Using GPU Computing to Accelerate Molecular Modeling Applications

David J. Hardy

Theoretical and Computational Biophysics Group
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

CECAM Workshop, “Algorithmic re-engineering...”
Lugano, Switzerland, October 2, 2009
Outline

• Overview of GPU computing
 - NVIDIA CUDA programming model
• GPU acceleration of NAMD and VMD
• Case study: GPU acceleration of multilevel summation of electrostatic potentials
Why GPU Computing?

- Cost effective, commodity devices
- Massively parallel hardware with hundreds of processing units offering substantial floating point performance over CPUs
- Fully programmable processors that support standard integer and floating point types
- Programming toolkits allow software to be written in dialects of C/C++ and integrated into legacy software
- GPU algorithms are generally multicore friendly due to data locality and data-parallel work decomposition
- We need more processing power, but CPU core speeds aren’t getting faster! We must exploit GPU/multicore technologies!
What speedups can GPUs achieve?

- Single GPU speedups of 10x to 30x over one CPU core are common
- Best speedups of 100x or more attained for codes dominated by floating point arithmetic, especially for native GPU machine instructions, e.g. expf(), rsqrtf()
- Legacy codes employing “shallow” efforts at GPU acceleration might not exhibit these peak speedups due to Amdahl’s Law
- GPU programming toolkits require the programmer to balance architectural tradeoffs for best performance
Comparison of CPU and GPU Hardware Architecture

CPU: Cache heavy, focused on individual thread performance

GPU: ALU heavy, massively parallel, throughput oriented
NVIDIA GPU Architecture

Streaming Processor Array

Texture Processor Cluster

Texture Unit

Constant Cache
64kB, read-only

FP64 Unit

Special Function Unit
SIN, EXP, RSQRT, Etc…

Streaming Multiprocessor

Instruction L1
Data L1

Instruction Fetch/Dispatch

Shared Memory

FP64 Unit (double precision)

SM

TPC

SP

SFU

ADD, SUB
MAD, Etc…

Constant Cache
Read-only, 8kB spatial cache, 1/2/3-D interpolation

NVIDIA GT200

NVIDIA Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC
GPU Peak Single-precision Performance: **Exponential Trend**
GPU Peak Memory Bandwidth: **Linear** Trend

![GPU Performance Chart](chart.png)
GPU Future Performance Trends

• We expect the ratio between floating point performance and memory bandwidth will continue to increase

• Algorithms with linear time complexity $O(N)$ will be increasingly memory bound

• Implications for GPU algorithm design:
 - Use shared memory and constant memory caches to amplify the effective GPU memory bandwidth
 - We can benefit from tradeoffs that increase computational density while either decreasing memory access or increasing parallel scheduling (e.g. don’t use Newton’s 3rd Law to evaluate particle-particle interactions)
NVIDIA CUDA Overview

• Hardware and software architecture for GPU computing, foundation for building higher level programming libraries and toolkits

• CUDA released in 2007:
 - Data-parallel programming model
 - Work is decomposed into grids of blocks containing warps of threads, multiplexed onto massively parallel GPU hardware
 - Light-weight, low level of abstraction, exposes many GPU architecture features to enable development of high performance GPU kernels
CUDA Threads, Blocks, Grids

• GPUs use hardware multithreading to hide latency and achieve high ALU utilization

• For high performance, a GPU must be saturated with concurrent work: at least 10,000 threads

• A grid of hundreds of thread blocks is scheduled onto a large array of SIMT cores

• Each core executes several thread blocks of 64–512 threads each, switching among them to hide latencies for slow memory accesses, etc.

• 32-thread warps are executed in lock-step (e.g. in SIMD-like fashion)

• Conditionals are serialized over the if and else branches
Mapping CUDA Abstractions onto GPU

Grid of thread blocks

Texture Processor Cluster

Streaming Multiprocessor

NVIDIA GT200

Texture Unit

Streaming Processor Array

SM

Multiple thread blocks, many warps of threads

TPC

Individual threads

SM

SP

SFU

SP
GPU Memory Accessible in CUDA

- Mapped host memory: up to 4GB, ~5.7GB/sec bandwidth (PCIe), accessible by multiple GPUs
- Global memory: up to 4GB, high latency (~600 clock cycles), 140GB/sec bandwidth, accessible by all threads; also supports slow atomic operations
- Texture memory: read-only, cached, and interpolated/filtered access to global memory
- Constant memory: 64KB, read-only, cached, fast/low-latency if data elements are accessed in unison by peer threads
- Shared memory: 16KB, low-latency, accessible among threads in the same block, fast if accessed without bank conflicts
An Approach to Writing CUDA Kernels

- Find an algorithm that exposes substantial parallelism, thousands of independent threads
- Identify appropriate GPU memory subsystems for storage of data used by kernel
- Are there tradeoffs that can be made to exchange computation for more parallelism?
 - Although counterintuitive, this strategy has resulted in past success
 - “Brute force” methods that expose significant parallelism do surprisingly well on current GPUs
- Analyze the real-world use case for the problem and optimize the kernel for problem size and characteristics that will be heavily used
NAMD — “Nanoscale Molecular Dynamics”

- CHARMM, AMBER, OPLS, force fields
- Efficient PME full electrostatics
- Conjugate gradient minimization
- Temperature and pressure controls
- Steered molecular dynamics (many methods)
- Interactive molecular dynamics (with VMD)
- Locally enhanced sampling
- Alchemical free energy perturbation
- User extensible in Tcl for forces and algorithms
- *All features run in parallel and scale to millions of atoms!*
Molecular Mechanics Force Field

\[U(\vec{R}) = \sum_{\text{bonds}} k_i^{\text{bond}} (r_i - r_0)^2 + \sum_{\text{angles}} k_i^{\text{angle}} (\theta_i - \theta_0)^2 + \]

\[U_{\text{bond}} + U_{\text{angle}} + \sum_{\text{dihedrals}} k_i^{\text{dihed}} \left[1 + \cos \left(n_i \phi_i + \delta_i \right) \right] + \]

\[U_{\text{dihedral}} + \sum_{i \neq j} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \sum_{i \neq j} \frac{q_i q_j}{\epsilon r_{ij}} \]

\[U_{\text{nonbond}} \]
NAMD Hybrid Decomposition

• Spatially decompose data and communication
• Separate but related work decomposition
• “Compute objects” facilitate iterative, measurement-based load balancing system
NAMD Overlapping Execution

Example Configuration

847 objects

Offload to GPU

100,000

Objects are assigned to processors and queued as data arrives.
Overlapping GPU and CPU with Communication

One Timestep
Nonbonded Forces with CUDA

- Decompose work into pairs of patches, identical to NAMD structure
- Each thread block is assigned to a pair of patches (replacing a nonbonded compute object).

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

- 16kB Shared Memory
 - Patch A Coordinates & Parameters
- 32kB Registers
 - Patch B Coords, Params, & Forces
- 32-way SIMD Multiprocessor
 - 32-256 multiplexed threads
- Texture Unit
 - Force Table
 - Interpolation
- Constants
 - Exclusions
- 8kB cache
- 8kB cache
- 768 MB Main Memory, no cache, 300+ cycle latency

New NCSA “8+2” Lincoln Cluster

- CPU: 2 Intel E5410 Quad-Core 2.33 GHz
- GPU: 2 NVIDIA C1060
 - Actually S1070 shared by two nodes
- How to share a GPU among 4 CPU cores?
 - Send all GPU work to one process?
 - Coordinate via messages to avoid conflict?
 - Or just hope for the best?
NCSA Lincoln Cluster Performance
(8 cores and 2 GPUs per node)

STMV s/step

CPU cores

8 GPUs = 96 CPU cores

2 GPUs = 24 cores

4 GPUs

8 GPUs

16 GPUs

~5.6

~2.8

0

0.400

0.800

1.200

1.600

4

8

16

32

64

128

NCSA Lincoln Cluster Performance
(8 cores and 2 GPUs per node)

STMV s/step

CPU cores

8 GPUs = 96 CPU cores

2 GPUs = 24 cores

4 GPUs

8 GPUs

16 GPUs

~5.6

~2.8

0

0.400

0.800

1.200

1.600

4

8

16

32

64

128

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

National Center for Research Resources
VMD — “Visual Molecular Dynamics”

• Visualization and analysis of molecular dynamics simulations, sequence data, volumetric data, quantum chemistry simulations, particle systems, ...

• User extensible with scripting and plugins

• http://www.ks.uiuc.edu/Research/vmd/

![Image of molecular structure]
Range of VMD Usage Scenarios

• Users run VMD on a diverse range of hardware: laptops, desktops, clusters, and supercomputers

• Typically used as a desktop application for interactive 3D molecular graphics and analysis

• Can also be run in pure text mode for numerically intensive analysis tasks, batch mode movie rendering, etc.

• GPU acceleration provides an opportunity to make some slow, or batch, calculations capable of being run interactively, or on-demand...
CUDA Acceleration in VMD

- Electrostatic field calculation, ion placement: factor of 20x to 44x faster
- Molecular orbital calculation and display: factor of 120x faster
- Imaging of gas migration pathways in proteins with implicit ligand sampling: factor of 20x to 30x faster
Electrostatic Potential Maps

- Electrostatic potentials evaluated on 3D lattice:

\[V_i = \sum_j \frac{q_j}{4\pi \varepsilon_0 |r_j - r_i|} \]

- Applications include:
 - Ion placement for structure building
 - Time-averaged potentials for simulation
 - Visualization and analysis

Isoleucine tRNA synthetase
Direct Coulomb Summation
(naïve approach)

- Each lattice point accumulates electrostatic potential contribution from all atoms:
 \[
 \text{potential}[j] += \frac{\text{charge}[i]}{r_{ij}}
 \]

Lattice point \(j\) being evaluated

\(r_{ij}\): distance from lattice\([j]\) to atom\([i]\)

atom\([i]\)
Direct Coulomb Summation on GPU

- Grid of thread blocks
- Lattice padding
- Atomic Coordinates
- Charges
- Threads compute up to 8 potentials, skipping by half-warps
- Thread blocks: 64-256 threads
- Constant Memory
- GPU
- Global Memory
- Parallel Data Cache
- Texture
Direct Coulomb Summation Performance

Lower is better

Cold start GPU initialization time: ~110ms

GPU underutilized

GPU fully utilized, ~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.
Using Multiple GPUs for Direct Coulomb Summation

<table>
<thead>
<tr>
<th></th>
<th>Evals/sec</th>
<th>TFLOPS</th>
<th>Speedup*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-GPU (2 Quadroplex)</td>
<td>157 billion</td>
<td>1.16</td>
<td>176</td>
</tr>
<tr>
<td>Opteron node at NCSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-GPU GTX 280 (GT200)</td>
<td>241 billion</td>
<td>1.78</td>
<td>271</td>
</tr>
</tbody>
</table>

*Speedups relative to Intel QX6700 CPU core w/ SSE

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/
Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Electrostatics needed to build full structural model, place ions, study macroscopic properties

Electrostatic field of chromatophore model from multilevel summation method: computed with 3 GPUs (G80) in ~90 seconds, 46x faster than single CPU core

Full chromatophore model will permit structural, chemical and kinetic investigations at a structural systems biology level
Multilevel Summation Method

- Approximates full electrostatic potential
- Calculates sum of smoothed pairwise potentials interpolated from a hierarchy of lattices
- Advantages over PME (particle-mesh Ewald) and/or FMM (fast multipole method):
 - Algorithm has linear time complexity
 - Permits non-periodic and periodic boundaries
 - Produces continuous forces for dynamics (advantage over FMM)
 - Avoids 3D FFTs for better parallel scaling (advantage over PME)
 - Spatial separation allows use of multiple time steps
 - Can be extended to other types of pairwise interactions
Multilevel Summation Main Ideas

- Split the $1/r$ potential into a short-range cutoff part plus smoothed parts that are successively more slowly varying. All but the top level potential are cut off.
- Smoothed potentials are interpolated from successively coarser lattices.
- Finest lattice spacing h and smallest cutoff distance a are doubled at each successive level.

<table>
<thead>
<tr>
<th>Split the $1/r$ potential</th>
<th>Interpolate the smoothed potentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/r$</td>
<td>$2h$-lattice</td>
</tr>
<tr>
<td>$= a$</td>
<td>h-lattice</td>
</tr>
<tr>
<td>$2a$</td>
<td>atoms</td>
</tr>
</tbody>
</table>
Multilevel Summation Calculation

\[
\text{map potential} = \text{exact short-range interactions} + \text{interpolated long-range interactions}
\]

Computational Steps

- long-range parts
- restriction
- prolongation
- interpolation
- interpolation
- prolongation
- restriction
- restriction
- short-range cutoff
- atom charges
- map potentials
Multilevel Summation on the GPU

Accelerate **short-range cutoff** and **lattice cutoff** parts

Performance profile for 0.5 Å map of potential for 1.5 M atoms. Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

<table>
<thead>
<tr>
<th>Computational steps</th>
<th>CPU (s)</th>
<th>w/ GPU (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-range cutoff</td>
<td>480.07</td>
<td>14.87</td>
<td>32.3</td>
</tr>
<tr>
<td>Long-range anterpolation</td>
<td>0.18</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>restriction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice cutoff</td>
<td>49.47</td>
<td>1.36</td>
<td>36.4</td>
</tr>
<tr>
<td>Prolongation</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpolation</td>
<td>3.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>533.52</td>
<td>20.21</td>
<td>26.4</td>
</tr>
</tbody>
</table>

Short-range Cutoff Summation

- Each lattice point accumulates electrostatic potential contribution from atoms within cutoff distance:

 \[\text{if } (r_{ij} < \text{cutoff}) \]
 \[\text{potential}_j += \left(\frac{\text{charge}_i}{r_{ij}} \right) \times s(r_{ij}) \]

- Smoothing function \(s(r) \) is algorithm dependent
Cutoff Summation on the GPU

- Atoms are spatially hashed into fixed-size bins (8 deep, stored x/y/z/q)
- CPU handles overflowed bins, so GPU kernel can be aggressive (choosing 4Å bin length works well in practice)
- GPU thread block calculates corresponding region of potential map
- Solve costly bin/region neighbor checks with lookup table of offsets

Each thread block cooperatively loads atom bins from surrounding neighborhood into shared memory for evaluation.
Using CPU to Improve GPU Performance

• GPU performs best when the work evenly divides into the number of threads / processing units

• Optimization strategy:
 - Use the CPU to “regularize” the GPU workload
 - Use fixed size bin data structures, with “empty” slots skipped or producing zeroed out results
 - Handle exceptional or irregular work units on the CPU while the GPU processes the bulk of the work
 - On average, the GPU is kept highly occupied to attain good fraction of peak performance
Cutoff Summation Performance

Speedup vs. Lattice Volume

GPU acceleration of cutoff pair potentials for molecular modeling applications.

- GPU cutoff with CPU overlap: 17x-21x faster than CPU core
- If asynchronous stream blocks due to queue filling, performance will degrade from peak…
Cutoff Summation Observations

- Use of CPU to handle overflowed bins is very effective, overlaps well with GPU work

- Caveat when using streaming API to invoke GPU kernel: avoid overfilling stream queue with work so as not to trigger blocking behavior (improved in current drivers)

- Increasing floating point precision with compensated summation (all GPUs) or double-precision (GT200 only) for potential accumulation results in just ~10% performance penalty versus pure single-precision arithmetic
Lattice Cutoff Summation

- Each lattice point accumulates electrostatic potential contribution from all lattice point charges within cutoff distance.
- Relative distances are the same between points on a uniform lattice, multiplication by a precomputed stencil of “weights”.
- Weights at each level are identical up to a scaling factor (due to choice of splitting and doubling of lattice spacing and cutoff).
- Calculate as 3D convolution of sub-cube of lattice point charges with enclosing cube of weights, size determined by cutoff a and grid spacing h.
- Cube length is $2 \times \lceil 2a/h \rceil - 1$; we use $a=12\text{Å}$ and $h=2\text{Å}$ for cube stencil size $23\times23\times23$.

![Diagram of lattice cutoff summation](image)
Lattice Cutoff Summation on GPU

- Store stencil of weights in constant memory (padded up to next multiple of 4)
- Assign GPU thread block to calculate 4x4x4 region of lattice potentials, stored contiguously
- Regions stored in flattened array, each level padded with zero charge region, levels stored contiguously, constant memory stores mapping of 3D region level sets into flattened array
- Load nearby regions of lattice point charges into shared memory (analogous to loading atom bins for short-range cutoff)
- Evaluate all lattice levels concurrently, scaling by level factor (keeps GPU from running out of work at upper lattice levels)
Evaluation Using Sliding Window

• Every thread in block needs to simultaneously read and use the same weight from constant memory

• Read into shared memory an 8x8x8 block (8 regions) of lattice point charges

• Slide a window of size 4x4x4 by 4 shifts along each dimension
Lessons Learned

• GPU algorithms need fine-grained parallelism and sufficient work to fully utilize the hardware

• Efficient use of GPU multiple memory systems and latency hiding is essential for good performance

• CPU can be used to “regularize” computation for GPU, handling exceptional cases for overall better performance

• Overlapping CPU work with GPU can hide some communication and unaccelerated computation

• Targeted use of double-precision floating point arithmetic or compensated summation can improve overall numerical precision at low cost to performance
Related Publications

See GPU development at http://www.ks.uiuc.edu/Research/gpu/
Acknowledgments

• Prof. Klaus Schulten, John Stone, and Jim Phillips of the Theoretical and Computational Biophysics Group at the Beckman Institute, University of Illinois at Urbana-Champaign

• Prof. Wen-mei Hwu and Chris Rodrigues of the IMPACT group, University of Illinois at Urbana-Champaign

• Prof. Robert Skeel, Purdue University

• NVIDIA Center of Excellence, University of Illinois at Urbana-Champaign

• NCSA Innovative Systems Lab

• The CUDA team at NVIDIA

• NIH Grant P41-RR05969
Looking Forward to NVIDIA Fermi

- New architecture “Fermi” expected in 2010, features include:
 - ECC memory (GDDR5)
 - L1 (64 KB, together with shared memory) and L2 (768 KB) caches
 - 512 cores
 - Improved double precision performance (single to double ratio 1:2)
 - Improved floating point accuracy
 - Faster thread context switching (factor of 10)
 - Concurrent kernel execution
 - Second DMA engine to overlap two memory transfers
 - Extended C++ support (e.g. virtual functions, exception handling)
 - 40 nm process technology with 3 billion transistors
 - Similar power consumption to current models

(from HPCwire, “NVIDIA Takes GPU Computing to the Next Level,” September 29, 2009)