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Temperature quench echoes in proteins
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Temperature quench echoes are analyzed in terms of the temperature–temperature corre
function in the harmonic approximation, and the resulting expressions are compared with molec
dynamics simulations. The relationship between the time dependence of the echo depth and
density of states is demonstrated for harmonic systems. For a protein, which has signific
anharmonicity, the time dependence is dominated by relaxation effects that originate from depha
of the periodic motions. A simple relaxation model is shown to provide a good description of th
results observed in the simulations. ©1995 American Institute of Physics.
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I. INTRODUCTION

Molecular dynamics simulations of biopolymers are no
being widely used to study their structure, dynamics a
thermodynamics.1,2 Certain properties are difficult to visua
ize directly. Some of these can be revealed through num
cal experiments which apply sudden perturbations and m
tor the response. The temperature quench echo is a g
example. Temperature quench echoes were first observe
simulations of a Lennard-Jones glass by Grestet al.3 and
were demonstrated recently in a protein, the bovine pan
atic trypsin inhibitor ~BPTI!.4 A typical quench echo is
shown in Fig. 1. A molecular dynamics simulation of a sy
tem equilibrated at a certain temperature is halted at t
t50 and then continued with the same positions, but w
zero velocities for all particles. This procedure, which crea
a coherent system, is referred to as a quench. The s
quench is applied a second time att5t. The echo manifests
itself as a brief decrease in the kinetic energy or, accordin
the relationship

T5
2

3kBN
(
i

1

2
mivi

2 ~N5number of atoms! ~1!

as a dip in the temperatureT of the system.
Rahman and co-workers provided an interpretation

the quench echo phenomenon and showed how it could
used to study various aspects of the dynamics of a Lenn
Jones glass.3,5–7The authors formulated their analysis in th
harmonic approximation, which was also employed in Re
to interpret echoes in proteins. In the present paper we re
mulate the harmonic description in terms of the temperatu
temperature correlation function. This provides a basis fo
more detailed study of the properties of the temperat
quench echoes. The results are compared to simulation
model systems and to molecular dynamics calculations of
protein BPTI.

In Refs. 3 and 4 it was suggested that the echo de
provides an estimate of the density of states. We show h

a!Present address: School of Chemistry, Tel Aviv University, Tel Aviv 699
Israel.
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that although the echo depth is related to the density
states, the relationship is more complex than initially a
sumed. We demonstrate that vibrational dephasing due to
anharmonicity of the protein plays a dominant role in th
decay of the echo depth with increasing time.

In Section II we describe briefly the molecular dynamic
algorithm employed. Section III presents a description of th
temperature echo phenomenon within the harmonic appro
mation and shows how it can be expressed in terms of t
temperature–temperature correlation function. In Section
the exact relation of the echo depth to the density of states
derived and illustrated. Section V uses a simple model
examine anharmonicity effects on the temperature echo.
Section VI, we summarize and discuss the results.

II. METHODS

The simulation for BPTI underlying Fig. 1 is basically a
repetition of the work presented in Ref. 4. BPTI has 5
amino acids and 898 atoms in an all atom model. We use
well equilibrated structure obtained by molecular dynami
simulations at 300 K in vacuum of about 1 ns starting fro
the 1.5 Å resolution x-ray structure.8 To prepare the coordi-
nates att50 in Fig. 1, a 15 ps molecular dynamics simula
tion at 300 K was carried out. During the first 5 ps of th
simulation, the protein was coupled to a heat bath at 300
by rescaling velocities through9

v i
new5v i

oldA12l1lT0 /T, ~2!

whereT05300 K, l50.01 andT is the temperature defined
in Eq. ~1!. During the remaining 10 ps, no coupling to a hea
bath was applied. The average temperature during the per
10 ps,t,15 ps wasT05297.86 K with fluctuations of
65.67 K. We employed the coordinates at 10, 11, 12, 13,
and 15 ps to simulate six temperature quench echoes. T
temperatures shown in Fig. 1 and Fig. 3 below were an a
erage over these six quench echo simulations. The simu
tions were carried out using the molecular dynamics packa
MD/PMD with the fast multipole approximation~FMA! to

8,
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3113Xu et al.: Temperature quench echoes in proteins
evaluate long range electrostatic forces.10,11TheCHARMM 19
all-atom potential energy function was used12 and the dielec-
tric constant was«51.

The molecular dynamics simulation used to obtain Fig
and Fig. 13 are identical to that described in Ref. 4. It w
performed with theCHARMM program~version 22!12 and the
all-atom parameter set.13A distance-dependent dielectric fac
tor was employed~«5r !. In the simulations all the interac
tions were included, i.e., no distance cutoff for non-bond
interactions was used, and the time step was equal to 0.5

III. TEMPERATURE QUENCH ECHOES IN THE
HARMONIC APPROXIMATION

In this section, we relate the temperature echo, in
harmonic approximation, to the temperature correlation fu
tion. The derivation closely follows that in Refs. 3–7. B
introducing the temperature–temperature correlation fu
tion a more systematic approach to the temperature respo
of the system is developed. We show how the echo temp
ture ~i.e., the system temperature at the time of the echo! is
related to the density of states and that in a harmonic sys
the density of states can be extracted from the depth of
echo.

The normal mode analysis for proteins, particularly su
able at low temperatures, assumes that the potential en
surface on which the atoms move can be approximated b
quadratic form. The normal modes can be determin
through the calculation and diagonalization of the seco
derivative ~Hessian! matrices of the potential energy with
respect to mass weighted Cartesian or internal coordina
This method has been successfully employed
proteins.14–16Although there are anharmonic contributions
the energy function, the harmonic approximation can s

FIG. 1. Double quench, quench echo and comparison with the tempera
temperature correlation functionCT,T(t) @see Eq.~15!#. The solid lines rep-
resent results averaged over six simulations for the protein BPTI; the das
lines are predictions due to the harmonic model, i.e., Eq.~24! and Eq.~31!.
The bottom diagrams are enlargements of the top diagram. The first qu
was applied att50, and the second one att5t ~t5250 fs!; the echo is
observed att52t.
J. Chem. Phys., Vol. 103,
9
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give insights into protein motions. An alternative route to
evaluate normal modes is through diagonalization of th
force–force correlation matrixF jk5^ f j f k&, of the velocity-
velocity correlation matrix Vjk5^v jvk&, or of the
coordinate-coordinate correlation matrixXjk5^DxjDxk&,
where j , k label the three Cartesian coordinates of allN
particles, and the average here is over trajectories lasting
sufficient period of time.17,18

For a protein withN atoms, there are 3N26 internal
normal modes after the six degrees of freedom which de
scribe overall translation and rotation are removed. We de
note the frequency of theath mode byva and the associated
vibrational coordinate byqa , wherea51,2,...,3N26. The
vibrational modes are assumed to be in mass-weighted co
dinates, such that the effective mass associated with ea
mode is unity.19

To derive the relationship between the quench echo e
fect and the temperature correlation function, we need t
analyze how the kinetic energy, or temperature defined in E
~1!, evolves before the first quench, between the first and th
second quench, and after the second quench.

A. Before the first quench

Before the first quench, i.e., fort,0, the probability for
the ath normal mode to have amplitudeAa is given by the
Rayleigh distribution20

P~Aa!5
va
2Aa

kBT0
expS 2

va
2Aa

2

2kBT0
D , ~3!

whereT0 is the equilibrium temperature of the system.
We define byua the phase of theath normal mode at

t50. The values ofua are random and, at thermal equilib-
rium, can be assumed to be evenly distributed in the interv
@0, 2p#. The position of theath normal mode att,0 can be
expressed as

qa
~1!~ t !5Aa cos~vat1ua! ~4!

with corresponding velocity

va
~1!~ t !5

dqa
~1!~ t !

dt
52Aava sin~vat1ua!. ~5!

Thus, one obtains for the total kinetic energyEk
(1) the corre-

lation function

^Ek
~1!~ t !Ek

~1!~0!&u5K S (
a

1

2
va
2Aa

2 sin2~vat1ua! D
3S (

l

1

2
vl
2Al

2 sin2ul D L
u

, ~6!

where the summation overa andl is from 1 to 3N26 and
^...&u denotes the average over the random phasesua and
ul . Employing the averaging technique proposed b
Rayleigh,20,21 one exploits

^exp@6 i ~ua1ul!#&u50; ^exp@6 i ~ua2ul!#&u5dal ,
~7!

and obtains

re-
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3114 Xu et al.: Temperature quench echoes in proteins
^Ek
~1!~ t !Ek

~1!~0!&u5S (
a

1

4
va
2Aa

2 D 2
1(

a

1

32
va
4Aa

4 cos~2vat !. ~8!

It is easy to show

^Ek
~1!~ t !&u5K (

a

1

2
va
2Aa

2 sin2~vat1ua!L
u

5(
a

1

4
va
2Aa

2 . ~9!

The harmonic equations derived above can be fur
simplified by considering the ensemble averages of the
netic energy and of the temperature. At equilibrium one
assume equipartition among the modes, which means tha
average kinetic energy in each mode is

^Ek,a
~1! ~ t !&A,u5^ 1

2 va
~1!~ t !2&A,u5 1

2 kB^T&, ~10!

where^ ... &A,u is the ensemble average over oscillator a
plitudes Aa @using Eq. ~3!# and over the random phas
ua . In the following equations we use the subscriptZ to
indicate an ensemble average over bothA and u, i.e.,
^...&Z5^...&A,u . For individual normal modes, we have

^Aa
2va

2 sin2~vat1ua!&Z5kB ^T~ t !&Z . ~11!

By taking the time average we obtain for each mode

1
2 va

2^Aa
2&Z5kB^T&Z,t . ~12!

Defining the average equilibrium temperatureT05^T&Z,t ,
one can write

^va
2Aa

2&Z5^Aa*
2&Z52kBT0 , ~13!

i.e., the ensemble average of the the factorva
2Aa

2 is a con-
stant proportional to the equilibrium temperatureT0 . For
convenience, we rename this factorAa*

2 , and rewrite Eq.~9!
as

^Ek
~1!~ t !&Z5K (

a

1

2
Aa*

2 sin2~vat1ua!L
Z

5K (
a

1

4
Aa*

2L
Z

5~3N26! 1
2 kBT0 , ~14!

where in the last equality we used Eq.~13! to get the ex-
pected result.

The normalized temperature–temperature correla
function is defined by

CT,T~ t !5
^T~ t !T~0!&2^T~ t !&2

^@T~ t !#2&2^T~ t !&2
. ~15!

CT,T(t) can be expressed by use of Eqs.~1!, ~8! and ~9! as
J. Chem. Phys., Vol. 103
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CT,T~ t !5
^Ek

~1!~ t !Ek
~1!~0!&2^Ek

~1!~ t !&2

^@Ek
~1!~ t !#2&2^Ek

~1!~ t !&2

5
^(aAa*

4cos~2vat !&

^(aAa*
4&

. ~16!

It should be noted that, as written, Eq.~1! includes the over-
all translation and rotation while the normal mode kineti
energy does not. In the use of simulations to evaluate t
correlation functions, it would be appropriate to do simula
tions for a system with no overall translation or rotation, as
commonly done for vacuum simulations. For proteins o
peptides in solution, a correction needs to be made; for mo
cases, the difference between 3N and 3N26 degrees of free-
dom is negligible.

Using distribution Eq.~3! one obtains for the denomina-
tor in Eq. ~16!

K (
a

Aa*
4L 58~3N26!~kBT0!

2. ~17!

For each simulation trajectory,Aa is a fixed constant which
depends on the initial velocity assignment. However, a
shown in Ref. 22, the correlation function is almost identica
for different trajectories. Thus, we assume thatCT,T(t) cal-
culated from a given trajectory represents the temperatu
temperature correlation function evaluated from the avera
over many trajectories with an ensemble ofAa distributed
according to Eq.~3!. Consequently, we obtain

CT,T~ t !5
^(aAa*

4cos~2vat !&A
8~3N26!~kBT0!

2 5^cos~2vat !&a , ~18!

where^...&A denotes the average over the amplitudes of th
oscillators determined by use of Eq.~3!, and ^...&a is an
average over all the normal modes, i.e.,

^ f ~va!&a5
1

3N26 (
a

f ~va!5E
0

`

dv D~v! f ~v!.

~19!

D(v) denotes the normalized density of states. We use re
tion Eqs.~18! and ~19! below to derive a method for deter-
mining the density of states from the temperature quen
echo.

The correlation functionCT,T(t) could be evaluated
from Eqs.~18! and ~19! if the density of statesD(v) were
known. Here we determineCT,T(t), according to Eq.~15!
from molecular dynamics simulations, which do not neces
sarily satisfy the harmonic approximation.CT,T(t) was cal-
culated from the 10 to 15 ps interval in the 15 ps simulatio
described in Section II. The result is shown in Fig. 2. By
using a least-square fit, the correlation function can b
matched to a single exponential decay

CT,T~ t !'e2t/t0, t052.47 fs. ~20!

However, as is evident from Fig. 2, the exponential deca
used in Eq.~20! is very approximate. The correlation func-
tionCT,T(t) has a long-time oscillatory behavior, which con-
tains essential information concerning the density of state
, No. 8, 22 August 1995
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3115Xu et al.: Temperature quench echoes in proteins
B. After the first quench and before the second one

We now develop a description of the temperature ech
the framework of the harmonic approximation. Att50, the
velocities for all modes are set to zero. The amplitude for
ath normal mode is

Aa
~2!5uqa

~1!~0!u5uAa cosuau. ~21!

The position and velocity for thea th normal mode at times
0,t,t ~i.e., after the first quench! can be expressed

qa
~2!~ t !56Aa cosua cos~vat !,

~22!
va

~2!~ t !57Aava cosua sin~vat !.

The initial phases of all modes are 0,p due to the applied
quench, resulting in the choice of6 signs. Accordingly, the
total kinetic energy after the first quench and before the s
ond quench is

^Ek
~2!~ t !&5K (

a

1

2
Aa*

2 cos2 ua sin2~vat !L
Z

5K (
a

1

8
Aa*

2@12cos~2vat !#L
Z

5
3N26

8
^Aa*

2&Z@12CT,T~ t !#. ~23!

From Eq. ~13! and ^Ek
(2)(t)&5(3N26)/2 kBT

(2)(t), the
temperature after the quench is given by

T~2!~ t !5
T0
2

@12CT,T~ t !#. ~24!

This expression contains the correlation function, Eq.~15!.
One can see from Fig. 1 that the prediction given by E
~24!, using a correlation functionCT,T(t) determined from
the simulation shown in Fig. 2, is in good agreement with
temperature response resulting from the molecular dynam
simulation. This is true in spite of the fact that Eq.~24! has
been derived within the harmonic model and that the m
lecular dynamics simulations include the effect of anh
monic forces.

FIG. 2. The temperature correlation function. The solid line is calcula
from a 5 pssimulation atT05297.86 K according to Eq.~15!. Shown by a
dashed line is a least-square fit to a single exponential decaye2t/t0

(t052.47 fs!.
J. Chem. Phys., Vol. 103
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C. After the second quench

At t5t, the velocities for all the modes are set to zer
again. The amplitude for thea th normal mode is

Aa
~3!5uqa

~2!~t !u5uAa cosua cos~vat!u. ~25!

The velocity for thea th normal mode att>t is

va
~3!~ t !56Aava cosua cos~vat! sin@va~ t2t!#,

~26!

and the total kinetic energy is

Ek
~3!~ t !5(

a

1

2
va
2Aa

2 cos2 ua cos2~vat! sin2@va~ t2t!#.

~27!

Averaging over the initial~t,0! phaseua and the initial
~t,0! amplitudeAa yields

^Ek
~3!~ t !&5

3N26

16
^Aa*

2&ZH 12
1

2
^cos~2vat !&a2

1

2

3^cos@2va~ t22t!#&a1^cos~2vat!&a

2^cos@2va~ t2t!#&aJ . ~28!

According to Eqs. ~13!, ~18!, and ^Ek
(3)(t)&

5 (3N26)/2 kBT
(3)(t),the temperature response then obey

T~3!~ t !5
T0
4

@12CT,T~ t2t!1CT,T~t!#2
T0
8

@CT,T~ t !

1CT,T~ ut22tu!#. ~29!

For t.t, andt@t0 , wheret0 is the relaxation time of the
correlation function as given in Eq.~20!, Eq. ~29! can be
simplified notingCT,T(t)'0 andCT,T(t)'0; we obtain, ac-
cordingly,

T~3!~ t !'
T0
4

@12CT,T~ t2t!#2
T0
8
CT,T~ ut22tu!. ~30!

For t,t!2t andCT,T(ut22tu)'0, Eq. ~30! reduces to

T~3!~ t !'
T0
4

@12CT,T~ t2t!# ~31!

which expresses the temperature response in terms of
correlation function, Eq.~15!. Figure 1 shows that Eq.~31!,
with CT,T(t) determined from the molecular dynamics simu
lation presented in Fig. 2, fits the simulation rather well.

At the time of the echo, when t'2t and
CT,T(t2t)'0, Eq. ~30! can be approximated

T~3!~ t !'
T0
4

2
T0
8
CT,T~ ut22tu!. ~32!

Equation~32! expresses the echo temperature in terms of th
correlation function, Eq.~15!. It predicts that in the limit of
long times the depth of the echo should be constant a
equal toT0/8, i.e., at timet@2.47 fs@see Eq.~20!#, the echo
depth is predicted to be independent oft and, therefore, not
related to the normal mode frequencies. However, the val
T0/8 is only an approximation since, as seen in Fig. 2, th
fluctuations in the temperature–temperature correlation fun

d

, No. 8, 22 August 1995
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FIG. 3. Comparison of the echo depth for differentt. The solid lines represent simulations with the quench echo of temperature averaged over 6 runs
protein BPTI; the dashed lines represent the prediction by the harmonic model, i.e., Eq.~32!.
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tion persist long after the initial exponential decay~with re-
laxation time of 2.47 fs! is over. These fluctuations carr
important information concerning the density of states. In
next section we discuss the relationship between the ec
and the underlying vibrational density of states and dem
strate how the density of states can be extracted from
temperature echo depth in the harmonic limit.

In actual simulations of temperature echoes in prote
the echo-depth does not approach a constant value but r
decays to zero due to anharmonic effects, such
dephasing.3,4,6,7 The dephasing contribution is analyzed
detail in Section V. For example, in Fig. 3 we see that wh
at t550 fs the echo almost has the predicted depth ofT0/8
~37.2 K!, but whent becomes larger, the depth of the ec
decreases. Fort52 ps, the echo almost disappears. Figur
also shows that the width of the echo is well described by
correlation functionCT,T(ut22tu).

D. Echoes after a sequence of three quenches

By quenching the system three times, namely att50,
t1 , t2 , one can obtain additional echoes, as shown in Re
Using the technique described above, one can show tha
temperature response after the third quench can be expre
as

T~ t !5
T0
8

@12CT,T~ t8!#2
T0
16

@CT,T~ ut82t1u!

1CT,T~ ut82t2u!#2
T0
32

@CT,T~ ut82t12t2u!

1CT,T~ ut82ut22t1uu!#, ~33!

wheret85t2t12t2 . From Eq.~33!, one expects that ther
should be two echoes with depth ofT0/16 att85t1 ,t2 , and
two echoes with depth ofT0/32 att85t11t2 ,ut12t2u. This
behavior is demonstrated with the BPTI molecular dynam
simulations in Fig. 4.

IV. THE RELATIONSHIP BETWEEN QUENCH ECHOES
AND THE DENSITY OF STATES

We return to the case of echoes resulting from the t
quenches att50,t. If one plots the depth of the temperatu
J. Chem. Phys., Vol. 103
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quench echo versus 2p/t, one obtains the so-called echo-
depth spectrum.4 In Ref. 6 it was demonstrated that the echo
depth spectrum for a Lennard-Jones glass has the same fo
as its density of states. Similarly, in Ref. 4 it was found tha
the echo-depth spectrum of BPTI is in agreement with th
experimental density of states observed by inelastic neutro
scattering,23 and it was suggested that the double quenc
echoes can be used for estimating the density of states
general. The argument, which follows that of Nagelet al.,6

was: When a system is quenched at timet50, all oscillations
of the system are forced to select a phase 0 orp. This is the
same for the second quench att5t. Thus, the second quench
has no effect on motions of frequencyp/t or multiples
thereof, since these motions are at their turning point whe
the second quench is applied. Then, at time 2t, all the modes
with frequencies of multiples ofp/t have vanishing kinetic

FIG. 4. The temperature versus time for BPTI quenched three times wi
t15100 fs, andt25150 fs.t85t2t12t2 .
, No. 8, 22 August 1995
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3117Xu et al.: Temperature quench echoes in proteins
energy and, accordingly, contribute to the echo. It was t
concluded that if there are more modes with frequen
v5p/t, a deeper echo is expected.

Such a description gives a heuristic picture of the te
perature echo phenomenon. However, since there are a
number of normal modes for a Lennard-Jones glass or a
tein, the modes with frequencies equal to multiples ofp/t
make only a small contribution to the total kinetic energ
Also the absence of additional echoes att53t,4t,..., be-
sides the echo att52t in simulations of glasses as well as
ideal harmonic systems had not been understood. As sh
in Section III for the harmonic model, the echo is a con
quence of a coherent superposition of all vibrational mo
and its depth does not directly mirror the density of state
the specific frequencyv5p/t. In the following, we inves-
tigate how the double quench affects energies of differ
modes and derive the relationship between the echo-d
spectrum and the density of states.

A. The temperature quench as a filter of the energy
spectrum

To study how temperature quenches affect the energ
different modes, we introduce an artificial ensemble of h
monic oscillators with frequenciesva , initial phasesua and
mass weighted amplitudesAa . The notations used here fo
low the ones in Section III. According to Eq.~25!, the total
energy~kinetic energy and potential energy! of theath mode
after two quenches is

Etot~va!5 1
2 va

2@Aa
~3!#25 1

2 va
2Aa

2 cos2 ua cos2~vat!;
~34!

and from Eq.~27!, the kinetic energy of theath mode at
t52t is

EK~va!u t52t5 1
2 va

2Aa
2 cos2 ua cos2~vat! sin2~vat!.

~35!

We consider a system with 4000 normal modes with
density of statesD(v)}Av with a cutoff of 10, i.e., 0,v
,10. The frequencies are randomized to avoid possible r
nance effects in the system. For this purpose, we gene
random numbersha evenly distributed in the interval@0,1#.
We attribute to each modea, a51,2,...,4000, the frequenc
va510ha

2/3. One can show

D~v!dv}D@h~v!#dh~v!

5D~h!
dh~v!

dv
dv}Avdv, 0,v,10. ~36!

To further simplify the calculation in Eqs.~34! and~35!, we
assume

ya5Ava
2Aa

2/kB. ~37!

One then obtains the distribution function forya :

P~ya!5
ya

T0
expS 2

ya
2

2T0
D ~38!
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which is transformed from the distribution given by Eq.~3!.
We introduce 4000 random numbers for theya , distributed
in accord with Eq.~38!. Finally we generate random phases
ua evenly distributed in the range of@0,2p#.

After a sequence of two quenches the total energ
Etot(va) ~kinetic plus potential energy! in modea obeys

2Etot~va!/kB5ya
2 cos2 ua cos2~vat!, ~39!

an expression which can be obtained from Eq.~34! after
substituting forya as defined above. Note, that by dividing
the energy bykB we are evaluating it on a temperature scale
By averaging over the phases and amplitudes, the avera
total energy of theath mode satisfies

^2Etot~va!/kB&5T0 cos
2~vat!. ~40!

Similarly, at t52t, from Eq. ~35! one obtains

2EK~va!u t52t /kB5ya
2 cos2 ua cos2~vat! sin2~vat!,

~41!

and the effective temperatureT(va)u t52t of theath mode at
t52t, through the relationship̂EK(va)&5 1

2 kBT(va), is

T~va!u t52t5^2EK~va!u t52t /kB&

5T0 cos
2~vat! sin2~vat!. ~42!

The results obtained from Eqs.~39!–~42! at 300 K are
shown in Fig. 5. Figure 5~a! shows that the double quench
has no effect on energies with frequencies of multiples ofp/t

FIG. 5. Energy spectrum of a harmonic system after double quenches.~a!
the total energy of each mode after two quenches.~b! the kinetic energy
distribution att52t. The dots in~a! and~b! represent energies according to
Eqs. ~39! and ~41! by using random amplitudesya satisfying distribution
~38! and random phasesua evenly distributed in the range of@0,2p#. The
solid lines represent the averaged energies as given by Eqs.~40! and ~42!.
, No. 8, 22 August 1995
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FIG. 6. A harmonic model with a block-shaped density of statesD(v) between 100 and 300 cm21: ~a! the echo temperatureT(3)(2t) as a function oft; ~b!
the cosine transform of~a! showing that the density of statesD(v) is recovered from the temperature echo experiment.
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while it filters out completely the modes with frequenci
np/t1p/2, wheren50,1,2,... However, the range of fre
quencies in the neighborhood of multiples ofp/t that still
contribute to the kinetic energy is rather broad. Att52t,
there is a kinetic energy filter sin2(vat) acting on the total
energy spectrum shown in Fig. 5~b!. The modes with fre-
quencies of multiples ofp/t and a width ofp/4t contribute
little kinetic energy so that an echo occurs. This means
the double quench does not fully isolate certain modes
accord with the heuristic picture given above. However,
we show in the following section, the density of states can
extracted from the echo depth spectrum.

B. Detailed time dependence of the echo temperature

Equation~32! predicts that in the limitt@t0 , the echo
depth is independent oft and of the distribution of norma
mode frequencies. We show below that for shortt the echo
depth is related to the density of statesD(v) in a simple
way. For harmonic systems the relationship derived can
used to extract the density of states.

According to Eq.~29!, the average system temperatu
after the second quench att52t is

T~3!~2t!5
T0
8

@12CT,T~2t!#. ~43!

Based on Eqs.~18! and ~19!, Eq. ~43! can be rewritten in
terms of the normalized density of statesD(v)

T~3!~2t!5
T0
8 E

0

`

dv D~v!@12cos~4vat!#, ~44!

where we have replaced the discrete summation over
(3N26) modes by an integral overD(v). For proteins this
is a very good approximation over the frequency range
primary interest~0,v,500 cm21).15

Thus, the ensemble average of the echo temperatu
related to the density of statesD(v) by a cosine transform
The same cosine transform relation holds for simple lin
J. Chem. Phys., Vol. 103
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functions of the echo temperature, such as the echo-de
@which equals the constant asymptotic valueT0 /4 minus the
average echo temperature given in Eq.~44!#.

Figure 6 demonstrates, for a harmonic model syste
that the density of states can be obtained from the echo t
peratures. Five hundred equally spaced modes, between
and 300 cm21, were generated to form a block-shaped de
sity of states. To calculate the ensemble average of the ec
temperatureT(3)(2t) as a function oft, we use this density
of states with the following equation derived from Eq.~27!:

T~3!~2t!5
1

~3N26!

3K (
a

Aa8
2 cos2~vat! sin2@vat#L

Z

, ~45!

where ^Aa8
2&Z5^Aa*

2/(2kB)&Z5^va
2Aa

2&Z^cos
2ua&Z /kB .

Since the ensemble average of the factorAa8
2 is a constant,

independent of the mode, it was set equal for all modes~a
value of unity was used for simplicity!. Figure 6~b! shows
the cosine transform ofT(3)(2t) for this system. It is clear
that the density of states is recovered from the echo temp
tures.

In another, more realistic example, we randomly gen
ated 10 000 modes corresponding to a density of sta
D(v)}Av with a cutoff, i.e., 0,v,10, with the method as
described in Section IV A. We then used this density
states to calculate the response of the model system to t
perature quenches. Figure 7, which shows the temperatur
a function of time for four differentt values, demonstrates
the relationship between the echo depth and the time inte
t. For larget ~t51 andt5100!, the depth of the echo is a
constantT0/2 as shown in Eq.~32!. For smallt ~t50.2!, the
echo at timet'2t, is not discernible since it is completely
masked by the large temperature fluctuations which char
terize the relaxation process that follows every quench@in
this case, the second quench described by Eq.~31!#. More-
over, the asymptotic value of temperature att@2t is
, No. 8, 22 August 1995
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3119Xu et al.: Temperature quench echoes in proteins
T0/4@11CT,T(t)#, which can be significantly different from
T0/4 ~the value in the limit of long times! due to large con-
tribution of CT,T(t) in Eq. ~29! when t is small. Thus, the
value ofT(2t) does change as a function oft so that from a
collection of such calculations one can generate the ‘‘ec
temperature spectrum’’ and then perform a cosine transfo
of the result. Figure 8 compares the normalized result of t
cosine transform to the actual normalized density of sta
used in the model simulation generated by the above pro
dure. The cosine transform was performed using Filon’s f
mula with window smoothing.24 One clearly sees that the
density of statesD(v) calculated by transforming the echo
temperatures is in very good agreement with the act
D(v), including its deviations from the overall (Av) behav-
ior.

FIG. 7. A harmonic model with a density of states randomly generated
mimic D(v)} Av with a cutoff, i.e., 0,v,10. The figures give the tem-
perature trajectories after the second quench for three differentt values.

FIG. 8. The same harmonic model as in Fig. 7. Shown are the actual den
of states used~thin line! and the function obtained by taking a cosine tran
form of the echo-temperaturesT(3)(2t) ~heavy line!. Both functions were
normalized to unity. One sees that the density of statesD(v) is recovered
from the temperature quench echo experiment. The dashed line represe
Av function.
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C. Temperature quenches and the velocity
autocorrelation function

Another way to obtain the density of states from th
temperature quench experiment was suggested earlier
Grestet al.7 In this method the response of the system to
single temperature perturbation was studied. Using Eqs.~23!,
~18! and~19! the temperature response to a single quench
terms of the normalized density of statesD(v) can be writ-
ten

T~2!~ t !5
T0
2 E

0

`

dv D~v!@12cos~2vat !#, ~46!

which means that the temperature response to a sin
quench is related to the density of statesD(v) by a cosine
transform with the argument 2vt.

Following Grestet al.7 we define the function

K~ t !5K 12
T~2!~ t !

T`
L
Z

~47!

which has limits similar to those of a normalized correlatio
function. HereT` is the asymptotic value ofT(2)(t), i.e.,
T`5T0/2. By substituting Eq.~46! into Eq. ~47!, and noting
that the integral over the normalized density of states is o
we obtain

K~ t !5E
0

`

dv D~v! cos~2vat!. ~48!

Comparison with Eq.~18! shows that in harmonic system
K(t) andCT,T(t) are identical; i.e.,

K~ t !5^cos~2vat !&a5CT,T~ t !. ~49!

The detailed relationship between the quench echo effect
the temperature correlation function was not studied in e
lier work and no physical interpretation ofK(t) was given.

In the harmonic approximation, it also can be show
using the same techniques as in Eqs.~3!–~19!, that the
velocity-velocity autocorrelation function can be expresse

Cv,v~ t !5
^va~0!va~ t !&a

^va
2&a

5^cos~vat !&a5CT,T~ t/2!.

~50!

From Eqs.~49! and ~50! we see that for harmonic system
the temperature response functionK(t) and the temperature
correlation functionCT,T(t) are equal to the velocity auto-
correlation function of the system if one replaces the arg
mentt of K(t) by t/2 wheret is the argument of the velocity
autocorrelation functionCv,v(t).

Since Eq.~50! assumes the harmonic approximation, it
valid only at low temperatures, as has been demonstrated
Grestet al. for a Lennard-Jones glass.7 At higher tempera-
tures anharmonicities become significant and cause b
K(t) andCT,T(t) to deviate from the velocity autocorrelation
function @not necessarily in the same way, since for anh
monic systems, Eq.~49! does not hold and these two func
tions are no longer identical#.

Figure 9 shows the temperature response functionK(t)
obtained from simulations in which an equilibrated BPT
molecule was subjected to a single quench and then allow
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3120 Xu et al.: Temperature quench echoes in proteins
to relax without further perturbation. Shown is the respon
at two different asymptotic temperatures, 66 K and 140
each averaged over three initial conditions. Although the d
ference between the two curves, corresponding to two re
tively low temperatures, is not very large, one clearly se
thatK(t) is temperature dependent. A comparison with F
2, which depictsCT,T(t) at 297 K, further highlights the
temperature dependence of these two functions.

Figure 9 is also qualitatively similar to ‘‘standard’’ ve
locity autocorrelation functions calculated directly from mo
lecular dynamics simulations~cf., for example Ref. 25!.
However, there is a significant difference between these
functions. While the temperature quench response func
K(t), andCT,T(t), are already averaged over all atoms a
modes of the system the standard velocity autocorrelat
function is usually calculated for individual atom and subs
quently averaged over the system. Thus, the tempera
echo approach obtains the results for the entire system
more direct manner.

In the Appendix, we show in more detail for a mod
system why the temperature correlation function is more
propriate for studying quench echoes.

V. EFFECTS DUE TO ANHARMONIC INTERACTIONS

The reason why the depth of the echo is not as deep
predicted by the harmonic model has been pointed out
Refs. 4 and 6 namely, that the system is not pure
harmonic.26 There exist important anharmonic contribution
that arise from torsional, electrostatic and van der Waals
teractions that contribute to the potential in proteins. Hen
the derivation in Section III, based upon the harmonic a
sumption, is not perfectly valid. It is true also that the erro
accumulated in the numerical integrations of simulatio

FIG. 9. The temperature response functionK(t) of an equilibrated BPTI
molecule subjected to a single quench and then allowed to relax with
further perturbation. Shown is the response at two different asymptotic t
peratures, 66 K~solid line! and 140 K~dotted line!, each averaged over
three initial conditions.
J. Chem. Phys., Vol. 103
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could make trajectories deviate from the harmonic behavi
We compared quench echoes witht5250 fs obtained from
simulations carried out with different numerical precision
One simulation was performed using the fast multipole a
proximation to calculate Coulomb interactions with
timestep of 0.5 fs. This method has an inherent inaccuracy
evaluating the Coulomb forces as described in Ref. 11. A
other simulation was performed with a time step of 0.25
and without any approximation for calculating Coulomb in
teractions, and thus with a higher numerical accuracy. T
latter simulation~i.e., the more accurate simulation!, shows a
deeper and more symmetrical echo, and in this respe
yields an echo closer to what is predicted by the harmon
model~see Fig. 10!. This suggests that the temperature ech
results are sensitive to the accuracy of the force evaluat
and numerical integration in molecular dynamics simul
tions.

To describe analytically how anharmonic interactions a
fect the echo depth, we consider a heuristic model whi
introduces the dephasing of the normal mode motions a
function of time. The velocity or coordinate of theath nor-
mal mode, in the harmonic approximation, is described
Aa sin(vat). This harmonic motion interacts with other nor
mal modes due to the anharmonic terms in the potenti
Since the number of interactions are very large, we can co
sider such interactions as stochastic. The amplitudeAa of the
ath oscillator obeys the distribution function of Eq.~3! and
has been averaged in the derivation in Section III, such th
the fluctuation ofAa does not affect the depth of the ech
significantly. However, the anharmonic interaction can cau
the trajectory to become dephased, i.e., the trajectory can
assumed to have a random phaseda in addition to the origi-
nal phase term. Hence, the motion can be described
Aa sin(vat1da). We demonstrate that such dephasing ca
explain the decrease of the echo depth.

We assume that att50, the phaseda of theath mode is
0. With increasing time, anharmonic interactions add rando

ut
m-

FIG. 10. Comparison of quench echoes witht5250 fs resulting from simu-
lations carried out with different numerical accuracies. The dotted line re
resents a simulation performed using the fast multipole approximation
calculate Coulomb interactions and a timestep of 0.5 fs. The solid line re
resents a simulation performed with a time step of 0.25 fs and without a
approximation for calculating Coulomb interactions.
, No. 8, 22 August 1995
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3121Xu et al.: Temperature quench echoes in proteins
values toda ~see the demonstration in Fig. 11!. The cumu-
lative effect of such a process may be described by the E
stein diffusion equation

] tP~da ,t !5Da]da

2 P~da ,t !; P~da ,0!5d~da!, ~51!

whereP(da ,t) is the probability of having a random phas
da at time t. Da in Eq. ~51! is a diffusion constant and can
be related to a temperature-independent constant,ga , the
mobility constant, through27

Da5gakBT. ~52!

The solution of Eq.~51! is the standard one-dimensiona
diffusion probability distribution

P~da ,t !5
1

A4pgakBTt
expS 2

da
2

4gakBTt
D . ~53!

Accordingly, Eq.~27! can be written

^Ek
~3!~ t !&5 K K K K (

a

1

2
va
2Aa

2 cos2 ua cos2@vat

1da,1~t!] sin2@va~ t2t!

1da,2~ t2t!# L
u
L
A
L

da,1

L
da,2

, ~54!

where da,1(t) is the random phase attached after the fi
quench and before the second one;da,2(t) is the random
phase attached after the second quench, and^...&da,i

is de-
fined as

^ f ~da,i ,t !&da,i
5E

2`

`

d da,iP~da,i ,t ! f ~da,i ,t !. ~55!

The depth of the echo can be expressed as

DT~2t!5T~3!~ t→`!2T~3!~2t!, ~56!

or

FIG. 11. A demonstration of dephasing. The solid line represents a harm
motion with the form sin(vat). The dots represent a dephased trajecto
described by sin(vat1da) when da is simulated by a so-called Wiene
process which obeys Eq.~53!. At t50, the random phaseda is 0.
J. Chem. Phys., Vol. 103
in-

l

st

DT~2t!5 K K K K (
a

1

2
va
2Aa

2 cos2 ua cos2@vat

1da,1~t!] H 122sin2@vat

1da,2~t!] % L
u
L
A
L

da,1

L
da,2

5
T0
8

$^^^cos@22da,1~t!12da,2~t!#&da,1
&da,2

&a

1^^cos@2vat12da,2~t!#&da,2
&a

1^^^cos@4vat12da,1~t!

12da,2~t!#&da,1
&da,2

&a%. ~57!

For larget the last two terms of the r.h.s. are very small an
the depth of the echo att52t is essentially

DT~t!5S T08 D ^^^cos@22da,1~t!12da,2~t!#&da,1
&da,2

&a ,

~58!

where^...&a has been defined in Eq.~19!.
The distribution forda,1(t) is

P@da,1~t!,t#5
1

A2pgakBT0t
expS 2

da,1
2 ~t!

2gakBT0t
D ; ~59!

and forda,2(t) is

P@da,2~t!,t#5
1

ApgakBT0t
expS 2

da,2
2 ~t!

gakBT0t
D . ~60!

The difference between Eqs.~59! and ~60! is due to the dif-
ferent reference temperatures,T0/2 for da,1(t) andT0/4 for
da,2(t). Let

ja52da,1~t!1da,2~t!. ~61!

Sinceda,1(t) andda,2(t) are independent Gaussian rando
variables, the distribution forja at t is again Gaussian,
namely,

P~ja ,t!5
1

A3pgakBT0t
expS 2

ja
2

3gakBT0t
D . ~62!

Hence, one obtains

DT~t!5S T08 D K E
2`

`

dja cos~2ja!
1

A3pgakBT0t

3expS 2
ja
2

3gakBT0t
D L

a

5S T08 D ^exp~23gakBT0t!&a . ~63!

In casega is the same constantg0 for all modes, we have

DT~t!5
T0
8
exp ~23g0kBT0t!. ~64!
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3122 Xu et al.: Temperature quench echoes in proteins
In Fig. 12, we compare the echo depth resulting fro
simulations and predicted by Eq.~64!. One can see that Eq
~64! with tc51/(3g0kBT0)5883.7 fs fits the simulations
very well; the value oftc was obtained from a least-squa
fit to the results.

In Fig. 13, we consider thet-dependence of the ech
depth. We have carried out temperature quenches as
scribed above for many differentt values in the range
0,t<1.5 ps with interval of 25 fs. For eacht value, we
carried out quenches with three different initial conform
tions and then determined the average echo depth. Figur
reveals that although the result can be fit to an exponen
function ~as in Fig. 12, only in this case we obtain a sligh
differenttc5846.7 fs! the exponential fit is only an approx
mate description. The actual echo-depth temperature flu
ates around the exponential fit of Eq.~64!. Clearly, part of
the observed fluctuations arise from insufficient averagi
but the deviation from Eq.~64! is also due to the simplifying

FIG. 12. Comparison of the echo depth resulting from simulations
predicted by Eq.~64!. The simulation results were averaged over six runs
BPTI. Thetc value was chosen through a least-square fit.

FIG. 13. The echo depth as a function of time, resulting from simulati
for BPTI averaged over 3 different initial conditions~heavy line!. The t
values corresponding to the data points are separated by 25 fs. The thi
is an exponential fit similar to that in Fig. 12~heretc5846.7 fs!.
J. Chem. Phys., Vol. 103
m

de-

-
13

tial
y

tu-

g,

assumptions used in deriving Eqs.~58!–~64!, particularly
due to the neglect of the dependence on the density of state

VI. DISCUSSION AND CONCLUSIONS

We have used the temperature–temperature correlatio
function to analyze temperature echoes in a harmonic syste
and demonstrated analytically and numerically that the
double quench echoes can be used to obtain the density
statesD(v). However, in cases where anharmonicities are
significant~this is likely to be true for most biopolymer sys-
tems except at very low temperatures!, modal dephasing
dominates the decay of the echoes. If one quenches the sy
tem many times with the same time intervalst, all the modes
are gradually drained of energy except those with frequen
cies at multiples ofp/t and the depth of the echo is related
to the density of stateD(p/t) even if anharmonic effects are
present. This method to measureD(v) was suggested in
Refs. 3 and 6. From the present analysis it appears that th
method would have relatively large errors. This is due to the
fact that the anharmonic effects will accumulate over the
multiple quenches and that modes with frequencies at mu
tiples ofp/t will contribute to the echo. A detailed discus-
sion of these phenomena will be given elsewhere.28

As already observed in Ref. 4, it is of interest that a
protein exhibits echoes at 300 K for 1 ps or longer. A tem-
perature of 300 K is considerably above the ‘‘glass transi
tion’’ temperature for a protein, which is in the neighborhood
of 220 K; the transition is present in vacuum simulations of
the type used in this work.29 Thus, dephasing of the normal
modes is a relatively slow process despite the presence
anharmonic contributions to the potential.

In this paper we discussed only the original type of tem-
perature quench echoes. Other types of perturbatio
schemes, such as the cool-heat-cool temperature pul
sequence4,28 and the velocity reassignment echo30 are dis-
cussed elsewhere. In all cases one is studying the response
the system to velocity perturbations which involve a coher
ent excitation of all protein modes.

From the present analysis it appears that the temperatu
echoes may be useful for examining the anharmonic prope
ties in protein systems. The results indicate that the decay o
echo depth versus time can provide a measure of the tim
scale of the vibrational decoherence.

There remain many interesting questions regarding tem
perature echoes. For example, the simulations revealed th
the friction describing the decoherence of the normal mode
is temperature-dependent.30 This temperature dependence
may shed some light on dynamic properties of proteins, e.g
their relationship to glasses. Temperature echoes can also
applied locally. For example, it may be possible to probe
certain functional groups inside biomolecules, e.g., a particu
lar residue, by perturbing only the atomic velocities involv-
ing these groups and measuring the echo of the local tem
perature response. The procedure for temperature echoes c
also be generalized to dynamic variables other than temper
ture; an example would be to follow the protein dipole mo-
ment after electric field jumps.
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APPENDIX: THE TEMPERATURE CORRELATION
FUNCTION IN THE FRAMEWORK OF LINEAR
RESPONSE THEORY

We employed in our description above the temperat
correlation function rather than the velocity correlation fun
tion, since in linear response theory, the response of the
tem to a brief temperature pulse is related to the temperat
temperature correlation function. To demonstrate t
relationship, consider a single particle described by
Langevin equation

mẍ5 f ~x!2g ẋ1sj. ~A1!

The response function is defined as31

REk ,l
~ t !5^Ek~ t !A~0!&, ~A2!

where

A5p0
21~x,v !lp0~x,v !. ~A3!

Herep0(x,v) is the stationary position-velocity distributio
of the particle andl is an operator which describes a pertu
bation applied att50. For p0(x,v);exp(2mv2/(2kBT0))
and l5]v

2 holds

A52
m

kBT0
1

2m

~kBT0!
2 S 12 mv2D . ~A4!

Hence, one obtains

REk ,l
~ t !52

m

kBT0
^Ek~ t !&1

2m

~kBT0!
2 ^Ek~ t !Ek~0!&

52
m

2
1

2m

~kBT0!
2 ^Ek~ t !Ek~0!&. ~A5!

According to Eq.~16! and Eq.~17!, follows within the har-
monic approximation

CT,T~ t !5
^Ek~ t !Ek~0!&
8~kBT0!

2 2
1

32
. ~A6!

Comparing Eq.~A5! and Eq.~A6!, one concludes

REk ,l
~ t !516mCT,T~ t !. ~A7!

The operatorl describes a perturbationd(t)e]v
2 , which is

added to the Fokker–Planck operator corresponding to
Langevin equation Eq.~A1!, namely, to
J. Chem. Phys., Vol. 103
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L0~x,v!5
kBT0g

m2 ]v
21

1

m
]v@gv2 f ~x!#2]xv. ~A8!

Obviously, the additive perturbationd(t)e]v
2 in Eq. ~A8! cor-

responds to a sudden temperature pulseDTd(t) in the sys-
tem, where

DT5
m2e

kBg
. ~A9!

Hence, we have demonstrated that the response of the sys
to a temperature pulseDTd(t), described byRT,l(t), is
equal to the temperature–temperature correlation funct
CT,T(t).
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