Optimizing NAMD and VMD for the IBM Power9 Platform

John E. Stone

Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign http://www.ks.uiuc.edu/Research/gpu/ http://www.ks.uiuc.edu/Research/namd/ http://www.ks.uiuc.edu/Research/vmd/ IBM Power User's Group, Supercomputing 2018, Omni Hotel 3rd Floor Ballroom, Thursday November 15th, 2018

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

NAMD & VMD: Computational Microscope

Enable researchers to investigate systems described at the atomic scale

NAMD - molecular dynamics simulation

VMD - visualization, system preparation and analysis

Neuron

NAMD+VMD: Building A Next Generation Modeling Platform

- Provide tools for preparation, simulation, visualization, and analysis
 - Reach cell-scale modeling w/ all-atom MD, coarse graining, Lattice Microbes
 - Improved performance, visual fidelity, exploit advanced technologies (GPUs, VR HMDs)
- Enable hybrid modeling and computational electron microscopy
 - Load, filter, process, interpret, visualize multi-modal structural information
- Connect key software tools to enable state-of-the-art simulations
 - Support new data types, file formats, software interfaces
 - Openness, extensibility, and interoperability are our hallmarks
 - Reusable algorithms made available in NAMD, for other tools

History of NAMD and VMD on POWER

- NAMD + VMD have supported IBM POWER hardware since 1998!
 - Originally ported in big-endian mode under AIX 4.x
- 2016: Adapted to POWER8 w/ Linux in little-endian mode w/ P100 GPUs:
 - New NAMD GPU kernels improved overall P8+P100 performance [1]
 - Used VSX instructions for hand-coded and vectorized kernels [1]
 - Supported CUDA 7.x [1], and CUDA 8.x w/ P100 and NVLink
 - First VMD support for OpenGL GLX+EGL on POWER ppc64le

[1] Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms.
J. E. Stone, A.-P. Hynninen, J. C. Phillips, K. Schulten. International Workshop on OpenPOWER for HPC (IWOPH'16), LNCS 9945, pp. 188-206, 2016.

IBM AC922 Summit Node

Earliest NAMD Runs on Summit

Earliest NAMD Runs on Summit

NAMD on Summit, May 2018: ~20% Performance Increase

NAMD simulations can generate up to 10TB of output per day on 20% of Summit APRIL 20, 2017 VOLUME 121 NUMBER 15 pubs.acs.org/JPCB

KLAUS SCHULTEN MEMORIAL ISSUE

NAMD 2 Billion Atom Benchmark on 20% of Summit "Scalable Molecular Dynamics with NAMD on the Summit System" IBM Journal of Research and Development, 2018. *(In press)*

Density Map Segmentation

VMD GPU-accelerated density map segmentation of GroEL

Earnest, et al. J. Physical Chemistry B, 121(15): 3871-3881, 2017.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

VMD Tesla V100 Cross Correlation Performance Rabbit Hemorrhagic Disease Virus: 702K atoms, 6.5Å resolution VMD on Volta GPUs now ~9x faster than Kepler GPUs

Application and Hardware platform	Runtime, Spee	dup vs. Chimera,	VMD+GPU
Chimera Xeon E5-2687W (2 socket) [1]	15.860s,	1x	
VMD-CUDA IBM Power8 + 1x Tesla K40 [2]	0.488s,	32x	0.9x
VMD-CUDA Intel Xeon E5-2687W + 1x Quadro K6000 [1,2]	0.458s,	35x	1.0x
VMD-CUDA Intel Xeon E5-2698v3 + 1x Tesla P100	0.090s,	176x	5.1x
VMD-CUDA IBM Power8 "Minsky" + 1x Tesla P100	0.080s,	198x	5.7x
VMD-CUDA Intel Xeon E5-2697Av4 + 1x Tesla V100	0.050s,	317x	9.2x
VMD-CUDA IBM Power9 "Newell" + 1x Tesla V100	0.049s,	323x	9.3x

[1] GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular Dynamics Flexible Fitting. J. E. Stone, R. McGreevy, B. Isralewitz, and K. Schulten. Faraday Discussions 169:265-283, 2014.
[2] Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms. J. E. Stone, A.-P. Hynninen, J. C. Phillips, K. Schulten. International Workshop on OpenPOWER for HPC (IWOPH'16), LNCS 9945, pp. 188-206, 2016.

VMD Tesla V100 Performance for C₆₀ Molecular Orbitals, 516x519x507 grid

[1] Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms. J. E. Stone, A.-P. Hynninen, J. C. Phillips, K. Schulten. International Workshop on OpenPOWER for HPC (IWOPH'16), LNCS 9945, pp. 188-206, 2016.
 [2] NAMD goes quantum: An integrative suite for hybrid simulations. Melo et al., Nature Methods, 2018.

Next Generation: Simulating a Proto-Cell

- ORNL Summit: NVLink-connected Tesla V100 GPUs enable next-gen visualizations
- 200nm diameter
- ~1 billion atoms w/ solvent
- ~1400 proteins in membrane

Proto-Cell Data Challenges

- 1B-atom proto-cell requires nodes with more than TB RAM to build complete model...
- 1B-atom proto-cell binary structure file: 63GB
- Trajectory frame atomic coordinates: 12GB, 1.2TB/ns of simulation (1 frame per 10ps)
- Routine modeling and visualization tasks are a big challenge at this scale
 - Models contain thousands of atomic-detail components that must work together in harmony
 - Exploit persistent memory technologies to enable "instant on" operation on massive cell-scale models – eliminate several minutes of startup during analysis/visualization of known structure
 - Sparse output of results at multiple timescales will help ameliorate visualization and analysis I/O
 - Data quantization, compression, APIs like ZFP

NEW: Power9+V100 Interactive Remote Visualization

- Built-into VMD itself
- Enable access to massive data sets
- Uses GPU H.264 / HEVC hardware accelerated video encode/decode
- Supports interactive remote visualizations (both rasterization and ray tracing)
- Development ongoing, expected in next major VMD release, in 1H 2019...

Biomedical Technology Research Center for Macromolecular Modeling and Bioinfo Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.

KLAUS SCHULTEN MEMORIAL ISSUE

Acknowledgements

- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
- NVIDIA CUDA and OptiX teams
- Funding:
 - NIH support: P41GM104601
 - ORNL Center for Advanced Application Readiness (CAAR)
 - IBM POWER team, IBM Poughkeepsie Customer Center
 - NVIDIA CUDA, OptiX, Devtech teams
 - UIUC/IBM C3SR
 - NCSA ISL

"When I was a young man, my goal was to look with mathematical and computational means at the inside of cells, one atom at a time, to decipher how living systems work. That is what I strived for and I never deflected from this goal." – Klaus Schulten