Motion Planning of a Pneumatic
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Integration of sensing and motion
planning plays a crucial role in
autonomous robot operation. We
present a framework for sensor-based
robot motion planning that uses learn-
ing to handle arbitrarily configured
sensors and robots. The theoretical
basis of this approach is the concept of
the Perceptual Control Manifold that
extends the notion of the robot con-
figuration space to include sensor
space. To overcome modeling uncer-
tainty, the Topology Representing
Network algorithm is employed to
learn a representation of the Percep-
tual Control Manifold. By exploiting
the topology-preserving features of
the neural network, a diffusion-based
path planning strategy leads to flexi-
ble obstacle avoidance. The practical
feasibility of the approach is demon-
strated on a pneumatically driven ro-
bot arm (SoftArm) using visual
sensing.

Introduction
Autonomous robotics requires the
generation of motion plans for achiev-
ing goals while satisfying environ-

mental constraints. Classical motion planning is defined on a
configuration space which is generally assumed to be known,

implying the complete knowledge of both
the robot kinematics as well as knowledge
of the obstacles in the configuration space
f1]. Uncertainty, however, is prevalent,
which makes such motion planning tech-
niques inadequate for practical purposes.
Sensors such as cameras can help in over-
coming uncertainties but require proper

utilization of sensor feedback for this
purpose. A robot motion plan should
incorporate constraints from the sen-
sor system as well as criteria for opti-
mizing the sensor feedback.
However, in most motion planning
approaches, sensing is decoupled
from planning. In [2], a framework
for motion planning was proposed
that considers sensors as an integral
part of the definition of the motion
goal. The approach is based on the
concept of a Perceptual Control
Manifold (PCM), defined on the
product of the robot configuration
space and sensor space (e.g., a set of
image features). The PCM provides a
flexible way of developing motion
plans that exploit sensors effectively.
However, there are robotic systems,
such as the pneumatic robot arm that
we use for our experiments, where the
PCM cannot be derived analytically,
since the exact mathematical relation-
ship between configuration space,
sensor space, and control signals is
notknown. Even if the PCM is known
analytically, motion planning may re-
quire the tedious and error-prone pro-

cess of calibration of both the kinematic and imaging parameters
of the system [3,4]. Instead of using the analytical expressions
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Fig. 1. Schematic diagram of a 3-DOF manipulator, and the mapping to the image feature space.
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for deriving the PCM, we therefore propose the use of a self-
organizing neural network to learn the topology of this manifold.

In the first section, the general PCM concept is developed; the
following section describes the Topology Representing Network
(TRN) algorithm [5] we use to approximate the PCM and a
diffusion-based path planning strategy which can be employed
in conjunction with the TRN. The learned representation is then
utilized for motion planning and control of a pneumatic robot
system (SoftArm). Path control and flexible obstacle avoidance,
as outlined in the final section, demonstrate the feasibility of this
approach for motion planning in a realistic environment and il-
lustrate the potential for further robotic applications.

Incorporating Sensor Constraints
into Motion Planning

The problem of motion planning of an articulated robot is
usually defined in terms of the configuration space, C (or
C-space), which consists of a set of parameters corresponding to
the joint variables of the robot manipulator. If ¢; (i = 1 ... n) de-
fines each of the joint parameters and Q; (i = 1 ... n) defines the
joint space which is the set of possible variations of each of the
joint parameters, then the configuration space is defined as the
n-dimensional manifold [1]

C=QxQXx..QcHR.

The obstacles and other motion planning constraints are usu-
ally defined in terms of C, followed by the application of an opti-
mization criteria that yields a motion plan.

In vision-based control, the robot configuration is related to a
set of measurements which provide a feedback about the Carte-
sian position (e.g., Px, Py, P; for the robot in Fig. 1) of the end-
effector using the images from one or more video cameras. We
assume that this feedback is defined in terms of measurable im-
age parameters that we call image features, si€ S (i=1 ... m),
where S; is the set of possible variations of each of the image fea-
tures. The image feature space is defined as the set of all possible
variations of all the m image features,

SESXS5X.LS, .

Before planning the vision-based motion, the set of image
features must be chosen. Examples of image features used in vis-
ual servo control include image plane coordinates of a point
[6-8], length, orientation, and other parameters of a line in the
image [6, 9, 10], centroid, area, and other higher-order moments
of an image region [10, 11], and composite features in [12]. Dis-
cussion of the issues related to feature selection for visual servo
control applications can be found in [9, 10, 13]. The mapping
from the set of positions and orientations of the robot tool to the
corresponding image features can be computed using the projec-
tive geometry of the camera. Examples of commonly used pro-
jective geometry models include perspective, orthographic, or
para-perspective projection models. Since the Cartesian position
of the end-effector, in turn, can be considered to be a mapping
from the configuration space of the robot, we can also define im-
age features with a mapping from C. Thus, an image feature can
also be defined as a function s; which maps robot configurations
to image feature values, s;: C— S;. A robot trajectory in configu-
ration space will yield a trajectory in the image feature space.
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Because of the limitations of the video sensors the image fea-
tures can be measured only when the objects in view are suitably
configured with respect to the camera [14, 15]. Thus, to best util-
ize the sensor feedback, a robot motion plan should incorporate
constraints from the vision system as well as criteria for optimiz-
ing the quality of the visual feedback. In [2, 16] a framework was
proposed for incorporating sensor constraints in robot motion
planning. The basis of this framework was the definition of the
Perceptual Control Manifold or PCM. The PCM is a manifold
defined on the product space Cx S, or CS-space. We know that an
n-dimensional configuration space C maps to an m-dimensional
feature space S. Therefore, this mapping can be defined in terms
of the vector-valued function f: € — S and results in an #-dime-
nsional manifold in an (n + m)-dimensional space. The PCM is a
n-dimensional manifold since it is derived from » independent
joint parameters (while the m image parameters are not inde-
pendent).

Fig. 2. A two-joint robot and the 3D projection of its PCM.
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Consider a simple two-joint articulated robot shown in Fig, 2
and consider the image coordinates of the image of the end-
effector s1, s2. The image coordinates provide a feedback on the
position of the end-effector. Consider the variation of the image
parameter, s1, when the joint parameter g1, is varied, while keep-
ing g» fixed. Without considering the joint, this would define an
ellipse in the Q X $1 space. Similarly, if both the joints, g1 and g2
are varied simultaneously, a hyper-ellipsoid will be defined in @
X @ X $1X 52 space. For ease of visualization, we project the cor-
responding PCM to $1 X $2 X @, as shown in Fig. 2. Analogously,
in a robot with higher degrees of freedom, the PCM for a
hand/eye setup is defined by varying all the joints and consider-
ing the parametric hypersurface defined in Cx S space.

A given robot configuration maps to exactly one point on the
PCM. The corresponding image features are not necessarily
unique for a given position, but the additional representation of
the joint establishes the uniqueness property needed for motion
planning and control. Since the PCM represents both the control
parameter and the sensor parameter, an appropriate control law
can be defined on it [2]. Our concernin this article is, however, on
motion planning. The motion planning problem can be defined
in terms of the PCM as that of determining a trajectory to the goal
position satisfying constraints presented by robot kinematics,
workspace obstacles, the control system, and the visual tracking
mechanism. The use of the PCM makes the sensor constraints
easier to express compared to a potentially awkward C-space
representation. An example of such a constraint is the avoidance
of image feature singularities [17].

With a complete knowledge of the robot kinematics and cam-
era parameters, it would be possible to model the PCM analyti-
cally and carry out the motion planning on this space. However,
such an analytical model would be hard to derive under incom-
plete information, especially for a robot like the pneumatically
controlled SoftArm that we use in our experiments. This moti-
vates us to consider learning of the PCM and to subsequently use
the learned space for sensor-based motion planning. In the fol-
lowing we introduce the neural network architecture used for
learning a representation of the PCM.

Topology Representing Networks
for Motion Planning

In order to learn a suitable mapping of the PCM, the neural
network has to discover neighborhood relations in the input data
and successfully construct a topological representation of the in-
put manifold. Inspired by topology-conserving maps observed in
many parts of the brain, several neural network algorithms have
been suggested to learn such mappings [18]. A recently proposed
self-organizing process is the Topology representing network al-
gorithm. Topology representing networks (TRN), as introduced
by Martinetz and Schulten [5], can be formulated as a combina-
tion of a vector quantization scheme and a competitive Hebb-
rule. Fig. 3 illustrates the basic network architecture.

The problem of representing continuous data u through a
discrete set S = {w1, ..., w,,} of representative points is com-
monly referred to as vector quantization [19]. The vector quan-
tizer implemented in the TRN is known in the literature as
“neural-gas™ algorithm [20]. It uses an update rule for input
weights w”” of the network based on a ranking order and distrib-
utes the weights according to the probability density distribu-
tion of the given input data set. The adaptive neural-gas vector
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quantization scheme offers significant advantages compared to
other classic vector quantization methods [21]. Visuo-motor
control of an industrial robot using the neural-gas algorithm has
been demonstrated in [22].

For the path planning task we consider here, it is also essential
to capture the neighborhood relationships in the sampled data in
order to model the exact topology of the PCM. Methods from
computational geometry provide means to discover those spatial
relationships in a given data structure. Therefore, TRN employs
a “competitive Hebb-rule” for updating the connections between
the nodes of the network based on a principle for the change of
interneural connection strength which was formulated by D.
Hebb [23]. According to this postulate, the connection strength
between two neurons increases if their activity is correlated. In
addition to correlated activity, the competitive Hebb-rule in the
TRN algorithm uses closeness ranking for selecting the connec-
tions to be updated. This enforces a competition among all links
c;jand only the connection co; between the neurons ranked 0 and
1 is updated, leading to a perfectly topology representing net-
work structure.

To illustrate the unfolding dynamics of the map during the
learning stage, Fig. 4 depicts the development of a two-
dimensional network. At the beginning, all neurons are initial-
ized with random numbers, in this case we select
w' e [0.45, s 0.55]. During the learning process the network is
presented with equally distributed random numbers u = (x1,
xz)T, x; € [0... 1] and the neural-gas vector quantization scheme
distributes the weights w”” matching the input probability dis-
tribution. Simultaneously, the competitive Hebb-rule intro-
duces connections between the units resembling the topology-
of the input manifold. The quantization error gey,sor is one indi-
cation of the network quality and can be used to determine the
learning time.

For the robot control task we consider later, the input weights
w!" carry the information from joint encoders and video frames,
while an additional set of output weights w", indicated on the
right side in Fig. 3, generates the pressure values to drive the ro-
bot. During the unsupervised training session random pressure
signals are sent to the SoftArm. Camera and encoder readings are
collected and used to train the input weights w”". The network ac-
quires the topology of the PCM on the input side and, on the out-
put side, it delivers the corresponding control signals to guide the
robot to a desired position.

Although TRN are related to Self-Organizing Feature Maps
(SOFM) [24], a priori knowledge of the input dimensionality is
not crucial and the algorithm adjusts to the topological structure
of a given input manifold M forming a perfectly topology pre-
serving mapping. In many applications, the input manifold is a
submanifold of a high-dimensional input space and may either
be unknown or its topology may not be simple enough for pre-
specifying a correspondingly structured graph. For this purpose,
the TRN approach is best suited because it offers a flexible way
to develop a discrete representation of the underlying data struc-
ture including neighborhood relationships. For an extensive re-
view on topology representing maps and biological brain
function as well as an overview of different applications, see
[25]. A rigorous definition of the terms “neighborhood preserv-
ing mapping” and “perfectly topology preserving map” based on
Voronoi polyhedra and Delaunay triangulations is givenin [5]. In
the following, we will outline the implemented algorithm, in-
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Fig. 3. Topology Representing Network: Architecture of the algorithm and input/output connections. The neural-gas vector quantization
scheme distributes the pointers through adjustment of the input weights w'. Connections, introduced by the competitive Hebb-rule, capture
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the topology of the input data. Additional output weights w
cluding the extension of the original sequence to provide addi-
tional output weights w’ which will be used to link a desired
control action to a specific sensory input. We assume the data to
be embedded in an Euclidean space RP of dimension D, ie.,
weights w, € R and input vector u € R”.

Following the initialization of input weights w!" and output
weights w* for all unitsi =1 ... N with random numbers and re-
setting all connections to ¢;; = 0 the learning cycle reads:

1. Read input vector u and determine the current ranking order.

7

Hwo —u” < le’" —u” <..< HWZ-1 —u‘]

m

2. Update input weights w” and output weights w;™ accord-
ing to:

wi(t+ 1) = WD) +¥(r, 1) (u - wﬁ”(z))

@
w4 1) = W () + 40 ) (= wi (1) (3)

with
Wr o) =e(r) & @

fori=1.. N, where r; is the current rank of neuron i as deter-
mined in step 1. &(r) determines the change in the synaptic
weights and A(z) represents a neighborhood function.

3. Update the connection cg1 between the units currently
ranked 0 and 1. If co1 = O then set ¢g1 = 1 and the age of the con-
nection 701 =0; if ¢y # O refresh the connection age, i.e., 101 =0.

4. Increase the age of all connections cgj to foj = fg; + 1 for all
units j with co; # 0. Remove connections co; which exceed a given
lifetime o; > T(?), i.e., have not been refreshed suitably. Continue
with step 1.

Both e(r) and A(¢) as well as T(¢) are a function of time and de-
pend on the current learning step ¢ in the same manner (

e()=e(e,/e)™. M=, /2)"™,
7(1) = 1(T,/ T,)"™ with &= 0.3, £=0.05, A\, = 0.2N, A= 0.01,

T;=0.1N, Ty= 2N). The neural-gas vector quantization is repre-
sented by steps 1 and 2 in the algorithm above while steps 3 and 4

and
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store the corresponding control signals for the robot.

implement the competitive Hebb-rule which forms the topology
representing manifold through the connections cj;.

After the topology preserving map of the input manifold M,
which in our case is equivalent to the PCM, has been established,
a locally optimized path can be determined by minimizing the
Euclidean distance

in in _ . m m
dE( Wz‘ > Wzarget) - mln{dE( Wi > Wtarget)}

from the current position to a given target. Clearly, this ap-
proach will only work under very restricted conditions, e.g., a
simple PCM manifold. In the presence of obstacles within the
workspace, however, we have to use a more sophisticated pro-
cedure to develop a motion plan. We therefore propose to use a
diffusion-based path finding algorithm on the discrete network
lattice in which the target neuron i is the source of a diffusing
substance [26].

The goal is to find a linked chain ig 1., on the graph leading
from the current position ip = i, to the target position i, = i, while
satisfying certain constraints, e.g., obstacles in the workspace of
the robot arm (see Fig. 5).

To find the desired path, we define a function fi(r) on the nodes
i of the network obeying the condition:

®)

f(H=1 Vi 6)
and the relaxation dynamics:
f,(r+l):%2fj(t) if i,
i jeF, (7)

The function fi(#), initially set to ;(0) = Q (i # i;), represents the
concentration at each node 7 of the network and is held constant at
the target node i; while diffusing through the links of the network.
F;denotes the set of all nodes which are neighbors of 7 as defined
by the network topology and N; is the number of nodes in F;. A
flux can be defined as the concentration difference between two
connected nodes and is directed toward the node with lower con-
centration. A value m < 1 corresponds to absorptive losses at the
nodes. In order to avoid the trivial stationary solution we choose

, ®)
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(8) Qerror = 0.3381

(b) Gemor = 0.1027 =100

(C) Qerror = 0.0371 t = 100000

Fig. 4. Topology representing network: Learning process, showing
the development of the mapping. Left: Initial distribution of neurons.
Middle: An intermediate stage after the first connections have been
established. Right: The final network resembles the topology of the
feature space.
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While other relaxation procedures can be used as well, this
simple relaxation scheme serves our purpose and is computa-
tionally inexpensive, an important step toward real-time control,
e.g., in the presence of moving obstacles.

The path leading from i. to i; can be found by starting at the
current node i; and choosing as the next step always the neighbor
with maximal fi(£). Since the network graph is finite, the algo-
rithm is guaranteed to terminate yielding a proper path
ic,12,...n-1,- The path is short in the sense that it takes a route that
maximizes the increase of fi(¢) at each step.

To summarize, the motion plan can be generated as follows:

1. Read current position u. and target position u; in visual
space.

2. Find best matching neurons as given by the input weights
w" and w!"

3. Detect obstacles in vision space and eliminate connections
to neurons i which are covered by an obstacle.

4. Define diffusion on network lattice and iterate until f; # 0

1

fe+n=4_1 ;
N+ IIEZF. f,(z) else ©

if i=1i

5. Follow steepest gradient of fi(r) from current unit i. to target
unit it

In step 3 one can include other constraints, for example
avoiding singularities in the sensor space [2]. It is not necessary
to iterate step 4 until a stationary solution of the diffusion has
been achieved. Instead, we can generate a path as soon as the
concentration on the current node i, is larger than zero. This
might, however, render a recomputation of the diffusion neces-
sary, if, for any reason, the current location is displaced into a
position that has not been covered by the process yet. Finally, if
the motion plan meets a given goal, movement can be initiated
using the corresponding output values w?™ of the map to gener-
ate the sequence of commands, e.g., to guide a robot arm from
start to target.

Other graph search algorithms and global optimization strate-
gies can be applied to the learned representation of PCM as well.
However, these will be computationally expensive especially
when complex obstacles are taken into account [1]. Our ap-
proach on the other hand is of complexity O(N*) with N being the
number of nodes in the network and, in particular, itis independ-
ent of the number and shape of obstacles. Furthermore, the plan
is resolution complete; only if the resolution of the discretized
PCM manifold is not high enough to resolve a possible path, the
algorithm will fail to find it. Following the steepest gradient of
fi@®) from i. to i, eliminates the problem of local minima associ-
ated with many potential field path planning methods [1].

In Fig. 6 we plot a sample path on a two-dimensional network
(N =500) from the upper left unit to the upper right using the dif-
fusion algorithm. Instead of learning a static topology including
obstacles, we initially present the complete workspace during
the training stage and dynamically map obstacles into the PCM
after the representation of the workspace has been accomplished.
This approach is more suited for a robotic manipulator operating
in a changing environment, e.g., with obstacles placed at differ-
ent locations within the workspace.
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consequence, accurate positioning of the Sof-
tArm presents a challenging problem and can
only be achieved by an adaptive control
mechanism. For a more detailed introduction
to the mechanics of the SoftArm see [27].
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Fig. 5. Path planning: Given the current and the target position of the robotic
manipulator as well as certain constraints, e.g., obstacles in the workspace, the diffusion

algorithm generates a trajectory on the TRN.
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Fig. 6. Two-dimensional Topology Representing Network after the
learning has been finished. Obstacles have been identified and a
sample path (open circles) from upper left unit to upper right unit of
the map has been generated by the diffusion process.

As a means of demonstrating the practical capabilities for
motion planning and control, the following sections will de-
scribe the SoftArm robotic system and the implementation of the
topology representing network algorithm on this system.

The SoftArm Robotic System

The SoftArm, a pneumatically driven robotic manipulator
manufactured by Bridgestone, is modeled after the human arm. It
exhibits the essential mechanical characteristics of skeletal mus-
cle systems employing agonist-antagonist pairs of rubbertuators
which are mounted on opposite sides of rotating joints. Pressure
difference drives the joints; average pressure controls the force
(compliance) with which the motion is executed. This latter fea-
ture allows operation at low average pressures and, thereby, al-
lows one to carry out a compliant motion of the arm. This makes
such robots suitable for operation in a fragile environment; in
particular, it allows direct contact with human operators. The
price to be paid for this design is that the response of the arm to

pressure signals( By, p,, -, Py )T cannot be described by a priori
mathematical equations, but rather must be acquired heuristi-
cally. Furthermore, one expects that the response characteristics

change during the lifetime of the arm through wear, after replace-
ment of parts and, in particular, through hysteretic effects. In
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The complete robot system, which is de-
picted in Fig. 7, consists of the SoftArm, air
supply, control electronics (servo drive units)
and a Hewlett Packard HP755/99 workstation
which includes a serial interface connected to the robot’s servo
drive units, and a video input card (Parallax Power Video
700Plus). The servo drive units provide the internal control cir-
cuitry of the robot, operate the servo valve units, and send joint
angle data, available from optical encoders mounted on each
joint, to the computer. Visual feedback is provided by two color
video cameras. For maximum flexibility, vision processing is
implemented in software rather than in hardware. The use of a
frame grabber to import the video signals in a JPEG encoded for-
mat minimizes the amount of data to be transferred between the
video board and workstation memory. The location of the grip-
per is extracted from the video frames through a simple color
separation, yielding one color component. This is then thresh-
olded and the center of mass of the remaining image calculated.
Coding the gripper in a certain color, e.g., red, allows us to
weaken the workspace scenery restrictions in terms of back-
ground and lighting conditions while, at the same time, keeping
the visual preprocessing as simple and efficient as possible.

Motion Planning for the SoftArm Robotic System

Previous work on topology representing networks (TRN) in
robotics [27, 28] employed neighborhood preservation to aver-
age over the output of several adjacent units in order to speed up
learning and to achieve a more accurate positioning. The present
study seeks to exploit the topology to generate a motion plan
from a current position to a given target satisfying several con-
straints. These constraints can include obstacles defined in C-
space, obstacles given through vision space and limitations of the
camera feedback [17].

The PCM, as introduced above, is defined as the product of
C-space and sensor space . Therefore, two different types of in-
formation converge upon neurons within the network. Visual in-
put s = (s1 ... sn)T is derived from video cameras; vision
preprocessing resolves the gripper location in the video frames.
Joint position of the manipulator, denoted by g = (g1 ... qn)T, isde-
rived from the feedback of optical encoders mounted on each
joint. Following a suitable training period, the topology of the
neural network resembles the PCM. In addition, the network pro-
vides the nonlinear mapping between the position in work space
u = (s, q)T and the corresponding pressure commands p to
achieve this configuration. The current experiments focus on ob-
stacle collisions of the robot’s gripper only. Future studies will
extend the control to avoid obstacles with the complete arm.
Given the exact robot geometry, this can be implemented by us-
ing the encoder information which is already stored at each net-
work node.

First we test our approach in a two-dimensional environment,
generating a motion plan in one camera plane. Therefore, we use
only two joints of the SoftArm to control the position. In this case,
the network provides a mapping between the 4d input vector u
and the two-dimensional pressure vector p:
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Fig. 7. Diagram of the robot system, showing SoftArm, air supply,
control electronics, and workstation. The host computer includes a
software layer (robot control, neural network, and image processing
programs) and the hardware components (serial interface and video
input).

(10)

input: u=(s,, 5,, 4, %)T

output: p= (p,, p,)’ (11)
A sample network is depicted in Fig. 8 by plotting the visual
components s of the 4-dimensional input vectors w". This net-

work was trained (¢4 = 100000) with a data set of 2700 random
moves within a subset of the workspace and consists of N = 150
neural units. The left side shows the actual position in the robot’s
workspace as seen by the camera. On the right side, we use the
learned representation to generate a motion plan from a start
point to a given target. Both, start and target, are only given in
visual space s (as is the obstacle); the corresponding encoder
readings need not to be known. By selecting the best matching
neurons for current position and target position in vision space,
the resulting neurons also provide the values for the encoder
readings. This is possible, because s and q represent redundant
information. The motion plan, shown in Fig. 8 on the right hand
side, is generated by the diffusion algorithm exclusively in
CS-space to ensure a smooth motion in terms of joint angles.
Extending the algorithm to a three-dimensional workspace
increases the information that needs to be processed by the net-
work. The image feature space 5 is now represented by the posi-
tion s = (s1, 52, 53, S4)T of the gripper in two camera planes, the
configuration space Cis given by the encoder readings q of three
joints, resulting in a 7d input vector and a three-dimensional out-
put vector for the pressure signals respectively:
(12)

. . _ T
input: W= (8,, 8, S5 S, 1> G G)
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(b)

Fig. 8. Left: SoftArm robot system, obstacle and network structure in
the workspace as seen by the camera. The learning has been
accomplished and the network represents the topology of the PCM.
Right: Motion plan (grey units) generated by the diffusion processin
CS-space after start and target have been defined in vision space.

output: p = (p,, p,, p))’ (13)

In this case, a network consisting of N = 750 neurons is
trained (fmax = 250000) with 5000 random moves within the
workspace by sending random pressure values to the robot and
observing the end effector position as well as reading out the en-
coder values.

The sequence in Fig. 9 shows a sample path. The robot arm is
moving from the right side to the left side of the workspace while
avoiding a collision with the obstacle placed in the middle. The
training of the neural network was restricted to the lower portion
of the workspace, so that no valid path over the obstacle exists in
this case. Again, start and target location as well as obstacles are
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Fig. 9. 3d path generated by the diffusion process. The successive frames show the robot arm moving from an initial configuration on the right
side of the workspace to a given target position on the left side while avoiding a collision with the detected obstacle.
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only known in vision space, while the motion plan is generated
on the learned representation of the PCM by the diffusion proce-
dure. In the three-dimensional environment, a problem arises
due to the discrete representation of the PCM. With our network
of 750 neurons, the resulting path generated on the learned repre-
sentation of the PCM is only 12 steps long which, in a more real-
istic environment, can only be seen as a rough motion plan.
Nevertheless, it can be taken as a piecewise linear approximation
of the final path and a basis for further path smoothing tech-
niques [1]. Neural network interpolation strategies can be used to
improve the accuracy as well [27].

While collecting the large data set of random robot arm
moves for training the neural network takes several hours, the
TRN can typically be trained within a few minutes on a worksta-
tion. Calculating the diffusion path plan takes less than one sec-
ond on an HP 755/99 workstation for the experiments we
mention here.

Discussion

Learning the representation of the Perceptual Control Mani-
fold provides a very general framework for robot motion plan-
ning in which the sensing (in the form of video feedback) is
factored automatically into the planning process, leading to a
flexible way of visually controlling a robot manipulator. The im-
plementation on a pneumatically driven robot manipulator
proves the technical feasibility of our method. It can be general-
ized to control robotic systems with more degrees of freedomina
three-dimensional environment as our experiments demonstrate.
The proposed diffusion-based path planning algorithm utilizes
the topology preserving features of the neural network to dy-
namically map obstacles into the PCM and to establish a motion
plan which prevents collisions with detected obstacles. Not tak-
ing into account hardware-specific limitations such as camera
and encoder resolution, the accuracy of a motion plan is only lim-
ited by the network size. A larger number of neurons leads to a
finer sampling of the underlying PCM topology and, hence, to a
more detailed path, essential for an environment with complex
obstacles. In contrast to industrial robot systems, the SoftArm has
not been designed to facilitate accurate posture control. A simu-
lator environment is not available and the mechanics of the arm
confine the size of our data base to a few thousand moves, lead-
ing to a coarse representation of the manifold. Hence, the number
of neurons in our experiments is lower than it would be in a typi-
cal implementation using an industrial robot system. Future
work, however, will have to address the discretization effect in
higher dimensions, as introduced by the use of redundant de-
grees of freedom, to achieve a finer path control. This discretiz-
ing effect that results from the use of small numbers of neurons to
map a high dimensional input space can be alleviated by intro-
ducing interpolation strategies [27] which also improve fine mo-
tion control.

Acknowledgments

The authors would like to thank Ivo Hofacker and Willy
Wriggers for critical comments on an earlier version of this
manuscript. This work was supported by the Roy J. Carver
Charitable Trust and by the U.S. Army Research Laboratory un-
der Cooperative Agreement No. DAAL(01-96-2-0003. Simula-
tions were carried out at the Resource for Concurrent Biological
Computing at the University of Illinois, funded by the National

June 1997

Institute of Health (Grant PA1RR05969) and by the National Sci-
ence Foundation (Grants BIR-9318159 and ASC-8902829).

References
[1]1J.C. Latombe, Robot Motion Planning, Kluwer Academic, Boston, MA,
1991.

[2] R. Sharma and H. Sutanto, “A Framework for Robot Motion Planning
with Sensor Constraints,” IEEE Transactions on Robotics and Automation,
vol. 13, no. 1, pp. 61-73, 1997.

{31 R.Y. Tsai, “Synopsis of Recent Progress on Camera Calibration for 3D
Machine Vision,” in Robotics Review 1. MIT Press, Cambridge, MA, 1989.

[4] J.M. Hollerbach, “A Survey of Kinematic Calibration,” in Robotics Re-
view 1, O. Khatib, J.J. Craig, and T. Lozano-Perez. eds., MIT Press, Cam-
bridge, MA, 1989.

[5]1 T. Martinetz and K. Schulten, “Topology Representing Networks,” Neu-
ral Networks, vol. 7, no. 3, pp. 507-522, 1994.

[6] B. Espiau, F. Chaumette, and P. Rives, “A New Approach to Visual Ser-
voing in Robotics,” IEEE Transactions on Robotics and Automation, vol. 8,
pp. 313-326. 1992.

[71 N.P. Papanikolopoulos, PXK. Khosla, and T. Kanade, “Visual Tracking of
aMoving Target by a Camera Mounted on a Robot: A Combination of Vision
and Control,” IEEE Transactions on Robotics and Automation, vol. 9, no. 1,
pp. 14-35, 1993.

[8]1 S.B. Skaar, W.H. Brockman, and R. Hanson, “‘Camera-Space Manipula-
tion,” International Journal of Robotics Research, vol. 6, no. 4, pp. 20-32,
1987.

[9]1].T. Feddema, C.S. George Lee, and O.R. Mitchell, “Weighted Selection
of Image Features for Resolved Rate Visual Feedback Control.” IEEE Trans-
actions on Robotics and Automation, vol. 7, pp. 31-47, 1991.

[10]L.E. Weiss, A.C. Sanderson, and C.P. Neuman, *‘Dynamic Sensor-Based
Control of Robots with Visual Feedback,” IEEE Transactions on Robotics
and Automation, vol. 3, pp. 404-417, 1987.

[11] B. Yoshimi and P.K. Allen. “Active, Uncalibrated Visual Servoing.” in
Proc. IEEE International Conference on Robotics and Automation, San Di-
ego, CA, May 1994, pp. 156-161.

[12] G.D. Hager, “Real-Time Feature Tracking and Projective Invariance as a
Basis for Hand-Eye Coordination,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, 1994, pp. 533-539.

[13] H. Sutanto and R. Sharma, “Global Perfomance Evaluation of Image
Features for Visual Servo Control,” Journal of Robotic Systems, vol. 13, no.
4. pp. 243-258. April 1996.

[14] R. Sharma, “Active Vision for Visual Servoing: A Review,” in [EEE
Workshop on Visual Servoing: Achievements, Applications and Open Prob-
lems, May 1994,

[15] K.A. Tarabanis. P.K. Allen, and R.Y. Tsai, “A Survey of Sensor Planning
in Computer vision,” IEEE Transactions on Robotics and Automation, vol.
11, pp. 86-104, 1995.

[16] R. Sharma and H. Sutanto, “Unifying Configuration Space and Sensor
Space for Vision-Based Motion Planning,” in Proc. IEEE International Con-
ference on Robotics and Automation, April 1996. pp. 3572-3577.

[17]R. Sharma and S. Hutchinson, “Optimizing Hand/Eye Configuration for
Visual-Servo Systems,” in Proc. IEEE International Conference on Robotics
and Automation, May 1995, pp. 172-177.

[18] Helge Ritter, Thomas Martinetz, and Klaus Schulten, Neural Computa-
tion and Self-Organizing Maps: An Introduction, Addison-Wesley, New
York, revised English edition, 1992.

97



[19] R.M. Gray, “Vector Quantization,” IEEE ASSP Magazine, vol. 1(2), pp.
4-29, 1984,

[20] T. Martinetz and K. Schulten, “A ‘Neural Gas’ Network Learns Topolo-
gies,” in Proceedings of the International Conference on Artificial Neural
Networks, Helsinki, 1991. 1991, Elsevier Amsterdam,

{211 T. Martinetz, S.G. Berkovich, and K. Schulten, “Neural-Gas Network
for Vector Quantization and Its Application to Time-Series Prediction,”
IEEE Transactions on Neural Networks, vol. 4, no. 4, pp. 558-569, 1993.

[22] J.A. Walter and K. Schulten, “Implementation of Self-Organizing Neu-
ral Networks for Visuo-Motor Control of an Industrial Robot,” IEEE Trans-
actions on Neural Networks, vol. 4, no. 1, pp. 86-95, 1993.

[23]1 D. Hebb, Organization of Behavior, Wiley, New York, 1949.

[24] T. Kohonen, “Analysis of a Simple Self-Organizing Process.” Biol. Cy-
bern., vol. 44, pp. 135-140, 1982.

[25] Klaus Schulten and Michael Zeller, “Topology Representing Maps and
Brain Function,” in Nova Acta Leopoldina NF 72. 1996, vol. 294, pp. 133-
157, Deutsche Akademie der Naturforscher.

[26] H. Ritter and K. Schulten, “Planning a Dynamic Trajectory Via Path
Finding in Discretized Phase Space,” in Parallel Processing: Logic, Organi-
zation, and Technology. vol. 253 of Lecture Notes in Computer Science, pp.
29-39. Springer, 1987.

[27] T. Hesselroth, K. Sarkar, P. van der Smagt, and K. Schulten, “Neural
Network Control of a Pneumatic Robot Arm,” IEEE Transactions of System,
Man and Cybernetics, vol. 24, no. 1, pp. 28-37, 1994.

[28] K. Sarkar and K. Schulten, “Topology Representing Network in Robot-

ics,” in Physics of Neural Networks, Volume 3, J. Leo van Hemmen, Eytan
Domany, and Klaus Schulten, eds. Springer-Verlag, New York., 1995.

98

Michael Zeller received his Diplom degree in physics
from the Johann Wolfgang Goethe University in Frank-
furt, Germany, in 1994, He is currently a visiting
scholar in the Physics Department and Beckman Insti-
tute at the University of Illinois at Urbana-Champaign.
His research interests include vision-based path plan-
¢ ning for robotic manipulators, biological visuo-motor
control, neural networks and nonlinear dynamics.

{ Rajeev Sharma received his Ph.D. from the University
of Maryland, College Park, in 1993. He is currently an
Assistant Professor in the Department of Computer Sci-
ence and Engineering at the Pennsylvania State Univer-
sity, University Park. He spent three years at the
University of Illinois, Urbana-Champaign, as a Beck-
man Fellow and Adjunct Assistant Professor in the De-
partment of Electrical and Computer Engineering. He is
a recipient of the ACM Samuel Alexander Doctoral

1

Dissertation Award, IBM pre-doctoral fellowship, National Talent Search
Scholarship of India, and National Merit Scholarship Award. He is a co-
editor of the electronic newsletter of the JEEE assembly and task planning
subcommittee. His research interests include motion planning under uncer-
tainty, vision-based control, neural networks, active vision, and vision-based
human-computer interaction.

Klaus Schulten received his Diplom degree in physics
from the University of Munster, Germany, in 1969, and
the Ph.D. degree in chemical physics from Harvard
University in 1974. In 1974 he joined the Max-Planck-
Institute for Biophysical Chemistry in Gottingen and in
1980 he became Professor of Theoretical Physics at the
Technical University of Munich. In 1988 he moved to
the University of Illinois at Urbana-Champaign, where

- he is Professor of Physics. His research areas are theo-
retical physics and computational biology.

IEEE Control Systems



