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Movie S1: Flagellin Compression (movie-S1-compression.mpg). This
movie is generated from simulated compression of a flagellin segment (sim-
ulation 9C in Table 1). Shown are flagellin, confining cylinder and a dy-
namic plot of the flagellin properties. The flagellin segment atoms are col-
ored from red (atoms pushed strongest by left and right walls) to green
(not pushed by walls). The confining cylinder (9 Å radius) is shown in
blue; atoms inside the cylinder appear darker, while atoms in contact with
the cylinder wall appear lighter. The dynamic plot shows, in green, the
axial pressure (y-axis), paxial(t), plotted against flagellin density (x-axis),
ρ(t); the x-axis spans 0.04 to 0.3 flagellin atoms/Å3 while the y-axis spans
0.0 to 1.2 (kcal/mol)/Å3. The plot also shows, in red, the radial pressure (y-
axis), pradial(t), plotted against flagellin density (x-axis), ρ(t); in this case the
y-axis spans 0.0 to 0.45 (kcal/mol)/Å3. The plot shows how stress, friction
density and flagellin density increase as the protein is compressed.

Movie S2: Flagellin Translocation (movie-S2-translocation.mpg). This
movie is generated from a molecular dynamics simulation of flagellin pushed
through the flagellum channel (simulation CD0 in Table 1). Shown are the
CD0 helices (orange) which comprise the inner surface of the channel, the
flagellin segment’s backbone (green), basic residues ARG494 along the chan-
nel (blue) and acidic residues of the translocating flagellin (red). Acidic and
basic residues of salt bridge formed transiently are highlighted in light red
and light blue, respectively.
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Figure S1: Flagellin Pressure. Using the system parameters listed in
Table 2, including P = 100 (kcal/mol)/s, with Eq. 9 of the main text, flagellin
pressure is shown as a function of position along the flagellum for the case
L = 20µm. Pressure is highest at the flagellum base (position = 0) and
lowest at the the flagellum tip (position = 20 µm). This plot reveals the
flagellin pressure range relevant to the flagellum, namely [1 × 10−5, 0.02]
(kcal/mol)/Å3.
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Figure S2: Flagellin Density. Using the system parameters listed in
Table 2, including P = 100 (kcal/mol)/s, with Eq. 13 of the main text,
flagellin density is shown as a function of position along the flagellum for the
case L = 20 µm. Density is highest at the flagellum base (position = 0) and
lowest at the flagellum tip (position = 20 µm). This plot reveals the flagellin
density range relevant to the flagellum, namely density in the range [0.011,
0.12] atoms/Å3. For comparison, the density of fully stretched flagellin in the
channel is∼0.01 atoms/Å3, while the density of bulk water is ∼0.1 atoms/Å3.
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Figure S3: Flagellin Translocation Velocity. Using the system param-
eters listed in Table 2, including P = 100 (kcal/mol)/s, with Eq. 19 of the
main text, flagellin translocation velocity is shown as a function of flagellum
length. The upper curve plots vtip = v(x = 0, L), the translocation velocity
at the flagellum tip, where velocity is always highest; the lower curve plots
vbase = v(x = L,L), the translocation velocity at the flagellum base, where
velocity is always lowest. For L = 0 (nascent flagellum) tip and base translo-
cation velocity are equal and highest since there is very little friction built
up yet in the flagellum. As the flagellum grows to its maximal length, both
vtip and vbase decay to zero. The area between the two curves bounds the
range of relevant translocation velocities as a function of flagellum length.
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Figure S4: Flagellin Growth. Using the system parameters listed in Ta-
ble 2, including P = 100 (kcal/mol)/s, flagellum length (black, c.f. Eq. 25)
and pump force (blue, c.f. Eq. 9) is shown as a function of time. As the flag-
ellum grows, the force required to pump additional flagellin into the channel
increases (due to increasing p(x = L)). At t = 24 hrs (red) the pump force
reaches the stall force, fstall = 7 (kcal/mol)/Å, and the pump can not sur-
mount the force required to pump additional flagellin into the channel (dotted
blue). At this point, the flagellum can not grow longer (black dotted); instead
it remains at its maximal length, Lmax = 20 µm.
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Figure S5: Surface Contact Density. Surface contact density, mea-
sured as number of atoms beyond the confining cylinder, versus flagellin
pressure, measured as the total force of the confining cylinder on the flagellin
segment, for each of the 60 equilibrium simulations. Samples at upper right
are from simulations at higher density while samples at lower left are from
simulations at lower density. Because atoms which contact the cylinder rep-
resent flagellin atoms which would interact with the flagellar channel (were it
present), the density of contacts between unfolded flagellin and the confining
channel are proportional to flagellin pressure, confirming Condition 2. Inset:
The same data is presented in a log-log plot to highlight the proportional
relationship across a wide range of flagellin densities.
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Pressure - Density Relationship of a Gaussian Chain
Polymer Confined to a Cylinder

In the following we seek to show that an exponent β ≈ 3 results in the
pressure - density relationship p = γρβ for a polymer confined to a cylinder
of radius a and length L. The confinement applies to the unfolded flagellin
in the flagellar channel as studied in the present paper. In our description
we consider the protein to be a linear polymer, i.e., we neglect the detailed
structure of the amino acid side chains.

The polymer property is accounted for through a so-called Gaussian chain
model (1, 2). In this model a polymer consists of N segments represented
through vectors rj, j = 1, 2, . . . N , such that the vector connecting the

beginning with the end of the polymer is given by
∑N

j=1 rj. The rj are
distributed isotropically according to a Gaussian distribution

φ(rj) =
[
3/2πb2

] 3
2 exp

[
−3r2

j/2b
2
]
. (1)

Since the distributions φ(rj) are independent of each other, the polymer can
intersect with itself. The Gaussian model, therefore, does not apply well to
a description where each segment described through rj is literally a poly-
mer segment, but rather applies best, though still only very approximately,
when the rj represent large polymer units with a length |rj| = b; b is sug-
gested to be two times the so-called persistence length of the polymer (2) (see
Sect. 2.6.2). The persistence length is the polymer correlation length char-
acteristic of the directional order; beyond the persistence length, directional
correlation of the chain is lost.

The Gaussian chain polymer behaves like an entropic spring governed by
the Hamiltonian (2) (see Sect. 2.3)

H0 =
3kBT

2b2

N∑
i=1

|Ri+1 − Ri|2 . (2)

This behavior follows from the fact that for a polymer with independent
segments distributed according to Eq. 1 any polymer piece involving segments
j, j + 1, . . . i− 1 has an end-end distribution (1) (see Chap. II)

φ(Ri − Rj, i − j) =
[
3/2πb2|i − j|

]3/2
exp

[
− 3 (Ri −Rj)

2/2|i − j|b2
]
.

(3)
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Here Ri denotes the starting point of segment i.
Our strategy to determine the pressure - density relationship for the

present polymer model will be to exploit the relationship

p = − 1

πa2

dF

dL
. (4)

Here F is the free energy of the system related to the partition function Z
through F = −kBT lnZ. Z can be expressed through the end-end distri-
bution function ρ(R,R′, N) where R′ is the starting point of the polymer,
R is the end point of the polymer, and N denotes the number of polymer
segments

Z =

∫ ∫
dR dR′ ρ(R,R′, N) . (5)

The polymer described in Eq. 4 and Eq. 5 has to be confined to the
cylinder of radius a and length L. However, the polymer described through
Eq. 1, Eq. 2 and Eq. 3 is not confined. In order to obtain ρ(R,R′, N) for
a confined polymer we apply, following (2), to the unconfined polymer a
confining potential V (Rj), to be specified further below. For this purpose
we modify the Hamiltonian H0 to

H =
3kBT

2b2

N∑
i=1

|Ri+1 − Ri|2 +
N+1∑
j=0

V (Rj) . (6)

The sum over segments is extended from N to N + 1 to include in the
potential the term V (RN+1) for the end point of the polymer. The polymer
subjected to the potential V (Rj) exhibits a distribution of its conformations
{R1,R2, . . .RN+1}

Q(R1,R2, . . .RN+1) ∼ exp

[
− 3

2b2

N∑
i=1

|Ri+1 − Ri|2 −
N+1∑
j=0

1

kBT
V (Rj)

]
(7)

The corresponding end-end distribution function ρ(R,R′, N), where R1 =
R and RN+1 = R′, is obtained by averaging over the intermediate polymer
bead positions {R2,R3, . . .RN}, i.e.,

ρ(R,R′, N) =

∫
dR2

∫
dR3 · · ·

∫
dRN Q(R,R2, . . .RN ,R

′) . (8)
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Using Eq. 7 this can be written symbolically

ρ(R = R1,R
′ = RN+1, N) ∼

∫
dR2

∫
dR3 · · ·

∫
dRN ×

× exp

[
− 3

2b2

N∑
i=1

|Ri+1 − Ri|2 −
N+1∑
j=0

1

kBT
V (Rj)

]
(9)

Carrying out this calculation for V ≡ 0 yields

ρ0(R,R
′, N) =

[
3/2πb2N

]3/2
exp

[
− 3 (R −R′)2/2Nb2

]
(10)

which agrees, as expected, with the unconfined polymer distribution function
in Eq. 3.

In order to determine ρ(R,R′, N) for an external potential V (Rj) we do
not carry out the integration in Eq. 9, but rather follow a procedure suggested
in (2) (see Sect. 3.2) that determines ρ(R,R′, N) as a solution of the partial
differential equation[

∂

∂N
− b2

6
∇2 +

1

kBT
V (R)

]
ρ(R,R′, N) = 0 (11)

where ∇2 is the Laplacian with respect to R. This solution must obey the
condition

ρ(R,R′, 0) = δ(R − R′) . (12)

In the present case, the confining potential for a cylinder is defined through

V (R) =

{
0 R inside cylinder
∞ R outside cylinder

. (13)

One can conclude readily from this definition that ρ(R,R′, N) should obey
then [

∂

∂N
− b2

6
∇2

]
ρ(R,R′, N) = 0 (14)

and vanish for R and R′ on the cylinder surface. It should also obey condition
Eq. 12.

Equation 14 with N = t (time) and b2/6 = D (diffusion coefficient), is
equivalent to the free diffusion equation, solutions of which are well known.
In fact, the solution of Eq. 14 for a cylindrical boundary condition can be
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found in (3) (see Sect. 8.6). According to Eq. 5 we need to determine actually
the quantity

σ(R, N) =

∫
dR′ ρ(R,R′, N) . (15)

In the case of axial symmetry, that applies in the present case, one obtains
the solution as stated in (3) after some simple algebra

σ(R, N) =
∑
µ

∞∑
m=1

Aµm J0(µr) sin[mπz/L] exp[−D{µ2 + (m2π2/L2)}N ]

(16)
where we used the cylindrical coordinates R = (r, φ, z) (φ drops out due to
axial symmetry). The expansion coefficients Aµm are

Aµm =
8

a2L[J1(µa)]2

∫ a

0

r J0(µr) dr

∫ L

0

sin[mπz/L]dz . (17)

In Eq. 16 and Eq. 17, J0 and J1 are the cylindrical Bessel functions of zeroth
and first order; the summation index µ denotes the zeroes of J0(µa). Using∫ a

0

r J0(µr) dr =
a

µ
J1(µa) (18)

and ∫ L

0

sin[mπz/L]dz =
L

mπ
[1 − (−1)m] (19)

one obtains finally

Aµm =
8 [1− (−1)m]

a µmπ [J1(µa)]
. (20)

We need to determine now (c.f. Eq. 15 and Eq. 5 )

Z =

∫
dR σ(R, N) . (21)

where σ(R, N) is given by Eq. 16. Using again the integral values from Eq. 18
and Eq. 19 one obtains

Z =
∑
µ

∑
m=1,3,5...

64L

m2µ2π
exp[−D{µ2 + (m2π2/L2)}N ] . (22)
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According to Eq. 4 the pressure is

p =
kBT

πa2

∂ lnZ

∂L
. (23)

Factoring Z into an L-independent and an L-dependent term

Z = Z1 Z2(L) (24)

where

Z1 =
∑
µ

64

µ2π
exp(−Dµ2N) (25)

and

Z2(L) = L
∑

m=1,3,5...

1

m2
exp(−DNm2π2/L2) (26)

one can write

p =
kBT

πa2

1

Z2(L)

∂Z2(L)

∂L
. (27)

From this results

p =
kBT

πa2

{
1

L
+

Nπ2b2

3L3

∑
m=1,3,5... exp(−b2π2Nm2/6L2)∑

n=1,3,5... (1/n
2) exp(−b2π2Nn2/6L2)

}
. (28)

One can recognize that the two series arising in this expression converge
quickly for α = 3Nπ2b2/2L2 >> 1. In the case of the system simulated in
the present case typical α values obey α > 15 and, hence, one may limit the
two series after the first term, yielding

p =
kBT

πa2

[
1

L
+

Nπ2b2

3L3

]
. (29)

In order to compare Eq. 29 to the simulation data in Fig. 5 we employ
the expression for the atomic density

ρatom = Natom/πa
2L (30)

which permits one to express

L = Natom/πa
2ρatom . (31)
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One can also express the number of polymer segments N by L0, the length
of the totally stretched polymer main chain,

N = L0/b . (32)

Employing Eq. 31 and Eq. 32 in Eq. 29 results in

p = kBT

[
ρatom

Natom

+
π4a4b L0

3

(
ρatom

Natom

)3
]
. (33)

Introducing
ρ̃ = ρatom/Natom , (34)

which stands for the density of one polymer chain, one obtains finally the
pressure - density relationship for the Gaussian chain model polymer confined
to a cylinder

p = kBT

[
ρ̃ +

1

3
π4a4b L0 ρ̃

3

]
. (35)

For physical parameters typical in the flagellum, the cubic term of Eq. 35 is
one to two orders of magnitude larger than the linear term; pressure, there-
fore, is approximately proportional to the cube of the density, i.e., p ∝ ρ̃3.
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