Accelerating Biomolecular Modeling with CUDA and GPU Clusters

James Phillips
John Stone
Klaus Schulten

http://www.ks.uiuc.edu/Research/gpu/
Beckman Institute
University of Illinois at Urbana-Champaign

Theoretical and Computational Biophysics Group
National Center for Supercomputing Applications

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC
Computational Microscopy

Ribosome: synthesizes proteins from genetic information, target for antibiotics

Silicon nanopore: bionanodevice for sequencing DNA efficiently
NAMD: Practical Supercomputing

• 35,000 users can’t all be computer experts.
 – 18% are NIH-funded; many in other countries.
 – 8200 have downloaded more than one version.

• User experience is the same on all platforms.
 – No change in input, output, or configuration files.
 – Run any simulation on any number of processors.
 – Precompiled binaries available when possible.

• Desktops and laptops – setup and testing
 – x86 and x86-64 Windows, and Macintosh
 – Allow both shared-memory and network-based parallelism.

• Linux clusters – affordable workhorses
 – x86, x86-64, and Itanium processors
 – Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Our Goal: Practical Acceleration

- Broadly applicable to scientific computing
 - Programmable by domain scientists
 - Scalable from small to large machines
- Broadly available to researchers
 - Price driven by commodity market
 - Low burden on system administration
- Sustainable performance advantage
 - Performance driven by Moore’s law
 - Stable market and supply chain
Acceleration Options for NAMD

• Outlook in 2005-2006:
 – FPGA reconfigurable computing (with NCSA)
 • Difficult to program, slow floating point, expensive
 – Cell processor (NCSA hardware)
 • Relatively easy to program, expensive
 – ClearSpeed (direct contact with company)
 • Limited memory and memory bandwidth, expensive
 – MDGRAPE
 • Inflexible and expensive
 – Graphics processor (GPU)
 • Program must be expressed as graphics operations
CUDA: Practical Performance

November 2006: NVIDIA announces CUDA for G80 GPU.

- CUDA makes GPU acceleration usable:
 - Developed and supported by NVIDIA.
 - No masquerading as graphics rendering.
 - New shared memory and synchronization.
 - No OpenGL or display device hassles.
 - Multiple processes per card (or vice versa).

- Resource and collaborators make it useful:
 - Experience from VMD development
 - David Kirk (Chief Scientist, NVIDIA)
 - Wen-mei Hwu (ECE Professor, UIUC)

VMD – “Visual Molecular Dynamics”

• Visualization and analysis of molecular dynamics simulations, sequence data, volumetric data, quantum chemistry simulations, particle systems, …
• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
CUDA Acceleration in VMD

- Electrostatic field calculation, ion placement: 20x to 44x faster
- Molecular orbital calculation and display: 100x to 120x faster
- Imaging of gas migration pathways in proteins with implicit ligand sampling: 20x to 30x faster

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC
Apples to Oranges Performance Results: Molecular Orbital Kernels

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Cores</th>
<th>Runtime (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel QX6700 CPU ICC-SSE (SSE intrinsics)</td>
<td>1</td>
<td>46.580</td>
<td>1.00</td>
</tr>
<tr>
<td>Intel Core2 Duo CPU OpenCL scalar</td>
<td>2</td>
<td>43.342</td>
<td>1.07</td>
</tr>
<tr>
<td>Intel QX6700 CPU ICC-SSE (SSE intrinsics)</td>
<td>4</td>
<td>11.740</td>
<td>3.97</td>
</tr>
<tr>
<td>Intel Core2 Duo CPU OpenCL vec4</td>
<td>2</td>
<td>8.499</td>
<td>5.36</td>
</tr>
<tr>
<td>Cell OpenCL vec4*** no __constant</td>
<td>16</td>
<td>6.075</td>
<td>7.67</td>
</tr>
<tr>
<td>Radeon 4870 OpenCL scalar</td>
<td>10</td>
<td>2.108</td>
<td>22.1</td>
</tr>
<tr>
<td>Radeon 4870 OpenCL vec4</td>
<td>10</td>
<td>1.016</td>
<td>45.8</td>
</tr>
<tr>
<td>GeForce GTX 285 OpenCL vec4</td>
<td>30</td>
<td>0.364</td>
<td>127.9</td>
</tr>
<tr>
<td>GeForce GTX 285 CUDA 2.1 scalar</td>
<td>30</td>
<td>0.361</td>
<td>129.0</td>
</tr>
<tr>
<td>GeForce GTX 285 OpenCL scalar</td>
<td>30</td>
<td>0.335</td>
<td>139.0</td>
</tr>
<tr>
<td>GeForce GTX 285 CUDA 2.0 scalar</td>
<td>30</td>
<td>0.327</td>
<td>142.4</td>
</tr>
</tbody>
</table>

CUDA results demonstrate performance variability with compiler revisions, and that with vendor effort, OpenCL has the potential to match the performance of other APIs.
NAMD Hybrid Decomposition

- Spatially decompose data and communication.
- Separate but related work decomposition.
- “Compute objects” facilitate iterative, measurement-based load balancing system.
NAMD Code is Message-Driven

- No receive calls as in “message passing”
- Messages sent to object “entry points”
- Incoming messages placed in queue
 - Priorities are necessary for performance
- Execution generates new messages
- Implemented in Charm++ on top of MPI
 - Can be emulated in MPI alone
 - Charm++ provides tools and idioms
 - Parallel Programming Lab: http://charm.cs.uiuc.edu/
System Noise Example
Timeline from Charm++ tool “Projections” http://charm.cs.uiuc.edu/
NAMD Overlapping Execution

Objects are assigned to processors and queued as data arrives.
Message-Driven CUDA?

• No, CUDA is too coarse-grained.
 – CPU needs fine-grained work to interleave and pipeline.
 – GPU needs large numbers of tasks submitted all at once.

• No, CUDA lacks priorities.
 – FIFO isn’t enough.

• Perhaps in a future interface:
 – Stream data to GPU.
 – Append blocks to a running kernel invocation.
 – Stream data out as blocks complete.

• Fermi looks very promising!
Nonbonded Forces on CUDA GPU

- Start with most expensive calculation: direct nonbonded interactions.
- Decompose work into pairs of patches, identical to NAMD structure.
- GPU hardware assigns patch-pairs to multiprocessors dynamically.

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers

for (int j = 0; j < jatom_count; ++j) {
 float dx = jatom[j].x - iatom.x;
 float dy = jatom[j].y - iatom.y;
 float dz = jatom[j].z - iatom.z;
 float r2 = dx*dx + dy*dy + dz*dz;
 if (r2 < cutoff2) {
 float4 ft = texfetch(force_table, 1.f/sqrt(r2));
 bool excluded = false;
 int indexdiff = iatom.index - jatom[j].index;
 if (abs(indexdiff) <= (int)jatom[j].excl_maxdiff) {
 indexdiff += jatom[j].excl_index;
 excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);
 }
 float f = iatom.half_sigma + jatom[j].half_sigma; // sigma
 f *= f*f; // sigma^3
 f *= f; // sigma^6
 f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y
 f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
 float qq = iatom.charge * jatom[j].charge;
 if (excluded) { f = qq * ft.w; } // PME correction
 else { f += qq * ft.z; } // Coulomb
 iforce.x += dx * f;
 iforce.y += dy * f;
 iforce.z += dz * f;
 iforce.w += 1.f; // interaction count or energy
 }
}

Overlapping GPU and CPU with Communication

One Timestep
“Remote Forces”

- Forces on atoms in a local patch are “local”
- Forces on atoms in a remote patch are “remote”
- Calculate remote forces first to overlap force communication with local force calculation
- Not enough work to overlap with position communication

Work done by one processor
Actual Timelines from NAMD

Generated using Charm++ tool “Projections” http://charm.cs.uiuc.edu/
NCSA “4+4” QuadroPlex Cluster

seconds per step

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU only</td>
<td>6.76</td>
<td>3.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with GPU</td>
<td></td>
<td></td>
<td>0.40</td>
<td>0.20</td>
<td>0.04</td>
</tr>
<tr>
<td>GPU</td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.10</td>
<td>0.01</td>
</tr>
</tbody>
</table>

2.4 GHz Opteron + Quadro FX 5600

faster
Current GPU Clusters at NCSA

• Lincoln
 – Production system available via the standard NCSA/TeraGrid HPC allocation

• AC
 – Experimental system available for exploring GPU computing
CUDA/OpenCL Wrapper Library

• Basic operation principle:
 – Use /etc/ld.so.preload to overload (intercept) a subset of CUDA/OpenCL functions, e.g. {cu|cuda} {Get|Set}Device, clGetDeviceIDs, etc

• Purpose:
 – Enables controlled GPU device visibility and access, extending resource allocation to the workload manager
 – Prove or disprove feature usefulness, with the hope of eventual uptake or reimplementation of proven features by the vendor
 – Provides a platform for rapid implementation and testing of HPC relevant features not available in NVIDIA APIs

• Features:
 – NUMA Affinity mapping
 • Sets thread affinity to CPU core nearest the gpu device
 – Shared host, multi-gpu device fencing
 • Only GPUs allocated by scheduler are visible or accessible to user
 • GPU device numbers are virtualized, with a fixed mapping to a physical device per user environment
 • User always sees allocated GPU devices indexed from 0
CUDA/OpenCL Wrapper Library

• Features (cont’d):
 – Device Rotation (deprecated)
 • Virtual to Physical device mapping rotated for each process accessing a GPU device
 • Allowed for common execution parameters (e.g. Target gpu0 with 4 processes, each one gets separate gpu, assuming 4 gpus available)
 • CUDA 2.2 introduced compute-exclusive device mode, which includes fallback to next device. Device rotation feature may no longer needed
 – Memory Scrubber
 • Independent utility from wrapper, but packaged with it
 • Linux kernel does no management of GPU device memory
 • Must run between user jobs to ensure security between users

• Availability
 – NCSA/UofI Open Source License
 – https://sourceforge.net/projects/cudawrapper/
CUDA Memtest

- 4GB of Tesla GPU memory is not ECC protected
- Hunt for “soft error”
- Features
 - Full re-implementation of every test included in memtest86
 - Random and fixed test patterns, error reports, error addresses, test specification
 - Email notification
 - Includes additional stress test for software and hardware errors
- Usage scenarios
 - Hardware test for defective GPU memory chips
 - CUDA API/driver software bugs detection
 - Hardware test for detecting soft errors due to non-ECC memory
- No soft error detected in 2 years x 4 gig of cumulative runtime
- Availability
 - NCSA/UofI Open Source License
 - https://sourceforge.net/projects/cudagpumemtest/
GPU Node Pre/Post Allocation Sequence

• Pre-Job (minimized for rapid device acquisition)
 – Assemble detected device file unless it exists
 – Sanity check results
 – Checkout requested GPU devices from that file
 – Initialize CUDA wrapper shared memory segment with unique key for user (allows user to ssh to node outside of job environment and have same gpu devices visible)

• Post-Job
 – Use quick memtest run to verify healthy GPU state
 – If bad state detected, mark node offline if other jobs present on node
 – If no other jobs, reload kernel module to “heal” node (for CUDA 2.2 driver bug)
 – Run memscrubber utility to clear gpu device memory
 – Notify of any failure events with job details
 – Terminate wrapper shared memory segment
 – Check-in GPUs back to global file of detected devices
AMD Opteron Tesla Linux Cluster AC

- **HP xw9400 workstation**
 - 2216 AMD Opteron 2.4 GHz dual socket dual core
 - 8 GB DDR2
 - Infiniband QDR
- **Tesla S1070 1U 4-GPU Server**
 - 1.3 GHz Tesla T10 processors
 - 4x4 GB GDDR3 SDRAM
- **Cluster**
 - Servers: 32
 - Accelerator Units: 32 (128 GPUs, 128 TF SP, 10 TF DP)
Intel 64 Tesla Linux Cluster *Lincoln*

- **Dell PowerEdge 1955 server**
 - Intel 64 (Harpertown) 2.33 GHz dual socket quad core
 - 16 GB DDR2
 - Infiniband SDR
- **Tesla S1070 1U 4-GPU Server**
 - 1.3 GHz Tesla T10 processors
 - 4x4 GB GDDR3 SDRAM
- **Cluster**
 - Servers: 192
 - Accelerator Units: 96 (384 GPUs, 384 TF SP, 32 TF DP)
NCSA “8+2” Lincoln Cluster

• How to share a GPU among 4 CPU cores?
 – Send all GPU work to one process?
 – Coordinate via messages to avoid conflict?
 – Or just hope for the best?
NCSA Lincoln Cluster Performance
(8 Intel cores and 2 NVIDIA Telsa GPUs per node)

STMV (1M atoms) s/step

- 2 GPUs = 24 cores
- 4 GPUs
- 8 GPUs
- 16 GPUs

~2.8

CPU cores: 8, 16, 32, 64
NCSA Lincoln Cluster Performance
(8 cores and 2 GPUs per node)

STMV s/step

2 GPUs = 24 cores
4 GPUs
8 GPUs
16 GPUs

8 GPUs = 96 CPU cores

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC
No GPU Sharing (Ideal World)
GPU Sharing (Desired)

Client 1

Remote Force

Local Force

Client 2

Remote Force

Local Force
GPU Sharing (Feared)

Client 1

Client 2
GPU Sharing (Observed)
GPU Sharing (Explained)

- CUDA is behaving reasonably, but
- Force calculation is actually two kernels
 - Longer kernel writes to multiple arrays
 - Shorter kernel combines output
- Possible solutions:
 - Modify CUDA to be less “fair” (please!)
 - Use locks (atomics) to merge kernels (not G80)
 - Explicit inter-client coordination
Inter-client Communication

- First identify which processes share a GPU
 - Need to know physical node for each process
 - GPU-assignment must reveal real device ID
 - Threads don’t eliminate the problem
 - Production code can’t make assumptions

- Token-passing is simple and predictable
 - Rotate clients in fixed order
 - High-priority, yield, low-priority, yield, …
Token-Passing GPU-Sharing

GPU1

GPU2

Local Remote Local Remote
GPU-Sharing with PME
Weakness of Token-Passing

• GPU is idle while token is being passed
 – Busy client delays itself and others

• Next strategy requires threads:
 – One process per GPU, one thread per core
 – Funnel CUDA calls through a single stream
 – No local work until all remote work is queued
 – Typically funnels MPI as well
Recent NAMD GPU Developments

• Production features in 2.7b2 release:
 – Full electrostatics with PME
 – 1-4 exclusions
 – Constant-pressure simulation
 – Improved force accuracy:
 • Patch-centered atom coordinates
 • Increased precision of force interpolation

• Performance enhancements (in progress):
 – Recursive bisection within patch on 32-atom boundaries
 – Block-based pairlists based on sorted atoms
 – Sort blocks in order of decreasing work
GPU-Accelerated NAMD Plans

• Serial performance
 – Target NVIDIA Fermi architecture
 – Revisit GPU kernel design decisions made in 2007
 – Improve performance of remaining CPU code

• Parallel scaling
 – Target NSF Track 2D Keeneland cluster at ORNL
 – Finer-grained work units on GPU (feature of Fermi)
 – One process per GPU, one thread per CPU core
 – Dynamic load balancing of GPU work

• Wider range of simulation options and features
Conclusions and Outlook

• CUDA today is sufficient for
 – Single-GPU acceleration (the mass market)
 – Coarse-grained multi-GPU parallelism
 • Enough work per call to spin up all multiprocessors

• Improvements in CUDA are needed for
 – Assigning GPUs to processes
 – Sharing GPUs between processes
 – Fine-grained multi-GPU parallelism
 • Fewer blocks per call than chip has multiprocessors
 – Moving data between GPUs (same or different node)

• Eager to test Fermi architecture and features!
Acknowledgements

- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
- Prof. Wen-mei Hwu, Chris Rodrigues, IMPACT Group, University of Illinois at Urbana-Champaign
- Mike Showerman, Jeremy Enos, NCSA
- David Kirk, Massimiliano Fatica, others at NVIDIA
- UIUC NVIDIA CUDA Center of Excellence
- NIH support: P41-RR05969

http://www.ks.uiuc.edu/Research/gpu/