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Abstract 
Recent progress in 3-0.  immers i ve  display and virtual re- 
ality (VR)  technologies has  m a d e  possible m a n y  exci t ing 
applications, f o r  example? interactive visualization of com- 
plex scient i f ic  data. To fu l l y  exploit this  potent ial  there i s  a 
need for ‘hatural” interfaces tha t  allow the man ipu la t ion  of 
such displays wi thout  cumbersome  at tachments .  In this  pa-  
per we describe the  use  of visual hand  gesture analysis  and  
speech recognition f o r  developing a speech/gesture interface 
f o r  controlling a 3 - 0  display. T h e  interface enhances a n  
existing application, VMD,  which i s  a V R  visual compu t ing  
enuironment  f o r  molecular biologists. T h e  free h a n d  ges- 
tures are used f o r  manipulat ing the  3-0 graphical display 
together with a set of speech commands .  W e  describe the 
visual gesture analysis  and the  speech analysis techniques 
used in developing this  interface. T h e  dual modali ty  of 
speech/gesture i s  f o u n d  t o  greatly aid the  interact ion capa- 
bility. 

1 Introduction 
Although there has been tremendous progress in recent 
years in 3-D, immersive display and virtual reality (VR) 
technologies, the corresponding human-computer interac- 
tion (HCI) technologies have lagged behind. For example, 
current interfaces involve the use of heavy headsets, data- 
gloves, tethers, and other VR devices which may deter or 
distract the user of the VR facility. To fully exploit the po- 
tential tha t  VR offers as a means of visualizing and inter- 
acting with complex information, it is important to  develop 
“natural’! means of interacting with the virtual display. 

The  communication mode tha t  seems most relevant to  
the manipulation of physical objects is hand motion, also 
called h a n d  gestures. We use it. to  act on the world, to  grasp 
and explore objects, and to  express our ideas. Now virtual 
objects, unlike physical objects, are under computer con- 
trol. To  manipulate them naturally, humans would prefer 
to employ hand gestures as well as speech. Psychological ex- 
periments, for example, indicate that people prefer to use 
speech in combination with gestures in a virtual environ- 
ment, since i t  allows the user to interact without special 
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training or special apparatus and allows the user to  con- 
centrate more on the virtual objects and the tasks a t  hand 
[l]. We explore this multimodal nature of HCI involved in 
manipulating virtual objects using speech and gesture. 

To keep the interaction natural, i t  is desirable to have 
as few devices attached to  the user as possible. Motivated 
by this, we have been developing techniques that will en- 
able spoken words and simple free-hand gestures to be used 
while interacting with 3D graphical objects in a virtual en- 
vironment. The  voice commands are monitored through a 
microphone and recognized using automatic speech recog- 
nition (ASR) techniques. The  hand gestures are detected 
through a pair of strategically positioned cameras and in- 
terpreted using a set of computer vision techniques that we 
term automatic gesture recognition (AGR). These computer 
vision algorithms are able to  extract the user hand from the 
background, extract positions of the fingers, and distinguish 
a meaningful gesture from unintentional hand movements 
using the context. We use the context of a particular virtual 
environment to  place the necessary constraints to  make the 
analysis robust and to  develop a command language that 
attempts to  optimally combine speech and  gesture inputs. 

2 A Virtual Environment Testbed 
The  particular virtual environment tha t  we consider has 
been built for structural biologists by the Theoretical Bio- 
physics Group at  the University of Illinois at Urbana- 
Champaign. The  system, called MDScope, provides an en- 
vironment for simulation and visualization of biomolecular 
systems in structural biology; its graphic front-end is called 
VMD [2]. A 3-D projection system permits multiple users 
to visualize and interactively manipulate complex molecu- 
lar structures (Figure 1). This helps in the process of de- 
veloping an understanding of important properties of the 
molecules, in viewing simulations of molecular dynamics, 
and in “playing” with different combinations of molecular 
structures. One potential benefit of the system is reducing 
the time to  discover new compounds, in research toward 
new drugs for example. 

The  older version of this system uses a keyboard and a 
magnetically tracked pointer as the interface. This is par- 
ticularly inconvenient since the system is typically used by 
multiple (6-8) users, and the interface hinders the interac- 
tive nature of the visualization system. Thus  incorporating 
voice command control in MDScope would enable the users 
to  be free of keyboards and to interact with the environment 
in a natural manner. The  hand gestures would permit the 
users t o  easily manipulate the displayed model and “play” 
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Figure 1: A 30 visualization facility for  structural biol- 
ogzst; here researchers are seen dzscussing the structure 
of a protein-DNA complex. 

with different spatial combinations of the molecular struc- 
tures. T h e  integration of speech and hand gestures as a 
multi-modal interaction mechanism would be more power- 
ful than using either mode alone, motivating the develop- 
ment of the  speech/gesture interface. Further, the goal was 
to  minimize the modifications needed t o  the existing VMD 
program for incorporating the new interface. T h e  experi- 
mental prototypes tha t  we built for both the speech (ASR) 
and hand gesture analysis (AGR) required the following ad- 
dition to the VMD environment. 

In order to  reduce the complexity and in- 
crease the flexibility of the program design, a communica- 
tions layer was added so external programs can be written 
and maintained independently from the VMD code. These 
use the VMD text language to  query VMD for informa- 
tion or to  send new commands. The  Vi’vlD text language is 
based on the  TCL scripting language. Since all the capa- 
bilities of VMD are available a t  the script level. an external 
program can control VMD in any way. Both the ASR and 
AGR programs interact with VMD using this method. For 
a simple voice command, such as “rotate left go”, the ASR 
converts the  phrase into the VMD text command “rotate 
y 90” and sends tha t  to  VMD. Similarly, when the AGR is 
being used as a pointing device, it sends the commands t o  
change the current position and vector of VMD’s graphical 
3D pointers. 

Setup for visual gesture analysis. To facilitate the 
development of AGR algorithms, we designed an experi- 
mental platform shown in Figure 2 tha t  was used for gesture 
recognition experiments. In addition to  the uniformly black 
background, there is a lighting arrangement that  shines red 
light on the hand without distracting the user from the main 
3D display. The  setup has the additional advantage tha t  it. 
can be transported easily and is relatively unobtrusive. 

Setup for speech analysis. A prototype ASR system 
has been implemented and integrated into VMD. The  sys- 
tem consisted of two blocks: a recorder front-end followed 
by the recognizer unit. The  recorder employed a circularly- 
buffered memory t o  implement its recording duties, send- 

Sof tware .  

ing its output  to the recognizer unit in blocks. A digital 
volume meter accompanied this to provide feedback to  the 
user by indicating an acceptable range of loudness. The  
recognizer tha t  followed was developed by modifying HTK 
software. This  unit performed feature extraction and time- 

Figure 2: The experimental setup with with two cam- 
eras used for  gesture recognition. 

synchronous Viterbi decoding on the input blocks, sending 
the decoded speech directly via Tcl-dp commands to  an SGI 
Onyx workstation where the VMD process resided. 

Speech/gesture command language. In order t o  ef- 
fectively utilize the information input from the user in the 
form of spoken words and simple hand gestures, we have 
designed a command language for MDScope that  combines 
speech with gesture. This  command language uses the ba- 
sic syntax of < act ion  >< object >< m o d i f i e r  >. T h e  
< a c t i o n  > component is spoken (e.g., “rotate”) while the 
< object > and < m o d i f i e r  > are specified by a combina- 
tion of speech and gesture. An example is, speaking “this” 
while pointing, followed by a modifier t o  clarify what is be- 
ing pointed to, such as “molecule”, “helix”, “atom”, etc., 
followed by speaking “done” after moving the hand accord- 
ing t o  the desired motion. Another example of the desired 
speech/gesture capability is the voice command “engage” 
to  query VMD for the molecule tha t  is nearest to  the t ip  
of the pointer and to  make the molecule blink to  indicate 
tha t  i t  was selected and t o  save a reference t o  tha t  molecule 
for future use. Once engaged, the voice command “rotate” 
converts the gesture commands into rotations of the chosen 
molecule, and the command “translate” converts them into 
translations. When finished, the command “release” des- 
elects the molecule and allows the user to manipulate an- 
other molecule. T h e  ASR and AGR techniques that  made 
the above interaction possible are described next. 

3 Speech input using ASR 
3.1 Background 
In the integration of speech and gesture within the MD- 
Scope environment, a real-time decoding of the user’s com- 
mands is required in order to  keep pace with the hand 
gestures. Thus there is a need for “word spotting” which 
is defined as the task of detecting a given vocabulary of 
words embedded in unconstrained continuous speech. It dif- 
fers from conventional large-vocabulary continuous speech 
recognition (CSR or LVCSR) systems in tha t  the latter 
seeks to  determine an optimal sequence of words from a 
prescribed vocabulary. A direct mapping between spoken 
utterances and the recognizer’s vocabulary is implied with 
a CSR, leaving no room for the accommodation of non- 
vocabulary words in the form of extraneous speech or un- 
intended background noise. T h e  basis for word spotting, 
also termed keyword spotting (KWS), is dictated by real 
world applications. Real users of a spoken language system 
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often embellish their commands with supporting phrases 
and sometimes even issue conversation absent of valid com- 
mands. In response to  such natural language dialogue 
and the implications to robust human-computer interac- 
tion, standard CSR systems were converted into spotters 
by simply adding filler or garbage models to  their vocab- 
ulary. Recognition output stream would then consist of 
a sequence of keywords and fillers constrained by a sim- 
ple syntactical network. In other words, recognizers op- 
erated in a “spotter” mode. While early techniques em- 
phasized a template-based dynamic time warping (DTW) 
slant, current approaches are typically armed with the 
stat,istical clout of hidden Markov models (HMMs) [4, 5, 
81, and recently with the discriminatory abilities of neural 
networks (NN). These were typically word-based and used 
an overall network which placed the keyword models in par- 
allel with the garbage models. 

3.2 Prototype and Results 
Keywords. Table 1 lists the keywords and their phonetic 
transcriptions chosen for the experiment. These commands 

Kevword TranscriDtion 
translate t-r-ae-n-s-I-ey-t 
rotate r-ow-t-ey-t 
engage eh-n-g-ey-jh 
release r-ih-1-iy-s 
pick p-ih-k 

Table 1: Keywords. 

allowed the VMD user to  manipulate the molecules and 
polymeric structures selected by hand gestures. In model- 
ing the  acoustics of the speech, the HMM system was based 
on phones rather than words for large vocabulary flexibility 
in the given biophysical environment. A word-based sys- 
tem, though invariably easier to  implement, would be in- 
convenient t o  retrain if and when the vocabulary changed. 

Fillers. Filler models are more varied. In LVCSR ap- 
plications, these fillers may be represented explicitly by the 
non-keyword portion of the vocabulary, as whole words for 
example. In other tasks, non-keywords are built by a par- 
allel combination of either keyword “pieces” or phonemes 
whether they be context-independent (CI) monophones or 
context-dependent (CD) triphones or diphones [5]. 

Twelve fillers or garbage models were used to model ex- 
traneous speech in our experiment,. Instead of being mono- 
phones or states of keyword models as used in prior exper- 
iments in the literature, the models tha t  were used covered 
broad classes of basic sounds found in American English. 
These are listed in Table 2. Such models provide good cov- 
erage of the English language and are amenable to train- 
ing. First, the class of 
‘(consonants-africates” was not used due to the brevity of 
occurrence in both the prescribed vocabulary and training 
data.  As observed by [8] and many other researchers, vary- 
ing or increasing the number of models does not gain much 
in spotting performance. Second: a model for background 
silence was included in addition to the twelve garbage mod- 
els listed. Such a model removed the need for an explicit 
endpoint detector by modeling the interword pauses in the 
incoming signal. Note also tha t  the descriptors for the vowel 
class correspond to  the position of the tongue hump in pro- 
ducing the vowel. 

There are several things to note. 

Sound class Symbol 
vowels-front vf 
vowels-mid 
vowels-back 
dipthongs 
semivowels-liquids 
semivowels-glides 
consonants-nasals 
consonants-stops-voiced 
consonants-stops-unvoiced 
consonants-fricatives-voiced 
consonants-fricatives-unvoiced 
consonants-whispers 

vm 
vb 
dipth 
svl 
svg 
cn 
csv 
csu 
cfv 
cfu 
cw 

Tab le  2: Broad sound classes used as garbage models. 

Figure  3: The recogniizon network. 

Recognition Network .  The  recognition syntactical 
network, as shown in Figure 3, placed the keywords in par- 
allel to a set of garbage models which included a model for 
silence. These models followed a null grammar, meaning 
that every model may precede or succeed any other model. 
As indicated in the figure, a global grammar scale factor (s) 
and transition probability factor (p) were used to  optimize 
the recognition accuracy and adjust the operating point of 
the system. 

Features and Training. After sampling speech at 
16kHz and filtering to  prevent aliasing, the speech sam- 
ples were preemphasized with a first order digital filter us- 
ing a preemphasis factor of 0.97 and blocked into frames of 
25 ms in length with a shift between frames of 10 ms. Each 
frame of speech was weighted by a Hamming window, and 
then mel-frequency cepstral coefficients of sixteenth order 
were derived and weighted by a liftering factor of 22. Cep- 
stral coefficients were chosen as they have been shown to  be 
more robust and discriminative than linear predictive cod- 
ing coefficients or log area ratio coefficients. Normalized log 
energy and first order temporal regression coefficients were 
also included in the feature vector. 

The  topology of the HMMs for both keyword-phones and 
garbage models consisted of five states, the three internal 
states being emitting states. Following a left-to-right traver- 
sal, each state was described by a mixture of five continuous 
density Gaussians with diagonal covariance matrices. Three 
iterations of the Baum-Welch reestimation procedure were 
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used in training. 
In training the set of fifteen keyword-phones, forty sen- 

tences were developed as follows. Each of the five keywords 
were individually paired with the remaining four. This  was 
then doubled to  provide a sufficient number of training to- 
kens. In sum, the sentences were composed of pairs of key- 
words such as “engage translate’’ and “rotate pick” which 
were arranged in such an order as to  allow each of the key- 
words to be spoken sixteen times. Each VMD user pro- 
ceeded with this short recording session. 

In training the garbage models, a much more extensive 
database of training sentences was required to provide an 
adequate amount of training da ta  since the twelve broad 
classes cover nearly the entire spectrum of the standard 48 
phones. T h e  TIMIT database was subsequently employed 
to  provide a n  initial set of bootstrapped models. Retrain- 
ing was then performed once for one VMD user who had 
recorded a set of 720 sentences of commonly used VMD 
commands. These sentences spanned the scope of the  VMD 
diction, including a more detailed set of commands, num- 
bers, and modifiers. This  was necessary to  provide d a t a  nor- 
malized t o  the existing computational environment. Note 
that  the garbage models were trained only once for this ex- 
periment. Hence, VMD users only needed to  go through 
the short training procedure detailed above. 

Performance. Upon testing the system as a whole with 
fifty test sentences tha t  embedded the keywords within bod- 
ies of non-keywords, wordspotting accuracies ranged t o  98% 
on the trained speaker. The  trained speaker refers t o  each 
user who trained the keyword-phones regardless of the one 
who trained the garbage models. This  was considered very 
well by the  VMD users for the given biophysics environ- 
ment, supporting the techniques tha t  were used. In gen- 
eral, false alarms occurred only for those situations where 
the user embedded a valid keyword within another word. 
For example, if one says ‘translation’ instead of ‘translate‘, 
the  spotter will still recognize the command as ‘translate’. 

3.3 Discussion 

In the experiment, a standard CSR was converted t o  a 
wordspotter by operating in (‘spotter mode”. This was 
chosen for i ts  efficiency and experimentally proven success. 
Had a pure wordspotter been constructed, two passes would 
be required for the spotting and complete decoding task 
stretching the  envelope of real-time constraints. Also, there 
is often a tradeoff between the resolution of the models and 
speed of execution in model-based systems. Furthermore 
for a wordspotting system, one must balance the false alarm 
rate against miss rate. In the former, the garbage models 
provide too much resolution and the opposite occurs in the 
latter. In wordspotting, one may use transition weights into 
the individual models t o  position the operating point a t  the 
desired location. As noted earlier, global parameters were 
used for adjustment; however, later tests will employ a more 
defined set of weights to  control the operating point. In  ad- 
dition to  weighting the transitions into the keyword-phone 
and garbage models, research will be focused on providing 
a more efficient training procedure and more discrimina- 
tive models for the keyword-phones. As noted. the confu- 
sion that  exists when a valid keyword is embedded within 
a non-keyword must be handled. 

4 
T h e  general AGR problem is hard, because i t  involves an- 
alyzing the human hand which has a very high degree of 
freedom and because the use of the hand gesture is not 
so well understood (See [3] for a survey on vision-based 
AGR). However. we use the context of the particular vir- 
tual environment to develop an appropriate set of gestural 
“commands”. T h e  gesture recognition is done by analyzing 
the sequence of images from a pair of cameras positioned 
such that  they facilitate robust analysis of the hand images. 
The  background is set to be uniformly black to  further help 
with the real-time analysis without using any specialized 
image-processing hardware. 

Finger as a 3D pointer. T h e  AGR system consists 
of two levels of subsystems (See Figure 4). First level sub- 
systems are used to  extract a 2D pointing direction from 
single camera images. T h e  second level subsystem com- 
bines the information obtained from the outputs  of the first 
level subsystems into a 3D pointing direction. To obtain 
the 2D pointing direction, the first level subsystems per- 

Hand gesture input using AGR 
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Figure  4: An overvzew of the AGR system. 
form a sequence of operations on the input image data .  
The  gray-level image is first thresholded in order to  extract 
a silhouette of the user’s lower arm from the background. 
Next, first and second image moments are calculated and 
then used t o  form a bounding box for extraction of the in- 
dex finger. Once the finger is segmented from the hand, 
another set of image moments is calculated, this time for 
the finger itself. Finally, based on these moments. 2D fin- 
ger centroid and finger direction are found. 3D pointing 
direction is finally determined in the second level subsys- 
tem using the knowledge of the setup geometry and 2D 
centroids and pointing directions. This information is then 
forwarded to the central display manager which displays a 
cursor at an appropriate screen position. Our  implementa- 
tion produced a tracking rate of about 4 frames per second, 
mainly limited by the inability of the digitization hardware 
to  properly handle multiple video signals. Special purpose 
hardware can easily improve the performance. However, 
even with the low sampling rate, the users can achieve a 
reasonable control of the display. 

Gestures for manipulating 3-D display. In addition 
to recognizing a pointing finger, we have developed a hidden 
Markov model based AGR system for recognizing a basic set 
of manipulative hand gestures. Figure 5 gives examples of 
some of the gestures that  were used. We have also developed 
a gesture command language for MDScope tha t  is mainly 
concerned with manipulating and controlling the display 
of the molecular structures. T h e  gesture commands are 
categorized as being either dynamic (e.g., move back, move 
forward) or static (e.g., grab, release, stop, up, down). 

T h e  system uses image geometry parameters as the fea- 
tures tha t  describe any particular hand posture (static hand 
image). We use the radon t rans form of an image to  extract 
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Figure 5 :  E x a m p l e s  h a n d  gestures used in m a n i p u l a t i n g  
a v i r t u a l  object  a n d  in t e rpre t ed  using AGR. 

these features. The  radon transform of the image I(z,y) is 
defined as follows: 

R(0, t )  = I(tcosB - s s in0 , t s inB+scosB)ds .  ( I )  

where 0 5 B 5 ~ / 2 .  The  image geometry moment of the 
order I; is then given by: 

s (Z>Y) 
J t  

where Ro denotes the radon transform normalized with re- 
spect to  the image “mass”: 

( 3 )  

The first order moments are what is known as the center of 
mass of an image. The  higher order moments provide addi- 
tional information on image shape [TI. The  set of gestures 
that were used consisted of both static and dynamic ges- 
tures (see Figure 5). The  recognition system was built by 
training hidden Markov models for the specific gestures on 
example runs. Each gesture in the vocabulary was modeled 
as a single four-state-HMM. The  observations were modeled 
by a Gaussian mixture of two different sizes (one and three) 
with a diagonal covariance matrix. Although only 35 train- 
ing sequences were used the performance of the recognition 
system was quite good (80% correct recognition rate). The  
performance is expected to improve with a better model 
of the hand and by exploiting multimodality as discussed 
next. 

5 Discussion 
The  speech/gesture interface reported so far could be part of 
a more general multimodal framework, where other modali- 
ties can also be exploited to make the interface more natural 
and efficient. For example, consider the problem of visual 
gesture analysis, the following interactions can be exploited 
to  improve the gesture recognition process in the multi- 
modal framework: (a) Interaction of gesture and speech, 
(b) Interaction of gesture and the virtual scene, (c) Inter- 
action of gesture and gaze direction, and (d) Interaction of 
gesture and graphical display. These interactions are dis- 
cussed in more detail in [6] and form a basis of future work. 

The  experimental results for the gesture recognition 
show tha t  even with simple image moments the HMM based 
approach yields a reasonable performance. However, model- 
based approach could significantly effect the recognition 
performance. For example, there is a trade-off between the 
reliability and speed of gesture recognition for different lev- 
els of the hand-model used [SI. One approach for hand 
motion analysis for AGR is to consider the class of motion 
called articulated motion for analysis and tracking of the 
hand. Using the prediction based upon articulated motion 

analysis, we can reliably derive a minimal description of 
the  hand image in real-time. The  more detailed the hand 
model used, the better the prediction tha t  can be made of 
the  hand positions under different gestures. Such models 
can be used to  develop a suitable “feature” vector that  can 
be used in the gesture classification and recognition. The  
aim would be to  replace the simple image moments used in 
our current implementation with a feature vector that  can 
define a more complicated set of hand gestures needed for 
manipulating a virtual environment. 

6 Conclusions 
This  paper describes an application where computer vision 
and speech recognition techniques are used for building a 
natural human-computer interface for a VR environment, 
using spoken words and free hand gestures. A VR setup 
used by structural biologists is considered as a test-bed 
for developing the multimodal interface and help in defin- 
ing the gesture recognition (AGR) and speech recognition 
(ASR) problems. A prototype speech/gesture interface is 
presented tha t  lets the scientist easily and naturally explore 
the  displayed information. The  speech/gesture interface of- 
fers a level of interactive visualization tha t  was not possible 
before. Incorporating voice command control in MDScope 
enables the users t o  be free of keyboards and to interact 
with the environment in a natural manner. The  hand ges- 
tures permit the users to easily manipulate the displayed 
model and “play” with different spatial combinations of the 
molecular structures. The  integration of speech and hand 
gestures as a multi-modal interaction mechanism proves to 
be more powerful than using either mode alone. 
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