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Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage
through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach
and admittance of solutes. The extra-protein steps develop over a 10–100 nm length scale typically
in a highly particular environment, characterized through the protein’s geometry, surrounding elec-
trostatic field, and location. In order to account for solute energetics and mobility of solutes in this
environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based
on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and
potential of mean force maps generated from extensive molecular dynamics simulations of proteins
and their environment that sample multi-nanosecond durations. The suggested diffusion model can
describe transport processes beyond microsecond duration, relevant for biological function and be-
yond the realm of molecular dynamics simulation. For this purpose the systems are represented by a
discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells
distributed according to a density function resolving the often intricate relevant diffusion space. Vali-
dation tests carried out for generic diffusion spaces show that the model and the associated Brownian
motion algorithm are viable over a large range of parameter values such as time step, diffusion co-
efficient, and grid density. A concrete application of the method is demonstrated for ion diffusion
around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820876]

I. INTRODUCTION

Diffusion is a mainstay of biological systems across
many time and length scales. On the biological cell level,
many phenomena have been framed as diffusion-controlled
processes, from transport processes,1–3 ligand binding,4–8

and signal transduction within the cell,9–12 to cell-to-cell
signaling.12–14 These processes can depend on molecular-
level detail in regard to the geometry of the diffusion space,
energetics, and local variation of diffusivity. Experimental
investigations of molecular-scale transport are often unfea-
sible. Fortunately, observations can be complemented by
computer simulations. In fact, diffusion theory2, 6, 15 is well-
established, making diffusion-controlled processes amenable
to computer simulation. However, applications of diffusion
theory in the past have glossed over the molecular-scale vari-
ation of geometries, energetics, and mobilities of transported
solutes.

To appreciate the need for the use of diffusion theory we
also note that biophysics has made great progress in under-
standing the regulation of transport at the intra-protein level,
in particular in case of membrane channels. However, the
intra-protein steps are preceded by diffusive approach and
control of access to the relevant surface openings of chan-
nel proteins, in particular, since the relevant overall diffu-
sion space is often highly intricate in regard to local geom-
etry as well as solute energetics and mobility. Spatial and
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time scales for the diffusive approach are typically 10–100
nm and ms, respectively. In the present study, we suggest and
test a flexible computational scheme to describe the initial
diffusive approach step of biological transport. This scheme
is based on extensive prior sampling through nanosecond
molecular dynamics (MD) simulations and a subsequent ap-
plication of diffusion theory that furnishes extremely real-
istic microsecond to millisecond descriptions at molecular
resolution.

A diverse set of simulation techniques are already rou-
tinely employed to model diffusion on the spatial and tem-
poral scales relevant for cellular transport mechanisms. Pro-
grams such as Smoldyn,16 MCell,17 and VCell18 have been
used successfully for reaction-diffusion simulations but on a
larger scale than considered in the present study, namely, on
the scale of whole cells. Another approach commonly used
to describe biological diffusion processes is that of Green’s
function reaction dynamics,19–21 which solves the diffusion
equation for one particle or two particles and uses the result-
ing Green’s function solution to propagate particle positions
in time. Until now, the aforementioned computational tools
assume free diffusion or the presence of a simple potential,
typically arising from a few inter-particle interactions, and
in this case are able to describe large systems well. On the
much smaller molecular scale, however, inter-molecular inter-
actions with the environment need to be accounted for through
detailed, complex potentials that require descriptions based
on advanced numerical techniques. Of these techniques, MD
remains the most detailed, but also the computationally most
expensive technique, the expense placing limits on spatial and
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temporal scales that can actually be covered.22–24 To over-
come such limitations, MD must often be supplemented by
sampling techniques and parallelization schemes.25 Brownian
dynamics,26 which sacrifices some level of detail by treating
solvents as implicit and large molecules as reflective barri-
ers without internal degrees of freedom, has been success-
fully used to simulate larger systems.27–29 Efforts to extend
the reach of molecular-level simulations to greater length
and time scales include diffusion Monte Carlo algorithms,
such as that implemented in BioMOCA,30 and mean field
descriptions of diffusion, commonly implemented through a
finite element approach.10, 11, 14 However, in the mean field
description, one loses information about individual parti-
cle trajectories, which may be important to trace in certain
cases.

Heterogeneous hybrid methods have also been devel-
oped, largely for cases where flexible resolution allows a
small subset of the system to be modeled at a higher level of
detail than the rest of the system, which is coarsely modeled
to avoid computational expense. In particular, the low com-
putational cost of the finite element approach makes it a good
candidate for combination with a higher resolution approach,
such as Brownian dynamics.31 However, correctly describing
particle transport across the interface between the two dis-
tinctly modeled regions is not a straightforward task.

In any computational investigation of a diffusive pro-
cess, the limitations of existing simulation methods described
above necessitates a careful choice of method, guided by the
scale of the system, knowledge of the process to be stud-
ied, and the availability of computational resources. The lat-
ter two factors, together with the need to be familiar with
multiple simulation methods, present a hurdle to cross dur-
ing early-stage investigations. Obtaining enough sampling of
diffusive processes on relevant time scales presents a chal-
lenge to atomistic methods such as MD and Brownian dy-
namics. In the particular case of MD, one may not observe
an expected phenomenon even after extensive sampling. On
the other hand, coarse-grained simulations may not be ad-
equately detailed to reproduce diffusive motions influenced
by intricate environmental effects. Thus, there is a motiva-
tion to interface MD calculations with coarse-grained diffu-
sion algorithms to take advantage of the atomic detail ob-
tained by the former and the long time scales accessible to the
latter.

In order to realize such interface, we propose to capi-
talize on the finite element methodology that has the ability
to describe arbitrary potential fields and local mobilities. The
method offers the flexibility of a multi-resolution grid and per-
mits descriptions afforded by the Markov State Model (MSM)
protocol32 to develop a versatile particle-based method that
is valid and computationally viable over a wider range of
length and time scales as compared to other diffusion meth-
ods, without compromising the level of detail in describing
the potential field. Through the MSM scheme, one can di-
vide the computational effort in an extremely useful manner
between a sampling step that gathers the physical character-
istics of the diffusion model and a diffusion execution step
that describes the actual transport between cell environment
and protein channel. This division allows the description of

diffusion within an arbitrary potential field, extending ear-
lier methods applicable in case of large systems only to free
diffusion.

The need for detail in large systems is motivated by the
aim of describing the diffusive approach of solutes in simula-
tions of membrane channels, as discussed further in Sec. V.
Our algorithm models the system at varying levels of detail
and optimizes computational efficiency through adjustment
to the level of detail required for the system’s description.
Our method allows also the use of large time steps, extend-
ing thereby the reach of simulations to time scales longer than
those of other molecular-scale methods.

In our algorithm, diffusion is implemented through a
kinetic model of particles transitioning between pre-defined
states. The rates of transition between states are specified by
a rate matrix. Given the size of a time step, one can obtain
the respective probabilities of the particle transitioning from
its current state to each of the other states within the span of
a time step by solving for the eigenvalues and eigenvectors of
the rate matrix.

The set of states is characterized by positions in the sys-
tem, namely, the centers of cells in an irregular grid of varying
resolution overlaid on the system. The rate matrix is calcu-
lated from the discretized Smoluchowski equation, using pre-
obtained input parameters, namely, the diffusion coefficient
and a potential of mean force (PMF) map of the system for the
diffusing species. Solving the eigenproblem of the rate matrix
then gives the transition matrix, which propagates a particle’s
position through time. Key to the method is the pairing of a
prior MD sampling and a following diffusion calculation; here
pairing implies that the two computations are linked through
straightforward data exchange.

Of the contemporary diffusion descriptions discussed
above, the Monte Carlo algorithm used in BioMOCA30 is
the one most similar to the present method in terms of func-
tionality. The key distinction lies in how simulation param-
eters are chosen. BioMOCA obtains the electrostatic poten-
tial map from an a priori solution of the Poisson equation,
treats ion-protein interactions by imposing suitable boundary
conditions, and assumes diffusion coefficients from literature.
Instead, the present method uses extensive MD simulation to
calculate the PMF map and local diffusion coefficient map.
The advantage of using an MD calculation is that it bypasses
difficulties in determining local dielectric effects and diffu-
sion coefficients at every position in the system. MD cal-
culations require significant computational effort in order to
reach sufficient convergence, but modern software and hard-
ware readily permit the needed calculations as demonstrated
below.

The implementation of the finite difference scheme for
diffusion calculations has been carried out at this point in
Matlab.33 The subroutines used and specified below were
taken from existing Matlab libraries.

For the diffusion model a scheme of space-filling Voronoi
cells is employed, each cell geometrically defined through
position, volume, as well as number and sizes of surface
elements shared with neighboring cells. The physical char-
acteristics of the cells are gathered through extensive MD
simulation.
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For the purpose of validation, our computational scheme
has been used to reproduce the expected statistical behavior
in simple systems for which analytic descriptions are known.
It was found that, to the extent of the values of parame-
ters tested (namely, time step and diffusion coefficient), the
accuracy of the scheme is limited by the resolution of the
grid used to discretize the system. The model is subsequently
applied to the realistic case of ion diffusion through the
Eschericia coli mechanosensitive channel of small conduc-
tance (ecMscS). Results agree with previous simulations us-
ing established methods.

II. ALGORITHMS EMPLOYED

Actual use of the methodology suggested in the present
study begins with MD simulations sampling solute energet-
ics and diffusion coefficient maps. These maps serve as in-
put into a diffusion algorithm. We present in this section first
the diffusion algorithm and apply it in Sec. III to test cases
that do not require MD simulation input. In Sec. V, we em-
ploy our methodology in a realistic test case that requires MD
simulation input. We introduce the concepts and algorithms
used for pairing MD data and the diffusion algorithm at this
late point of the present paper, even though in an actual ap-
plication the MD calculations need to always be carried out
first.

Upon the premise that the MD simulations have been
run and the relevant data obtained, we describe the derivation
of the algorithms involved in the diffusion model. The algo-
rithms employed in setting up the geometrical and physical
details of the diffusion space are described first. We then for-
mulate the discrete form of the Smoluchowski equation gov-
erning transport processes on time scales of picoseconds or
longer, i.e., in the strong friction regime. Finally, we introduce
the numerical solution employed which actually corresponds
to a Brownian dynamics scheme, though one with a novel nu-
merical integrator adapted to the highly heterogeneous nature
of actual diffusion spaces.

A. Setting up a discrete representation of the system

The efficiency of our diffusion algorithm is dependent on
the choice of the grid used to discretize the system. In this
regard, one should choose a grid density profile suited to the
local level of detail in the description of the system, while
minimizing the error arising naturally from approximating
a continuous space with a discrete one. Our approach em-
ploys for this purpose a topology-conforming self-organizing
map34–36 that distributes cell centers and determines then the
respective Voronoi tessellation.

Let X, a subset of Rn, represent the diffusion space. Typ-
ically, X is a subset of the three-dimensional space R3. U (x)
and p(x, t) are, respectively, the underlying potential felt by
a particle at x ∈ X and the probability distribution of diffus-
ing particles at x and time t. Our aim is to divide the otherwise
continuous system up into a discrete collection of regions. For
this purpose, a set of N points {wi ∈ X|i = 1, 2, . . . , N} are
selected at random. These points represent the centers of cells
in the Voronoi tessellation grid I of X. Formally, I is defined

through

I =
{
Ii ⊂ X

∣∣∣∣
⋃

i

Ii = X and Ii ∩ Ij = ∅ ∀ i �= j,

x ∈ Ii ⇐⇒ ||x − wi || <

||x − wj || ∀ i �= j, i = 1, 2, . . . , N

}
. (1)

Before constructing I, we adapt the positions {wi} to
conform topologically to the pre-defined distribution ρ(x).
The resulting grid will have two desirable properties.

First, the density of cells is locally homogeneous, i.e., for
any point x in X, the density of cells within a neighborhood of
x approaches ρ(x) as the size of the neighborhood approaches
the average distance between cells. This notion of local ho-
mogeneity is formalized as

r → rρ(x) ⇒ ρw(Sr (x)) → ρ(x), (2)

where ρw(Sr (x)) is the density of cell centers wi , and thus
of cells, within a sphere Sr (x) of radius r centered on x, and
rρ(x) is the length scale associated with ρ(x), so that rρ(x)
∼ ρ(x)−1/3. Thus, the local diffusive behavior of particles will
be subject to minimal error arising from local grid density
deviations from ρ(x).

Second, I is a centroidal Voronoi tessellation (CVT).37

In other words, each wi coincides with the centroid of cell
Ii. A measure of how well a cell center represents the entire
cell is given by the quadrature sum of distances of every point
within the cell from the center. The CVT property minimizes
this quadrature sum, called the mean square deviation (MSD)
of points within Ii, given by

MSD(i)
x =

(∫
Ii

dx||x − wi ||2
)/∫

Ii

dx. (3)

One would also like to obtain a good discrete representation
of a continuous variable p defined on X. Under the assumption
that p(x)|Ii

varies linearly with ||x − wi || (a good approxima-
tion for small grid cells), the chosen discretization scheme
also minimizes the mean square deviation in p, given by

MSD(i)
p =

(∫
Ii

dx|p(x) − p(wi)|2
)/∫

Ii

dx. (4)

A topology-conforming distribution of {wi} can be con-
structed using an iterative procedure, due to Martinetz,
Berkovich, and Schulten,35 composed of the following four
steps:

1. Begin with any random distribution of {wi} over X.
2. From the reference distribution ρ(x), draw a test point

v ∈ X.
3. Rank {wi} according to each respective element’s dis-

tance from v. According to this order, assign a rank inte-
ger k(v, wi) = 0, 1, 2, . . . , N − 1 to each wi , increasing
from the nearest to the farthest.

4. Update each wi as follows:

wi(s + 1) = wi(s) + ε(s)(v(s) − wi(s))e[−k(v(s),wi (s))/λ(s)],

(5)
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where s labels the adaptation step, ε and λ control, re-
spectively, the magnitude of the change and the extent
of the area of influence around v. Each adaptation step s
comprises steps 2–4. The prescription35 calls for a grad-
ual decrease of ε and λ, such that for each s,

ε(s) = εinitial

(
εfinal

εinitial

)s/S

, (6)

λ(s) = λinitial

(
λfinal

λinitial

)s/S

, (7)

where S is the total number of adaptation steps chosen by
the user. Thence, set wi ≡ wi(S). The parameters εinitial,
εfinal, λinitial, λfinal, and S must be tuned through trial-
and-error to achieve convergence to the desired distribu-
tion of wi . Convergence may be measured by the mean
square deviation of the grid or of some subset of cells J
in the grid, namely,

∑
i∈J MSD(i)

x .

Having determined wi , the Matlab subroutine Delau-
nayTri is employed to extract the Delaunay triangulation.
The latter is obtained by connecting lines between pairs of
nearest neighbor wi’s. The Voronoi tessellation is calculated
from the Delaunay triangulation by means of the Matlab sub-
routine voronoiDiagram. The tessellation is specified by
the vertices of each cell Ii, from which the cell volumes and
interfacial cell surface areas needed for the discretization of
the diffusion equation can be calculated.

B. Discretization of the Smoluchowski equation

In the presence of a potential U (x), diffusion is described
by the Smoluchowski equation in continuous space:

ṗ(x, t) = ∇ · D(x)e−βU (x) ∇eβU (x)p(x, t), (8)

where D(x) is the local diffusion coefficient and
β = (kBT )−1. This equation had been used extensively
to mimic diffusion outside and inside of the ecMscS
cytoplasmic domain.3

In order to choose D(x) and U (x), a MD simulation under
equilibrium conditions can be used to calculate the diffusion
coefficient and generate a PMF map, which is subsequently
interpolated to provide an associated potential value for every
grid cell. Such analysis is demonstrated for ecMscS in Sec. V.
In case that simplified models for D(x) and U (x) suffice, the
two quantities can be obtained by some other means, e.g., as
in a recent study of SecY,38 where the potential map within
a protein channel was obtained by calculating the potential
along a specific radial direction and generalizing the result by
assuming radial symmetry.

With the required data in hand, we discretize Eq. (8) in
space by integrating over a generic cell Ii resulting in∫

Ii

dxṗ(x, t) =
∫

Ii

dx∇ · D(x)e−βU (x) ∇eβU (x)p(x, t) (9a)

=
∫

∂Ii

dσ n̂(x) · D(x)e−βU (x) ∇eβU (x)p(x, t)

(9b)

=
∫

∂Ii

dσD(x)e−βU (x) ∂

∂n̂
eβU (x)p(x, t). (9c)

Here Gauss’ theorem has been applied in the second line
to obtain an integral over the surface ∂Ii of cell Ii with n̂(x)
representing the unit surface normal. The dot product in the
second line is then converted to a directional derivative in the
third line.

Next, we make the approximation that the quantities
p(x, t), U (x), and D(x) are uniformly valued in the interior
of each cell i with center wi resulting in

p(x, t) ≈ p(wi , t) ∀ x ∈ Ii\∂Ii, (10)

U (x) ≈ U (wi) ∀ x ∈ Ii\∂Ii, (11)

D(x) ≈ D(wi) ∀ x ∈ Ii\∂Ii . (12)

Furthermore, we set the values of variables at each cell inter-
face to be the average of the values in the two cells, namely,

De−βU (x) ∂

∂n̂
eβU (x)p(x, t)

∣∣∣∣
∂Iij

≈ D(wi) + D(wj )

2
e−β[U (wi )+U (wj )]/2

×eβU (wj )p(wj , t) − eβU (wi )p(wi , t)

||wj − wi || , (13)

where ∂Iij is the interface between Ii and Ij. Putting Eqs. (10)–
(13) into Eq. (9c) gives

Vi ṗ(wi , t) =
∑
j �=i

′
Aij

D(wi) + D(wj )

2
e−β[U (wi )+U (wj )]/2

×eβU (wj )p(wj , t) − eβU (wi )p(wi , t)

||wj − wi || , (14)

where Vi is the volume of cell Ii and Aij is the interfacial area
between Ii and Ij. The sum over j involves solely Voronoi cells
sharing an interface with cell i, namely cells that are direct
neighbors of cell i; the restriction is denoted by the prime at-
tached to the summation symbol. In order to be consistent in
the use of extensive quantities in the model, we rewrite the
probability density p in terms of total probability in a cell P,
such that

p(wi , t) = Pi(t)/Vi. (15)

Substituting the above into Eq. (14) gives

Ṗi(t) =
∑
j �=i

′
Aij

D(wi) + D(wj )

2
e−β[U (wi )+U (wj )]/2

× eβU (wj )Pj (t)/Vj − eβU (wi )Pi(t)/Vi

||wj − wi || (16a)

=
∑
j �=i

′
{
Aij

D(wi) + D(wj )

2

· exp
[ − β

2 (U (wi) − U (wj ))
]

Vj ||wj − wi || Pj (t)

}

−
{∑

j �=i

′
Aij

D(wi) + D(wj )

2

· exp
[ − β

2 (U (wj ) − U (wi))
]

Vi ||wj − wi ||
}
Pi(t). (16b)
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FIG. 1. Discretization scheme for the case of two-dimensional diffusion.
(a) Rate matrix components Rij and Rji give the rates of probability flow
between cells Ii and its nearest neighbors, indexed by j, and are dependent
on geometric properties such as the inter-cell distance ||wi − wj ||, the inter-
facial area Aij, and the cell volumes Vi and Vj (not shown in diagram). (b)
Illustration of local probability flow from cell Ii to other cells (indexed by j)
in its neighborhood (encircled area). In the deterministic approach, TjiPi(t)
gives the amount of probability that flows from cell Ii to cell Ij between times
t and t + �t. In the stochastic approach, Tji gives the probability that a particle
in cell Ii at time t hops to cell Ij between times t and t + �t.

This equation is key to our discretization scheme as
it expresses the Smoluchowski equation through the values
of D and U at the centers of the Voronoi cells as well as
through the cell volumes, areas of the connecting faces and
center-center distances between cells. The equation obeys
detailed balance (see Eq. (20)) such that it ensures the exis-
tence of an equilibrium state given by the Boltzmann distri-
bution. The equation is of great value as it provides the sim-
plest possible account for the geometry of the Voronoi cells
in the context of a discretized diffusion model reproducing
the Smoluchowski equation in the limit of vanishingly small
cells.

Finally, we define the coefficients of Pj(t) and Pi(t) to be
Rij and Rii, respectively, such that Eq. (16b) reads

Ṗi(t) =
∑
j �=i

RijPj (t) + RiiPi(t), (17)

which can be written as a linear kinetic equation

Ṗ(t) = R · P(t). (18)

In the following we will eliminate the prime labeling the
summation symbol, assuming from then on that Rij is non-
zero only for nearest neighbor Voronoi cells. The rate matrix
R arising in Eq. (18) has four important properties.

1. RijPj(t) is the rate of probability inflow from Ij to Ii and
RiiPi(t) is the rate of outflow from Ii to its nearest neigh-
bors (see Fig. 1(a)). By observing the terms in Eq. (16b),
one will find that the total flow rate to other cells from
Ii, given by

∑
i �= jRjiPi(t), is equal to RiiPi(t), the outflow

rate from Ii, thus ensuring particle conservation.
2. The solution of (18) relaxes to a stationary, i.e., equilib-

rium, distribution P0, which is given by the Boltzmann
distribution

P 0
i ≡ Z−1Vi e−βU (wi ), (19)

where Z is the partition function. By construction, de-
tailed balance is obeyed, namely

RijP
0
j = Aij

2Z
[D(wi) + D(wj )]

× exp
[ − β

2 (U (wi) + U (wj ))
]

||wj − wi ||
= RjiP

0
i . (20)

3. To solve the Smoluchowski Eq. (8), a complete bound-
ary of reflective or absorptive faces of Voronoi cells
needs to be defined; completeness implies that the
boundary faces define a complete enclosure. To develop
such a boundary, one needs to specify which Voronoi
cells are considered beyond the boundary and therefore
eliminated from the system. The boundary faces are then
defined as the interfacial intersection between kept and
eliminated Voronoi cells.

4. Reflective or absorptive boundary conditions for a cell Ii

are imposed as follows. In case of a reflective boundary
to an adjacent, but eliminated cell Ij, i.e., for Aij being a
reflective face on the system boundary, one sets

Rij = Rji = 0. (21)

If instead the face Aij on the system boundary is absorp-
tive, probability may flow out, but not in, such that one
sets

Rji �= 0, Rij = 0. (22)

C. Solution of the rate equation

The next step is to solve Eq. (18), given the initial dis-
tribution P(0). The approach adopted here is to solve for the
eigenvalues and eigenvectors of R, which yield, together with
the initial condition, an exact solution of Eq. (18). Thus, the
only source of error due to time discretization is the assump-
tion that a particle begins each time step being completely
equilibrated within its current cell.32

Depending on the number of cells N in I, solving for the
entire matrix R at once can be computationally expensive. We
briefly discuss the complexity involved in Sec. IV. A better al-
ternative is to solve for the diffusive behavior locally, as done
in the framework of the Brownian dynamics algorithm,2, 26, 39

as well as in the MSM.32 For this purpose, we make use of
the fact that for a particle initially in Ii, the extent of diffusion
is effectively limited to a region characterized by the radius
r�t = √

2nD�t about wi in time step �t, where n is the num-
ber of spatial dimensions, ignoring presently a possible drift
of probability due to the non-zero local force −∇U (x).

For each Ii, we consider the cell centers contained within
some radius rrestrict of wi and construct a restriction R(i) of R
to these cells. For our purposes, we set rrestrict to 2r�t. R(i) is
composed of only elements of R associated with probability
transfers between cells within the 2r�t radius. For the pur-
pose of the local computation, we index the matrix elements
of R(i) differently from those of R such that in general holds
R

(i)
jk �= Rjk . For the sake of bookkeeping, we henceforth use
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the local index notation lmn for local elements of R(i), while
we continue to employ ijk for the global indices. We also in-
troduce the permutation σ (i) that maps the global index k of a
cell to the corresponding local index n specific to the restricted
region centered on cell Ii, namely,

σ (i)(k) = n, (23)

so that by construction holds

R
(i)
σ (i)(j ) , σ (i)(k) = Rjk. (24)

In order to preserve particle conservation, reflective
boundary conditions are applied to the bordering cells of each
restricted neighborhood, and R

(i)
ll ’s are re-calculated so that

the sum over elements in any column of R(i) equals zero.
The problem to be solved then is

Ṗ(i)(t) = R(i) · P(i)(t), (25)

where P(i)(t) is the vector with components representing the
probability in each locally indexed cell. Henceforth, the su-
perscript (i) will denote quantities that have been re-indexed
locally. The eig Matlab subroutine is used to calculate the
eigenvalues λ(i)

n and corresponding eigenvectors ν(i)
n of R(i),

where n = 1, 2, . . . , dim(R(i)). The solution of Eq. (25) is
then

P(i)(t) =
∑

n

α(i)
n exp

(
λ(i)

n t
)
ν(i)

n , (26)

where {α(i)
n } are scalar constants to be determined. The initial

distribution defines the coefficients α(i)
n through

P(i)(0) =
∑

n

α(i)
n ν(i)

n . (27)

In case that the particle is initially in cell i, holds

P (i)
n (0) = δσ (i)(i) , n. (28)

Since R(i) is not symmetric in general, {ν(i)
n } is not expected

to be an orthogonal set of vectors. However, R(i) is similar to
a symmetric matrix R̃(i) under the transformation

R̃(i) = (M(i))−1R(i)M(i), (29)

where M(i) is specified by M
(i)
lm = δlm[ V

(i)
l exp(−βU

(w(i)
l )) ]1/2. Thence,

R̃(i)
lm = (M (i))−1

ll R
(i)
lm M (i)

mm (30a)

= A
(i)
lm

D(w(i)
l ) + D(w(i)

m )

2
√

V
(i)
l V

(i)
m ||w(i)

l − w(i)
m ||

(30b)

= R̃(i)
ml. (30c)

Thus, R̃(i) is symmetric, so that its eigenvectors {ν̃(i)
n } are

orthogonal. To find ν̃(i)
n , one observes that from the definition

R(i)ν(i)
n = λ(i)

n ν(i)
n follows:

R̃(i)( (M(i) )−1ν(i)
n ) = ( (M(i))−1R(i)M(i) )( (M(i))−1ν(i)

n ) (31a)

= (M(i))−1R(i)ν(i)
n (31b)

= λ(i)
n ( (M(i))−1ν(i)

n ). (31c)

Hence, ν̃(i)
n = (M(i))−1ν(i)

n is an eigenvector of R̃(i) with
eigenvalue λ(i)

n . The orthogonality condition of the eigenvec-
tors {ν̃(i)

n } reads

ν̃
(i)
l · ν̃(i)

m

|ν̃(i)
l | · |ν̃(i)

m |
= δlm. (32)

Right multiplying Eq. (27) with the inverse similarity
transform matrix and applying to it the orthogonality condi-
tion Eq. (32) gives

( (M(i))−1P(i)(0) ) · ν̃(i)
l

|ν̃(i)
l |2

=
∑
m

α(i)
m δlm = α

(i)
l . (33)

On condition that the particle is initially in cell Ii, we calcu-
late the coefficients α

(i)
l by putting Eq. (28) into Eq. (33) and

obtaining

α
(i)
l =

(M (i))−1
σ (i)(i) , σ (i)(i)

(
ν̃

(i)
l

)
σ (i)(i)

|ν̃(i)
l |2

. (34)

Setting t = �t, we thus obtain for the probability distribution
in the neighborhood of the initial position after one time step

P(i)(�t) =
∑

n

α(i)
n exp

(
λ(i)

n �t
)
ν(i)

n . (35)

Using the local transition probabilities given by the elements
of P(i) for every i ∈ {1, 2, . . . , N}, we construct the transition
matrix T, where each element Tji is the transition probability
of a particle moving from cell Ii to cell Ij (see Fig. 1(b)), given
by

Tji = P
(i)
σ (i)(j )(�t). (36)

The framework developed thus far can be used for both
deterministic and stochastic simulations. In the deterministic
case, one uses the transition matrix to propagate a probability
distribution in time

P(t + �t) = T · P(t). (37)

The deterministic approach has been employed in a re-
cent study on the two-dimensional diffusion of a nascent pep-
tide chain within the SecY channel.38

In the stochastic case, a random number generator iter-
ates the position of each diffusing particle based on the rel-
evant probabilities given by T. At a given time t, suppose a
given particle is in cell Ii. The position of the particle at the
next time step t + �t is chosen, through the use of the Mat-
lab random number generator rand, to be Ij with probabil-
ity Tji. Subsequent iterations of these algorithmic steps prop-
agate the particle along its trajectory during the simulation.
The rest of this paper will be concerned with the stochastic
method. This method is closely related to the Brownian dy-
namics method.2, 39

III. VALIDATION

In series 1 of the validation trials, the model was tested
for the behavior of bulk diffusion of particles. Particles
were initialized at the center of a spherically symmetric
system of large enough radius that no particle reached the
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FIG. 2. Results for series 1 tests. Except for dt = 0.0003/Å in (c), graphs in each test set are almost identical and obscure each other as a result. (a) Mean
square displacement for varying time steps. (b) Mean square displacement for varying diffusion coefficients. (c) Mean square displacement for varying grid
densities.

boundary throughout the duration of each trial. Each parti-
cle was allowed to freely diffuse (corresponding to a potential
U (x) = 0) as its displacement was recorded over time. The
mean square displacement of all the particles was then calcu-
lated as a function of time. The mean square displacement of
a 3D diffusing particle from its initial position (t = 0) to its
position at time t is 〈�x2(t)〉 = 6Dt.

In set 1A, each trial had a sample size of 104 par-
ticles. The diffusion coefficient was set to D = 10 Å2/ns,
the grid resolution was ρ1 = 0.03/Å3 within radius 25 Å of
the center, scaled linearly from 25 Å to 35 Å down to ρ2

= 0.003/Å3 at which the density remains fixed up to the re-
flective system boundary at 60 Å. The time step was var-
ied across values dt = 0.0001, 0.001, 0.01, 0.1 ns. As seen
in Fig. 2(a), the simulation agrees well with theory regard-
less of the time step used. A 104-particle sample size was
also used for set 1B, in which case the grid resolution was
as in set 1A, ρ1 = 0.03/Å3 and ρ2 = 0.003/Å3, the time step
was set to dt = 0.1 ns, while the diffusion coefficient was var-
ied across values D = 1.25, 5, 10, 40 Å2/ns. The results pre-
sented in Fig. 2(b) show that the simulation is also accurate
across different values of the diffusion coefficient. In set 1C,
the parameters used were sample size of 104, D = 10 Å2/ns,
dt = 0.1 ns, ρ2 = 0.0003/Å3, while the variable parameter
was ρ1 = 0.0003, 0.003, 0.03/Å3. The results shown in Fig.
2(c) show that the simulated behavior of bulk diffusion was
robust over a wide range of grid resolutions, breaking down
only at low grid densities on the order of 10−4/Å3 or less.

In series 2, absorptive and reflective boundary condi-
tions were imposed: cells on the spherical shell of radius
r1 = 10 Å were assigned absorptive faces, while cells on the
shell of radius r2 = 30 Å were assigned reflective faces. Fig-
ure 3(c) shows the geometry of the system. Particles were ini-
tialized in cells with centers within 0.5 Å of the shell of radius
ri = 20 Å, and then allowed to diffuse until all particles had
been absorbed. The particle count was tracked as a function
of time and compared against the theoretical behavior, given
by Eq. (A26c) derived in Appendix A, and found in Carslaw
and Jaeger40 (2nd ed., Eqs. (12)–(15) on p. 367).

In set 2A, the sample size was 104 for each trial, the
diffusion coefficient D = 150 Å2/ns, the grid density ρ1

= 0.5/Å3 within radius 15 Å of the center and ρ2 = 0.25/Å3

from 20 Å to the system boundary at 35 Å, with the value
scaling down linearly between 15 Å and 20 Å; the time
step was varied across values dt = 0.0002, 0.002, 0.02 ns.
The results shown in Fig. 3 closely approximate the re-
sults from the analytical solutions with differences in time
step size resulting in negligible differences in results on the
time evolution of particle number. In set 2B, the sample
size was 104, D = 150 Å2/ns, dt = 0.02 ns, and grid den-
sity was varied across values {ρ1, ρ2} = {0.1/Å3, 0.05/Å3},
{0.1/Å3, 0.25/Å3}, {0.5/Å3, 0.05/Å3}, {0.5/Å3, 0.25/Å3}.

In a final series of trials, the system and parameters used
in sets 3A and 3B were the same as those in sets 2A and 2B.
However, a linear potential U (x) = α||x|| was imposed, with
α = 0.2 kBT/Å. The results for the respective sets are shown

FIG. 3. Results for series 2 tests. Graphs in each test set are almost identical and obscure each other as a result. (a) Particle number for varying time steps.
(b) Particle number for varying grid densities. (c) (Top) Schematic of system used for series 2; (bottom) radial profile of grid density assumed.
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FIG. 4. Results for series 3 tests. Graphs in each test set are almost identical and obscure each other as a result. (a) Particle number for varying time steps.
(b) Particle number for varying grid densities.

in Fig. 4 and compared with the results from the analytic so-
lution, given by Eq. (A27) in Appendix A. Again, the numeri-
cal results are accurate over the range of values of parameters
tested.

The time step-independence of the results in Figs. 2–4 is
not unexpected, since the solution (35) of the restricted matrix
is exact. In theory, the accuracy of the MSM description de-
creases with a decrease in the size of the time step32 because
of the implicit assumption that the equilibration time of the
particle within the cell at the beginning of each time step is
negligible. The implication for our model is that accuracy is
independent of time step size above a certain minimum time
step size, subject to other parameter values, in particular the
radius of the restricted region rrestrict, which must be set large
enough that the particle’s movement is not significantly hin-
dered by the artificial boundaries. The other source of inaccu-
racy is error due to discretization as one assumes a uniform
distribution in the grid cells. This error may be detected by
varying either the rate at which particles move from cell to
cell or by varying the grid resolution. In this regard, the re-
sults of set 1C suggest that boundary interactions are a more
significant source of discretization error than is bulk diffusion.

IV. COMPUTATIONAL EFFICIENCY

The simulation process applied in our numerical solu-
tions can be divided into three major phases according to com-
putational expense: discretization of the system, calculation,
and solution of the rate matrix, and Brownian motion algo-
rithm for the diffusive displacement of particles. In the dis-
cretization phase, the most expensive task to be performed is
the adaptation of cell centers, which requires updating N posi-
tions in S adaptation steps. Hence, the complexity for the first
phase goes as O(N · S).

In the second phase, the bottleneck occurs during the so-
lution of the rate matrix, more specifically during the cal-
culation of eigenvectors and eigenvalues for the neighbor-
hood within radius rrestrict = 2r�t of each cell center wi .
Given the average density ρ, the approximate number of cells
within each neighborhood is 4

3π (2r�t )3ρ = 32
3 πρ(6D�t)3/2.

A modest ballpark estimate for the complexity of eigen-
vector expansion is O(n3). For N cells, this estimate gives
O(Nρ3(D�t)9/2) complexity for the eigenvector expansion

phase. By this estimate, we justify the algorithmic step of
solving restricted matrices as opposed to solving the entire
rate matrix: depending on the characteristics of the system
and grid chosen, it is often the case that the O(N3) complexity
of solving the entire matrix overshadows that of solving the
restricted matrices.

In the final phase, given particle number M and a total
simulation time ttotal, the complexity is O(M · ttotal/�t).

The computationally most expensive phase is typically
the second one. Fortunately, the calculations for each cell
neighborhood can be performed independently of those for
other neighborhoods, and, thus, are amenable to paralleliza-
tion. Furthermore, eigenvector expansion algorithms them-
selves can sometimes be parallelized. Hence, there is much
potential for the reduction of the overall computation time
needed.

V. REALISTIC APPLICATION: ION DIFFUSION
THROUGH THE MECHANOSENSITIVE CHANNEL
OF SMALL CONDUCTANCE

Mechanosensitive channels of small conductance (MscS)
are a class of membrane channels that are gated by membrane
tension. One such channel in Eschericia coli (ecMscS) is part
of the bacterium’s mechanism of coping with osmotic stress.
The increased tension in the membrane during osmotic stress
activates ecMscS, allowing the passive efflux of cytoplasmic
solutes, thereby mitigating a potentially fatal buildup of os-
motic pressure.3

ecMscS, shown in Fig. 5, is a heptamer of identical sub-
units, which form a trans-membrane domain and a cytoplas-
mic domain (CD). The CD is shaped like a balloon with seven
lateral openings corresponding to its sevenfold symmetry. The
lateral openings are just large enough for ions, the key os-
molytes in E. coli cells, to pass through. The prevalent pos-
itive ions in E. coli cells are K+ and Na+, while the main
negative ion is actually the amino acid glutamate, Glu−.3 An
additional opening exists on the end of the CD distal to the
membrane, but this opening is too narrow and hydrophobic
for ions to pass through.

The function of the ecMscS CD is not well-understood
despite its considerable size and large fraction of protein
mass that goes into it. It is worth noting that CDs are a
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FIG. 5. Three ecMscS channels embedded in a membrane. ecMscS is com-
posed of seven identical subunits (each shown in a different color). ecMscS
(shown in shades of green) has a transmembrane domain (faintly visible in
the membrane in case of the ecMscS closest to the viewer), forming a chan-
nel that opens and closes in the presence or absence of significant osmotic
pressure across the cell membrane. ecMscS also has a large extra-membrane
domain pointing into the cell interior, the cytoplasm. This domain of ecMscS
is called the cytoplasmic domain and is prominently visible in the figure for
all three ecMscS proteins. The membrane is a bilayer of lipids; lipids are com-
posed of head groups (shown as orange and blue spheres) and tails (shown as
white lines). Ions (positive ions shown as blue spheres, negative ions as red
spheres) diffuse through the bulk solvent, the cytoplasm, as seen here below
the membrane. Ions enter the ecMscS cytoplasmic domains through the side
openings into the domain interior and, in case of osmotic stress having in-
duced an opening of the ecMscS trans-membrane channel, pass through the
channel towards the space outside of the cell, the periplasm. The intricate
geometry of the cytoplasmic domain, a roughly spherical interior connected
to the cytosol through seven narrow openings, plays a determining role in
the manner in which ions leave an osmotically challenged cell. The labels
shown on the figure correspond to: 1. Periplasm; 2. cytoplasm; 3. membrane;
4. cytoplasmic domain of ecMscS; 5. side openings; 6. ions.

ubiquitous feature of ion channels, present in both Kv41–43

and Kir44–46 classes of potassium channels, some members of
the family of voltage-gated sodium channels,47 the sodium-
potassium pump,48 the ClC chloride channel,49 the nicotinic
acetylcholine receptor and its homologs,50, 51 and the family
of mechanosensitive channels.52, 53 In most of these channels,
the role of the CD has only in recent years become the subject
of many investigative efforts,3, 54–61 as the importance of the
respective CDs’ roles in channel function becomes more evi-
dent. In particular, CDs are believed to play a role in regulat-
ing the diffusion of ions through the pores of certain channels.

In the case of ecMscS, one postulate is that the CD plays
a role in gating and in this case would necessarily undergo
a large conformational change between the open and closed
states of the channel.62–64 It has also been suggested that the
CD stabilizes the structure of the channel.65, 66 Another postu-
late is that the CD acts as a molecular filter that minimizes
the loss of Glu− solutes.53 Such a filter may also encour-
age the efflux of cations and anions in pairs such that the
efflux is electrically neutral, so as to maintain the cellular
membrane potential. More recent studies compared ecMscS
with channels exhibiting a similar CD structure, namely, bac-
terial cyclic nucleotide-gated (bCNG) channels, MscS-Like
proteins of Arabidopsis thaliana (MSL10) and Thermoanaer-

obacter tengcongensis MscS (TtMscS). bCNG channels dis-
play slight or no mechanosensitive gating response,67 sug-
gesting that the CD plays at most a limited role in channel
gating; the fact that MSL1068 and TtMscS69 are highly anion-
selective casts doubt on the view that the CD enforces current
neutrality.

Previous attempts to simulate MscS function using
MD and Monte Carlo methods showed high selectivity for
anions.24 These simulation results run counter to experimen-
tal measurements that indicate a much lower selectivity.70–72

Barring inaccuracies associated with the simulation method,
the results of experiment and simulation may be reconciled if
collective inter-ion interactions occur over time scales beyond
the reach of the previous simulation methods used (∼10 μs),
that compensate for the channel’s bias towards anions. Apart
from such interactions, the diffusive approach of the ions to
the channel may also play an important role in the description
of ion efflux, for example, if the time scale of the diffusive
approach is longer than the time scale of passage through the
channel. Simulated ion channel systems are typically not large
enough to take into account the diffusive approach, which oc-
curs over length scales of 10–100 nm. Addressing the needs
for such long time and large length scales requires the simu-
lation of ecMscS in a large box and necessitates the present
method. We note that one can use a lower grid density to de-
scribe the large regions further away from the channel and a
higher grid density for the channel and its vicinity.

However, since the current version of the present method
treats particles independently, we cannot yet address the ques-
tion of ion-ion interactions. Hence, the purpose of this section
is not to obtain new results on MscS function. Instead, our
simulation of ecMscS serves as a demonstration of the imple-
mentation of the method in an actual application, as well as
to show that the results obtained are consistent with previous
studies of the same system using the BioMOCA software and
MD.24 Future modifications of the presented methodology to
include inter-ionic interactions will address multi-ion conduc-
tion through the ecMscS CD and membrane channel.

A. Setup of molecular dynamics simulation

The system is described through an all-atom MD simula-
tion with ecMscS embedded in the center of a 320 Å × 320 Å
POPC membrane patch, immersed in a waterbox of dimen-
sion 316 Å × 317 Å × 230 Å. Ions are placed in the solvent
in numbers according to physiological ion strengths [K+],
[Glu−], and [Cl−], such that the system is electrically neutral.
The system is minimized and equilibrated in the presence of
an electric field as described before24 so as to widen the ecM-
scS pore relative to the opening seen in the crystal structure.53

Full details of the all-atom system setup and simulation pa-
rameters are furnished in Appendix B.

PMF maps of the system for both K+ and Glu− were
extracted from a 240-ns equilibration run. For the extraction
the applied electric field was removed and the backbone of
ecMscS was harmonically restrained to prevent the pore from
closing. The distributions of K+ and Glu− ions were aver-
aged over the entire course of the run. Regions where the
distribution went to zero were assigned a minimal non-zero
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FIG. 6. All-atom system simulated for the present study. (a) ecMscS (1) embedded in a membrane (2) and solvated in a waterbox (3). The highlighted circle
represents a locus of 70 Å about the origin, in which a high grid density is used to model ion diffusion in detail near ecMscS. (b) Cells from the resulting grid
that are associated with high PMF values and, hence, modeled through reflective barriers.

distribution value, in order to prevent singularities from occur-
ring when taking logarithms in the next step: the logarithm of
the averaged distribution map, after normalization, gives the
PMF map in units of kBT .

The diffusion coefficients of K+ and Glu− were assumed
to be constant in space. The average value of each coeffi-
cient was obtained from trajectories arising from the MD
simulation described above. The trajectories were divided
into 0.02 ns intervals. In each interval, the mean square dis-
placement of each ionic species between the beginning and
the end of the interval was measured. The mean square dis-
placement values were then averaged over all intervals. Thus,
the diffusion coefficient D for each ionic species was calcu-
lated from the relation 〈�x2(t)〉 = 6Dt. The diffusion coef-
ficients were found to assume the values DK = 200 Å2/ns
and DGlu = 75 Å2/ns, which are in close agreement with the
experimentally determined values73, 74 of D

expt
K = 196 Å2/ns

and D
expt
Glu = 75 Å2/ns (both measured in bulk solvent), re-

spectively.
A grid representing the discretized system was built, with

density ρ1 = 0.05/Å3 within a radius of 70 Å (large enough
to encapsulate the ecMscS, as shown in Fig. 6(a), such that
the center of the CD coincides with the center of the grid) and
ρ2 = 0.01/Å3 outside of a radius of 80 Å with the center of
the CD being characterized through zero radius. The density
was adapted linearly with the radius between 70 Å and 80 Å.
The PMF map, obtained as values on a Cartesian grid, was
cubic-interpolated to assign a PMF value to each cell center.
Grid cells with the maximum PMF value (shown in Fig. 6(b)),
corresponding to regions where the ion distribution is zero,
were designated as reflective boundaries. Consequently, these
cells were excluded from the rate matrix calculation and solu-
tion, thus reducing the total computational cost; correspond-
ingly, cells on the boundary of the system were assigned re-
flective surfaces.

TABLE I. Number of conduction events for each ion for different biasing
voltages.

Ion 0 mV +100 mV −100 mV

K+ 222 1992 34
Glu− 217 54 20

For a time step of dt = 0.002 ns, the rate and transition
matrices were calculated, as outlined in Sec. II C.

B. Simulation procedure and results

Particles were initialized in randomly chosen cells on
the cytoplasmic side. The random selection was performed
with weights proportional to the volume of each cell, so that
the particles were initially uniformly distributed. The parti-
cles were then allowed to diffuse. When a particle crosses via
ecMscS from the cytoplasmic side to the periplasmic side of
the membrane, it is assumed to diffuse away from the mem-
brane and, accordingly, is removed from the system. For the
purpose of assessing the effect of transmembrane potential bi-
ases, we conducted the prior MD simulations with positive
and negative biases, in addition to a zero bias simulation. We
choose the strengths of the voltage bias following the study of
Sotomayor et al.,75 which we will use as a reference for com-
parison. For each voltage bias, an MD simulation was carried
out to obtain the requisite PMF map. The PMF maps were
each applied to the present method as described below.

The simulation procedure was repeated for six runs –
two ion species, each with bias voltages 0 mV, +100 mV,
−100 mV (measured from the cytoplasmic side). For each
simulation, the initial particle count was 5000, and the total
simulation time was 4 μs. The number of conduction events
for each run is listed in Table I. Table II shows the results of
the present study, scaled to match the initial particle concen-
tration and simulation time of the reference study, together
with the results for two putative open conformations of ecM-
scS in the reference study.75

TABLE II. Comparison between present and reference study. Values for the
present study have been scaled to account for the different initial particle
concentration and simulation time in the reference study. The present study
employed Glu− ions, whereas the reference study employed Cl− ions. The
reference study employed two distinct putative open conformations of the
channel. For each respective ion and bias, the results for both conformations
are presented, separated by a comma.

Present Reference

Ion 0 mV +100 mV −100 mV 0 mV +100 mV −100 mV

K+ 2 20 0 2, 5 13, 23 3, 0
Glu− 2 0 0 22, 40 6, 17 53, 72
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FIG. 7. (a) Cross-section of potential of mean force maps for K+ ions. (b) Cross-section of potential of mean force maps for Glu− ions. The energy landscape
for ions exhibit higher, more unfavorable values for positive ions inside the cytoplasmic domain and, conversely, lower, more favorable values for negative ions.
Indeed, in the molecular dynamics simulations for the three bias conditions tested, anions congregated in the cytoplasmic domain and sterically hindered the
passage of cations.

In agreement with the reference study, there were few
conduction events for K+ with bias voltages 0 mV and
−100 mV. For Glu−, the numbers of events were much
smaller than in the reference study where actually Cl− ions
were used.

VI. DISCUSSION OF RESULTS AND FUTURE
DIRECTIONS

The results for K+ in the present study agree with those
of the reference study, while those of Glu− differ significantly.
The significantly lower event count for the anion is attributed
to the fact that the present study employed bulky Glu− ions
as compared to the Cl− ions employed in the reference study.
Glu− ions are actually the prevalent negative ions in E. coli,
which is why they have been employed here. During the MD
calculations, not only would the bulk diffusion coefficient of
the anion be lower in the present study than in the reference
one as reported76 (the diffusion coefficient of Cl− is similar to
that of K+), but also the resulting steric exclusion in narrow
regions around ecMscS results in higher potential barriers in
the Glu− PMF maps.

Other factors contribute to the discrepancies between the
results of the present study and the reference study. An ex-
amination of the PMF maps shown in Fig. 7 reveals poten-
tial wells in the vicinity of the ecMscS structure. Ions con-
gregating in these wells present an obstacle to other ions that
would otherwise also enter the wells. However, in the absence
of inter-ionic interactions, the lack of steric exclusion and lo-
cal electrostatic interactions in the present version of the ki-
netic model allows the ions to all linger in the wells, sub-
stantially increasing the time taken to reach their designated
targets. In fact, for the −100 mV bias, a well of −30 kcal/mol
trapped Glu− ions such that few conduction events arose (see
Table I). Such an effect had been avoided in the reference
study because inter-ionic interactions were included in the re-
spective simulations.

The absence of steric effects in the kinetic simulation
illustrates the issues arising from the absence of inter-ionic
interactions in simulations, especially in regions where ions
come into close proximity of one another, such as in the chan-
nel interior. Adding inter-ionic interactions in a manner that is
both physically sensible and computationally feasible is diffi-

cult because such interactions are modulated by environmen-
tal factors as well as by the presence of more than two parti-
cles within interaction range.

In light of the challenging nature of an account of ion-ion
interactions, we propose as a first step a naive solution. One
starts by identifying local regions in the system with roughly
similar environments. One such region might be the interior
of the ecMscS structure, namely, the interior of the pore and
the CD, and a second might be everywhere outside it. For
each region, one determines then the pair correlation func-
tion g(r) for the various ion pairs, K+ − K+, Glu− − Glu−,
and K+ − Glu−, from the MD trajectories used for the PMF
extraction. g(r) can then be used to modulate the transition
matrix probabilities of particles that move within a pre-set in-
teraction range of each other.

Another issue of concern is the handling of diffusion co-
efficients. The assumption in the present study is that the dif-
fusion coefficient for each ion species is constant throughout
the system. This assumption was made for the sake of sim-
plicity. However, one expects that the diffusion coefficient of
glutamate in the crowded interior of the CD is very different
from that in bulk solvent outside of the CD. The proposed
remedy is to average over diffusion lengths of ions in local re-
gions of the systems throughout the MD trajectories and from
these lengths obtain the local diffusion coefficient in each grid
cell.

It would also behoove us to ensure that the constant-
value approximation of the diffusion coefficient, and other
quantities for that matter, within each grid cell is valid.
For that purpose, one could either interpolate the PMF and
diffusion coefficient maps within the cell, or use a suffi-
ciently fine grid to describe regions in which the maps vary
sharply. The former would be difficult to implement within
the present framework due to the complexity of the addi-
tional computation required. The latter can conceivably be
a future addition to the algorithm that calculates, for each
region, the grid density that resolves the local gradient of
maps such that the error between the approximation and
the actual quantities fall below a pre-set threshold. Since
the PMF map describes the geometry of the system, such
a scheme would also be a natural means of quantifying the
suitability of grid density to the geometric intricacy of the
system.
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Since the utility of the present method relies greatly on
its computational efficiency, it would be useful to consider al-
ternative ways of solving the rate equation (18). In particular,
one could consider employing a Chebyshev expansion77 to
approximate the solution

P(t) = eRt . (38)

Incorporating such a scheme into the solution of either the rate
equation directly or of the local rate matrices one can compare
the resulting efficiency with the present method.

VII. CONCLUSION

The kinetic model of diffusion described in the present
study is a feasible means of simulating diffusion in cellular
systems over a wide range of length and time scales. Results
from validation tests show robust agreement with analytic
descriptions over time step sizes and diffusion coefficients
typical of biomolecular systems. Furthermore, the method is
adaptable to a wide range of scientific needs and computa-
tional capabilities, through the adjustment of simulation pa-
rameters. The method can be made more efficient through
parallelization of the algorithm and is viable for both deter-
ministic and stochastic calculations.

Algorithmic benefits of the method include accuracy that
increases with time step and the restriction of calculations to a
local region around each state. These benefits were brought to
bear in the ecMscS example, where a simulation on the length
scale of hundreds of Ångstroms and a time scale of 1 μs was
run serially and completed in two days. The ecMscS example
produced agreement with the reference study in the case of
K+. The examples presented also illustrate the weaknesses of
our method, which serve as pointers for future development,
namely, the inclusion of dielectric effects, the use of position-
dependent diffusion coefficients and the inclusion of inter-ion
interactions.
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APPENDIX A: ANALYTICAL AND NUMERICAL
SOLUTIONS TO DESCRIBE SYSTEMS
USED IN VALIDATION

1. Analytical solution for validation Sets 2A and 2B

Here, we provide the solution of the diffusion problem for
test set 2. The solution is available from Carslaw and Jaeger40

(2nd ed., Eqs. (12)–(15) on p. 367), but rather than explain-
ing the terms and constants in the complex solution expres-
sion stated by these authors, we derive the solution here as an
optimal means of communication to the reader not versed in
diffusion theory.

The system is spherically symmetric, with particles dif-
fusing in the space between two concentric spheres of radii r1

and r2, as shown in Fig. 3(c). At time t = 0, particles are uni-
formly distributed on a spherical surface of radius ri, with r1

< ri < r2. The diffusion coefficient D is taken to be constant.
The free diffusion equation is given by

(∇2 − D−1∂t )p(r, t) = 0. (A1)

Using the ansatz

p(r, t) = eωtYm
l (θ, φ)R(r), (A2)

one obtains for the radial dependence[
∂2
r + 2

r
∂r − l(l + 1)

r2
− ω

D

]
R(r) = 0. (A3)

The above equation is known as the spherical Bessel equation,
the solutions of which substitute into Eq. (A2) to give the form

p(r, t) =
∑
k,m,l

eωtYm
l (θ, φ)(Akljl(kr) + Bklnl(kr)), (A4)

where jl and nl are the spherical Bessel functions, k is defined
through k2 = −ω

D
(ω is less than zero), Ym

l (θ, φ) represents a
set of functions called the spherical harmonics, and Akl and
Bkl are constants.

Due to spherical symmetry, only the l = 0 term con-
tributes to the solution, so that

p(r, t) =
∑

k

eω(k)tRk(r), (A5)

where

Rk(r) = Akj0(kr) + Bkn0(kr), (A6)

j0(kr) = sin(kr)

kr
, (A7)

n0(kr) = −cos(kr)

kr
, (A8)

and Ak and Bk are constants to be determined.
In our description, we assume Dirichlet and Neumann

boundary conditions at r = r1 and r = r2, respectively. At
r = r1 holds

Rk(r1) = 0. (A9)

For the convenience of calculation, a constant phase may be
introduced without loss of generality

sin(kr) → sin[k(r − r1)], (A10)

cos(kr) → cos[k(r − r1)]. (A11)

Then, Eq. (A9) implies that Bk = 0 ∀ k ∈ R. Thus it holds

Rk(r) = Ak

sin[k(r − r1)]

kr
. (A12)

At r = r2, the Neumann boundary condition is assumed

∂rRk(r)|r=r2 = 0. (A13)

This condition reads

− sin[k(r2 − r1)]

kr2
2

+ cos[k(r2 − r1)]

r2
= 0 (A14)
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or

tan[k(r2 − r1)] = kr2. (A15)

The numerical solution of Eq. (A15) gives a countably infinite
set of values of k. For the sake of clear notation, let n index
these values. Accordingly, we re-index the following terms:

Rk(r) → Rn(r), (A16)

ω(k) → ωn, (A17)

Ak → An. (A18)

Defining the inner product in solution space as

〈Rn1 |Rn2〉 =
∫ r2

r1

r2Rn1 (r)Rn2 (r)dr, (A19)

it can be verified that {Rn | n ∈ Z} is an orthogonal set. The
normalization factor is obtained by evaluating

A−2
n 〈Rn|Rn〉 = (kn)−2

∫ r2

r1

sin2[kn(r − r1)]dr (A20a)

= 1

2k2
n

(
−r1 + k2

nr
3
2

1 + k2
nr

2
2

)
. (A20b)

Hence, the inner product can be explicitly written

〈Rn1 |Rn〉 = A2
n

δn1,n

2k2
n

(
−r1 + k2

nr
3
2

1 + k2
nr

2
2

)
. (A21)

The complete solution is then

p(r, t) =
∑

n

eωntRn(r), (A22)

where ωn = −k2
nD.

In the case of the assumed initial condition p0(r)
= (4πr2

i )−1δ(r − ri) follows:∑
n

Rn(r) = (
4πr2

i

)−1
δ(r − ri). (A23)

Taking the inner product gives

〈Rm|Rm〉 = (
4πr2

i

)−1
∫ r2

r1

r2Rm(r)δ(r − ri)dr, (A24)

from which follows:

Am = Am(4π〈Rm|Rm〉)−1Rm(ri) (A25a)

= k2
m

2π

(
−r1 + k2

mr3
2

1 + k2
mr2

2

)−1 sin[km(ri − r1)]

kmri

. (A25b)

Finally, the expression of the number of surviving parti-
cles as a function of time is

�(t) =
∫ r2

r1

dr 4πr2p(r, t) (A26a)

= 4π

∫ r2

r1

dr
∑

n

Anre
−k2

nDt sin[kn(r − r1)]

kn

(A26b)

= 4π
∑

n

e−k2
nDt Anr1

k2
n

. (A26c)

2. Numerical mean first passage time description
for validation sets 3A and 3B

In the case of a linear potential U(r) = αr, a closed-form
analytic solution for the time-dependent diffusion probability
does not exist. Instead, the time dependence of the probability
distribution was captured for the test purpose by the mean
first passage time approximation.78 In this approximation, the
normalized surviving particle count is given by

�(t) = e−t/τ (ri ), (A27)

where τ (ri) is the mean first passage time given by the expres-
sion

τ (ri) =
∫ ri

r1

dr (Dr2)−1eαr

∫ r2

r

dr ′ r ′2e−αr ′
. (A28)

Here τ (ri) is evaluated through numerical integration.
The mean passage time description through Eqs. (A27)

and (A28) is known to be a good approximation to the de-
cay of the total probability of still unreacted particles78 and,
hence, Eqs. (A27) and (A28) can serve as a test of the numer-
ical scheme suggested in the present study.

APPENDIX B: SPECIFICATIONS FOR MD SIMULATION
OF ecMscS SYSTEM

The structure of ecMscS, solved through x-ray
crystallography,53 was taken from the protein data bank
(PDB 1MXM). The psfgen plugin of VMD 1.9.179 was used
to add missing hydrogens to the structure. Asp, Glu, Lys, and
Arg were modeled as charged residues. The structure was
then aligned with a 320 Å × 320 Å POPC membrane patch
such that the transmembrane domain was superimposed
on the center region of the patch; the overlapping lipids
were deleted. Subsequently, the Solvate plugin in VMD
was employed to immerse the protein-embedded membrane
in a waterbox of dimension 316 Å × 317 × 230 Å and the
cIonize plugin of VMD was employed to place K+ and Cl−

ions in the solvent, such that the concentration of each ion
was 200 mM, the physiological concentration of K+ in the
E. coli cytosol. The physiological concentration of Cl− is on
the order of 10 mM,80 while that of Glu− has been reported
to vary over a wide range of values.81 Hence, enough Cl−

ions were kept in the system to give 10 mM concentration,
while the rest were mutated into Glu− zwitterions. Since
ecMscS has a net charge of +28e, 28 K+ ions were deleted
to neutralize the system. Due to Glu− being larger in size
than Cl−, it was necessary to delete water molecules that
overlapped with the Glu− zwitterions. The final system
contained 610 961 water molecules, 2997 lipids, 2307 K+

ions, 100 Cl− ions, and 2235 Glu− zwitterions. The total
atom count of the system was 2 304 943.

MD simulations were run with NAMD 2.9,82 using
the TIP3P water model,83 and with the CHARMM3684 and
CMAP-corrected CHARMM2285, 86 force fields for lipids and
non-lipids, respectively. The time step was set to 2 fs. The par-
ticle mesh-Ewald method was used to calculate long-range
electrostatic forces, with a mesh density of 1/Å3. Van der
Waals forces were calculated with a cut-off of 12 Å and
a switching function starting at 10 Å. Periodic boundary
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FIG. 8. Root mean square deviation of the sampled PMF from the final map
in a 84Å × 84 × 120 Å box enclosing the ecMscS channel.

conditions were imposed in all MD runs. Temperature was
held at 300 K via Langevin dynamics with a damping coef-
ficient of 1 ps−1. Pressure was held at 1 atm using the Nosé-
Hoover Langevin piston method with damping time of 50 fs
and period of 200 fs.

The system was minimized over 3.4 × 105 steps. All
atoms, except for those of the lipid tails, were fixed during
the subsequent 4.6 ns equilibration to allow the lipid tails
to melt. Lipid head group constraints were then released and
equilibration continued for another 10 ns, to allow the mem-
brane to form a watertight seal around the ecMscS pore. The
system was then put through 10 cycles of alternating runs,
the first being un-constrained equilibration with voltage 0.6 V
across the membrane (measured from the cytoplasmic side),
and the other runs being equilibration, with no applied volt-
age, and with ecMscS backbone atoms being harmonically

constrained with spring constant 2 kcal/mol/Å
2

to their last
positions in the previous run. The runs with applied voltage
induced widening of the ecMscS pore,24 while the runs with
constraints on the ecMscS backbone allowed the membrane
to relax back to a stable state so that the strong voltage did
not break up the membrane before the ecMscS pore widened.
The resulting structure was used for the production run, dur-
ing which protein backbone atoms were again put under har-

monic restraint with spring constant 2 kcal/mol/Å
2
, in order

to maintain the widened pore width in the absence of an ap-
plied voltage.

MD runs for sampling the PMF and other properties were
carried out for 240 ns, ensuring adequate sampling as shown
in the plot of the convergence metric used in Fig. 8. The con-
vergence metric is defined as the root mean square deviation
of the potential map at 20-ns intervals from the final map dur-
ing the run. Since the interior of ecMscS is the least acces-
sible, and hence the least sampled, region of the system, we
confine the convergence metric calculation to a box which just
encloses the protein.
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