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ABSTRACT: The DOCK program explores possible orientations of a molecule
within a macromolecular active site by superimposing atoms onto precomputed
site points. Here we compare a number of different search methods, including
an exhaustive matching algorithm based on a single docking graph. We evaluate
the performance of each method by screening a small database of molecules to a
variety of macromolecular targets. By varying the amount of sampling, we can
monitor the time convergence of scores and rankings. We not only show that the
site point]directed search is tenfold faster than a random search, but that the
single graph matching algorithm boosts the speed of database screening up to
60-fold. The new algorithm, in fact, outperforms the bipartite graph matching
algorithm currently used in DOCK. The results indicate that a critical issue for
rapid database screening is the extent to which a search method biases run time
toward the highest-ranking molecules. The single docking graph matching
algorithm will be incorporated into DOCK version 4.0. Q 1997 by John Wiley &
Sons, Inc. J Comput Chem 18: 1175]1189, 1997
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Introduction

ith the advent of high resolution X-rayW crystallography and NMR, structural
chemists and biologists can study biomacromolec-
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ular interactions in atomic detail. This information,
combined with computational and visualization
tools, has helped spawn the field of structure-based
ligand design. A common step in the design cycle
is the process of molecular docking, in which pos-
sible binding geometries of a molecule with a
macromolecule are studied.

The docking process can be divided into two
parts: a search algorithm and a scoring algorithm.
The search algorithm should sample the degrees of
freedom of the ligand:macromolecule system suffi-

Q 1997 by John Wiley & Sons, Inc. CCC 0192-8651 / 97 / 091175-15



EWING AND KUNTZ

Ž .ciently to include the true binding mode s . The
scoring algorithm should represent the thermody-
namics of interaction sufficiently to distinguish the

Ž .true binding mode s from all others explored.
Because of the computationally expensive na-

ture of the search problem, many different solu-
tions have been proposed. Docking with molecular
dynamics and Monte Carlo algorithms has been
explored,1, 2 including simulated annealing3 ] 5 and
MCSS6 methods. Other docking protocols consider
molecular flexibility, including rotamer search,7 ] 9

distance geometry,10 and genetic algorithm11 ] 13

methods. To make the search tractable for process-
ing a large set of molecules, the molecular compo-
nents are often treated as rigid objects. With this
approximation, researchers have used systematic
searching,14 pattern recognition,15 ] 17 graph theo-
retical,18 ] 21 and other superposition22 techniques
to dock molecules.

The UCSF DOCK program belongs to the group
of methods employing the rigid body assumption
and uses graph theoretical techniques. Because of
its speed, the program is often used to screen a
large database of molecules, selecting potential
ligands of a receptor target.23 In this article, the
term ‘‘ligand’’ is used loosely; it refers to any
small molecule whose binding is under study. The
term ‘‘receptor’’ refers to the macromolecule whose
binding pocket is being explored.

The core of the DOCK search algorithm is the
superimposition of ligand atoms onto predefined
site points24, 25 that map out the negative image of
the binding site. A matching process is used to
determine which ligand atoms and site points are
to be superimposed.26 Multiple orientations are
generated this way, with each receiving a score
assessing the intermolecular interactions. This score
is based on the intermolecular terms of a molecu-
lar mechanics force field.27 Recently, an optimiza-
tion procedure has been added that adjusts each
orientation to improve the intermolecular interac-
tions.28, 29

In this work, we critically evaluate several
matching algorithms for the docking process, in-
cluding an exhaustive matching algorithm. The
exhaustive algorithm was presented by Bron and
Kerbosch as a method to detect cliques in an
undirected graph.30 It was later incorporated into a
docking algorithm by Crippen and coworkers.10, 19

It has many attractive features, so we chose to
evaluate it in the context of rigid molecular dock-
ing, score optimization, and database screening.
As an exhaustive search, it avoids some of the
artifacts encountered by the current matching

method. For example, with a nonexhaustive algo-
rithm, adjusting parameters to increase the total
amount of sampling can reduce the amount of
sampling of certain binding modes.28 Increased
sampling, with the new algorithm, will always
retain binding orientations found with less sam-
pling, leading to a proper superset of binding
modes. An exhaustive algorithm also does not
require the additional parameters controlling the
heuristics of the nonexhaustive search.26

Although the matching algorithms formally treat
the ligand and receptor as rigid objects, they can
readily be incorporated into a flexible docking
scheme.10, 21, 31 ] 33 In future work, we will investi-
gate how best to divide up a flexible docking
problem into smaller rigid parts.

To evaluate the performance of the new match-
ing algorithm, we propose a new assessment pro-
tocol based on screening a small database of
molecules. Because we specifically intend to mini-
mize any artifacts due to the quality of the scoring
function in this work, we will not use experimen-
tal measurements as the standard, but instead, the
global minimum of our current scoring function.
We will also evaluate random, and partially ran-
dom, search algorithms as controls with which to
put the current DOCK performance in perspective.
These control algorithms let us investigate funda-
mental issues of orientational sampling, such as
the effect of using site points to guide the search.

Methods

BIPARTITE DOCKING GRAPH

Since the first release of DOCK, the search pro-
cess has been driven by a matching procedure in
which subsets of ligand atoms and receptor site
points are identified that have equivalent internal
distances.18 Matching is formulated as a graph
theoretical problem in which the ligand atoms and
receptor site points are separate sets of nodes in a
bipartite graph.26 A match is defined as a set of
compatible edges which connect a subset of ligand
nodes with an equal number of receptor nodes. For
the edges to be compatible, the distances among
ligand nodes must map to equivalent distances
among receptor nodes. An example of match for-
mation is depicted in Figure 1. As this figure
illustrates, to extend a match, all possible edges
Ž .including bad edges must be considered; dis-
tance comparisons are used to identify and discard
bad edges. Matches are extended until there is a
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sufficient number of nodes in the match to define a
unique orientation of the ligand.

Since version 2.0, DOCK avoided considering
some bad edges with a pruning method involving
distance binning.26 Nodes were preorganized in
distance bins, such that, for each seed node, sets of
nodes in discrete distance intervals from the seed
were identified. These bins guide match extension

Ž .from a seed edge connecting seed nodes , ensur-
ing that candidate edges are compatible with the
seed edge. They do not, however, ensure compati-
bility with other nonseed edges already included
in the match. For example, the binning algorithm
would avoid considering the bad edge in step II of
Figure 1, but not the bad edge in step III. The
storage requirements for this algorithm grow as
N N N F N 3, where N is the number of nodesn b n r b n n
Ž .ligand atoms or receptor site points . N is theb
number of distance bins and grows with the longest
distance and the inverse of the bin width. N isn r b
the number of nodes in each distance bin which
grows with N and the bin width.n

SINGLE DOCKING GRAPH

Kuhl et al. proposed merging the bipartite dock-
ing graphs into a single docking graph,19 which is
then amenable to clique detection techniques de-
veloped by Bron and Kerbosch.30 In a single dock-
ing graph, each node represents a pairing of an
atom with a site point. Each edge identifies adja-
cent nodes, or two nodes for which both atom
components and site point components are sepa-
rated by equivalent distances. The docking graph
is represented by an adjacency matrix in which
each nonzero element identifies adjacent nodes.
An adjacency matrix for the example depicted in
Figure 1 is presented in Figure 2. The chief advan-
tage with this representation is that all necessary
distance comparisons are made during the con-
struction of the adjacency matrix. Consequently,
during matching, the adjacency matrix is used as a
rapid filter to ensure that no bad edges are ever
considered. This type of matching is presented in
Figure 3. Although the single docking graph is one
step removed from the intuitive appeal of the
bipartite docking graph, it enables a more efficient
solution to the docking problem.

The single docking graph representation has
also been implemented in the FLOG docking pro-
gram.21 This program heavily prunes the matching
search tree using a minimum-residual search
heuristic. Although it examines all possible nodes
at each branch point, it only pursues the node with

FIGURE 1. Bipartite graph matching algorithm. The
( ) ( )receptor site points A]E and ligand atoms 1]4 are

separate sets of nodes in a bipartite graph.26 I. A first
( )seed edge is considered. Of the 20 seed edges to be

( )tried 5 points)4 atoms , we first consider A4 for this
example, in three dimensions, such a match would
superimpose atom 4 onto site point A. This match would
fix three of six orientational degrees of freedom. II.
Second edges are considered. Of the 12 edges to be

( )tried 4 points left)3 atoms left , we consider E3.
Because AE ) 43, we discard E3 as a second edge.
Then we consider E1. Because AE = 41, we retain E1 as
a second edge. In three dimensions, this match would
superimpose atoms 4 and 1 onto points A and E,
respectively. This match would fix two more orientational
degrees of freedom. III. Third edges are considered. Of

( )the six edges to be tried 3 points left)2 atoms left , we
consider C3. Though AC = 43, EC - 13 so we must
discard C3 as a third edge. Then we consider B3.
Because AB = 43 and EB = 13, we retain B3 as a third
edge. This match fixes the last of six orientational degrees
of freedom. IV. The match is large enough to define a
unique orientation which superimposes atoms 4, 1, and
3 onto site points A, E, and B, respectively.

the smallest difference in ligand and receptor dis-
tances with respect to the most recently added
node in the match. Backtracking is only allowed at
the seed level, where all possible nodes are pur-
sued to initiate matching. As a result, the total
number of matches can never exceed the number
of nodes.

Here we propose implementing the single dock-
ing graph representation combined with a varia-
tion of the exhaustive clique detection method
discussed by Bron and Kerbosch.30 A clique is

Ždefined as a set of fully adjacent nodes i.e., a
.completely connected subgraph which cannot be
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FIGURE 2. Adjacency matrix for single docking graph
algorithm. This matrix identifies all adjacent nodes for the
example given in Figure 1. Each node is defined as a
site point]ligand atom pair, for instance, A4. For two
nodes to be adjacent, the intra-atom distance must be
equal to the intra]site point distance. For example, matrix

( )element A4, E1 is turned on because AE= 41. The
matrix is symmetric.

further enlarged without adding a nonadjacent
node. Much attention is given to the intractable
nature of the maximum clique problem. It is classi-
fied as NP-complete because the solution time
grows faster than any polynomial expression of
the problem size.19 For the application of molecu-
lar docking, however, we are not trying to find the
single, largest clique. The process of matching is in
fact a process of finding completely connected
subgraphs within an undirected graph: a less re-
strictive, and therefore more tractable problem than
finding cliques and maximum cliques. Although
Bron and Kerbosch actually present two methods
and recommend a bounding technique for clique
detection, we find their original, brute-force
method sufficient for finding fully connected sub-
graphs in a manner efficient for molecular dock-
ing.

MATCHING PARAMETERS

In our molecular docking implementation, we
use two parameters to determine node adjacency:
a distance tolerance and a distance minimum. The
distance tolerance parameter addresses experimen-
tal uncertainty in the ligand and target structures.

FIGURE 3. Single docking graph matching algorithm.
This figure depicts the entire search path-starting from
the same seed used in Figure 1. Matching begins with
the match set, M , empty and the adjacency set, A ,0 0
maximally filled. A match is extended by finding the
union of the previous match, M , and a branch node,ny 1
b , which is selected from A . The new adjacencyn ny 1
set, A , is the intersection of A with the set of alln ny 1
nodes adjacent to b , which is A and is taken from then bn

adjacency matrix presented in Figure 2. Match extension
continues until A is empty. Matches with three or moren

(nodes define a unique ligand orientation see text and
) { }Fig. 4 . The match set, A4 B3 E1 , corresponds to the

solution presented in Figure 1.

The distance minimum parameter enables the
search to focus on the longer, more relevant inter-
nal distances. If adjacency information is stored in
a matrix, then, for most docking situations, the
matrix can be very large. The matrix size grows as
Ž .2N N , where N is the number of nonhy-l i g r ec l i g
drogen ligand atoms and N is the number ofr ec
receptor site points. Because these matrices are

Ž .sparse ca. 1% elements typically occupied , we
store only the nonzero elements of each row of the
matrix as an integer list of nodes. The probability,
p , of an element being nonzero is a function ofon
the distance tolerance and distance minimum. The
memory requirement for the adjacency lists is

Ž .2p N N . We presort each adjacency list soon l i g r ec
that the process of finding the common elements

Ž .of two lists the A s A l A steps in Fig. 3n ny1 bn
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can be performed on a once-through basis at a
speed comparable to the use of the complete ma-
trix.

The advantage of an exhaustive algorithm is
that, when sampling is increased, the search is
guaranteed to include the search space explored at
the lower sampling level. This property helps to
avoid sampling artifacts encountered with the bi-
partite matching algorithm.28 Despite its exhaus-
tive nature, it does not undergo a combinatorial
explosion for larger systems because of user con-
trol over the sampling parameters. Typical sam-
pling parameters for a docking scenario having
fewer than 30 ligand nonhydrogen atoms and fewer
than 50 target site points are: four nodes minimum

˚ ˚for a match, and 0.5-A distance tolerance and 2.0-A
distance minimum for node adjacency. Because the
search never explores invalid branches, search time
grows as a function of the number of distance-con-
strained solutions rather than the number of possi-
ble unconstrained solutions. Therefore, docking
larger molecules into larger sites can be made
nearly as rapid if a smaller distance tolerance or
larger distance minimum is chosen. Because mem-
ory reserved for the adjacency lists is dynamically
allocated, the memory burden is adjusted as well.

MINIMUM MATCH SIZE

Some confusion exists in the literature over how
many atoms and site points must be in a match to
define a unique orientation. The orientation is gen-
erated by a ligand transformation which has a
translation and a rotation component. The transla-
tion vector has three degrees of freedom. The rota-
tion matrix has four degrees of freedom. Three of
them are represented by the Euler angles. The
fourth is represented by the sign of the determi-
nant. A rotation with a positive determinant re-
tains the handedness of the object it transforms,
while one with a negative determinant will reverse
the handedness of the object. If one knows in
advance whether to reverse the handedness of the
object, then only the three Euler angles need to be
determined. For example, when docking a chiral
ligand in which only one stereoisomer is relevant
Ž .e.g., protein or peptide ligands , only the positive-
determinant rotation matrix would be of interest.
When docking a ligand available as a racemate,
then both transformations would be of interest.
The FLOG program,21 for instance, routinely sam-
ples both mirror images a ligand, even when the
ligand is achiral. When the sign of the determinant
is known in advance, the six degrees of freedom of

( )FIGURE 4. Relative chirality of match points. A
{Distance matching might identify a set of atoms 1 2 3

} { }4 to match with a set of site points A B C D , such
that A is with 1, B is with 2, and so on. Although the
internal distances within the atoms are equivalent to
those within the site points, the handedness is opposite.
( )B We define the relative chirality, C, according to the
sign of the triple product. For any given four-point match,
the probability that the relative chiralities are the same is

( )50%. C If the chirally opposed sets are superimposed
without inverting the chirality of the ligand set, then the
resulting least squares fit is poor.

the rotation and translation are uniquely deter-
mined by a match set containing three nonlinear
atoms and site points.

Processing a larger match set causes only one
transformation to be allowed. As illustrated in
Figure 4, when a one-to-one mapping has been
made between two sets of four nonplanar points,
then each set can be assigned a relative chirality.
This is true even if the points come from an achiral
molecule or from a set of site points where chiral-
ity is ambiguous. If the relative chiralities are the
same, then the ligand can be oriented normally. If
the relative chiralities are opposite, then either the
ligand is inverted when oriented, or if that is not
desired, then the match is discarded. In fact, all
larger matches that are supersets of the discarded
match are also discarded, because they too yield
inconsistent matches. If these steps are not taken,
then the resulting orientations will poorly super-
impose the ligand atoms and receptor site points
in the match set, even though all the distance

Ž .tolerances are met Fig. 4C .

ADDITIONAL SEARCH CONSTRAINTS

The systematic design of the matching algo-
rithm makes it well suited to incorporate special-
ized search constraints. Some examples, although
not assessed in this study, are mentioned because
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they have been shown to be useful elsewhere. To
avoid oversampling particular binding modes, ori-
entational degeneracy checking has been stud-
ied.17, 29 In the new matching algorithm, a degener-
ate orientation is detected as a degenerate match
whose nodes are a subset of nodes in a larger
match. In other words, only subgraphs that are
true cliques need be processed. As another exam-
ple, chemical information can be used to guide the
matching process using labeled atoms and site
points. Only nodes composed of a chemically com-
patible atom and site point are used to seed or
extend a match. Much like the repellent node im-
plementation of Kuhl et al.,19 matches adjacent to
chemically incompatible nodes are discarded. In
addition, sampling can be focused on particular
regions of the active site by defining critical site
point clusters. This technique is similar to the
approach used in targeted DOCK34 and FLOG,21

except that clusters can be of arbitrary size and
number. The matching process automatically re-
stricts itself to make sure all matches include
members from each cluster. The new matching

algorithm lends itself so well to these constraints
that when activated, they contribute a negligible
computational overhead, and can lead to consider-
able speed improvements for database search-
es.21, 34

CONTROL METHODS

Ž .We will test a total of five methods Table I to
isolate specific aspects of the search process. These
methods range in complexity from a completely
random search to the bipartite and single graph
procedures described previously. We begin with

Ž .the uniform random transformation URT method,
which explores a predefined rectangular volume
enclosing the active site. It is the most simple and
‘‘hypothesis-free’’ of the methods tested here. URT
will indicate the minimum level of performance
that we expect from any docking algorithm. The

Ž .uniform random matching URM method ex-
plores the irregularly shaped volume described by
the collection of site points. It will show the perfor-
mance gains, if any, of using a ‘‘negative image’’

TABLE I.
Search Methods.

Abbrev. Method Description Hypothesis Tested

v vURT Uniform Construct rectangular volume enclosing Random method used as reference
vrandom site Rectangular enclosure is sufficient

vtransformation Randomly move molecule center of Site point description is unnecessary
mass within volume

v Randomly rotate
v Each molecule in database sampled

uniformly

v vURM Uniform Match random subsets of atoms with An irregular volume to describe the
random random subsets of site points site is more efficient

vmatching Superimpose match atoms onto match
site points with a least squares fit

v Each molecule in database sampled
uniformly

v v( )BRM Biased Match randomly like URM An irregular volume is more efficient
v vrandom SGM controls amount of sampling for Spending more time on molecules

matching each molecule in database which match better is more efficient

v vSGM Single Using single graph, exhaustively Fitting some atoms precisely onto
graph match subsets of atoms with subsets of some site points is more efficient
matching site points with equivalent internal

( )distances DOCK 4.0

v vBGM Bipartite Using bipartite graph, nonexhausitively Fitting some atoms precisely onto
graph match using binning algorithm some site points is more efficient

v( )matching DOCK 3.5 Binning algorithm more efficient
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approach to map out the binding site. The biased
Ž .random matching BRM method is identical to

URM, except it uses the new matching algorithm
to determine the number of random matches to try
for each molecule. Once the number of matches
has been determined, BRM uses completely ran-
dom selections of nodes to form the actual matches
used to generate molecule orientations. Because
BRM is a hybrid approach, it is meant to help
isolate the source of any differences between URM
and the new matching algorithm. The single graph

Ž .matching SGM algorithm uses the new matching
algorithm to determine both the number of matches
and the actual orientations to try for each molecule.
SGM will reveal the performance gains, if any, of
using site points to not only map out the most
interesting binding site volume, but to also direct
the positioning of individual ligand atoms. The

Ž .bipartite graph matching BGM method is the
existing DOCK 3.5 matching algorithm. It will re-
veal the advantage, if any, of using a nonexhaus-
tive search method with a longest distance first
heuristic. BGM is described last because, within
the spectrum of different search methods, its algo-
rithm is the most elaborate.

TEST SYSTEM

We assess the performance of the search meth-
ods in the following way. We dock a set of 100
molecules, chosen randomly from the set of un-
charged, medium-sized, and generally rigid
molecules in the available chemicals database
Ž . 35ACD . In our study, a medium-sized molecule
is one with 15 to 35 nonhydrogen atoms. A gener-
ally rigid molecule is one with no single bonds
except those attaching hydrogen atoms, attaching

Žterminal nonhydrogens i.e., methyl or hydroxyl
.groups , or participating in ring structures. Mole-

cules meeting these three criteria compose 40% of
the ACD. For each molecule in the test set, a single
CONCORD36-generated conformation is used.

We see several advantages to using such a data
set of molecules to test the search methods. First,
the docking conditions represent a close approxi-
mation to the typical application of DOCK to
database screening. Not only can we study the
convergence of score for each molecule, we can
study the convergence of relative scores, or rank-
ings, of the set of molecules. Second, the docking
conditions allow us to explore a multitude of di-
verse molecular shapes so that our results are less
subject to potential artifacts of a particular ligand:
receptor system. Although some may argue that

studying a set of known, potent ligands would be
more relevant, we counter that the databases
DOCK searches often do not contain potent
binders, and that DOCK frequently finds micromo-
lar inhibitors to serve as lead compounds.23 By
choosing a random subset of molecules, we, in
fact, will arrive at a set that best represents the
typical array of molecules tested. By biasing the
subset to include medium-sized, generally rigid
molecules, we also focus on that portion of the
database which is best treated by rigid molecular
docking.

For each search method, we perform multiple
docking runs, and vary the amount of sampling
from zero to a value at which the docking results
converge. The key sampling parameters for each
method are listed in Table II. Scoring and opti-

TABLE II.
Sampling Parameters.

URT
aTotal orientations 0]900,000

URM
aTotal orientations 0]100,000

bNodes minrmax 3r3
BRM

a˚Distance tolerance 0]0.9 A
c˚Distance minimum 2.0 A

bNodes minrmax 3r3
SGM

a˚Distance tolerance 0]0.6 A
c˚Distance minimum 2.0 A
dNodes minrmax 4r10

BGM
e˚Distance tolerance 1.5 A

a, f˚Ligand bin width 0.1]0.9 A
a, f˚Receptor bin width 0.1]0.9 A
a, f˚Ligand bin overlap 0.1]0.5 A
a, f˚Receptor bin overlap 0.1]0.5 A

eNodes minrmax 4r4

a For some test systems, the upper limit was not reached if
docking results converged early.
b Set to three, because, as the size of a random match
increases, the least-squares superposition procedure in-
creasingly biases the orientation toward the centroid of the
site points.
c Set large enough to exclude atoms sharing a covalent
bond.
d Minimum of four chosen so that chirality could be used to
filter matches. Maximum of ten is somewhat inconsistent
with value chosen for BGM, but we presume any effects of
this would be small.
e Chosen as historical default.
f Minimum value not zero because of a numerical instability
of the algorithm.
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mization parameters are listed in Table III. The
range of values in these tables correspond to tim-
ings of less than 0.1 secondrmolecule to more than
100 secondsrmolecule on a modern workstation
Ž .see subsequent text .

For each docking run, several properties are
computed that compare the results from any spe-
cific run to the best results from all runs combined
Ž .assumed to contain the global minimum . These
properties are summarized in Table IV. When these
values are plotted versus time, the convergence of
each property can be monitored. We assume that a
better search algorithm will lead to more rapid
convergence.

When considering the average behavior of each
property, we compute both the usual mean and
also a rank-weighted mean. The rank-weighted
mean is more sensitive to the behavior of the top
scoring molecules, which are of most interest in
database screening runs. Although many kinds of
weighting functions could be chosen for this pur-

TABLE III.
Scoring and Optimization Parameters.

Type Force field

aBump maximum 3
Dielectric 4r

˚Grid spacing 0.3 A
Interpolation Trilinear

bConvergence criteria 0.1 kcalrmol
cMaximum iterations 500

a Nonzero maximum allows some orientations with limited
Van der Waals clashes with the receptor to be recovered by
the minimizer.
b A relatively tight convergence criteria was selected to re-
duce noise in the score evaluation, so that differences be-
tween methods were more directly attributable to differences
in sampling. The rank correlation would be especially vulner-
able to such noise.
c A large iteration limit was also selected to reduce noise in
the score evaluation by preventing the minimizer from termi-
nating prematurely.

TABLE IV.
Comparison Methods.

Rank weighted
Method Definition Equation equation Range

N minN [ ]v 0, 1 ; unitlessAverage For each molecule in the S rSi iminS rSÝ i i Ýrelative docking run, normalize ii=1 i=1score its score by the best
NN 1score it ever received
Ýin the site ii=1v Then compute the

average over the
molecules in the set

N N [ ]v y1, 1 ; unitless1Rank Assign a rank, y , toi ( )( ) ( )( )x y x y y y x y x y y yÝ Ýi i i iCorrelation each molecule based ii=1 i=1on its best score in
N N 1the docking run 2 2( ) ( )x y x x y xÝ Ýi iv Then correlate y withi ii=1 i=1the rank of each molecule

based on the best score
it ever received in
the site, xi

N N [ ]v 0, ` ; in angstromsRAverage For each molecule in the i
RÝ ÝiRMS docking run, compute ii=1 i=1error the RMS error of its

N 1Npredicted orientation Ýcompared to that which ii=1received the best score
for that site

v Then, compute the
average over the
molecules in the set
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TABLE V.
Receptor Structures from PDB37, 38 Used for Test Systems.

Code Structure Resolution R factor Site description

˚121D DNA dodecamer 2.2 A 0.198 Site is broad, presenting two continuous
39with Netrospin binding sites in the major and minor grooves

of the DNA dodecamer; highly polar
˚1ULB Purine nucleoside 2.75 A 0.204 Site has two pockets; one is broad and centrally

phosphorylase located, another where actual ligand binds
40with guanine is peripheral and solvent excluded

˚3DFR Dihydrofolate 1.7 A 0.152 Site has a deep, centrally located binding
reductase with pocket; mixed polar and nonpolar regions
NADPH and

41methotrexate
˚4FAB Fab fragment with 2.7 A 0.215 Site is shallow with three pockets formed by

42fluorescein the six hypervariable loops; generally
nonpolar

˚9HVP HIV-1 protease 2.8 A 0.182 Site is a long, narrow tube, which completely
with A-7470443 penetrates protein; mixed polar and

nonpolar regions

pose, we chose to use the reciprocal of the rank for
convenience.

To make sure that our conclusions are general-
izable, we analyzed the methods using five differ-
ent receptor sites listed in Table V. These sites
were chosen from the list of complexes of high
resolution, well-refined structure with a ligand
having a well-defined binding position. They were
also chosen based on very different-shaped bind-
ing sites. The chief features of each site are shown
in Table V.

Results and Discussion

DOCKING CONDITIONS

The test cases were prepared for docking in the
standard way. Site points were constructed using
the sphere generation accessory program of DOCK
with default parameters.18 We selected the cluster
of site points which occupied the binding site of
the actual ligand in the crystal complex. Within
this cluster, we merged the positions of tightly

˚grouped site points using a 2-A cutoff. The final
number of site points used for each receptor ranged
from 30 to 60.

RESOURCE USAGE

All docking calculations were performed on Sil-
icon Graphics Indigo2 workstations, equipped with

200 MHz R4400 processors and 128 MB of RAM,
so timings are consistent among the different
methods. Several weeks of computer time were
required to complete all runs. All methods re-
quired approximately 13 MB of RAM to store the
scoring grids. The URT and URM methods re-
quired negligible additional memory for matching
and orienting. BRM and SGM required up to 0.1
MB of RAM for matching arrays. BGM required 1
MB of RAM for matching arrays.

TEST SYSTEMS

Selected results for the 3DFR test system are
presented in Figures 5, 6, and 7 to illustrate the
type of data we collected. As shown in Figure 5,
the weighted average score generally converges
asymptotically to an optimum as sampling in-
creases. The scores from all matching methods
converge to within 90% of the optimum in about
10 secondsrmolecule, whereas the URT meth-
od requires about 100 secondsrmolecule. The
weighted rank correlation in Figure 6 also shows
convergent behavior, but with some interesting
differences. It goes through much wider fluctua-
tions, indicating that small changes in score have
large effects on the rankings of the top scoring
molecules. It appears to discriminate among the
different methods, selecting BRM and SGM as
superior, BGM and URM as next best, and URT as
worst again. In particular, BRM and SGM both
show a rapid initial rise, indicating that, with very
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FIGURE 5. Weighted average score for molecules
docked to 3DFR using SPHGEN site points. Each curve
represents a search algorithm in Table I. Each data point
is a weighted average of the score for all molecules in a
particular run using the equation in Table IV.

little sampling, these methods come closest to pre-
dicting the rankings of the top scoring molecules.
The convergence of weighted RMSD in Figure 7
indicates how long it takes the different methods
to predict reproducibly the same binding mode of
the top scoring molecules. Although the two top
performing methods converge in predicted score

FIGURE 6. Weighted rank correlation for molecules
docked to 3DFR using SPHGEN site points. Each data
point is an average of the rank correlation for all
molecules in a particular run using the equations in
Table IV.

FIGURE 7. Weighted average RMSD for molecules
docked to 3DFR using SPHGEN site points. Only the
two best search algorithms from Table I are presented.
Each data point is an average of the RMSD for all
molecules in a particular run using the equations in
Table IV.

and ranking in about 10 seconds, they require
about 500 seconds before they consistently predict
the same binding mode. This result indicates that,
for these molecules in this site, several good scor-
ing orientations must exist that are close in score
but distant in space. We found similar results for
the other sites as well.

We found the weighted and unweighted forms
of the average score and rank correlation to be the
most relevant in assessing database screening per-
formance. This gives us four measurements of five
methods over five sites. Instead of presenting 100
different curves, we have condensed each curve
into a single value—the convergence time—which
represents the time at which the 90% threshold

Ž .value is passed and not recrossed . In Table VI,
we present the convergence times along with the
speed improvement factor of each method com-
pared to the URT method.

SCORE CONVERGENCE

With respect to the unweighted average score in
Ž .Table VI A , all matching methods show roughly

equivalent convergence. and outperform URT by a
factor of 10. Therefore, on average, site points
provide a much more succinct description of the
active site than the smallest enclosing box, espe-
cially when searching a site that is large or difficult
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TABLE VI.
Convergence Properties of Search Methods.a

Search Methods

Site URT URM BRM SGM BGM

( )A Unweighted Average Score
( ) ( ) ( ) ( ) ( )121D 200 1x 10 20x 20 10x 10 20x 8 30x
( ) ( ) ( ) ( ) ( )1ULB 200 1x 10 20x 20 8x 20 10x 8 20x
( ) ( ) ( ) ( ) ( )3DFR 100 1x 9 10x 10 10x 10 10x 20 6x
( ) ( ) ( ) ( ) ( )4FAB 30 1x 7 4x 8 4x 7 5x 7 4x
( ) ( ) ( ) ( ) ( )9HVP 200 1x 7 30x 5 40x 5 40x 6 30x

( ) ( ) ( ) ( ) ( )Mean 100 1x 9 10x 10 10x 9 10x 9 10x

( )B Rank-weighted average score
( ) ( ) ( ) ( ) ( )121D 400 1x 10 40x 6 80x 3 100x 8 50x
( ) ( ) ( ) ( ) ( )1ULB 1000 1x 60 20x 30 40x 20 70x 30 40x
( ) ( ) ( ) ( ) ( )3DFR 200 1x 20 9x 10 20x 8 30x 20 10x
( ) ( ) ( ) ( ) ( )4FAB 90 1x 7 10x 4 20x 4 20x 7 10x
( ) ( ) ( ) ( ) ( )9HVP 200 1x 7 30x 2 100x 4 40x 5 40x

( ) ( ) ( ) ( ) ( )Mean 300 1x 20 20x 7 40x 6 50x 10 30x

( )C Unweighted rank correlation
( ) ( ) ( ) ( ) ( )121D 400 1x 20 20x 10 30x 7 60x 10 40x
( ) ( ) ( ) ( ) ( )1ULB 1000 1x 60 20x 40 20x 30 30x 80 10x
( ) ( ) ( ) ( ) ( )3DFR 400 1x 50 9x 20 20x 10 30x 40 10x
( ) ( ) ( ) ( ) ( )4FAB 200 1x 30 7x 10 20x 20 7x 50 3x
( ) ( ) ( ) ( ) ( )9HVP 700 1x 20 40x 8 90x 10 60x 20 50x

( ) ( ) ( ) ( ) ( )Mean 500 1x 30 10x 20 30x 20 30x 30 20x

( )D Rank-weighted rank correlation
( ) ( ) ( ) ( ) ( )121D 400 1x 20 30x 10 40x 7 60x 20 30x
( ) ( ) ( ) ( ) ( )1ULB 1000 1x 60 20x 20 60x 20 70x 80 20x
( ) ( ) ( ) ( ) ( )3DFR 600 1x 100 6x 10 40x 10 40x 20 30x
( ) ( ) ( ) ( ) ( )4FAB 400 1x 10 30x 3 100x 4 90x 10 30x
( ) ( ) ( ) ( ) ( )9HVP 300 1x 7 40x 2 100x 4 60x 3 80x

( ) ( ) ( ) ( ) ( )Mean 500 1x 20 20x 7 70x 8 60x 20 30x

a For each sampling method and receptor site, we find the amount of sampling, in seconds, beyond which all values are within 90%
of the maximum. With the time of URT as the reference, the relative speed factor of each method is reported in parentheses. The
geometric mean over all receptor site values is reported at bottom. Because of the large uncertainty in these values, all values are
rounded to one significant digit.

to define a priori. Because the site points were
generated based on general considerations of
shape, this result should be generalizable to other
‘‘negative image’’ techniques, like the shape-based
critical point methods of Nussinov and Wolfsen,44

and the energetic probe methods of Goodford.45

Ž .The rank-weighted average score in Table VI B
shows more discrimination among the matching
methods. While the two uniform random methods
Ž .URT and URM had more difficulty converging
with the top-scoring molecules, BRM and SGM
actually converged more quickly. This implies that
trying a uniform number of orientations for the

molecules in the database is inefficient with re-
spect to processing the top-scoring molecules. BGM
performed better than URM, but not as well as
either BRM or SGM.

RANK CONVERGENCE

The convergence of the rank correlation further
confirms the differences between methods. The

Ž .unweighted rank correlations in Table VI C again
show a general 10- to 30-fold advantage of using
site points to dock the molecules. Interestingly, the
time required to get the rank correct is two- to
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fivefold greater than the time to get the average
w Ž .xscore Table VI A correct. The weighted rank

Ž .correlations in Table VI D also further discrimi-
nate among the methods. URM and BGM still
show the 20- to 30-fold advantage over URT. BRM
and SGM again outperform URT by 60- to 70-fold.
Of all measures, this last one is arguably the most
relevant to database screening, because absolute
scores are generally not used as strict cutoffs, but
instead the rankings are used to select some sub-
group of molecules whose number is amenable to
further processing. Most often, it is the top-scoring
subgroup of most interest, so using a rank-
weighted correlation should focus our attention on
how the methods treat this particular subgroup of
molecules. Therefore, it appears that, of the meth-
ods investigated here, BRM and SGM are the best
suited for database screening.

BGM VERSUS SGM

The single graph matching method clearly out-
performs the existing bipartite graph matching
method by up to twofold in speed. This result may
appear counterintuitive, because SGM is exhaus-
tive, whereas BGM uses heuristics to speed the
search. However, the precomputing of the adja-
cency matrix and the rapid processing of the adja-
cency lists show that reformulating the problem
into an efficient form can be just as effective as
using heuristics. SGM has the additional advan-
tage of requiring fewer fundamental matching pa-

Ž .rameters than BGM Table II .

BRM VERSUS SGM

Why does a simplistic random matching algo-
rithm, BRM, perform so competitively with the
distance matching algorithm, SGM, and even out-
perform BGM? Does this suggest that distance
matching is an unnecessarily complicated solution
to docking? We seek to resolve this question by
breaking the problem into three parts.

1. What is the disadvantage of sampling each
molecule uniformly?

2. Why does distance matching sample mole-
cules nonuniformly?

3. Is an orientation from random matching just
as good as one from distance matching?

First, spending the same time on each molecule
may result in spending too little time on the better

scoring molecules. One feature of the force field
scoring function is that it tends to favor larger
molecules.21 For the set of molecules used in this
study, we have plotted the best score for each
molecule against its size in Figure 8. Although
there is some trend, the correlation coefficient is
not large. A stronger trend exists in Figure 9,
relating molecule size to bump filtering. Large
molecules have a greater propensity to bump into
receptor atoms when oriented in the site. Because
we use a bump filter in DOCK to discard poor
orientations before the more computationally ex-
pensive scoring and optimization steps, we are
more likely to discard an orientation of a large
molecule than that of a small molecule. Forcing a
uniform number of matches per molecule would
then result in a size-biased attrition through the
bump filter and, overall, spending less time on the
potentially better scoring, larger molecules.

Second, nonuniform sampling arises in distance
matching because the number of matches is re-
lated to the number of internal distances that the
ligand has in common with the site points. Larger
molecules have more internal distances, and so
will tend to have more in common. Therefore,
larger molecules tend to generate more matches
than smaller molecules. However, a molecule that
is not larger, but rather similar in shape to the
binding site, will also have more internal distances

FIGURE 8. How molecule size affects force field score.
The best force field score for each molecule is plotted
versus the number of nonhydrogen atoms in the
molecule. The plots for each receptor are pooled into
this single plot to show the overall trend. Fitting a line to
these data yields an R 2 value of 0.24.
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FIGURE 9. How molecule size affects bump filtering. In
a given docking run, we compute the fraction of
orientations that pass the bump filter for each molecule,
and then plot this value against the size of the molecule.
( ) ( )Top BRM method. Average filter rate is 0.031. Bottom
SGM method. Average filter rate is 0.36.

in common. Therefore, distance matching will
spend more time on molecules that are comple-
mentary in shape to the receptor. Thus, the BRM
method benefits from using distance matching to
determine the number of orientations to try simply
because it will bias its efforts toward the larger
andror more complementary molecules.

Third, an orientation from random matching is,
on average, not as good as one from distance
matching. We can check the quality of these orien-
tations by examining how they survive the bump
filter as depicted in Figure 9. The orientations from
distance matching are at least ten times more likely
to make it past this filter, so they are indeed

superior. To understand why this superiority does
not translate directly into faster docking, we must
consider the computational bottleneck of the cur-
rent implementation of DOCK. If the early docking
steps—matching, orienting, and bump filtering—
were to consume a dominant portion of the total
cpu time, then SGM would be up to ten times
faster than BRM. On the other hand, if the later
docking steps—scoring and optimization—were
to consume a dominant portion of the total cpu
time, then BRM would be equivalent in speed to
SGM. With the current implementation of the min-
imizer, the scoring and optimization steps indeed
consume an overwhelming portion of cpu time
Ž .) 90% , so the ability of distance matching to
form high-quality orientations is for now unre-
warded. BRM is kept competitive because, in con-
cert with heavy pruning by the bump filter, it
forms orientations that are suitable starting points
for optimization.

BRM VERSUS BGM

The fact that BRM outperforms BGM by up to a
factor of two points out the critical importance of
how processing time is allocated among the differ-
ent molecules in the database. For maximum effi-
ciency, a search algorithm must bias its efforts
toward the most highly ranked molecules. BGM
indeed has such a bias built in, but the heuristics
have the effect of reducing the magnitude of bias
inherent to the unrestrained matching found in
SGM and BRM.

FUTURE DIRECTIONS

It appears sensible to incorporate the single
graph matching technique into version 4.0 of
DOCK, because its results are of high quality and
its potential for speed improvement is high. The
speed gains might arise from additional orienta-
tion filtering or by fundamental improvements in
the optimization technique. The new matching al-
gorithm will provide a solid algorithmic founda-
tion on which to base further development of
molecular docking, including the addition of so-
phisticated search constraints like chemical labels
and critical clusters, as well as the explicit treat-
ment of ligand flexibility.

Until a faster scoring and optimization method
is implemented, it may be useful to preprocess the
set of orientations generated by matching. For in-
stance, an implementation of degeneracy checking
has been tried in which similar orientations are
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removed at the matching stage.29 Because orient-
ing is also relatively facile, it implies that degener-
acy checking could instead be performed as an
RMS deviation calculation between real orienta-
tions. Rarey et al. present a rapid RMSD evalua-
tion technique based directly on the rotation
matrices17 that would be applicable. It might also
be possible identify a unique property of orienta-
tions that lead to the best scores upon minimiza-

Ž .tion e.g., degree of surface overlap with receptor .
We intend to further study the nature of orienta-
tions generated by BRM that pass the bump filter,
to see why they manage to score so well upon
minimization. Based upon this knowledge, a filter
could be constructed that enriches the set of orien-
tations generated by regular matching prior to
minimization.

An additional avenue for improvement would
be to try alternative methods to generate site
points. The current shape-based site points may
not be entirely consistent with a force-field-based
scoring function.21 Including force-field considera-
tions during site point construction, might make
the site points more relevant as points on which to
position ligand atoms, thereby increasing the qual-
ity of docked orientations.

We are working to extend the current docking
protocol to include ligand and receptor flexibility.
Ligand flexibility can be incorporated in several
ways. The most straightforward approach is to
dock multiple conformations of the ligand sepa-
rately.21 A potentially more efficient method is to
use distance geometry to build a ligand conforma-
tion that fits a subset of receptor site points.10

Another viable option is the ‘‘divide and conquer’’
strategy, in which a flexible molecule is broken
into rigid fragments, the fragments are docked
independently, and the molecule is rebuilt from
adjacent fragment orientations.31 ] 33 Limited recep-
tor flexibility is being investigated during the step
of score evaluation by superimposing multiple re-
ceptor conformers on a single score potential grid.46

Conclusion

We evaluated various search algorithms for au-
tomated molecular docking that range in complex-
ity from purely random to site point]directed,
graph-theoretical matching methods. Our basis of
comparison was how quickly each docking method
could correctly score and rank a database of
molecules. Over a broad range of active site envi-

ronments, it is at least tenfold more efficient to use
a collection of site points to describe the active site
search volume than to use the smallest enclosing
box. Using graph theoretical matching techniques
boosts this relative efficiency higher. The bipartite
graph matching used in the current DOCK version
3.5 improves efficiency up to 30-fold. The single
graph matching proposed for DOCK version 4.0
improves efficiency up to 60-fold. Because single
graph matching is not only faster, but also less
complicated than the bipartite graph matching
used in version 3.5, we feel it will be an important
advance in docking technology.
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