
© Copyright John E. Stone, 2009 - Page 1

OpenCLOpenCL for Molecular for Molecular
Modeling Applications:Modeling Applications:

Early ExperiencesEarly Experiences
John Stone

University of Illinois at Urbana-Champaign
http://www.ks.uiuc.edu/Research/gpu/

SC2009 OpenCL BOF, November 18, 2009

© Copyright John E. Stone, 2009 - Page 2

OverviewOverview
• Molecular modeling applications, need for higher

performance, increased energy efficiency
• Potential benefits of OpenCL for molecular modeling

applications
• Early experiences with OpenCL 1.0 beta

implementations
• Some crude performance results using existing

OpenCL toolkits, both production and alpha/beta
• Detailed comparison of some OpenCL kernels

targeting CPUs, GPUs, Cell, etc.
• OpenCL middleware opportunities, existing efforts

© Copyright John E. Stone, 2009 - Page 3

Computational Biology’s Insatiable
Demand for Computational Power

• Many simulations still
fall short of biological
timescales

• Large simulations
extremely difficult to
prepare, analyze

• Performance increases
allow use of more
sophisticated models

http://www.ks.uiuc.edu/

© Copyright John E. Stone, 2009 - Page 4

Molecular orbital

calculation and display

100x to 120x faster

Electrostatic field

calculation, ion placement

20x to 44x faster
Imaging of gas migration
pathways in proteins with
implicit ligand sampling

20x to 30x faster

CUDA+OpenCL Acceleration in VMD

http://www.ks.uiuc.edu/Research/vmd/

© Copyright John E. Stone, 2009 - Page 5

Supporting Diverse Accelerator
Hardware in Production Codes….

• Development of HPC-oriented
scientific software is already
challenging

• Maintaining unique code paths for
each accelerator type is costly and
impractical beyond a certain point

• Diversity and rapid evolution of
accelerators exacerbates these issues

• OpenCL ameliorates several key
problems:
- Targets CPUs, GPUs, and other accelerator

devices
- Common language for writing computational

“kernels”
- Common API for managing execution on

target device

© Copyright John E. Stone, 2009 - Page 6

Strengths and Weaknesses of Current
OpenCL Implementations
• Code is portable to multiple OpenCL device types

- Correctly written OpenCL code will run and yield correct results on
multiple devices

• Performance is not necessarily portable
- Some OpenCL API/language constructs naturally map better to

some target devices than others
- OpenCL can’t hide significant differences in HW architecture

• Room for improvement in existing OpenCL compilers:
- Sophisticated batch-mode compilers have long provided

autovectorization and high-end optimization techniques
- Current alpha/beta OpenCL implementations aren’t quite there yet
- Some compiler optimization techniques might be too slow to be

made available in the typical runtime-compilation usage of OpenCL

© Copyright John E. Stone, 2009 - Page 7

Strengths and Weaknesses of Current
OpenCL Implementations (2)
• OpenCL is a low-level API

- Freedom to wire up your code in a variety of ways
- Developers are responsible for a lot of plumbing, lots of

objects/handles to keep track of
- A basic OpenCL “hello world” is _much_ more code to write than

doing the same thing in the CUDA runtime API
• Developers are responsible for enforcing thread-safety

in many cases
- Some multi-accelerator codes are much more difficult to write than

in the CUDA runtime API
• Great need for OpenCL middleware and/or libraries

- Simplified device management, integration of large numbers of
kernels into legacy apps, auto-selection of best kernels for device...

- Tools to better support OpenCL apps in large HPC environments,
e.g. clusters (more on this at the end of my talk)

© Copyright John E. Stone, 2009 - Page 8

Electrostatic Potential Maps

• Electrostatic potentials
evaluated on 3-D lattice:

• Applications include:
- Ion placement for structure

building
- Time-averaged potentials for

simulation
- Visualization and analysis

Isoleucine tRNA synthetase

Accelerating molecular modeling applications with
graphics processors.
Stone et al., . J. Comp. Chem., 28:2618-2640, 2007.

© Copyright John E. Stone, 2009 - Page 9

Global Memory

Texture Texture Texture Texture Texture TextureTexture

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

OpenCL DeviceConstant Memory

Direct Coulomb Summation in OpenCL,
Building Block for Better Algorithms

Host

Atomic
Coordinates

Charges

Work items compute
up to 8 potentials,

skipping by coalesced
memory width

Work groups:
64-256 work items

NDRange containing
all work items,
decomposed into
work groups

Lattice padding

Stone et al., J. Comp. Chem., 28:2618-2640, 2007.

© Copyright John E. Stone, 2009 - Page 10

DCS Inner Loop, Scalar OpenCL

…for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx – atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);
energyvalx2 += charge * native_rsqrt(dx2*dx2 + dyz2);
energyvalx3 += charge * native_rsqrt(dx3*dx3 + dyz2);
energyvalx4 += charge * native_rsqrt(dx4*dx4 + dyz2);

}

Well-written CUDA code can
often be easily ported to OpenCL

if C++ features and pointer
arithmetic aren’t used in kernels.

© Copyright John E. Stone, 2009 - Page 11

DCS Inner Loop, Vectorized OpenCL

float4 gridspacing_u4 = { 0.f, 1.f, 2.f, 3.f };
gridspacing_u4 *= gridspacing_coalesce;
float4 energyvalx=0.0f;

…
for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float4 dx = gridspacing_u4 + (coorx – atominfo[atomid].x);
float charge = atominfo[atomid].w;
energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);

}

CPUs, AMD GPUs, and Cell often perform better
with vectorized kernels.

Use of vector types may increase register
pressure; sometimes a delicate balance…

© Copyright John E. Stone, 2009 - Page 12

Apples to Oranges Performance Results: Apples to Oranges Performance Results:
OpenCLOpenCL Direct Coulomb Summation KernelsDirect Coulomb Summation Kernels

MADD, RSQRT = 2 FLOPS All other FP instructions = 1 FLOP

OpenCL Target Device OpenCL
“cores”

Scalar Kernel:
Ported from original
CUDA kernel

4-Vector Kernel:
Replaced manually
unrolled loop iterations
with float4 vector ops

AMD 2.2GHz Opteron 148 CPU
(a very old Linux test box)

1 0.30 Bevals/sec,
2.19 GFLOPS

0.49 Bevals/sec,
3.59 GFLOPS

Intel 2.2Ghz Core2 Duo,
(Apple MacBook Pro)

2 0.88 Bevals/sec,
6.55 GFLOPS

2.38 Bevals/sec,
17.56 GFLOPS

IBM QS22 CellBE
*** __constant not implemented yet

16 2.33 Bevals/sec,
17.16 GFLOPS ****

6.21 Bevals/sec,
45.81 GFLOPS ****

AMD Radeon 4870 GPU 10 41.20 Bevals/sec,
303.93 GFLOPS

31.49 Bevals/sec,
232.24 GFLOPS

NVIDIA GeForce GTX 285 GPU 30 75.26 Bevals/sec,
555.10 GFLOPS

73.37 Bevals/sec,
541.12 GFLOPS

© Copyright John E. Stone, 2009 - Page 13

Getting More Performance:Getting More Performance:
Adapting DCS Kernel to Adapting DCS Kernel to OpenCL OpenCL on Cellon Cell

OpenCL Target
Device

Scalar Kernel:
Ported directly
from original CUDA
kernel

4-Vector Kernel:
Replaced manually
unrolled loop
iterations with float4
vector ops

Async Copy Kernel:
Replaced __constant
accesses with use of
async_work_group_copy(),
use float16 vector ops

IBM QS22 CellBE
*** __constant
not implemented

2.33 Bevals/sec,
17.16 GFLOPS ****

6.21 Bevals/sec,
45.81 GFLOPS ****

16.22 Bevals/sec,
119.65 GFLOPS

Replacing the use of constant memory with loads of atom data to __local memory via
async_work_group_copy() increases performance significantly since Cell doesn’t
implement __constant memory yet.
Tests show that the speed of native_rsqrt() is currently a performance limiter for Cell.
Replacing native_rsqrt() with a multiply results in a ~3x increase in execution rate.

© Copyright John E. Stone, 2009 - Page 14

Computing Molecular Orbitals

• Visualization of MOs aids in
understanding the chemistry of
molecular system

• MO spatial distribution is
correlated with electron
probability density

• Calculation of high resolution
MO grids can require tens to
hundreds of seconds on CPUs

• >100x speedup allows
interactive animation of MOs @
10 FPS C60

High Performance Computation and Interactive Display of Molecular
Orbitals on GPUs and Multi-core CPUs. Stone et al., GPGPU-2, ACM
International Conference Proceeding Series, volume 383, pp. 9-18, 2009

© Copyright John E. Stone, 2009 - Page 15

Molecular Orbital Inner Loop, Hand-Coded SSE
Hard to Read, Isn’t It? (And this is the “pretty” version!)

for (shell=0; shell < maxshell; shell++) {
__m128 Cgto = _mm_setzero_ps();
for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

float exponent = -basis_array[prim_counter];
float contract_coeff = basis_array[prim_counter + 1];
__m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2);
__m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval));
Cgto = _mm_add_ps(contracted_gto, ctmp);
prim_counter += 2;

}
__m128 tshell = _mm_setzero_ps();
switch (shell_types[shell_counter]) {

case S_SHELL:
value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto)); break;

case P_SHELL:
tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist));
tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist));
tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist));
value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto));
break;

Until now, writing SSE kernels for CPUs
required assembly language, compiler

intrinsics, various libraries, or a really smart
autovectorizing compiler and lots of luck...

© Copyright John E. Stone, 2009 - Page 16

Molecular Orbital Inner Loop, OpenCL Vec4
Ahhh, much easier to read!!!
for (shell=0; shell < maxshell; shell++) {

float4 contracted_gto = 0.0f;
for (prim=0; prim < const_num_prim_per_shell[shell_counter]; prim++) {

float exponent = const_basis_array[prim_counter];
float contract_coeff = const_basis_array[prim_counter + 1];
contracted_gto += contract_coeff * native_exp2(-exponent*dist2);
prim_counter += 2;

}
float4 tmpshell=0.0f;
switch (const_shell_symmetry[shell_counter]) {

case S_SHELL:
value += const_wave_f[ifunc++] * contracted_gto; break;

case P_SHELL:
tmpshell += const_wave_f[ifunc++] * xdist;
tmpshell += const_wave_f[ifunc++] * ydist;
tmpshell += const_wave_f[ifunc++] * zdist;
value += tmpshell * contracted_gto;
break;

OpenCL’s C-like kernel language
is easy to read, even 4-way
vectorized kernels can look
similar to scalar CPU code.

All 4-way vectors shown in green.

© Copyright John E. Stone, 2009 - Page 17

Apples to Oranges Performance Results:
OpenCL Molecular Orbital Kernels

Kernel Cores Runtime (s) Speedup
Intel QX6700 CPU ICC-SSE (SSE intrinsics) 1 46.580 1.00

Intel Core2 Duo CPU OpenCL scalar 2 43.342 1.07
Intel QX6700 CPU ICC-SSE (SSE intrinsics) 4 11.740 3.97
Intel Core2 Duo CPU OpenCL vec4 2 8.499 5.36

Cell OpenCL vec4*** no __constant 16 6.075 7.67

Radeon 4870 OpenCL scalar 10 2.108 22.1

Radeon 4870 OpenCL vec4 10 1.016 45.8
GeForce GTX 285 OpenCL vec4 30 0.364 127.9
GeForce GTX 285 CUDA 2.1 scalar 30 0.361 129.0

GeForce GTX 285 OpenCL scalar 30 0.335 139.0

GeForce GTX 285 CUDA 2.0 scalar 30 0.327 142.4

Minor varations in compiler quality can have a strong effect on “tight” kernels. The two
results shown for CUDA demonstrate performance variability with compiler revisions, and
that with vendor effort, OpenCL has the potential to match the performance of other APIs.

© Copyright John E. Stone, 2009 - Page 18

MCUDA for OpenCL
• MCUDA “Multicore CUDA”: Compilation framework

originally developed to allow retargeting CUDA kernels
to multicore CPUs
- "MCUDA: An Efficient Implementation of CUDA Kernels on Multi-

cores“, J. Stratton, S. Stone, W. Hwu. Technical report, University
of Illinois at Urbana-Champaign, IMPACT-08-01, March, 2008.

• Potential extensions to MCUDA for OpenCL:
- Make OpenCL performance portable: generate vectorized

OpenCL kernels from scalar CUDA or OpenCL kernels, as needed
by specific target devices

- Translate CUDA kernels to OpenCL
• Availability:
http://impact.crhc.illinois.edu/mcuda.php

© Copyright John E. Stone, 2009 - Page 19

OpenCL on GPU Clusters at NCSA

• Lincoln
- 1536 CPUs, 384 Tesla

GPUs
- Production system

available via
NCSA/TeraGrid HPC
allocation

• AC
- 128 CPUs, 128 Tesla GPUs
- Available for GPU devel &

experimentation

© Copyright John E. Stone, 2009 - Page 20

NCSA CUDA/OpenCL Wrapper Library
• Virtualize accelerator devices
• Workload manager control of device

visibility, access, and resource
allocation

• Transparent monitoring of
application, accelerator activity:

- Measure accelerator utilization and
performance by individual HPC codes

- Track accelerator and API usage by user
community

• Rapid implementation and
evaluation of HPC-relevant features
not available in standard CUDA /
OpenCL APIs

• Hope for eventual uptake of proven
features by vendors and standards
organizations

CUDA
Driver+Runtime

Library

OpenCL
Runtime
Library

CUDA+OpenCL
Wrapper Libraries

HPC Application Using
CUDA or OpenCL

Workload
Manager

Cluster
Monitoring

Kindratenko et al. Workshop on Parallel Programming on
Accelerator Clusters (PPAC), IEEE Cluster 2009.

© Copyright John E. Stone, 2009 - Page 21

NCSA CUDA/OpenCL Wrapper Library
• Principle of operation:

- Use /etc/ld.so.preload to overload (intercept) a subset of CUDA /
OpenCL device management APIs, e.g. cudaSetDevice(),
clGetDeviceIDs(), etc…

• Features:
- NUMA affinity mapping:

- Sets application thread affinity to the CPU core nearest to the target device
- Maximizes host-device transfer bandwidth, particularly on multi-GPU hosts

- Shared host, multi-GPU device fencing
- Only GPUs allocated by batch scheduler are visible / accessible to application
- GPU device IDs are virtualized, with a fixed mapping to a physical device per user

environment
- User always sees allocated GPU devices indexed from 0

- Device ID Rotation
- Virtual to Physical device mapping rotated for each process accessing a GPU

device
- Allowed for common execution parameters (e.g. Target gpu0 with 4 processes,

each one gets separate gpu, assuming 4 gpus available)

© Copyright John E. Stone, 2009 - Page 22

NCSA CUDA/OpenCL Wrapper Library
• Memory Scrubber Utility

- Linux kernel does no management of GPU device memory
- Must run between user jobs to ensure security between users
- Independent utility from wrapper, but packaged with it

• CUDA/OpenCL Wrapper Authors:
- Jeremy Enos <jenos at ncsa.uiuc.edu>
- Guochun Shi <gshi at ncsa.uiuc.edu>
- Volodymyr Kindratenko <kindrtnk at illinois.edu>

• Wrapper Software Availability
- NCSA / UIUC Open Source License
- https://sourceforge.net/projects/cudawrapper/

© Copyright John E. Stone, 2009 - Page 23

Acknowledgements
• University of Illinois at Urbana-Champaign

- Theoretical and Computational Biophysics Group,
NIH Resource for Macromolecular Modeling and Bioinformatics

- NVIDIA CUDA Center of Excellence
- Wen-mei Hwu and the IMPACT Group
- NCSA Innovative Systems Laboratory:

- Jeremy Enos, Guochun Shi, Volodymyr Kindratenko

• AMD, IBM, NVIDIA
- Access to alpha+beta OpenCL toolkits and drivers
- Many timely bug fixes
- Consultation and guidance

• NIH support: P41-RR05969

© Copyright John E. Stone, 2009 - Page 24

Publications
http://www.ks.uiuc.edu/Research/gpu/

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J. Stone.
Communications of the ACM, 52(10):34-41, 2009.

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi,
M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on Parallel
Programming on Accelerator Clusters (PPAC), IEEE Cluster 2009. In press.

• Long time-scale simulations of in vivo diffusion using GPU hardware.
E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09:
Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed
Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular Orbitals on
GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu,
K. Schulten, 2nd Workshop on General-Purpose Computation on Graphics
Pricessing Units (GPGPU-2), ACM International Conference Proceeding Series,
volume 383, pp. 9-18, 2009.

• Multilevel summation of electrostatic potentials using graphics processing units.
D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

© Copyright John E. Stone, 2009 - Page 25

Publications (cont)
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated
clusters. J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling
applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W.
Hwu. Proceedings of the 2008 Conference On Computing Frontiers,
pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics
processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco,
K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation
spectroscopy. A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten.
Biophysical Journal, 93:4006-4017, 2007.

	OpenCL for Molecular Modeling Applications:�Early Experiences
	Overview
	Computational Biology’s Insatiable Demand for Computational Power
	CUDA+OpenCL Acceleration in VMD
	Supporting Diverse Accelerator Hardware in Production Codes….
	Strengths and Weaknesses of Current OpenCL Implementations
	Strengths and Weaknesses of Current OpenCL Implementations (2)
	Electrostatic Potential Maps
	Direct Coulomb Summation in OpenCL,�Building Block for Better Algorithms
	DCS Inner Loop, Scalar OpenCL
	DCS Inner Loop, Vectorized OpenCL
	Apples to Oranges Performance Results: �OpenCL Direct Coulomb Summation Kernels
	Getting More Performance:�Adapting DCS Kernel to OpenCL on Cell
	Computing Molecular Orbitals
	Molecular Orbital Inner Loop, Hand-Coded SSE�Hard to Read, Isn’t It? (And this is the “pretty” version!)
	Molecular Orbital Inner Loop, OpenCL Vec4�Ahhh, much easier to read!!!
	Apples to Oranges Performance Results:�OpenCL Molecular Orbital Kernels
	MCUDA for OpenCL
	OpenCL on GPU Clusters at NCSA
	NCSA CUDA/OpenCL Wrapper Library
	NCSA CUDA/OpenCL Wrapper Library
	NCSA CUDA/OpenCL Wrapper Library
	Acknowledgements
	Publications�http://www.ks.uiuc.edu/Research/gpu/
	Publications (cont)�http://www.ks.uiuc.edu/Research/gpu/

