the pipeline.

Parallel scaling addresses one important consideration for high
performance ray tracing. Individual thread performance is equally
important, especially on modern multi-core processor designs that
de-emphasize instruction level parallelism extraction. Single thread
throughput is affected by two considerations; first the size of the
instruction stream (number of operations required) by the acceler-
ation structure traversal, shading, and other rendering techniques,
and second, the throughput of the core executing that stream. Since
our architecture targets a wide range of rendering techniques, we
provide several mechanisms based on wide ray packets that exploit
instruction stream optimization.

Wide ray packets are data structures that contain basic ray in-
formation and other derived values for many rays. In addition, ray
packets contain flags to indicate certain properties about all rays in
the packet, such as indicators that the rays share a common origin
or that have normalized direction vectors. Using this data structure
allows for several types of single thread performance optimization
including: software pipelining, use of SIMD instructions, special
case code, and coherence optimization. Wide ray packets are typi-
cally larger than SIMD vectors and are processed in smaller pieces
with SIMD instructions in tight loops.

Ideally ray packets contain coherent sets of rays with shared at-
tributes like direction, common origin, etc. These shared attributes
can allow special case optimizations. Wide ray packets also help
amortize the cost of virtual function overhead over a large number
of rays. Virtual function lookup is particularly useful for connecting
loosely coupled rendering components with a common ray packet
based API.

Another high-level design philosophy is the lazy evaluation of
expensive values. If two components both require a derived value,
that value can be computed once lazily in the first component, and
a flag is set in the ray packet. The second component can check the
flag before recomputing the derived value.

4 RELATED WORK

Examples of interactive ray tracing have existed for many years.
This section describes several interactive ray tracing systems as
well as contemporary ray tracing techniques that influence software
design. Our work builds on research from two areas; parallel soft-
ware design for interactive ray tracing and general interactive ray
tracing techniques that must be implemented on top of those de-
signs.



Software systems for interactive ray tracing have, until quite re-
cently [18], always used parallel hardware. Large multiprocessor
systems, although not widely available, were used to predict future
workstation performance [11, 13]. Modern hardware is becoming
highly parallel, with multi-core designs dominating future proces-
sor road maps.

The Star-Ray rendering system was the first versatile interac-
tive system and was used to visualize several different types of
data [14, 15]. The renderer was designed to run on large shared
memory super computers and scaled up to 1024 processors on one
configuration. Although it was applied to a number of different vi-
sualization problems, employed an object model, and defined an ex-
tendable programming interface, its development predated the wide
spread adoption of ray packets.

The Star-Ray system was later partially adapted to cluster sys-
tems in the DIRT rendering system by DeMarle et al. [4]. This
renderer managed its own distributed memory providing the pro-
grammer with the illusion of a shared memory programming envi-
ronment while running on a cluster [5] and was applied to similar
visualization problems.

Interactive ray tracing systems have been designed from the
ground up for cluster systems. OpenRT, an API and rendering
system for interactive ray tracing, is an example of this approach
[23, 6, 26]. OpenRT based systems feature extendable shaders and
have been deployed successfully in a variety of industrial visualiza-
tion capacities [22].

Other interactive ray tracing systems are designed without
a focus on massive scalability. The Razor rendering system
achieves nearly interactive frame rates for rendering subdivision
surfaces [20]. This system’s fundamental design addresses subdivi-
sion surface intersection rather than scalable parallelism.

Some ray tracing systems are highly modular yet lack interac-
tivity. The authors of “Physically Based Rendering” released the
renderer implemented in their book, called PBRT, as an extensible
physically based ray tracer [16]. There are numerous extensions
making use of this renderer. The open source ray tracer POV-Ray
is also widely used and extensible [12], but far from interactive.

Along with efficient kd-tree acceleration structures, OpenRT first
made use of ray packets in order to take advantage of the SSE SIMD
instruction set [27]. Ray packets in this system consisted of only
four rays.

In principle, two solutions have been chosen for building dy-
namic scene structures. Some approaches use single threaded data
structure build routines[25, 24], others use a separate parallelization
scheme for building and rendering[9]. Lazy or on-the-fly structure
building creates another difficulty since the (ideally) parallel build
would occur in small pieces during ray tracing, when the threads
have already been load balanced for rendering.

Non-general purpose hardware is used for ray tracing as well.
Two examples are Cell processors [10] and GPUs [17]. Low level
software models must be adapted for use on these high throughput
but quite constrained platforms.

5 SOFTWARE ARCHITECTURE

One of Manta’s primary design objectives is flexibility. This is
achieved through the use of modular components. Manta is com-
posed of two groups of modular components, a pipeline and a ren-
dering stack. Components in the pipeline group form a front-end
that implements our parallel pipeline model and drives a group of
back-end components arranged in a stack. This rendering stack first
samples pixels, then traces and shades rays. In addition to these
two component groups the architecture includes scene geometry,
surface shaders and utility libraries.

Application programming interfaces (APIs) of each component
define how data moves though the pipeline and between compo-
nents in the rendering stack. Component APIs are defined in pure-

virtual C++ classes. Context structures are used to communicate
pointers to other components, thread information and other system
configuration information between components. Ray packets are
the primary structure used to communicate ray tracing data between
components in the rendering stack, scene intersection, texturing,
and shading.

5.1 Wide Ray Packets

Wide ray packets contain individual rays plus all of the data needed
to allow intersection routines, shaders, and other components to
take advantage of instruction stream optimizations. Packets are a
container of rays with similar properties. These structures allow for
many types of optimizations including software pipelining, SIMD
operations, special case code, and sharing derived values between
loosely coupled components. Ray packets also increase ray coher-
ence during intersection and shading.

Ray packets have a maximum size determined at compile time
and unlike other ray tracing systems are not limited to SIMD width
on the target system or load balancer tile size. We have found that
ray packets with a maximum size of 64 achieves the best perfor-
mance. At this size, the entire ray packet data can fit in L1 cache.

One design decision we encountered was determining what to
do when rays in a ray packet are not perfectly coherent. Some rays
may hit one object while others hit a second. In the worst case,
each ray does something entirely different. However, most scenes
enjoy some type of coherence for rays and Manta tries to optimize
for those situations. Ray packets are split into coherent sections
at each phase of the algorithm, such as between intersection and
shading. Splitting the ray packet is accomplished by finding a se-
quential run of rays in the packet with a common characteristic, like
hitting the same material shader, and creating a new smaller packet
containing only these rays (See Figure 6. Splitting a ray packet
creates challenges for code that employs SIMD operations, since
these instructions require a specific operand alignment, so SIMD
code usually has a preloop phase to handle the unaligned portion of
the ray packet (always 3 rays or fewer for 4-way SIMD). Splitting
ensures that coherence is maintained as the ray packet propagates
through different components.

5.1.1 Data Layout for SIMD

SIMD instruction sets permit explicit declaration of instruction
level parallelism that may be exploited by the processor when
scheduling operations or using functional units in parallel. Ray
packet data fields are arranged in memory to be loaded into SIMD
registers. This data organization also has other performance bene-
fits on platforms that don’t rely on these instructions.

Instruction sets such as Intel’s SSE family [21] require an non-
intuitive data layout. Instructions in SSE have two sets of four
operands and produce four results. Each set of operands and the
result must appear sequentially in memory and be 16-byte aligned.
This requires a vertical (structure of arrays) layout of the data struc-
ture, instead of a horizontal (array of structures) layout.

Manta accommodates code requiring both layouts. Horizontal
accessor methods for ray packet fields gather vector components
from each array in the native vertical layout. This way, one could
ask for the origin and direction and get them as a C++ Vector ob-
ject. These accessors provide a gentle migration from existing code
that assumes horizontal data layout with only a slight performance
penalty.

5.1.2 Software Pipelining

One by-product of vertical data layout is that it prevents use of most
C++ overloaded vector operators. On in-order processors like the



Itanium2 vertical layout decreased dependencies between neighbor-
ing instructions in the instruction stream and increased software
pipelining in the compiled code. Although not as dramatic, de-
creasing data dependency, even without explicit SIMD instruction
utilization, produced a performance difference on mainstream out-
of-order processors.

5.1.3 Special Case Code

Manta defines fourteen ray packet properties such as common ori-
gin, constant direction sign, and whether or not derived values have
been computed and stored in the packet. These properties may be
used to select optimized code paths in special cases.

During certain scientific visualizations, sphere intersection is a
common operation (see section 6.3). If all the rays in a packet have
a common origin, then intermediate values, like the vector from the
ray origin to sphere center, may be computed once for the entire
packet. This instruction stream optimization reduces the number
of operations necessary to intersect the sphere with the entire ray
packet.

5.1.4 Loosely Coupled Components

Loosely coupled components are neighboring code modules with
no dependencies on each others’ implementation. These compo-
nents increase flexibility in Manta because they increase code reuse
by allowing software from one configuration to be placed in an-
other. Since loosely coupled components cannot make any assump-
tions about each other, it is difficult to eliminate redundant calcula-
tions or perform other optimizations between components.

Consequently, Manta contains a mechanism to reduce potential
redundancy. Along with the ray data, derived values are stored in
the ray packet. These quantities such as the inverse direction, in-
tersection location, and surface normals are computed the first time
they are needed and stored in the ray packet. For example, surface
normals might be used by local shaders and shaders that generate
reflection rays. The ray packet accessors use packet properties to
insure that the qualities are only calculated once. Since the cost of
storing and checking this flag is amortized over all of the rays in the
packet, the cost does not become burdensome.

5.2 Parallel Pipeline

Manta’s parallel pipeline components are responsible for control-
ling thread activity and synchronization. The pipeline is used to
overlap asynchronous image display with image rendering to re-
duce the overhead of single threaded tasks. Manta achieves good
scalability with large numbers of rendering threads by constraining
thread synchronization to certain points in the pipeline.

The pipeline consists of several stages executed by each thread.
Stages are organized by dividing program tasks based on their load
balance characteristics. Tasks that are inherently load balanced are
executed first, followed by imbalanced tasks (such as image dis-
play), and lastly tasks that are dynamically load balanced (like ren-
dering). (Figure 3 contains pseudo code for a simple pipeline.)
This organization reduces overhead introduced by single threaded
tasks like image display by allowing them to be performed asyn-
chronously with rendering.

One frame buffer is associated with each stage in the pipeline. In
a two stage pipeline with image display and rendering, this results
in a one frame latency between the time a frame is rendered and it is
displayed. In the most common two stage configuration (see Figure
2), image display will typically be executed by a single thread, that
will then join the rendering once the display has completed. Manta
also supports rendering multiple viewpoints simultaneously in the
same load balance mechanism.

void Pipeline::inner_loop( int frame, int proc ) {

// Inherently load balanced.

parallel_animation_callbacks();

// Imbalanced.

if (proc == display_proc)

image_display->displayImage( buffer[frame-1] );

// Dynamically balanced.

image_traverser->render_image( buffer[frame], proc );

}

Figure 3: Pseudo code for a pipeline loop. Load balanced tasks are
executed by each thread before imbalanced tasks, before dynamically
load balanced tasks. This organization prevents high latency single
thread operations like image display from causing all threads to stall.

Thread synchronization occurs at a barrier at the end of the
pipeline. This barrier provides an opportunity for the pipeline to
modify renderer state safely using transactions and invoke call-
backs.

5.3 Transactions and Callbacks

Interaction requires that renderer state be safely updated after user
input or animation. For example, unsafe updates from user interface
threads can cause visual tearing artifacts if the camera configuration
is changed part way through rendering the frame. More serious race
conditions between user interface threads and Manta can occur if
scenery or acceleration structures are altered, potentially resulting
in memory access violations.

Instead of double buffering every piece of state that might need
to be changed during rendering (potentially the entire scene for
some applications), Manta performs user input state changes using
transactions, which are short callbacks execute code to modify state
at asafe time. The rendering pipeline maintains a queue of transac-
tions that are invoked during thread synchronization at the pipeline
barrier for rendering threads. The GUI thread, or other application
level threads, are not explicitly synchronized as part of the engine.
Transactions are just one type of callback, other types may be in-
voked at different points during the rendering pipeline depending
on their load balance characteristics.

Callbacks are structures that contain a pointer to a class instance,
pointer to a class method and a static copy of all arguments for the
method. Usually the target method is implemented in GUI or other
third party code outside of Manta. When callbacks are invoked by
a Manta thread, the thread invokes the function contained in the
structure along with the copied arguments. The callback structure
itself is heavily templated so that a wide range of functions with
varying numbers of arguments may be invoked.

Figure 4 contains example code for sending a transaction to
Manta. After an asynchronous GUI thread detects user input a call-
back to a GUI class method is created and added to Manta’s trans-
action queue. When the renderer reaches the next pipeline barrier,
the transaction queue is flushed, causing the Manta thread to invoke
the GUI class method. This subtle handoff is important, although
most of the code in the GUI class is executed by the the GUI thread,
the callback function will be executed by a Manta thread and it can
safely alter any renderer state.

Semantics for state update using transactions limit the number
of places that rendering threads must synchronize. This constraint
minimizes the amount of time any thread spends blocked at a mutex
or waiting at a barrier and enables the system to scale to a large
number of threads.
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Figure 2: Two stage parallel pipelines consisting of image display and rendering are the most common Manta configuration. In this diagram,
threads 0 through n execute transactions and animation callbacks, then thread 0 performs image display while threads 1 through n begin
rendering. After finishing display, thread 0 joins rendering. After all of the threads finish rendering the frame, at approximately the same time,
the synchronize at the pipeline barrier.

void Keyboard::onWKey( const Event &event ) {

float dolly;

...

manta->addTransaction(Callback::create(this,

&Keyboard::mantaDolly, dolly));

}

void Keyboard::mantaDolly( float amount ) {

manta->getCamera()->dolly( amount );

}

Figure 4: Pseudo code for an example transaction to move camera.
First the GUI thread calls the onWKey method and adds a transaction
callback to manta passing the method mantaDolly. In the future
when all the rendering threads are synchronized, one rendering thread
will invoke the callback and execute the mantaDolly method.

5.4 Rendering Stack

In the ray tracing stage of the parallel pipeline each thread asyn-
chronously traverses components of the rendering stack. These
components are responsible for dividing the frame up into tiles, de-
termining sample points and finally performing ray tracing. There
are three modular components in the rendering stack; an image tra-
verser, pixel sampler, and renderer. See figure 5.

The first component in the rendering stack is the image traverser.
The image traverser is responsible for dividing the frame into re-
gions and assigning these regions to threads. Since the image tra-
verser is invoked at the end of the rendering pipeline, it uses a dy-
namic load balancer to even out the work load of each thread so
all should finish rendering at approximately the same time. This
minimizes the amount of time any thread must wait at the pipeline
barrier and insures that the parallel pipeline will keep all threads as
busy as possible.

Ray packets are introduced to the rendering stack by the pixel
sampler component. The image traverser passes fragment struc-
tures to the pixel sampler that contain pixel locations within each
tile. The pixel sampler determines the location of samples in each
fragment and maps a ray to each sample. Ray packet data are allo-
cated on the program stack by the pixel sampler and passed up the
rendering stack to the renderer component for ray tracing.

The modular renderer component is responsible for tracing rays
through a scene graph and then invoking material shaders on co-
herent sub-packets of rays that strike the same shader. Figure 6
contains actual code for a renderer module that performs ray trac-
ing. This code splits the incoming packet into smaller sub packets
whose contents all strike the same material shader. Creating a sub-
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Figure 5: Each thread asynchronously executes the modular render-
ing stack during the rendering stage of the pipeline.

packet does not copy data; it merely selects a range of rays in the
parent packet. Splitting packets into sub-packets and masking out
rays in a packet are two mechanism available to shaders in Manta
to address the diminishing coherence of secondary rays.

The Manta libraries contain several implementations for many of
the components in the rendering stack. This also allows extensions
to be built that make use of the rest of the infrastructure without
building an entire ray tracer from scratch. Example rendering stack
and configuration changes for a specific application are described
by Stephens et al. [19].

6 APPLICATIONS

The Manta software architecture has been applied to several graph-
ics and visualization problems. This section describes several ap-
plications from large triangle model visualization to volume render-
ing.



void Raytracer::traceRays(const Context& context,

RayPacket& rays) {

context.camera->makeRays(rays);

rays.resetHits();

context.scene->getObject()->intersect(context, rays);

for(int i = rays.begin();i<rays.end();){

if(rays.wasHit(i)){

const Material* hit_matl = rays.getHitMaterial(i);

int end = i+1;

while(end < rays.end() && rays.wasHit(end) &&

rays.getHitMaterial(end) == hit_matl)

end++;

RayPacket subPacket(rays, i, end);

hit_matl->shade(context, subPacket);

i=end;

} else {

int end = i+1;

while(end < rays.end() && !rays.wasHit(end))

end++;

RayPacket subPacket(rays, i, end);

context.scene->getBackground()->shade(context,

subPacket);

i=end;

}

}

}

Figure 6: Code for the implementation of the renderer interface that
perform ray tracing. After tracing a ray packet and finding inter-
section points the packet is split into smaller sub-packets containing
rays that strike the same material shader.

6.1 Massive Model Visualization

The data structures used for accelerating static scenes make ray
tracing especially well suited to massive triangle model rendering.
Traversal time of kd-trees and other structures scale sub-linearly,
thereby enabling models consisting of hundreds of millions of tri-
angles to be rendered interactively. Since visibility is computed on-
the-fly by tracing rays, effects such as cutting planes, transparency
and ambient occlusion are implemented in a straightforward man-
ner.

Massive model visualization in Manta has concentrated on the
Boeing 777 dataset consisting of approximately 350 million trian-
gles [19]. Manta uses a static kd-tree built offline from this data.
Transparent rendering is accomplished by modifying the kd-tree
traversal to blend sorted ray triangle intersections. Modular com-
ponents in Manta’s rendering stack are replaced to perform inter-
leaved sampling. Running on an Itanium2 SGI supercomputer, the
Manta architecture scaled to all 126 available processors on the sys-
tem. The visualization performance scaled to 92% of linear on 64
processors and 82% on 126 processors. (See figure 8.)

6.2 Direct Iso-surface Rendering

In addition to rendering millions of triangles, specialized data struc-
tures can be used to provide direct iso-surface rendering. Rather
than computing a triangulated mesh with a method such as March-
ing Cubes and rendering the resulting geometry, we instead com-
pute the surface directly during intersection. This eliminates the
intermediate geometry producing a view dependent representation
of the iso-surface. Since the surface is recomputed each frame
as part of the intersection phase, the user has the ability to inter-
actively change the iso-surface value. This provides an interac-
tive framework for data exploration. In addition, the memory that

Figure 7: Transparent rendering of a Boeing 777 aircraft engine.
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Figure 8: Scaling performance of Manta rendering the Boeing 777
dataset.

would be needed to store triangulations of complex iso-surfaces is
no longer needed. Only the original data needs to remain resident
in memory[15].

The Visible Female data set contains a high resolution CT scan
of the subject. Using Manta we are able to interactively view iso-
surfaces of the data using only a couple processors of a desktop
computer (3 frames per second for a 512x512 image without shad-
ows). An example of the rendering can be seen in Figure 9.

Time varying data can also be rendered interactively. Figure 10
depicts an iso-surface representing the boundary between two flu-
ids. The fluid in the center is moving quickly through the outside
material, developing a turbulent boundary layer that is shown by
the iso-surface.

6.3 Multi-modal Visualization

Manta is capable of rendering a rich set of primitives in addition
to triangles. The Center for the Simulation of Accidental Fires and
Explosions (C-SAFE) utilizes ray tracing technology to visualize
millions of particles as spheres at interactive rates using specialized



Figure 9: Iso-surface rendering of the Visible Female data set
(512x512x1734). Bone is shown with rendered shadows.

acceleration structures. Figure 11 depicts a rendering of C-SAFE
data that contains both geometric and volumetric data. Scientists
can load as many time steps as allowed by main memory (450 time
steps for a total of 55 GB of RAM for this case) and can interac-
tively render the data as it is animating. The acceleration structure
used also makes it possible to interactively crop the particles by
values associated with the particles. Direct volume rendering is
facilitated by a specialized data structure that minimizes memory
accesses to improve performance. This system first enabled appli-
cation scientists to view the simulation with both particle data and
volumetric fire in the same interactive visualization. Ray tracing
also makes it possible to include advanced lighting effects such as
ambient occlusion [3].

7 CONCLUSIONS AND FUTURE WORK

We presented an overview of the Manta software architecture and
discussed the considerations that went into its design. Although
work on Manta continues, a number of important applications can
be addressed by the current system.

Today many interactive ray tracing techniques are implemented
on single thread processors or small multi-core workstations [18, 9,
20], as the number of available cores increases these renderers will
need to adopt a scalable parallelization scheme in order to fully
take advantage of new hardware. We propose that interactive ray
tracers should be built from the ground up using a parallel pipeline
model. The model we describe constrains thread synchronization
and has been shown to scale on multi-processor systems in a variety
of applications. Further we advocate using wide ray packets to take
advantage of special case optimizations, software pipelining, SIMD
instructions, and ray coherence to optimize code for current and
future processor designs. We also advocate using software-based
transactions to maintain consistent state changes in a multi-threaded
environment rather than multi-buffering state.

We hope that the discussion of our experience is valuable to oth-
ers who undertake a similar design task. We also hope that future
researchers can provide additional techniques for achieving scala-

Figure 10: Four time steps from a visualization of an iso-surface.
The iso-surface represents the boundary between a fast flowing fluid
though the middle of a stationary fluid. Friction between the two
materials causes turbulence to occur, which is visible as the time
steps progress. As the complexity of the surface increases, so would
the time and memory to compute and store the geometry. Using a
specialized ray tracing primitive, no intermediate geometry is needed
and interactive frame rates for tens of time steps is possible.

bility, flexibility and performance in the context of a modular and
maintainable system.
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Figure 11: Image of C-SAFE data. The container is composed of 2.8
million particles represented as spheres and color-mapped by temper-
ature. The container is enveloped by pool fire rendered using direct
volume rendering of the temperature field (82x322x82). With accel-
eration structures and data each time step of data takes 122 MB of
main memory. Users are able to interact with the data by changing
the color map, crop particles, and adjust the transfer function for the
volume rendering, all at full frame rates (typically 15-20 fps).
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