Analysis of MD Results Using Statistical Mechanics Methods

Ioan Kosztin
Beckman Institute
University of Illinois at Urbana-Champaign

Molecular Modeling

1. Model building
2. Molecular Dynamics Simulation
3. Analysis of the
 • model
 • results of the simulation
Collection of MD Data

- DCD trajectory file
 - coordinates for each atom
 - velocities for each atom

- Output file
 - global energies
 - temperature, pressure, …

Analysis of MD Data

1. Structural properties
2. Equilibrium properties
3. Non-equilibrium properties

Can be studied via both equilibrium and non-equilibrium MD simulations
Equilibrium (Thermodynamic) Properties

MD simulation → microscopic information → macroscopic properties

Statistical Mechanics

\[\Gamma[r(t), p(t)] \]

Phase space trajectory

\[\rho(\Gamma) \]

Ensemble average over probability density

Statistical Ensemble

Collection of large number of replicas (on a macroscopic level) of the system

Each replica is characterized by the same macroscopic parameters (e.g., NVT, NPT)

The microscopic state of each replica (at a given time) is determined by \(\Gamma \) in phase space
Time vs Ensemble Average

For $t \to \infty$, $\Gamma(t)$ generates an ensemble with

$$\rho(\Gamma)d\Gamma = \lim_{t \to \infty} d\tau / t$$

Ergodic Hypothesis: Time and Ensemble averages are equivalent, i.e.,

$$\langle A(r, p) \rangle_t = \langle A(\Gamma) \rangle_\rho$$

Time average:

$$\langle A \rangle_t = \frac{1}{T} \int_0^T dt \, A[r(t), p(t)]$$

Ensemble average:

$$\langle A \rangle = \int d\Gamma \, \rho(\Gamma) \, A(\Gamma)$$

Thermodynamic Properties from MD Simulations

Thermodynamic (equilibrium) averages can be calculated via time averaging of MD simulation time series

$$\langle A \rangle \approx \frac{1}{N} \sum_{i=1}^{N} A(t_i)$$

Finite simulation time means incomplete sampling!
Common Statistical Ensembles

1. Microcanonical \((N,V,E)\):
 \[\rho_{NVE}(\Gamma) \propto \delta[H(\Gamma) - E] \] ← Newton’s eq. of motion

2. Canonical \((N,V,T)\):
 \[\rho_{NVT}(\Gamma) = \exp\left\{\left[F - H(\Gamma)\right]/k_B T\right\} \] ← Langevin dynamics

3. Isothermal-isobaric \((N,p,T)\)
 \[\rho_{NPT}(\Gamma) = \exp\left\{\left[G - H(\Gamma)\right]/k_B T\right\} \] ← Nose-Hoover method

Different simulation protocols \([\Gamma(t) \rightarrow \Gamma(t+\delta t)]\) sample different statistical ensembles

Examples of Thermodynamic Observables

• Energies (kinetic, potential, internal,...)
• Temperature [equipartition theorem]
• Pressure [virial theorem]

Thermodynamic derivatives are related to mean square fluctuations of thermodynamic quantities

• Specific heat capacity \(C_v\) and \(C_P\)
• Thermal expansion coefficient \(\alpha_p\)
• Isothermal compressibility \(\beta_T\)
• Thermal pressure coefficient \(\gamma_V\)
Mean Energies

Total (internal) energy: \[E = \frac{1}{N} \sum_{i=1}^{N} E(t_i) \]

Kinetic energy: \[K = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} \left(\frac{p_j^2(t_i)}{2m_j} \right) \]

Potential energy: \[U = E - K \]

Note: You can conveniently use \texttt{namdplot} to graph the time evolution of different energy terms (as well as \(T, P, V \)) during simulation.

Temperature

From the equipartition theorem \(\langle p_k \frac{\partial H}{\partial p_k} \rangle = k_B T \)

\[T = \frac{2}{3Nk_B} \langle K \rangle \]

Instantaneous kinetic temperature

\[T = \frac{2K}{3Nk_B} \]

Note: in the NVTP ensemble \(N \rightarrow N-N_c \), with \(N_c = 3 \)
Pressure

From the virial theorem \(\langle r_k \partial H / \partial r_k \rangle = k_B T \)

\[
P V = N k_B T + \langle W \rangle
\]

The *virial* is defined as

\[
W = \frac{1}{3} \sum_{j=1}^{M} r_j \cdot f_j = - \frac{1}{3} \sum_{i,j>i} w(r_{ij})
\]

with \(w(r) = r \frac{d \nu(r)}{dr} \)

Instantaneous *pressure* function (not unique!)

\[
\tilde{P} = \rho k_B T + W / V
\]

Thermodynamic Fluctuations (TF)

\[
\langle \delta A \rangle \approx \frac{1}{N} \sum_{i=1}^{N} [A(t_i) - \langle A \rangle]
\]

Mean Square Fluctuations (MSF)

\[
\langle \delta A^2 \rangle = \langle (A - \langle A \rangle)^2 \rangle = \langle A^2 \rangle - \langle A \rangle^2
\]

According to *Statistical Mechanics*, the probability distribution of thermodynamic fluctuations is

\[
\rho_{\text{fluct}} \propto \exp \left(\frac{\delta P \cdot \delta V - \delta T \cdot \delta S}{2k_B T} \right)
\]
TF in NVT Ensemble

In MD simulations distinction must be made between properly defined mechanical quantities (e.g., energy E, kinetic temperature T, instantaneous pressure P) and thermodynamic quantities, e.g., T, P, ...

For example: \[
\langle \delta E^2 \rangle = \langle \delta \mathcal{H}^2 \rangle = k_B T^2 C_V \quad \checkmark
\]

But: \[
\langle \delta P^2 \rangle \neq \langle \delta \mathcal{P}^2 \rangle = k_B T / V \beta_T \quad \times
\]

Other useful formulas:
\[
\langle \delta K^2 \rangle = \frac{3N}{2} (k_B T)^2
\]
\[
\langle \delta U^2 \rangle = k_B T^2 (C_V - 3Nk_B / 2)
\]
\[
\langle \delta U \delta \mathcal{P} \rangle = k_B T^2 (\gamma_V - \rho k_B)
\]

$C_V = (\partial E / \partial T)_V$

$\gamma_V = (\partial P / \partial T)_V$

TF in NPT Ensemble

\[
\langle \delta V^2 \rangle = V k_B T \beta_T
\]
\[
\langle \delta (\mathcal{H} + PV)^2 \rangle = k_B T^2 C_P
\]
\[
\langle \delta V \delta (\mathcal{H} + PV) \rangle = k_B T^2 V \alpha_P
\]

By definition: \[
\alpha_P = V^{-1} (\partial V / \partial T)_P ; \quad \beta_T = -V^{-1} (\partial V / \partial P)_T
\]
\[
C_P = (\partial E / \partial T)_P
\]
How to Calculate C_V?

1. From definition

$$C_V = \left(\frac{\partial E}{\partial T}\right)_V$$

Perform multiple simulations to determine $E \equiv \langle E \rangle$ as a function of T,
then calculate the derivative of $E(T)$ with respect to T.

2. From the MSF of the total energy E

$$C_V = \frac{\langle \delta E^2 \rangle}{k_B T^2}$$

with

$$\langle \delta E^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2$$