
John Stone
Theoretical and Computational Biophysics Group, University of Illinois

Accelerating Computational Biology by 
100x Using CUDA



GPU Computing

• Commodity devices, omnipresent in modern computers

• Massively parallel hardware, hundreds of processing units, 
throughput oriented design

• Support all standard integer and floating point types 

• Programming tools allow software to be written in 
dialects of familiar C/C++ and integrated into legacy 
software

• GPU algorithms are often multicore-friendly due to 
attention paid to data locality and work decomposition 
(e.g. MCUDA)



What Speedups Can GPUs Achieve?

• Single-GPU speedups of 8x to 30x vs. CPU core are 
quite common

• Best speedups (100x!) are attained on codes that 
are skewed towards floating point arithmetic, esp. 
CPU-unfriendly operations that prevent effective 
use of SSE or other vectorization

• Amdahl’s Law can prevent legacy codes from 
achieving peak speedups with only shallow GPU 
acceleration efforts



Computational Biology’s Insatiable 
Demand for Processing Power

• Simulations still fall short of 
biological timescales

• Large simulations extremely 
difficult to prepare, analyze

• Order of magnitude increase 
in performance would allow 
use of more sophisticated 
models




Fluorescence Microscopy

• 2-D reaction-diffusion simulation 
used to predict results of 
fluorescence microphotolysis 
experiments

• Simulate 1-10 second microscopy 
experiments, 0.1ms integration 
timesteps

• Goal: <= 1 min per simulation on 
commodity PC hardware

• Project home page: 
http://www.ks.uiuc.edu/Research/microscope/



Fluorescence Microscopy (2)

• Challenges for CPU:
– Efficient handling of boundary conditions

– Large number of floating point operations per 
timestep

• Challenges for GPU w/ CUDA:
– Hiding global memory latency, improving 

memory access patterns, controlling register 
use

– Few arithmetic operations per memory 
reference (for a GPU…)



Fluorescence Microscopy (3)

• Simulation runtime, software development time:

– Original research code (CPU): 80 min

– Optimized algorithm (CPU): 27 min
• 40 hours of work 

– SSE-vectorized (CPU): 8 min
• 20 hours of work

– CUDA w/ 8800GTX: 38 sec, 12 times faster than SSE!
• 12 hours of work, possible to improve further, but already 

“fast enough” for real use

• CUDA code was more similar to the original than to the SSE 
vectorized version – arithmetic is almost “free” on the GPU



Calculating Electrostatic Potential Maps

• Used in molecular 
structure building, 
analysis, visualization, 
simulation

• Electrostatic potentials 
evaluated on a uniformly 
spaced 3-D lattice

• Each lattice point contains 
sum of electrostatic 
contributions of all atoms



Direct Coulomb Summation

• At each lattice point, sum potential contributions 
for all atoms in the simulated structure: 
– potential[j] +=  charge[i] / Rij

Atom[i]

Lattice point j 
being evaluated

Rij: distance 
from lattice[j] 

to Atom[i]



Direct Coulomb Summation on the GPU

• GPU outruns a CPU core by 44x
• Work is decomposed into tens of thousands of independent 

threads, multiplexed onto hundreds of GPU processor cores
• Single-precision FP arithmetic is adequate for intended 

application
• Numerical accuracy can be further improved  by compensated 

summation, spatially ordered summation groupings, or 
accumulation of potential in double-precision

• Starting point for more sophisticated algorithms

GPU Global Memory

GPU Thread Execution ManagerHost

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache



Direct Coulomb Summation on the GPU

Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Host

Atomic
Coordinates

Charges



Direct Coulomb Summation Runtime

GPU 
underutilized

GPU fully utilized, 
~40x faster than 

CPU

Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.   

J. Comp. Chem., 28:2618-2640, 2007.

Lower 
is better



Optimizing for the GPU

• Increase arithmetic intensity, reuse in-register data by 
“unrolling” lattice point computation into inner atom loop

• Each atom contributes to several lattice points, distances 
only differ in the X component:
– potentialA +=  charge[i] / (distanceA to atom[i]) 
– potentialB +=  charge[i] / (distanceB to atom[i]) …

Atom[i]

Distances to 
Atom[i]



CUDA Block/Grid Decomposition

Thread blocks: 
64-256 threads

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

…

Unrolling increases 
computational tile size

Threads compute
up to 8 potentials. 

Skipping by half-warps
optimizes global mem.perf.



Direct Coulomb Summation Performance

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. 
Stone, J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CUDA-Simple: 
14.8x faster,
33% of fastest 
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than 
CPU, 291 GFLOPS on 

GeForce 8800GTX

CPU



Multi-GPU Direct Coulomb Summation

• Effective memory bandwidth 
scales with the number of 
GPUs utilized

• PCIe bus bandwidth not a 
bottleneck for this algorithm

• 117 billion evals/sec

• 863 GFLOPS

• 131x speedup vs. CPU core

• Power: 700 watts during 
benchmark

Quad-core Intel QX6700
Three NVIDIA GeForce 8800GTX 



Multi-GPU Direct Coulomb Summation 

• 4-GPU (2 Quadroplex) Opteron 
node at NCSA

• 157 billion evals/sec
• 1.16 TFLOPS
• 176x speedup vs. Intel QX6700 

CPU core w/ SSE

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

• 4-GPU (GT200)
• 241 billion evals/sec
• 1.78 TFLOPS
• 271x speedup vs. Intel QX6700 

CPU core w/ SSE



Cutoff Summation

• At each lattice point, sum potential contributions for 
atoms within cutoff radius:
– if (distance to atom[i] < cutoff)
– potential += (charge[i] / r) * s(r)

• Smoothing function s(r) is algorithm dependent

Cutoff radius
r: distance 
to Atom[i]

Lattice point 
being evaluated Atom[i]



Infinite vs. Cutoff Potentials 

• Infinite range potential:
– All atoms contribute to all lattice points
– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:
– Atoms contribute to lattice points within cutoff 

distance
– Summation algorithm has linear time complexity 
– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form
• Short-range part for fast methods of approximating full 

electrostatics
• Used for fast decaying interactions

(e.g. Lennard-Jones, Buckingham)



Cutoff Summation on the GPU

Process atom bins 
for current 

potential map 
region

Atoms spatially hashed into fixed-
size “bins” in global memory

CPU handles bin overflows

Global memory

Shared memory

Atom bin

Potential 
map 

regions

Atoms

Constant memory

Bin-Region 
neighborlist

Bins
of 8
atoms



Using the CPU to Improve GPU Performance

• GPU performs best when the work evenly divides 
into the number of threads/processing units

• Optimization strategy:

– Use the CPU to “regularize” the GPU workload
– Handle exceptional or irregular work units on 

the CPU while the GPU processes the bulk of 
the work

– On average, the GPU is kept highly occupied, 
attaining a much higher fraction of peak 
performance



GPU acceleration of cutoff pair potentials for molecular modeling applications. C. 
Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008 

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime

GPU cutoff with 
CPU overlap:
17x-21x faster 
than CPU core



NAMD Parallel Molecular Dynamics

• Designed from the beginning as a parallel program
• Uses the Charm++ philosphy:

– Decompose computation into a large number of objects
– Intelligent run-time system (Charm++) assigns objects to 

processors for dynamic load balancing with minimal 
communication

Hybrid of spatial and force decomposition:

•Spatial decomposition of atoms into cubes
(called patches)

•For every pair of interacting patches, create
one object for calculating electrostatic
interactions

•Recent: Blue Matter, Desmond, etc. use this
idea in some form

Kale et al., J. Comp. Phys. 151:283-312, 1999.



847 objects 100,000

Example 
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU

NAMD Overlapping Execution



Nonbonded Forces on G80 GPU

• Start with most expensive calculation: direct nonbonded interactions.
• Decompose work into pairs of patches, identical to NAMD structure.
• GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.



Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Force Interpolation

Nonbonded Forces CUDA Code

Exclusions

Parameters

Accumulation

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom;      // per-thread atom, stored in registers
float4 iforce;   // per-thread force, stored in registers
for ( int j = 0; j < jatom_count; ++j ) {
float dx = jatom[j].x - iatom.x;   float dy = jatom[j].y - iatom.y;  float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if ( r2 < cutoff2 ) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if ( abs(indexdiff) <= (int) jatom[j].excl_maxdiff ) {

indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma;  // sigma
f *= f*f;  // sigma^3
f *= f;  // sigma^6
f *= ( f * ft.x + ft.y );  // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if ( excluded ) { f = qq * ft.w; }  // PME correction
else { f += qq * ft.z; }  // Coulomb
iforce.x += dx * f;   iforce.y += dy * f;    iforce.z += dz * f;
iforce.w += 1.f;  // interaction count or energy

}
}



GPU kernels are launched asynchronously, CPU continues
with its own work, polling for GPU completion periodically.

Forces needed by remote nodes are explicitly scheduled to be 
computed ASAP to improve overall performance.

NAMD Overlapping Execution with 
Asynchronous CUDA kernels



Molecular Simulations: Virology

• Simulations lead to better 
understanding of the mechanics of viral 
infections

• Better understanding of infection 
mechanics at the molecular level may 
result in more effective treatments for 
diseases

• Since viruses are large, their 
computational “viewing” requires 
tremendous resources, in particular 
large parallel computers

• GPUs can significantly accelerate the 
simulation, analyses, and visualization 
of such structures



STMV benchmark, 1M atoms,12A cutoff,
PME every 4 steps, running on

2.4 GHz AMD Opteron + NVIDIA Quadro FX 5600

NAMD Performance on 
NCSA GPU Cluster, April 2008



NAMD Performance on 
NCSA GPU Cluster, April 2008

• STMV virus (1M atoms)
• 60 GPUs match 

performance of 330 CPU 
cores

• 5.5-7x overall application 
speedup w/ G80-based 
GPUs

• Overlap with CPU
• Off-node results done first
• Plans for better 

performance
– Tune or port remaining 

work
– Balance GPU load

0

1

2

3

4

5

1 2 4 8 16 32 48
se

co
nd

s 
pe

r 
st

ep

CPU only with GPU GPU

STMV Performance

2.4 GHz Opteron + Quadro FX 5600

25.7 13.8 7.8

fa
st

er



NAMD Performance on 
GT200 GPU Cluster, August 2008

• 8 GT200s, 240 SPs @ 1.3GHz:
– 72x faster than a single CPU core
– 9x overall application speedup vs. 

8 CPU cores
– 32% faster overall than 8 nodes of 

G80 cluster
– GT200 CUDA kernel is 54% faster
– ~8% variation in GPU load

• Cost of double-precision for 
force accumulation is minimal: 
only 8% slower than single-
precision

• LIVE DEMO on 4 GT200s 
in Exhibition Hall,       
NVIDIA booth 220



GPU Kernel Performance, May 2008
GeForce 8800GTX w/ CUDA 1.1, Driver 169.09
http://www.ks.uiuc.edu/Research/gpu/

Calculation / Algorithm Algorithm class Speedup vs. Intel 
QX6700 CPU core

Fluorescence microphotolysis Iterative matrix / stencil 12x

Pairlist calculation Particle pair distance 
test

10-11x

Pairlist update Particle pair distance 
test

5-15x

Cutoff electron density sum Particle-grid w/ cutoff 15-23x

MSM long-range Grid-grid w/ cutoff 22x

Direct Coulomb summation Particle-grid 44x

Molecular dynamics            
non-bonded force calc.

N-body cutoff force 
calculations

10x                       
20x (w/ pairlist)

MSM short-range Particle-grid w/ cutoff 24x



Lessons Learned

• GPU algorithms need fine-grained parallelism 
and sufficient work to fully utilize the 
hardware

• Fine-grained GPU work decompositions 
compose well with the comparatively coarse-
grained decompositions used for multicore or 
distributed memory programming

• Much of GPU algorithm optimization revolves 
around efficient use of multiple memory 
systems and latency hiding



Lessons Learned (2)

• The host CPU can potentially be used to 
“regularize” the computation for the GPU, 
yielding better overall performance

• Overlapping CPU work with GPU can hide some 
communication and unaccelerated 
computation



Ongoing and Future Work

• Visualization of multi-million atom 
biomolecular complexes
– Migrate structural geometry and volumetric 

computations to the GPU
– GPU accelerated ray tracing, ambient occlusion 

lighting, …

• GPU acceleration of long running molecular 
dynamics trajectory analyses

• More opportunities available than time to 
pursue them!



Acknowledgements

• Prof. Klaus Schulten, David Hardy, Jim Phillips, 
Theoretical and Computational Biophysics 
Group, University of Illinois at Urbana-
Champaign

• Prof. Wen-mei Hwu, Chris Rodrigues, John 
Stratton, IMPACT Group, University of Illinois at 
Urbana-Champaign

• The CUDA team at NVIDIA

• NVIDIA, NCSA (GPU clusters)

• NIH support: P41-RR05969



Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated 
clusters.  J. Phillips, J. Stone, K. Schulten.  Proceedings of the 2008 
ACM/IEEE Conference on Supercomputing, (in press)

• GPU acceleration of cutoff pair potentials for molecular modeling 
applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. 
Hwu. Proceedings of the 2008 Conference On Computing Frontiers, 
pp. 273-282, 2008.

• GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. 
Stone, J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics 
processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. 
Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation 
spectroscopy. A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K. 
Schulten. Biophysical Journal, 93:4006-4017, 2007. 


	John Stone�Theoretical and Computational Biophysics Group, University of Illinois
	GPU Computing
	What Speedups Can GPUs Achieve?
	Computational Biology’s Insatiable Demand for Processing Power
	Fluorescence Microscopy
	Fluorescence Microscopy (2)
	Fluorescence Microscopy (3)
	Calculating Electrostatic Potential Maps
	Direct Coulomb Summation
	Direct Coulomb Summation on the GPU
	Direct Coulomb Summation on the GPU
	Direct Coulomb Summation Runtime
	Optimizing for the GPU
	CUDA Block/Grid Decomposition
	Direct Coulomb Summation Performance
	Multi-GPU Direct Coulomb Summation 
	Multi-GPU Direct Coulomb Summation 
	Cutoff Summation
	Infinite vs. Cutoff Potentials 
	Cutoff Summation on the GPU
	Using the CPU to Improve GPU Performance
	Cutoff Summation Runtime
	NAMD Parallel Molecular Dynamics
	NAMD Overlapping Execution
	Nonbonded Forces on G80 GPU
	Nonbonded Forces CUDA Code
	NAMD Overlapping Execution with Asynchronous CUDA kernels
	Molecular Simulations: Virology
	NAMD Performance on �NCSA GPU Cluster, April 2008
	NAMD Performance on �NCSA GPU Cluster, April 2008
	NAMD Performance on �GT200 GPU Cluster, August 2008
	GPU Kernel Performance, May 2008�GeForce 8800GTX w/ CUDA 1.1, Driver 169.09�http://www.ks.uiuc.edu/Research/gpu/
	Lessons Learned
	Lessons Learned (2)
	Ongoing and Future Work
	Acknowledgements
	Publications�http://www.ks.uiuc.edu/Research/gpu/

