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Cutoff Pair Potentials
• Essential to molecular modeling applications

– E.g., van der Waals, electrostatic potential
– Often the most costly part of computation

• Evaluate a cutoff
electrostatic potential on a
3D lattice

• Applications include
– Structure building

• Ion placement
• Time-averaged potential

– Analysis
• Visualizing electrostatic

potential

2D slice through an
electrostatic potential map

Red: positive Blue: negative
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Algorithm for Pair Potentials

• At each grid point, sum
the electrostatic
potential from all atoms

• Highly data-parallel
• But has quadratic

complexity
– Number of grid points ×

number of atoms
– Both proportional to volume
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Algorithm for Pair Potentials
With a Cutoff

• Ignore atoms beyond a
cutoff distance, rc
– Typically 8Å–12Å
– Long-range potential may

be computed separately

• Number of atoms
within cutoff distance is
roughly constant
– On the order of 1000
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Spatial Sorting

• Presort atoms into bins
by location in space

• Each bin holds several
atoms

• Cutoff potential only
uses bins within rc
– Yields a linear complexity

cutoff potential algorithm
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The Draw of GPU Computing

• Raw power
– Highly parallel, throughput-oriented design
– 345.6 GFLOPS peak performance

• Programmability
– C-language programming interface via CUDA

• Adoptability
– Commodity hardware, easy for users to add to a

desktop computer
– Large install base

(1 million CUDA-capable GPUs sold per week)
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Architecture of
the G80 GPU

• 16 Streaming Multiprocessors
– 8 processors
– 768 thread contexts
– Groups of 32 threads (warps)

run in lockstep

• Large, long-latency, off-chip
global memory
– > 200 cycles
– 64-byte, aligned accesses are

most efficient
• Effected with 16 consecutive

accesses from a half-warp

• Scratchpad shared memory
– 16 single-ported banks

• No general-purpose cache
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CUDA Programming Model
• Lightweight threads multiplexed onto

processors

• 32 threads bundled into a warp
– SIMD-like simultaneous instruction issue

• Warps grouped into thread blocks
– Share resources on one Streaming

Mutiprocessor

• CPU launches a single grid of many
thread blocks
– Thread blocks start executing asynchronously

as resources become available
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GPU Programming Principles

• Create hundreds of thousands of small,
independent threads
– Keep each thread’s resource use small

• Registers, shared memory

– Allows many threads to be active simultaneously

• Exploit data locality and conserve memory
bandwidth
– Avoid waiting for off-chip memory accesses
– Threads in a thread block can take advantage of

shared memory on an SM
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Previous Cutoff Kernel

• 6× speedup relative to CPU version
• Work-inefficient

– Coarse spatial hashing into (24Å)3 bins
– Only 6.5% of the atoms a thread tests are

within the cutoff distance

• Better adaptation of the algorithm to the
GPU will gain another 2.5×
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Design Considerations for
the New Cutoff Kernel

• High memory throughput to atom data
essential
– Group threads together for locality
– Fetch blocks of data into shared memory
– Structure atom data to allow fetching

• After taking care of memory demand,
optimize to reduce instruction count
– Loop and instruction-level optimization
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Improving Work Efficiency

• (4Å)3 cube of the potential map
computed by each thread block
– 8×8×8 potential map points
– 128 threads per block
– 34% of atoms are within cutoff distance

• Thread block needs atom data up to
the cutoff distance
– Use a sphere of bins
– All threads in a block scan the same

atoms
• No hardware penalty for multiple

simultaneous reads of the same address
• Simplifies fetching of data
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Another thread block runs
while this one waits

Caching Atom Data
• >200 cycle global memory latency
• Effectively 1 cycle shared memory latency
• Shared memory used in software as a cache

– Threads in a thread block collectively load one bin
at a time into shared memory

– Once loaded, threads scan atoms in shared memory
– Reuse: Loaded bins used 128 times

Threads individually
compute potentials

using bin in shared mem

Collectively
load next

bin

Write bin to
shared
memorySu

sp
en

d
Data

returned from
global

memory

Re
ad

y

Time

Execution cycle of a thread block
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High-Throughput Access to
Atom Data

• Full global memory bandwidth only with 64-
byte, 64-byte-aligned memory accesses
– Each bin is exactly 128 bytes
– Bins stored in a 3D array

• 128 bytes = 8 atoms (x,y,z,q)
– Nearly uniform density of atoms in typical systems

• 1 atom per 10 Å3

– Bins hold atoms from exactly (4Å)3 of space
– Number of atoms in a bin varies

• For water test systems, 5.35 atoms in a bin on average
• Some bins overfull
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Handling Overfull Bins

• 2.6% of atoms exceed bin capacity
• Spatial sorting puts these into a list of

extra atoms
• Extra atoms processed by the CPU

– Computed with CPU-optimized algorithm
– Takes about 66% as long as GPU

computation
– Overlapping GPU and CPU computation

yields in additional speedup
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GPU Thread Optimization

• Each thread computes
potentials at four
potential map points
– Reuse x and z components

of distance calculation
– Check x and z components

against cutoff distance
(cylinder test)

• Exit inner loop early upon
encountering the first
empty slot in a bin
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GPU Thread Inner Loop
for (i = 0;  i < BIN_DEPTH;  i++) {
  aq = AtomBinCache[i].w;
  if (aq == 0) break;

  dx = AtomBinCache[i].x - x;
  dz = AtomBinCache[i].z - z;
  dxdz2 = dx*dx + dz*dz;
  if (dxdz2 < cutoff2) continue;

  dy = AtomBinCache[i].y - y;
  r2 = dy*dy + dxdz2;
  if (r2 < cutoff2)
    poten0 += aq * rsqrtf(r2);

  dy = dy - 2 * grid_spacing;
  /* Repeat three more times */
}

Exit when an empty
atom bin entry is

encountered 

Cylinder test 

Cutoff test
and potential value

calculation
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Cutoff Summation Runtime

50k–1M atom structure size

GPU cutoff with
CPU overlap:
12x-21x faster
than CPU core
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Cutoff Summation Speedup

50k–1M atom structure size

Diminished
overlap

benefit due
to limited
queue size
(16 entries)

Cutoff
summation
alone 9-13×
faster than

CPU
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Improving Floating-Point
Accuracy

• GPU provides single-precision FP with slightly
reduced accuracy on some operations

• Accuracy depends on summation order
– FP addition is not associative

• Compensated summation improves accuracy
– Less than 10% performance cost on GPU

0.00015790.5710GPU with Compensated
Summation

0.00015790.8715GPU

0.00009390.4793CPU

Maximum %
absolute error

Maximum % relative
error

Error relative to double-precision floating point on CPU
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Summary
• Cutoff pair potentials heavily used in

molecular modeling applications
• Use CPU to regularize the work given to the

GPU to optimize its performance
– GPU performs very well on 64-byte-aligned array

data

• Run CPU and GPU concurrently to improve
performance

• Use shared memory as a program-managed
cache
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Backup Slides
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Ion Placement

• Selection of initial conditions for a negatively
charged virus in water

• Neutralize charge by adding positively
charged ions
– Also stabilizes the virus structure

• Ions placed at sites with most negative
electrostatic potential
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Simplified Pseudocode of the
Cutoff Pair Potentials Algorithm

for each grid point, rj:
 for each nearby bin, B:
  for each atom (q,r) in B:
    dr = |r - rj|
    if dr < rc:
      s = (1 - (dr/rc)2)2
      V(rj) = V(rj) + q/dr * s


