S7382—GPUs Unleashed: Analysis of Petascale Molecular Dynamics Simulations with VMD

John E. Stone
Theoretical and Computational Biophysics Group
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
http://www.ks.uiuc.edu/Research/gpu/
S7382, GPU Technology Conference
13:00-13:50, Room 211B, San Jose Convention Center,
San Jose, CA, Wednesday May 10th, 2017
VMD – “Visual Molecular Dynamics”

- Visualization and analysis of:
 - Molecular dynamics simulations
 - Lattice cell simulations
 - Quantum chemistry calculations
 - Sequence information
- User extensible scripting and plugins
- http://www.ks.uiuc.edu/Research/vmd/

Cell-Scale Modeling

MD Simulation

Structure

X-ray, cryo-EM, cryo-ET, NMR

Parameterization

Analysis

Preparation with QwikMD

Refinement with MDFF

Parallel Analysis

Remote Visualization

MD/Cell Simulation

LM

NAMD

Amber

Gromacs
VMD Interoperability Serves Many Communities

- Uniquely interoperable with a broad range of tools:
 - AMBER, CHARMM, CPMD, DL_POLY, GAMESS, GROMACS, HOOMD, LAMMPS, NAMD, and many more ...

- Supports key data types, file formats, and databases

- Incorporates tools for simulation preparation, visualization, and analysis
10 Years of GPU Computing in VMD

- Has stood the test of time
- Modeling, Visualization, Rendering, and Analysis

Blast from the past:
CUDA starting with version 0.7 !!!
Quad core Intel QX6700, three NVIDIA GeForce 8800GTX GPUs, RHEL4 Linux

Goal: A Computational Microscope
Study the molecular machines in living cells

Ribosome: target for antibiotics

Poliovirus
VMD Petascale Visualization and Analysis

• Analyze/visualize large trajectories too large to transfer off-site:
 – User-defined parallel analysis operations, data types
 – Parallel rendering, movie making

• Supports GPU-accelerated Cray XK7 nodes for both visualization and analysis:
 – GPU accelerated trajectory analysis w/ CUDA
 – OpenGL and GPU ray tracing for visualization and movie rendering

• Parallel I/O rates up to 275 GB/sec on 8192 Cray XE6 nodes – can read in 231 TB in 15 minutes!

 Parallel VMD currently available on:

 ORNL Titan, NCSA Blue Waters, Indiana Big Red II,
 CSCS Piz Daint, and similar systems
VMD on IBM OpenPOWER

• VMD has been running on various POWER hardware since 1998!
• Now runs on POWER8 w/ Linux in little-endian mode:
 – VMD 1.9.3 release on Nov 2016 includes first OpenPOWER release
 – Src supports CUDA 7.x [1], and CUDA 8.x w/ P100 and NVLink
 – Uses P8 VSX instructions for hand-coded and vectorized kernels [1]
• In-progress VMD 1.9.4 development:
 – VMD supports full OpenGL via GLX and EGL on POWER now!
 • Latest public NVIDIA driver version 375.66
 – Ongoing improvements to CPU/GPU work scheduling, NUMA optimality, and use of new NVLink interconnect on latest IBM “Minsky” hardware

Ongoing VMD CUDA Work on POWER8

• CUDA kernels all run correctly on previous-gen PCIe Tesla K40s, and new Tesla P100 w/ NVLink

• Early observations about P8+CUDA+NVLink so far:
 – P8 single-thread perf more of an issue than on x86 for small untuned parts of existing code
 – P8+CUDA NUMA-correctness w/ NVLink much more important than PCIe (e.g. x86) due to larger benefits/penalties when NVLink is used effectively vs. not
 – P8 “Minsky” systems get extra benefits for algorithms that have lots of host-GPU DMA transfers, where the NVLink interconnect speeds greatly outperform PCIe
Benefits of P8+NVLink for VMD

- Rapid access to host-side data too large to fit entirely in P100 GPU memory
 - Many existing VMD CUDA kernels already used this strategy with PCIe, performance gains from NVLink are large and immediate

- Rapid peer-to-peer GPU data transfers:
 - Bypass host whenever possible, perform nearest-neighbor exchanges for pairwise calculations, e.g. those that arise in algorithms for simulation trajectory clustering
 - Use aggregate GPU memory to collectively store/cache large data – well suited for high-fidelity ray tracing of scenes containing massive amounts of geometry
IBM S822LC w/ NVLink
“Minsky”

- DDR4 to CPU: 115 GB/s
- CPU to DDR4: 115 GB/s
- GPU to GPU via NVLink: 80 GB/s
Molecular Dynamics Flexible Fitting - Theory

Two terms are added to the MD potential

\[U_{total} = U_{MD} + U_{EM} + U_{SS} \]

An external potential derived from the EM map is defined on a grid as

\[U_{EM}(R) = \sum_j w_j V_{EM}(r_j) \]

\[V_{EM}(r) = \begin{cases} \xi \left(1 - \frac{\Phi(r) - \Phi_{thr}}{\Phi_{\text{max}} - \Phi_{thr}} \right) & \text{if } \Phi(r) \geq \Phi_{thr}, \\
\xi & \text{if } \Phi(r) < \Phi_{thr}. \end{cases} \]

A mass-weighted force is then applied to each atom

\[f_i^{EM} = -\nabla U_{EM}(R) = -w_i \partial V_{EM}(r_i) / \partial r_i \]
Structural Route to the all-atom HIV-1 Capsid

1st TEM (1999) 1st tomography (2003) Crystal structures of separated hexamer and pentamer

- Ganser et al. Science, 1999
- Briggs et al. EMBO J, 2003
- Briggs et al. Structure, 2006

- Pornillos et al., Cell 2009, Nature 2011

High res. EM of hexameric tubule, tomography of capsid, all-atom model of capsid by MDFF w/ NAMD & VMD, NSF/NCSA Blue Waters computer at Illinois

- cryo-ET (2006)

- hexameric tubule

- Li et al., Nature, 2000
- Byeon et al., Cell 2009

Evaluating Quality-of-Fit for Structures Solved by Hybrid Fitting Methods

Compute Pearson correlation to evaluate the fit of a reference cryo-EM density map with a simulated density map produced from an all-atom structure.
Evaluating Quality-of-Fit for Structures Solved by Hybrid Fitting Methods

Compute Pearson correlation to evaluate quality-of-fit between a reference cryo-EM density map and a simulated density map produced from an all-atom structure.
GPUs Can Reduce MDFF Trajectory Analysis Runtimes from Hours to Minutes

GPUs enable laptops and desktop workstations to handle tasks that would have previously required a cluster, or a very long wait…

GPU-accelerated petascale supercomputers enable analyses that were previously impractical, allowing detailed study of very large structures such as viruses.

GPU-accelerated MDFF Cross Correlation Timeline
Regions with poor fit

Regions with good fit
MDFF Density Map Algorithm

- Build spatial acceleration data structures, optimize data for GPU
- Compute 3-D density map:
 \[\rho(\vec{r}; \vec{r}_1, \vec{r}_2, \ldots, \vec{r}_N) = \sum_{i=1}^{N} e^{-\frac{|\vec{r} - \vec{r}_i|^2}{2\alpha^2}} \]
- Truncated Gaussian and spatial acceleration grid ensure linear time-complexity

3-D density map lattice point and the neighboring spatial acceleration cells it references
Padding optimizes global memory performance, guaranteeing coalesced global memory accesses.

3-D density map decomposes into 3-D grid of 8x8x8 tiles containing CC partial sums and local CC values.

Small 8x8x2 CUDA thread blocks afford large per-thread register count, shared memory.

Each thread computes 4 z-axis density map lattice points and associated CC partial sums.

Fusion of density and CC calculations into a single CUDA kernel!!!

Spatial CC map and overall CC value computed in a single pass.

Threads producing results that are used.

Inactive threads, region of discarded output.

Grid of thread blocks.
Parallel MDFF Cross Correlation Analysis on Cray XK7

Rabbit Hemorrhagic Disease Virus (RHDV)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traj. frames</td>
<td>10,000</td>
</tr>
<tr>
<td>Structure component selections</td>
<td>720</td>
</tr>
<tr>
<td>Single-node XK7 (projected)</td>
<td>336 hours (14 days)</td>
</tr>
<tr>
<td>128-node XK7</td>
<td>3.2 hours</td>
</tr>
<tr>
<td>105x speedup</td>
<td></td>
</tr>
<tr>
<td>2048-node XK7</td>
<td>19.5 minutes</td>
</tr>
<tr>
<td>1035x speedup</td>
<td></td>
</tr>
</tbody>
</table>

Calculation of 7M CCs would take **5 years** using serial CPU algorithm!

VMD Tesla P100 Cross Correlation Performance

Rabbit Hemorrhagic Disease Virus: 702K atoms, 6.5Å resolution

P100 Die-Stacked Mem Accelerates Bandwidth Intensive Calculation

<table>
<thead>
<tr>
<th>Hardware platform</th>
<th>Runtime, Speedup vs. Chimera, VMD+GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimera Xeon E5-2687W (2 socket) [1]</td>
<td>15.860s, 1x</td>
</tr>
<tr>
<td>VMD-CPU IBM Power8 VSX SIMD (2 socket) [2]</td>
<td>1.334s, 12x</td>
</tr>
<tr>
<td>VMD-CPU Intel Xeon E5-2660v3 SIMD (2 socket) [2]</td>
<td>0.905s, 17x</td>
</tr>
<tr>
<td>VMD-CUDA IBM Power8 + 1x Tesla K40 [2]</td>
<td>0.488s, 32x, 0.9x</td>
</tr>
<tr>
<td>VMD-CUDA Intel Xeon E5-2687W + 1x Quadro K6000 [1,2]</td>
<td>0.458s, 35x, 1.0x</td>
</tr>
<tr>
<td>VMD-CUDA Intel Xeon E5-2698v3 + 1x Tesla P100</td>
<td>0.090s, 176x, 5.1x</td>
</tr>
<tr>
<td>VMD-CUDA IBM Power8 “Minsky” + 1x Tesla P100</td>
<td>0.080s, 198x, 5.7x</td>
</tr>
</tbody>
</table>

VMD Tesla P100 Performance for C$_{60}$ Molecular Orbitals, 516x519x507 grid

<table>
<thead>
<tr>
<th>Hardware platform</th>
<th>Runtime,</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Power8 (2 socket) (ORNL ‘crest’) [1]</td>
<td>8.03s,</td>
<td>0.4x</td>
</tr>
<tr>
<td>Intel Xeon E5-2660v3 (2 socket) [1]</td>
<td>7.14s,</td>
<td>0.5x</td>
</tr>
<tr>
<td>IBM Power8 (ORNL ‘crest’) + 1x Tesla K40 [1]</td>
<td>3.49s,</td>
<td>1.0x</td>
</tr>
<tr>
<td>Intel Xeon E5-2698v3 + 1x Tesla P100</td>
<td>1.35s,</td>
<td>2.5x</td>
</tr>
<tr>
<td>IBM Power8 “Minsky” + 1x Tesla P100</td>
<td>1.09s,</td>
<td>3.3x</td>
</tr>
<tr>
<td>IBM Power8 (ORNL ‘crest’) + 4x Tesla K40 [1]</td>
<td>0.91s,</td>
<td>3.8x</td>
</tr>
<tr>
<td>Intel Xeon E5-2698v3 + 4x Tesla P100</td>
<td>0.37s,</td>
<td>9.4x</td>
</tr>
<tr>
<td>IBM Power8 “Minsky” + 4x Tesla P100</td>
<td>0.30s,</td>
<td>11.6x</td>
</tr>
</tbody>
</table>

Molecular Orbitals w/ NVRTC JIT

- Visualization of MOs aids in understanding the chemistry of molecular system
- MO spatial distribution is correlated with probability density for an electron(s)
- **Animation** of (classical mechanics) molecular dynamics trajectories provides insight into simulation results
 - To do the same for QM or QM/MM simulations MOs must be computed at **10 FPS** or more
 - Large GPU speedups (up to 30x vs. current generation 4-core CPUs) over existing tools makes this possible!
- **Run-time code generation** (JIT) and compilation via CUDA NVRTC enable further optimizations and the highest performance to date: 1.8x faster than fully-general data-driven loops

MO GPU Parallel Decomposition

MO 3-D lattice decomposes into 2-D slices (CUDA grids)

Small 8x8 thread blocks afford large per-thread register count, shared memory

Each thread computes one MO lattice point.

Padding optimizes global memory performance, guaranteeing coalesced global memory accesses

Grid of thread blocks

Threads producing results that are discarded

Threads producing results that are used

Lattice computed using multiple GPUs

GPU 0

GPU 1

GPU 2
MO Kernel for One Grid Point (Naive C)

for (at=0; at<numatoms; at++) {
 int prim_counter = atom_basis[at];
 calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

 for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {
 int shell_type = shell_symmetry[shell_counter];

 for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {
 float exponent = basis_array[prim_counter];
 float contract_coeff = basis_array[prim_counter + 1];
 contracted_gto += contract_coeff * expf(-exponent*dist2);
 prim_counter += 2;
 }

 for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {
 int imax = shell_type - j;
 for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv) {
 tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;
 }
 }

 value += tmpshell * contracted_gto;
 shell_counter++;
 }
}

Loop over atoms
Loop over shells
Loop over primitives:
largest component of runtime, due to expf()
Loop over angular momenta
(unrolled in real code)
Loop over atoms (1 to ~200) {
 Loop over electron shells for this atom type (1 to ~6) {
 Loop over primitive functions for this shell type (1 to ~6) {
 Small loop trip counts result in significant loop overhead. Runtime kernel generation and NVRTC JIT compilation can achieve in a large (1.8x!) speed boost via loop unrolling, constant folding, elimination of array accesses, …
 }
 Loop over angular momenta for this shell type (1 to ~15) {}
 }
}

MO Kernel Structure, Opportunity for NRTC JIT…
Data-driven execution, but representative loop trip counts in (…)

www.ks.uiuc.edu
Molecular Orbital Computation and Display Process
Runtime Kernel Generation, NVRTC Just-In-Time (JIT) Compilation

One-time initialization

- Initialize Pool of GPU Worker Threads

Read QM simulation log file, trajectory
- Preprocess MO coefficient data
 - eliminate duplicates, sort by type, etc…

Generate/compile basis set-specific CUDA kernel

For current frame and MO index, retrieve MO wavefunction coefficients

Compute 3-D grid of MO wavefunction amplitudes using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid

Render the resulting surface

For each trj frame, for each MO shown
for (shell=0; shell < maxshell; shell++) {
 float contracted_gto = 0.0f;

 // Loop over the Gaussian primitives of CGTO
 int maxprim = const_num_prim_per_shell[shell_counter];
 int shell_type = const_shell_symmetry[shell_counter];
 for (prim=0; prim < maxprim; prim++) {
 float exponent = const_basis_array[prim_counter];
 float contract_coeff = const_basis_array[prim_counter + 1];
 contracted_gto += contract_coeff * expf(-exponent*dist2);
 prim_counter += 2;
 }
}

contracted_gto = 1.832937 * expf(-7.868272*dist2);
contracted_gto += 1.405380 * expf(-1.881289*dist2);
contracted_gto += 0.701383 * expf(-0.544249*dist2);

General loop-based data-dependent MO CUDA kernel
Runtime-generated data-specific MO CUDA kernel compiled via CUDA NVRTC JIT...

1.8x Faster
for (shell=0; shell < maxshell; shell++) {
 float contracted_gto = 0.0f;

 // Loop over the Gaussian primitives of CGTO
 int maxprim = const_num_prim_per_shell[shell_counter];
 int shell_type = const_shell_symmetry[shell_counter];
 for (prim=0; prim < maxprim; prim++) {
 float exponent = const_basis_array[prim_counter];
 float contract_coeff = const_basis_array[prim_counter + 1];
 contracted_gto += contract_coeff * expf(-exponent*dist2);
 prim_counter += 2;
 }

 float tmpshell=0;
 switch (shell_type) {
 case S_SHELL:
 value += const_wave_f[ifunc++] * contracted_gto;
 break;

 case D_SHELL:
 tmpshell += const_wave_f[ifunc++] * xdist2;
 tmpshell += const_wave_f[ifunc++] * ydist2;
 tmpshell += const_wave_f[ifunc++] * zdist2;
 tmpshell += const_wave_f[ifunc++] * xdist * ydist;
 tmpshell += const_wave_f[ifunc++] * xdist * zdist;
 tmpshell += const_wave_f[ifunc++] * ydist * zdist;
 value += tmpshell * contracted_gto;
 break;
 }
}

General loop-based data-dependent MO CUDA kernel

Runtime-generated data-specific MO CUDA kernel compiled via CUDA NVRTC JIT…

1.8x Faster
Challenges Adapting Large Software Systems for State-of-the-Art Hardware Platforms

- Initial focus on key computational kernels eventually gives way to the need to optimize an ocean of less critical routines, due to observance of Amdahl’s Law
- Even though these less critical routines might be easily ported to CUDA or similar, the sheer number of routines often poses a challenge
- Need a low-cost approach for getting “some” speedup out of these second-tier routines
- In many cases, it is completely sufficient to achieve memory-bandwidth-bound GPU performance with an existing algorithm
Directive-Based Parallel Programming with OpenACC

• Annotate loop nests in existing code with #pragma compiler directives:
 – Annotate opportunities for parallelism
 – Annotate points where host-GPU memory transfers are best performed, indicate propagation of data

• Evolve original code structure to improve efficacy of parallelization
 – Eliminate false dependencies between loop iterations
 – Revise algorithms or constructs that create excess data movement
Clustering Analysis of Molecular Dynamics Trajectories

Serial QCP RMSD Inner Product Loop

- Simple example where directive based parallelism can be applied easily and effectively
- Such a loop is inherently a memory-bandwidth-bound algorithm, so that’s the goal for acceleration

```c
for (int l=0; l<cnt; l++) {
    double x1, x2, y1, y2, z1, z2;
    x1 = crdx1[l];
    y1 = crdy1[l];
    z1 = crdz1[l];
    G1 += x1*x1 + y1*y1 + z1*z1;
    x2 = crdx2[l];
    y2 = crdy2[l];
    z2 = crdz2[l];
    G2 += x2*x2 + y2*y2 + z2*z2;
    a0 += x1 * x2;
    a1 += x1 * y2;
    a2 += x1 * z2;
    a3 += y1 * x2;
    a4 += y1 * y2;
    a5 += y1 * z2;
    a6 += z1 * x2;
    a7 += z1 * y2;
    a8 += z1 * z2;
}
```
OpenACC QCP RMSD Inner Product Loop

- Simple example where directive based parallelism can be applied easily and effectively
- Such a loop is inherently a memory-bandwidth-bound algorithm, so that’s the goal for acceleration

```c
void rmsdmat_qcp_acc(int cnt, int padcnt, int framecrdsz,
                        int framecount, const float * restrict crds,
                        long i, j, k);

#pragma acc kernels copyin(crds[0:tsz]), copy(rmsdmat[0:msz])
for (k=0; k<(framecount*(framecount-1))/2; k++) {
    // compute triangular matrix index ‘k’ in a helper function
    // to ensure that the compiler doesn’t think that we have
    // conflicts or dependencies between loop iterations
    acc_idx2sub_tril(long(framecount-1), k, &i, &j);
    long x1addr = j * 3L * framecrdsz;
    long x2addr = i * 3L * framecrdsz;

#pragma acc loop vector(256)
for (long l=0; l<cnt; l++) {
    // abridged for brevity ...
    rmsdmat[k]=rmsd; // store linearized triangular matrix
}
```
OpenACC QCP RMSD Inner Product Loop Performance Results

• Xeon 2867W v3, w/ hand-coded AVX and FMA intrinsics: 20.7s
• Tesla K80 w/ OpenACC: **6.5s (3.2x speedup)**
• OpenACC on K80 achieved 65% of theoretical peak memory bandwidth, with 2016 compiler and just a few lines of #pragma directives. Excellent speedup for minimal changes to code.
• Future OpenACC compiler revs should provide higher performance yet
VMD 1.9.3 supports EGL for in-situ and parallel rendering on clouds, clusters, and supercomputers

• Eliminate dependency on windowing systems
• Simplified deployment of parallel VMD builds supporting off-screen rendering
• Maintains 100% of VMD OpenGL shaders and rendering features
• Support high-quality vendor-supported commercial OpenGL implementations in HPC systems that were previously limited to Mesa

Poliovirus
EGL Is Supported Now!

- Cloud+Workstations with most recent NVIDIA drivers
- VMD on HPC systems w/ latest Tesla P100 GPUs:
 - Cray XC50, CSCS Piz Daint, driver 375.39
 - IBM OpenPOWER, drivers 375.66 and later support both GLX and EGL
VMD w/ OptiX 4.1

- Interactive RT on laptops, desktops, and cloud
- Large-scale parallel rendering: in situ or post hoc visualization tasks
- Remote RT on NVIDIA VCA clusters
- Stereoscopic panoramic and full-dome projections
- Omnidirectional VR for YouTube, VR HMDs
- Top-end Pascal Tesla GPUs roughly 2x faster than Kepler
- GPU memory sharing via NVLink on Quadro GP100, Tesla P100

VMD/OptiX GPU Ray Tracing of all-atom Chromatophore w/ lipids.
“When I was a young man, my goal was to look with mathematical and computational means at the inside of cells, one atom at a time, to decipher how living systems work. That is what I strived for and I never deflected from this goal.” – Klaus Schulten
Acknowledgements

• Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign

• CUDA Center of Excellence, University of Illinois at Urbana-Champaign

• NVIDIA CUDA and OptiX teams

• Funding:
 – DOE INCITE, ORNL Titan: DE-AC05-00OR22725
 – NSF Blue Waters:
 NSF OCI 07-25070, PRAC “The Computational Microscope”,
 ACI-1238993, ACI-1440026
 – NIH support: 9P41GM104601, 5R01GM098243-02
Related Publications

http://www.ks.uiuc.edu/Research/gpu/

Related Publications
http://www.ks.uiuc.edu/Research/gpu/

- **Unlocking the Full Potential of the Cray XK7 Accelerator.** M. D. Klein and J. E. Stone. Cray Users Group, Lugano Switzerland, May 2014.

Related Publications
http://www.ks.uiuc.edu/Research/gpu/

Related Publications
http://www.ks.uiuc.edu/Research/gpu/

Related Publications
http://www.ks.uiuc.edu/Research/gpu/

Related Publications

http://www.ks.uiuc.edu/Research/gpu/

