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Computational Microscopy
Ribosome: synthesizes proteins from

genetic information, target for antibiotics
Silicon nanopore: bionanodevice
for sequencing DNA efficiently
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NAMD: Practical Supercomputing
• 35,000 users can’t all be computer experts.

– 18% are NIH-funded; many in other countries.
– 8200 have downloaded more than one version.

• User experience is the same on all platforms.
– No change in input, output, or configuration files.
– Run any simulation on any number of processors.
– Precompiled binaries available when possible.

• Desktops and laptops – setup and testing
– x86 and x86-64 Windows, and Macintosh
– Allow both shared-memory and network-based parallelism.

• Linux clusters – affordable workhorses
– x86, x86-64, and Itanium processors
– Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005.
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Our Goal: Practical Acceleration

• Broadly applicable to scientific computing
– Programmable by domain scientists
– Scalable from small to large machines

• Broadly available to researchers
– Price driven by commodity market
– Low burden on system administration

• Sustainable performance advantage
– Performance driven by Moore’s law
– Stable market and supply chain
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• Outlook in 2005-2006:
– FPGA reconfigurable computing (with NCSA)

• Difficult to program, slow floating point, expensive
– Cell processor (NCSA hardware)

• Relatively easy to program, expensive
– ClearSpeed (direct contact with company)

• Limited memory and memory bandwidth, expensive
– MDGRAPE

• Inflexible and expensive

– Graphics processor (GPU)
• Program must be expressed as graphics operations

Acceleration Options for NAMD
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CUDA: Practical Performance

• CUDA makes GPU acceleration usable:
– Developed and supported by NVIDIA.
– No masquerading as graphics rendering.
– New shared memory and synchronization.
– No OpenGL or display device hassles.
– Multiple processes per card (or vice versa).

• Resource and collaborators make it useful:
– Experience from VMD development
– David Kirk (Chief Scientist, NVIDIA)
– Wen-mei Hwu (ECE Professor, UIUC)

November 2006: NVIDIA announces CUDA for G80 GPU.

Fun to program (and drive)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.
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VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations, sequence data,

volumetric data, quantum chemistry simulations, particle systems, …
• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Molecular orbital  

calculation and display

100x to 120x faster
Imaging of gas migration
pathways in proteins with
implicit ligand sampling

20x to 30x faster

Electrostatic field 

calculation, ion placement

20x to 44x faster

CUDA Acceleration in VMD
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Apples to Oranges Performance Results:
Molecular Orbital Kernels

1.0743.3422Intel Core2 Duo CPU OpenCL scalar

5.368.4992Intel Core2 Duo CPU OpenCL vec4

139.00.33530GeForce GTX 285 OpenCL scalar

142.40.32730GeForce GTX 285 CUDA 2.0 scalar

129.00.36130GeForce GTX 285 CUDA 2.1 scalar
127.90.36430GeForce GTX 285 OpenCL vec4
45.81.01610Radeon 4870 OpenCL vec4

22.12.10810Radeon 4870 OpenCL scalar
7.676.07516Cell OpenCL vec4*** no __constant

3.9711.7404Intel QX6700 CPU ICC-SSE (SSE intrinsics)

1.0046.5801Intel QX6700 CPU ICC-SSE (SSE intrinsics)
SpeedupRuntime (s)CoresKernel

CUDA results demonstrate performance variability with compiler revisions, and that with
vendor effort, OpenCL has the potential to match the performance of other APIs.
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• Spatially decompose
data and communication.
• Separate but related
work decomposition.
• “Compute objects”
facilitate iterative,
measurement-based load
balancing system.

NAMD Hybrid Decomposition
Kale et al., J. Comp. Phys. 151:283-312, 1999.
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NAMD Code is Message-Driven

• No receive calls as in “message passing”
• Messages sent to object “entry points”
• Incoming messages placed in queue

– Priorities are necessary for performance
• Execution generates new messages
• Implemented in Charm++ on top of MPI

– Can be emulated in MPI alone
– Charm++ provides tools and idioms
– Parallel Programming Lab:  http://charm.cs.uiuc.edu/
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System Noise Example
Timeline from Charm++ tool “Projections” http://charm.cs.uiuc.edu/
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NAMD Overlapping Execution

Objects are assigned to processors and queued as data arrives.

Phillips et al., SC2002.

Offload to GPU
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Message-Driven CUDA?
• No, CUDA is too coarse-grained.

– CPU needs fine-grained work to interleave and pipeline.
– GPU needs large numbers of tasks submitted all at once.

• No, CUDA lacks priorities.
– FIFO isn’t enough.

• Perhaps in a future interface:
– Stream data to GPU.
– Append blocks to a running kernel invocation.
– Stream data out as blocks complete.

• Fermi looks very promising!
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Nonbonded Forces on CUDA GPU
• Start with most expensive calculation: direct nonbonded interactions.
• Decompose work into pairs of patches, identical to NAMD structure.
• GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.
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texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom;      // per-thread atom, stored in registers
float4 iforce;   // per-thread force, stored in registers
for ( int j = 0; j < jatom_count; ++j ) {
  float dx = jatom[j].x - iatom.x;   float dy = jatom[j].y - iatom.y;  float dz = jatom[j].z - iatom.z;
  float r2 = dx*dx + dy*dy + dz*dz;
  if ( r2 < cutoff2 ) {
    float4 ft = texfetch(force_table, 1.f/sqrt(r2));
    bool excluded = false;
    int indexdiff = iatom.index - jatom[j].index;
    if ( abs(indexdiff) <= (int) jatom[j].excl_maxdiff ) {
      indexdiff += jatom[j].excl_index;
      excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);
    }
    float f = iatom.half_sigma + jatom[j].half_sigma;  // sigma
    f *= f*f;  // sigma^3
    f *= f;  // sigma^6
    f *= ( f * ft.x + ft.y );  // sigma^12 * fi.x - sigma^6 * fi.y
    f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
    float qq = iatom.charge * jatom[j].charge;
    if ( excluded ) { f = qq * ft.w; }  // PME correction
    else { f += qq * ft.z; }  // Coulomb
    iforce.x += dx * f;   iforce.y += dy * f;    iforce.z += dz * f;
    iforce.w += 1.f;  // interaction count or energy
  }
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Nonbonded Forces
CUDA Code

Force Interpolation

Exclusions

Parameters

Accumulation
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Overlapping GPU and CPU
with Communication
Remote Force Local ForceGPU

CPU

Other Nodes/Processes

LocalRemote

x
f f

f

f

Local x

x

Update

One Timestep

x
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“Remote Forces”

• Forces on atoms in a local
patch are “local”

• Forces on atoms in a remote
patch are “remote”

• Calculate remote forces first to
overlap force communication
with local force calculation

• Not enough work to overlap
with position communication

Local
Patch

Remote
Patch

Local
Patch

Remote
Patch

Remote
Patch

Remote
Patch

Work done by one processor
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Actual Timelines from NAMD
Generated using Charm++ tool “Projections” http://charm.cs.uiuc.edu/

Remote Force Local Force

x
f f

x

GPU

CPU

f

f
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NCSA “4+4” QuadroPlex Cluster

2.4 GHz Opteron + Quadro FX 5600

fa
st

er

6.76 3.33
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Current GPU Clusters at NCSA
• Lincoln

– Production system available via
the standard NCSA/TeraGrid
HPC allocation

• AC
– Experimental system

available for exploring
GPU computing
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CUDA/OpenCL Wrapper Library
• Basic operation principle:

– Use /etc/ld.so.preload to overload (intercept) a subset of
CUDA/OpenCL functions, e.g. {cu|cuda}{Get|Set}Device,
clGetDeviceIDs, etc

• Purpose:
– Enables controlled GPU device visibility and access, extending

resource allocation to the workload manager
– Prove or disprove feature usefulness, with the hope of eventual

uptake or reimplementation of proven features by the vendor
– Provides a platform for rapid implementation and testing of HPC

relevant features not available in NVIDIA APIs
• Features:

– NUMA Affinity mapping
• Sets thread affinity to CPU core nearest the gpu device

– Shared host, multi-gpu device fencing
• Only GPUs allocated by scheduler are visible or accessible to user
• GPU device numbers are virtualized, with a fixed mapping to a physical

device per user environment
• User always sees allocated GPU devices indexed from 0
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CUDA/OpenCL Wrapper Library
• Features (cont’d):

– Device Rotation (deprecated)
• Virtual to Physical device mapping rotated for each process accessing

a GPU device
• Allowed for common execution parameters (e.g. Target gpu0 with 4

processes, each one gets separate gpu, assuming 4 gpus available)
• CUDA 2.2 introduced compute-exclusive device mode, which

includes fallback to next device.  Device rotation feature may no
longer needed

– Memory Scrubber
• Independent utility from wrapper, but packaged with it
• Linux kernel does no management of GPU device memory
• Must run between user jobs to ensure security between users

• Availability
– NCSA/UofI Open Source License
– https://sourceforge.net/projects/cudawrapper/
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CUDA Memtest
• 4GB of Tesla GPU memory is not ECC protected
• Hunt for “soft error”
• Features

– Full re-implementation of every test included in memtest86
– Random and fixed test patterns,  error reports, error addresses, test specification
– Email notification
– Includes additional stress test for software and hardware errors

• Usage scenarios
– Hardware test for defective GPU memory chips
– CUDA API/driver software bugs detection
– Hardware test for detecting soft errors due to non-ECC memory

• No soft error detected in 2 years x 4 gig of cumulative runtime
• Availability

– NCSA/UofI Open Source License
– https://sourceforge.net/projects/cudagpumemtest/
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GPU Node Pre/Post Allocation Sequence
• Pre-Job (minimized for rapid device acquisition)

– Assemble detected device file unless it exists
– Sanity check results
– Checkout requested GPU devices from that file
– Initialize CUDA wrapper shared memory segment with unique key for

user (allows user to ssh to node outside of job environment and have same
gpu devices visible)

• Post-Job
– Use quick memtest run to verify healthy GPU state
– If bad state detected, mark node offline if other jobs present on node
– If no other jobs, reload kernel module to “heal” node (for CUDA 2.2

driver bug)
– Run memscrubber utility to clear gpu device memory
– Notify of any failure events with job details
– Terminate wrapper shared memory segment
– Check-in GPUs back to global file of detected devices
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AMD Opteron Tesla Linux Cluster AC

• HP xw9400 workstation
– 2216 AMD Opteron 2.4 GHz

dual socket dual core
– 8 GB DDR2
– Infiniband QDR

• Tesla S1070 1U 4-GPU Server
– 1.3 GHz Tesla T10 processors
– 4x4 GB GDDR3 SDRAM

• Cluster
– Servers: 32
– Accelerator Units: 32 (128

GPUS, 128 TF SP, 10 TF DP)

IB

Tesla S1070

T10 T10

PCIe interface

DRA
M

DRA
M

T10 T10

PCIe interface

DRA
M

DRA
M

HP xw9400 workstation

PCIe x16 PCIe x16

QDR IB

Nallatech
H101
FPGA
card

PCI-X
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Intel 64 Tesla Linux Cluster Lincoln

• Dell PowerEdge 1955 server
– Intel 64 (Harpertown) 2.33 GHz

dual socket quad core
– 16 GB DDR2
– Infiniband SDR

• Tesla S1070 1U 4-GPU Server
– 1.3 GHz Tesla T10 processors
– 4x4 GB GDDR3 SDRAM

• Cluster
– Servers: 192
– Accelerator Units: 96 (384 GPUs,

384 TF SP, 32 TF DP)

Dell PowerEdge
1955 server

IB

Tesla S1070

T10 T10

PCIe interface

DRAM DRAM

T10 T10

PCIe interface

DRAM DRAM

Dell PowerEdge
1955 server

PCIe x8 PCIe x8

SDR IB SDR IB
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NCSA “8+2” Lincoln Cluster

• How to share a GPU among 4 CPU cores?
– Send all GPU work to one process?
– Coordinate via messages to avoid conflict?
– Or just hope for the best?
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NCSA Lincoln Cluster Performance
(8 Intel cores and 2 NVIDIA Telsa GPUs per node)

0

0.2

0.4

0.6

0.8

1

1.2
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8 16 32 64

2 GPUs = 24 cores
4 GPUs

8 GPUs
16 GPUs

CPU cores

STMV (1M atoms) s/step

~2.8
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NCSA Lincoln Cluster Performance
(8 cores and 2 GPUs per node)

2 GPUs = 24 cores
4 GPUs

8 GPUs
16 GPUs

CPU cores

STMV s/step

8 GPUs =
96 CPU cores

~5.6 ~2.8
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No GPU Sharing (Ideal World)

Remote Force Local ForceGPU 1

x
f f

x

Remote Force Local ForceGPU 2

x
f f

x
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GPU Sharing (Desired)

Remote Force Local Force

Client 2

x
f f

x

Remote Force Local Force

Client 1

x
f f

x
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GPU Sharing (Feared)

Remote
Force
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Force

Client 2

x
f f

x

Remote
Force

Local
Force

Client 1

x
f f

x



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Sharing (Observed)

Remote
Force

Local
Force

Client 2
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Remote
Force

Local
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Client 1
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GPU Sharing (Explained)

• CUDA is behaving reasonably, but
• Force calculation is actually two kernels

– Longer kernel writes to multiple arrays
– Shorter kernel combines output

• Possible solutions:
– Modify CUDA to be less “fair” (please!)
– Use locks (atomics) to merge kernels (not G80)
– Explicit inter-client coordination
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Inter-client Communication

• First identify which processes share a GPU
– Need to know physical node for each process
– GPU-assignment must reveal real device ID
– Threads don’t eliminate the problem
– Production code can’t make assumptions

• Token-passing is simple and predictable
– Rotate clients in fixed order
– High-priority, yield, low-priority, yield, …
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Token-Passing GPU-Sharing

Remote LocalLocal Remote

GPU1

GPU2
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GPU-Sharing with PME

Remote LocalLocal Remote
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Weakness of Token-Passing

• GPU is idle while token is being passed
– Busy client delays itself and others

• Next strategy requires threads:
– One process per GPU, one thread per core
– Funnel CUDA calls through a single stream
– No local work until all remote work is queued
– Typically funnels MPI as well
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Recent NAMD GPU Developments
• Production features in 2.7b2 release:

– Full electrostatics with PME
– 1-4 exclusions
– Constant-pressure simulation
– Improved force accuracy:

• Patch-centered atom coordinates
• Increased precision of force interpolation

• Performance enhancements (in progress):
– Recursive bisection within patch on 32-atom boundaries
– Block-based pairlists based on sorted atoms
– Sort blocks in order of decreasing work
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GPU-Accelerated NAMD Plans

• Serial performance
– Target NVIDIA Fermi architecture
– Revisit GPU kernel design decisions made in 2007
– Improve performance of remaining CPU code

• Parallel scaling
– Target NSF Track 2D Keeneland cluster at ORNL
– Finer-grained work units on GPU (feature of Fermi)
– One process per GPU, one thread per CPU core
– Dynamic load balancing of GPU work

• Wider range of simulation options and features
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Conclusions and Outlook

• CUDA today is sufficient for
– Single-GPU acceleration (the mass market)
– Coarse-grained multi-GPU parallelism

• Enough work per call to spin up all multiprocessors

• Improvements in CUDA are needed for
– Assigning GPUs to processes
– Sharing GPUs between processes
– Fine-grained multi-GPU parallelism

• Fewer blocks per call than chip has multiprocessors
– Moving data between GPUs (same or different node)

• Eager to test Fermi architecture and features!



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements
• Theoretical and Computational Biophysics Group,

University of Illinois at Urbana-Champaign
• Prof. Wen-mei Hwu, Chris Rodrigues, IMPACT Group,

University of Illinois at Urbana-Champaign
• Mike Showerman, Jeremy Enos, NCSA
• David Kirk, Massimiliano Fatica, others at NVIDIA
• UIUC NVIDIA CUDA Center of Excellence
• NIH support: P41-RR05969

http://www.ks.uiuc.edu/Research/gpu/


