Reprinted from

Copyright © 1987 by the American Chemical Society

The Journal of Physical Chemistry,

1987, 91, 3624.
and reprinted by permission of the copyright owner.

Brownian Dynamics Simuiation of Diffusion to Irregular Bodies

Kim Sharp,’ Richard Fine,* Klaus Schuiten,'$ and Barry Honig*'

Department of Biochemistry and Molecular Biophysics.
Columbia University,

and Department of Biological Sciences,
(Received: December 22, 1986)

Columbia University, New York, New York 10032,
New York, New York 10027

An extension of the Monte Carlo algorithm for solving the three-dimensional Smoluchowski diffusion equation (Brownian

dynamics) for an
table lookups to

arbitrarily shaped target particle with a nonsymmetric force field is described. The algorithm uses extensive
describe the molecular shape and force field in

order to reduce computation during the simulation. This

also allows the algorithm to be vectorized. Dynamic adjustment of the step size is used to handle rapidly changing and nonlinear
force fields. The accuracy of the approximations introduced due to the discrete representation of the field and particle shape

is assessed by comparison with

substrate to an enzyme, where the enzyme’s shape and electrostatic field are
Coulombic potentials do not account for the ionic
numerically from the Poisson-Boltzmann

electric fields calculated by using different
enzyme rate. However, the ficld calculated

several cases where analytical solutions are available. An application to the diffusion of a

believed to be important, is described. The
strength dependence of the

equation. which includes the effects

of the dielectric boundary between the protein and the solvent, correctly reproduces the ionic strength dependence of the

enzyme.

Introduction

Brownian dynamics is a powerful and flexible method for
calculating observables. e.g., reaction yields, connected with
diffusion-comtrolled association of molecules in one, two, or three
dimensions.!*  In its most straightforward application. it is
formaily equivalent to solving the Smoluchowski diffusion—asso-
ciation equation. However, many factors can be inciuded in these
simulations for which direct or numerical solutions of the diffusion
equation are difficult or impossible. These include reactive dif-
fusion with partial reactivity on a boundary surface.* hydrody-
namic interactions,? rotational diffusion. orientational constraints.
and force fields.S With the appropriate constraints the Brownian
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dynamics method has been shown to converge rapidly. Results
are obtained by running many trajectorics and determining for
each trajectory its contribution to the observables of interest. The.
accuracy of the method depends on the information content of
the observables. For observables where the total yield of a fairly
probabie reaction is represented solely by one number whose value
is close to 1, the method converges rapidly. In this case the
simulation of a small number of trajectories is required. Ob-
servables for less probable events, or observables represented by
continuous functions, e.g., distributions. which carry a very high
information content, require a larger number of trajectories.
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metric force field, R, in eq 1 and 2 can be repiaced by the corrected
radius, R,*'*

“ k
1/R* = f M dr (3)
Rl

dxr

where U(r) is the centrosymmetric potential function describing
the force field. Similarly R, in (1) must be replaced by the
equivalent expression for R.*. As an example, for a single point
charge in a region of constant dielectric at zero ionic strength,
the potential is given by

U(r) = q/er (4)

where ¢ is the dielectric constant and q is the charge. Substituting
(4) into (3) and integrating gives a general expression for any
radius:

R* = g/e(exp(q/eR) - 1) (5

The generalization of these expressions to situations with partially
reactive surfaces has been given by Schuiten and Schuiten.'®

Evolution of Trajectories. The new Cartesian coordinate of
a trajectory, x;/, after a short time interval, 7, is calculated from
the coordinate at the beginning of the time step, x;, by the evolution
equation

xS =x,=8U/ox,Dr/kT + nD'?s1/2  fori=1,2,3 (6)

where k is Boltzmann's constant. T is the absolute temperature.
U(x;) is the potentiai function, ~6U(x;)/éx, = f;, fori = 1, 2, 3,
where f; are the components of force in the three orthogonal
directions. and », are three sets of independent normally distributed
random numbers. The diffusion coefficient is assumed to be
constant in this case (no hydrodynamic interactions). Equation
6 can be derived from ‘Newton’s third law and the Langevin

equation by integration, using the fluctuation—dissipation theorem

to relate the frictional drag on the diffusing particle to the
Brownian forces which drive the diffusion.!?* 1t is valid for time
steps short enough that the change in f; during the time step is
small. (Lamm and Schuiten® have suggested less than 1% as a
criterion.)

Calculation of Forces. Inside the sphere R, space is divided
up into a 64 X 64 X 64 array of cubic elements, with the coordinate
origin inside the target particle (Figure 1). The scale is chosen
so that the target particle occupies a fraction of the grid space
no larger than 0.666. After each time step the location of the
trajectory of the diffusing particle is determined. If it is outside
the grid. the force is assumed to be either centrosymmetric and
calculated analytically, or set to zero, depending on the particular
simulation. Inside the grid. the trajectory is located by indexing
into the grid. The force components are then obtained from
precaiculated tables by using this index.

Determining the Fate of Trajectories. If the radial coordinate
of the trajectory is greater than the exit radius. R,, the trajectory
is terminated. If the trajectory lies within the grid. the grid index
is used to determine the value of a status flag, which determines
whether the-trajectory continues to diffuse freely, collides with
the molecule, or hits the target patch. The use of this grid and
bit mapping to determine when the trajectory collides is equivalent
to representing the target molecule as a collection of fine cubical
elements or boxes. If the target patch is reached, the trajectory
is terminated (complete reactivity). Partial reactivity can be
incoporated into this scheme by using another random number
to determine if the trajectory escapes or by weighting each tra-
jectory by its survival probability,* but this is not considered in
this work.

Treatment of Collisions. The flux normal to the nonreactive
sqrface of the molecuie must vanish (reflective boundary con-
ditions). This condition is only obtained in Brownian dynamics
for infinitely short time step, since with a finite step size there
is a probability that the diffusing particle will end up inside the

(15) Debve. P. Trans. Electrochem. Soc. 1942, 82. 265.
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Figure 1. Schematic illustration of the method used to run irreguiar-body
Brownian dynamic trajectories. R, and R, are the radii of the spheres
where trajectories are initiated and terminated. respectively. Inside R,
the division of space into a grid is indicated. Blank boxes represent free
diffusion space, 1 and 2 represent the nonreactive and reactive parts of
the target moiecule, respectively. The five classes of trajectories, with
their associated probabilities are labeled as (a) exiting the diffusion space:
(b) reentering the diffusion space at R, after n = |- previous exits and
reentrances; (c) continuing to diffuse; (d) colliding with the surface: (e)
reaching the target and reacting. The force vector, f, is caiculated as a
function f{r) of the radial vector r outside the grid. or equal to f; at the
nearest grid point. Other symbols are defined in the text.

molecule at the end of a jump, a forbidden event.5 However, the
use of specular reflection to treat colliding trajectories has been
shown to be a suitable approximation for the finite time steps
needed in practical simulations.® In specular reflection the portion
of the trajectory step inside the surface is reflected out into the
solution about a plane tangent to the point of entry. In this case
though, the additional computation that is required to calculate
the position of the trajectory after a specular reflection from an
irregular surface is probably not warranted since the surface is
not described exactly but is represented as a collection of boxes.
In addition to specular reflection, therefore. we also investigated
the accuracy of two other, computationally simpier, collision
schemes: backstepping and random backstepping. In backstep-
ping, the trajectory that coilides is simply moved back to its original
position at the beginning of the time step. However, it is con-
ceivable that when there is a strong attractive force normal to the
surface, trajectories close to the surface will collide on nearly every
time step. In this case backstepping would effectively immobilize
the trajectory, suppressing any two-dimensional diffusion tan-
gential to the surface. ‘A way to avoid this potential problem is
to use random backstepping: a backstep combined with a random
displacement within the box containing the trajectory.

Choice of Time Step. Within the limits of validity of the
integration of the Langevin equation, higher accuracy is obtained
with smaller time steps, particularly for a rapidly changing force
field, while faster convergence is obtained with larger time steps.
The choice of time step is thus a compromise between these factors.
The best compromise is to reduce the time step when the force
change during a step is above some limit, reduce the time step
when the trajectory is close to the surface of the molecule, and
increase it when it is far from the surface and when the force is
smail. Higher accuracy prescriptions for choosing the time step
which use information about the gradient of the force have been
suggested.*!” However. in keeping with the general strategy of

(17 van Gunsteren, W. F.: Berendsen. H. J. Mol. Phys. 1982, 43, 637.



Diffusion to Irregular Bodies

reducing computation during the simulation to a minimum, we
investigated the suitability of implementing a change of step size
depending on the region in space. For this purpose we added to
each grid cell a further index which points to a table of step sizes.
This algorithm was combined with automatic scaling such that
in regions where the force is very large, the maximum length of
step, rather than the time, is kept below some required limit
(typically 0.5 A). This simpler approach, although not optimal.
ensures rapid convergence.

Implementation. At the end of each time step, four possible
situations arise for each trajectory: it continues diffusing; it collides
with the nonreactive surface; it collides with the target and is
terminated: it leaves the diffusion space and is terminated. All
decisions about these different cases are implemented by table
lookup and bit masking, in order to avoid all program branching.
The aigorithm is completely vectorized, and written in array
processor control language for the Star ST-100 array processor.
A vector of 1600 trajectories is run simuitaneously, until the fates
of at least 99% of them are determined. Generation of the large
number of normally distributed random numbers required for
Brownian dynamics is relatively time intensive, so 1.5 megaword
tables are precalculated and stored in fast access memory.

Speed. Comparisons of the speed of Brownian dynamics al-
gorithms are difficult, since the termination of the simulation
depends on step size, the accuracy required, the size of the diffusion
space, and the rate itself that one is trying to simulate. The
program described here runs at about 20 megaflops, and executes
about 1.5 X 10° steps/s, irrespective of the simulation conditions,
how often the step size is changed, and how complicated the
particle and field shape are. This represents a speed up of about
80 times over a VAX-780.

Simulation Conditions. Trajectories were run until enough hits
were accumulated to give 5% error limits on rates, unless indicated
otherwise in the tables. The maximum step size was usually
limited to 0.5 A close to the surface. The time step given in the
resuits section is the basic time step when the trajectories are
initiated at R,; far from the surface it will be larger. Closer to
the surface, and in regions of large forces, it will be smaller. The
diffusion constant was chosen as 100 A*/ns, which is a typical
- value for a small molecule or ion.

Generation of Bit Maps. Bit maps of the spheres and spheres
with recessed patches are generated by checking analytically
whether each grid point is inside the object, and whether it is at
the target patch. The appropriate flag vaiue is then assigned to
that grid point.

Simulation of Enzyme[Substrate Association. The bit map
of the dimeric protein superoxide dismutase (SOD), a highly
irregular object for which no analytical description of the surface
shape is available. was generated from the Brookhaven Data Bank
atomic coordinates.!® The protein is modelled as a large number
(2196) of spherical atoms, each with a radius equal to its van der
Waals radius pius the radius of the superoxide ion substrate. It
thus consists of a collection of intersecting spheres. Each grid
point is checked for inclusion within the collision sphere of every
atom. The target is defined as all the interior grid points that
lie within the collision surface of the copper atoms of SOD. The
scale is 1.5 A per grid unit. The identity of the active site cleft
atoms were taken from Tainer et al.'

The clectric field was caiculated numerically for every point
of the 65 X 65 X 65 grid for the constant and the two dielectric
models for both zero and physiological ionic strength (0.15 M)
as described by Klapper et al.>. This method involves assigning
a value for the charge, dielectric constant, and Debye-Hiickel
parameter to every grid point, and solving the Poisson-Boltzmann
equation by finite difference methods to obtain the potential at
every grid point. For the two dielectric model, every point that
lay inside the soivent accessible surface of the protein was assigned
a dielectric constant of 2 and a Debye—~Hiickel parameter of zero
(excluding solvent ions from the protein interior). Every point

(18) Tainer. J. A.: Getzoff, E. D.: Beem. K. M. Richardson. J. S.; Rich-
ardson, D. C. J. Mol. Biol. 1982. 160, 181.
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TABLE I: Effect of Discrete Target Representation

target reduced rate

size, deg simulated® theoretical®
180 0.97 £ 0.05 1.00

90 0.69 £ 0.04 0.707

60 0.46 = 0.04 0.465

45 0.35 £ 0.02 0.335

10 (9.5)° 0.053 £ 0.006 0.0615 (0.058)

¢Simulated by using a time step of 1 ps, a sphere radius of 10 A, a
starting radius of 12.5 A, and an exit radius of 30 A. ?Values caicu-
lated from eq 24 in Shoup et al.'"® ¢Figures in parentheses are based on
the actual area fraction occupied by the target.

outside the protein was assigned a dielectric constant of 80, and
a Debye~Hiickel parameter of O (for zero ionic strength) or 1/(8
A) (for physiological ionic strength). The uniform dielectric case
was treated identically, except for an interior dielectric constant
of 80. The charge distribution was determined by using from the
Brookhaven data dase coordinates of SOD. For the distance-
dependent dielectric model. the potential at each grid point, ¢,
was calculated by using

&1 = Zq; exp(=«ry) /ri? : ™

where g; is the charge at distance ;; and « is the Debye-Hiickel
parameter.

To ensure that the results were independent of the type of
boundary conditions used in the calculations for the two dielectric
model, simulations were run with field maps calculated either with
zero boundary conditions or with Coulombic boundary conditions.
The two rates agreed to within 8%. The monopole distribution
was calculated by placing a charge of —de at the center of the
protein and using a uniform dielectric of 80 everywhere. repro-
ducix;g the electrostatic field parameters of Allison and McCam-
mon.

Trajectories were initiated at random positions on a 60-A sphere
and terminated at.an exit radius of 70 A. The basic time step
was 0.1 ps. Simulations run with different values for the starting
radius, exit radius, and time step gave the same resuits, verifying
that the calculated association rates are independent of these three
simulation parameters. '

Trapping of Trajectories. When simulating the association of
superoxide with superoxide dismutase, an additional complication
arises, since some of the protein’s exposed charged side chains form
small but highly attractive regions of positive potential in areas
away from the target site. As a consequence, trajectories tend
to accumulate in these regions during the simulation, and many
remain trapped. This cannot of course happen in practice since
only a finite number of ions can occupy any one region of space,
so the other ions get displaced and escape. This artifact occurs
because Brownian dynamics treats each trajectory independently
of all others. To deal with this, simulations could be run long
enough that the trapped trajectories escape with high probability
during the simulation. However, this is very time consuming. A
simpler procedure, which was found to give the same results, is
to just increase the collision radii of the positively charge atoms
somewhat.

Resulits

. Effect of Discrete Representation. The main objectives of this
work are to extend the Brownian dynamics method to deal with
irregularly shaped target bodies in noncentrosymmetric force fields.
To obtain convergence with reasonable amounts of computer time
it is necessary to use table lookups to represent the shape and force
field. This discrete representation reduces computation drasticaily
but inevitably introduces approximations. However, the errors
introduced by these approximations can be tolerated if they are
smaller than the increase in accuracy due to more realistic mo-
delling of the shape and force field. To estimate the error due
to the discrete representation of the shape, a 10-A sphere was
modeled as a collection of about 4000 1-A cubes. with a circular
target patch of haif-angle §. The simulated association rates are



TABLE II: Effect of Discrete Force Representation

TABLE III: Association Rate with a Recessed Patch®

target cfxarge reduced rate* patch reduced rate

size, deg (¢) caled look-up theory® depth, A theory? simulation® simulation
180 I 1.0£005  1.02£005 1.00 3 0.0296  0.0265 £ 0.0005  0.028 % 0.003
180 10 1.05 % 0.05 1.01 £ 0.05 1,80 15 0.0066 0.0047 £ 0.0004  0.0053 % 0.0005
180° -t 0970 095005  1.00 , o
90 1 0 325 *0: (5)5 0.836 & 0.04 nad “Simulated with a time step of 0.1 ps, a starting radius of 50 A, and
90 -1 0'61 +0 64 061 £004  na an exit radius of 60 A for a sphere of 30 A with a circular target patch
45 1 0.47 £ 003  0.45 + 0.03 na of 10°, recessed below the surface by the distance in column 1 (the
45 -1 028 £003 0.3 £0.03 na model of Samson and Deutch®!). *From Samson and Deutch. ¢From

“Simulated by using a time step of 1 ps, a sphere radius of 10 Aa
starting radius of 12.5 A, and an exit radius of 50 A. The reduced rate
is calculated by using the sphere, starting and exit radii corrected for
the centrosymmetric force field, using eq 5. *Calculated by using the
corrected sphere radius. “Simulations used a time step of 0.3 ps. 4Not
available.

compared to analytically calculated rates (taken from Shoup,
Lipari, and Szabo'®) in Table I. The results are given as reduced
rates, that is, as the rate normalized by the theoretical rate for
a completely reactive sphere (§ = 180°) of the same radius. All
simulations are run to 5% accuracy and agree well with the
analytical results, except for the 10° patch, in which case the
simulated value is about 10% lower than predicted. This is a result
of the discrete representation of the target patch. A patch of this
_size occupies 0.76% of the total surface area. When represented
discretely in our simulation, the target occupies 0.68% of the total
surface, which is equivalent to a circular patch of 9.5°. The
theoretical rate for this target patch is also given in Table I, and
better agreement is obtained. This illustrates the point that, when
a small target patch is represented in a discrete fashion, it is
probably more important to model the fractional area it occupies
accurately, perhaps at the expense of a less accurate literal de-
scription in terms of its angular size or precise position.

Calculations of electrostatic force fields in cases where there
are regions of different dielectric constants and counterion
screening can themselves be extremely difficult and time con-
suming.%® Clearly it is impractical to calculate these forces
during 2 Brownian simulation, except for simplified cases.® Again
precalculating these fields and using look-up tables greatly reduces
the total amount of computation. As a check on the errors in-
troduced by discretizing the force field, simulations were run for
both attractive and repulsive centrosymmetric fields resulting from
a point charge at the center of a 10.3 sphere in a uniform dielectric
constant of 80 with no counterion screening. The results of this
simulation can be checked against the analytical values obtained
from eq 3 and 4. The results are summarized in Table II.
Simulations were run under two conditions: the forces were
calculated analyticaily by using the instantaneous trajectory
positions or were obtained by look-up from the table, taking the
value at the nearest grid point. The reduced rates are calculated
by using the force-corrected radii (eq 5) and are expressed as the
rate normalized by that for a wholly reactive sphere with the same
radius and charge. For the 180° case where theoretical values
are available, the resuits from both methods are extremely good.
whether the potential is attractive (g = 1) or repulsive (g = -1).
Results for a stronger attractive potential (¢ = 10) were also
accurate. For all targets sizes, the results are independent of the
method of force calculation. Within the accuracy of simulations
(5%), the approximation made by using the force at the nearest
grid point, which can be no more than 0.5 A from the true tra-
jectory position, is smalil.

Effect of Time Step. Equation 6 is only strictly valid when
the force is constant over the distance taken during the simulation
step. The most practical way to assess the error due to this
approximation is to vary the step size. The four simulations in
Table II with 90° target patches were each run with time steps
of 0.1.0.3. and 1 ps. Within the accuracy of the simulations. no
effect of step size was seen. for neither the calculated nor the

(19) Shoup. D.: Lipari. G.; Szabo. A. Biophys. J. 1981. 36, 697.
(20) Warwicker, J.; Watson, H. C. J. Mol. Biol. 1982. 157. 671.

Allison, Northrup, and McCammon.’ Figures are taken for the case
where the trajectories were started at a radius of 31 A.

TABLE 1V: Effect of the Electrostatic Field on the Relative
Association Rate of Superoxide to Superoxide Dismutase’

ionic strength, mM

field map 0 0.144
no field 0.017 % 0.002
monopole (~4e¢) 0.011 £ 0.001
all charges, ¢ = 80 0.16 £ 0.01 0.21 £0.01
all charges, ¢ = r 0.0085 £ 0.09 0.025 £ 0.003

all charges, €yruqin = 2, €soiution = 80 0.58 % 0.03 0.41 £0.02

“Simulated with a time step of 0.1 ps, a starting radius of 60 A and
an exit radius of 70 A, using field maps calculated by the method of
Klapper et al.® The association rate is relative to that for the whole
neutral protein (2.36 X 10" M~ s7).

look-up force determination. Lamm and Schulten have suggested
an empirical limit of 1% for the maximum change in force over
one time step.* Statistics on the change in force during a time
step were collected during two of the above simulations. For a
1-ps time step, about 90% of the steps had a force change of less
than 20%, while for 0.1 ps, 90% had less than a 5% change in force.
Thus for these type of simulations, with 5% accuracy limits, a <5%
change in force during any one time step is an acceptable criterion
for the validity of eq 6. When table lookups are used, the force
at the trajectory location can be estimated more accurately from
the values at the surrounding cight grid points by using a trilinear
interpolation scheme. However, the extra computation involved
is not warranted at the 5% statistic level used here.

Collision Scheme. For the 90° target patch with an attractive
force and a time step of 1 ps, three different methods for dealing
with the trajectory step when it collides with the nonreactive
surface of the molecule were used (see Methods section). No effect
on the association rate was found, indicating that the details of
the trajectory behavior at the surface have little effect on the
probability that a trajectory reaches the target. This does not
mean that the detail consideration of boundary effects in previous
works*¢ would not be important in cases where the force is larger
and varies more rapidly at the surface, or where accuracies of
better than 1% are required. However, for irregular molecuies
where it is necessary to describe the global shape, unavoidable
inaccuracies accumulated by simplified boundary conditions
probably outweigh these errors.

The Recessed Patch Model. We next consider the model of
a recessed circular target patch in a sphere. This model is of some
interest it is an example of a more irregular shape that can be
both treated analytically?! and represented exactly in Brownian
dynamics simulations.” It has also been used as a model for
enzymes with an active site cleft. The results from a simulation
using a discrete representation of a 10° patch recessed by 3 or
15 A, with a scale of 1 A per grid unit is shown in Table IIl. The
rates are somewhat lower than the analytically calculated rates,
particularly for the deeper patch, and in excellent agreement with
the simulations which use an exact representation of the shape.

Diffusion of Superoxide 10 Superoxide Dismutase. Three
dielectric models were used to calculate the field of SOD due to
the entire charge distribution: a uniform dielectric constant of
80 (used previously by Allison and McCammon® in similar
studies); a distance-dependent dielectric. which is commonly used

(21) Samson. R.; Deutch. J. M. J. Chem. Phys. 1978, 68. 285.



Figure 2. Potential maps of superoxide dismutase for three different
dielectric models: uniform dielectric constant of 80 (a, d): distance-de-
pendent dielectric ¢ = » (in A) (b, ¢); solvent diclectric constant of 80,
protein dielectric constant of 2 (c. f). Maps were calculated for an ionic
strength of 0 mM (a, b, ¢), and 144 mM (d. e. f). Negative contours are
dashed. Contour levels are at 0.5, 1, and 2 kT/e. The slice is taken
through both active site copper atoms, marked by crosses. The protein
surface is indicated by the bold solid line. The scale bar is 5 A.

in molecular dynamics simulations for potentials and is the model
used by Getzoff et al. in displaying the field around the SOD active
site;* and finally a two-dielectric model. where the protein is
considered as a low dielectric cavity in a high dielectric medium.’
The potential maps for these three models are shown in Figure
2 for a slice through the two active site copper atoms. Results
from the simulations based on these maps and for the monopole
distribution are given in Table IV. The rates are normalized by
the rate of association with the whole molecule in the absence of
the field. This rate is 2.36 X 10!, which we note is close the value
of 2.27 X 10! for a neutral 30-A sphere, used by McCammon
and co-workers as an idealized model for SOD.”#2

Considering the results at zero ionic strength first, the uniform
dielectric model gives an enhancement of 16 over the monopole.
This is a much greater increase than for the spherical model
(1.4-fold??), and results from the inclusion of the actual protein
shape, which gives a more accurate cleft and target location with
respect to the protein charges. In fact it can be seen from Figure
2a that. using a 30-A sphere to define the protein surface. the
entire positive contour emanating from the active site lies beneath
the surface, where it can play no role in guiding the substrate.
This fact might explain the small increase in rate for the spherical
model. The distance-dependent model gives a lower rate than the
monopole case. since the lower effective diclectric constant for
points close to the charges enhances the negative portion of the
field. resulting in a barrier of about 2k T to the diffusing particle
entering the active site.” The two-dielectric model gives a fiftyfold
increase over the monopole case, giving a rate that is in fact a
good fraction of that for the whole. neutral protein. This is a
consequence of the cleft potential, resulting from focusing of field
lines into the active site, away from the low-dielectric region of
the protein. This causes the positive region of potential to extend
from the protein much more, effectively providing a large target
area for the diffusing substrate.’-

An important experimental observation that provides evidence
for the steering effect of the electric field is the decrease in enzyme
rate with increasing ionic strength, in the range 0~150 mM.B The
effect of ionic strengh on the association rate for the three different
electrostatic models is shown in Table III. The striking feature
is that only the two-dielectric model shows a decrease in association
rate with increasing ionic strength. (Although we only show results

(22) Gewzotf. E. D.: Tainer. J. A.; Weiner. P. K.; Kollman. P. A.: Rich-
ardson. J. S.: Richardson. D. C. Vature 1983. 306, 28.

(23) Allison. S. A.; Northrup. S. H.: McCammon. J. A. Biophys. J. 1986.
<49, 167.

for two concentrations, the caiculated rate for this model decreases
monotonically over the entire ionic strength range 0-0.45 M, in
agreement with experiment.) Moreover, the size of the decrease
at 144 mM is 30%, very similar to the measured percent decrease
in enzyme rate.! The opposite behavior of the two other dielectric
models can be understood qualitatively from examination of the
electric field maps in Figure 2. For the two-dielectric model, the
dominant effect is the decrease in effective target area with in-
creasing ionic strength, which reduces the rate. For the other two
models, however, the main effect of the increased shielding at
higher ionic strengths is to reduce the extent of the negative
potential areas that provide a barrier to the association. This is
most pronounced for the distance-dependent case, which shows
a threefold increase in rate, but this also occurs for the uniform
dielectric model. This effect would account for the incorrect
dependence seen in this ionic strength range in the previous sim-
ulations of Allison and McCammon. in which a uniform dielectric
constant of 80 was used.?

Due to the discrete representation of the protein shape. and the
relatively small size of the copper, there is some uncertainty in
representing the target precisely. The effect of possible errors
arising from this were examined by varying the target area by
over a factor of 30. This did not alter the rate by more than about
10%. This indicates that, once the trajectory gets close to the
copper, the probability of hitting the copper is extremely high,
making the simulations insensitive to detailed features of the target
and active site topography. The largest target size considered
corresponds approximately to the mouth of the active site cleft
(about 600 A?), which is roughly delineated by the 2k T contour
in Figure 2c. Since the rate for the smallest target size examined
(16 A?) is about 7% less than for this case. the probability for
escape from the active site cleft at the 2k T contour level can be
estimated as about equal to this figure. This compares with an
escape probability of over 90% in the absence of the electric field
(results not shown). The low escape probability indicates that
the 2k T potential contour can effectively be considered as the
target area, as was suggested earlier.” The area of this contour
is about 2000 A2, which represents about 20% of the total protein
surface area. This also confirms that most collisions with the active
site cglzannel are productive, as originally suggested by Getzoff
et al.

Discussion’

The aim of this work is to develop a general strategy for sim-
ulating diffusion to an irregular particle in a nonsymmetric force
field. A flexible and rapidly converging algorithm for irregu-
lar-body Brownian dynamics is developed by using a number of
different computational strategies. The particle shape and the
inner part of the force field are represented on a grid. The data
that a trajectory needs to locate itself with respect to any shaped
surface and target, to determine the force however complicated
its spatial variation, to choose the step size, and to determine its
fate, are all precalculated for every point in the grid. During
simulations, this information is accessed by table lookup using
the trajectory location as an index. The force at the trajectory
is approximated by that at the nearest grid point, which requires
no interpolation calculation. Collisions are handled by back-
stepping, which also requires no further calculation. Decisions
about the fate of trajectories are handled by lookup tables, elim-
inating program branching, and allowing complete vectorization.
Random numbers are generated in tables. rather than by calcu-
lation during simulations. Finally, the program is impiemented
on an array processor, which allows parallel processing, and all
tables are stored in rapid access memory.

For the size of grids used here, the resolution in representing
shape is limited to about 3-5%, so simulations are only run to 5%
statistics for comparison with the analytical cases. although greater
precision can be obtained with reasonable length runs.

For cases where the predominant concern is to represent the
overall features of the particie shape and force field. describing
the large scale spatial variations is more important than repre-
senting local topography or small scale changes in force accurately.
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This is particularly true in the Brownian dynamics approach to
solving the diffusion equation, since the observable of interest is
the association rate, not the concentration distribution throughout
space. Thus these type of simulations would be expected to be
fairly robust with respect to smalt errors in modelling local con-
ditions. This is borne out by the resuits of the first set of simu-
lations. Within the simulation uncertainties, the rate is inde-
pendent of the method used for handling nonreactive collisions
with the surface. The discrete representation of the target particle
has no effect, providing the fractional surface are occupied by the
target is accurately reproduced. Similarly, at 5% statistics, even
the relatively simple representation of the local force by that at
the nearest grid point does not reduce the accuracy of the simu-
lations significantly.

The resuits of varying the time step suggest an empirical cri-
terion for constancy of force during a simulation time step to be
that 90% or more of the steps should resuit in less than a 5% force
change. For the type of electrostatic fields considered here. this
can be achieved with a basic time step of 0.1 ps, combined with
dynamic reduction of step size near the particle surface. This
criterion is somewhat less stringent than previously suggested.’
allowing larger time steps, which results in more rapid convergence.

By using realistic representations of the shape of the protein
superoxide dismutase. and its field. the experimentally observed
monotonic decrease in enzyme rate when the ionic strength is
increased from zero to physiological’? is obtained. This is not the
case for simpler models. which represent the protein as a sphere.
or which do not include explicitly the dielectric discontinuity at
the protein surface when calculating the field.® With these simpler
models. although the association rate begins to decrease at high
ionic strength (>0.1 M), it is always higher than at 0 M. Another
difference is that the large enhancement in association rate due
to the field is not seen in simpler models. Although previous
work31023 has shown that by including more realistic charge
distributions the association rate is increased compared to that
for the monopole distribution, it is still lower than or comparable
to that in the absence of the field.

Representation of the actual shape of the protein also allows
the target to be defined explicitly as the exposed surface of the
active site copper atoms. With spherical models of the protein
there is a serious difficulty in accurately representing both the
size and location of the target. For example, there is no a priori
reason to believe that the 10° patch on a sphere used in previous
work consitutes a realistic representation of the active site.

In addition the association rates calculated here confirm the
conclusions drawn in our previous work based on qualitative
analysis of the potential maps alone.’ These conclusions were
based on an intuitively appealing argument which considered the
effect of two features of the maps: the effective size of the target
area, and the minimum barrier height that must be crossed by
the diffusing substrate in order to reach the target. Two other
resuits also justify this type of interpretation. Firstly, the rate
of association with the copper is increased over thirtyfold by the
field. Clearly the attractive part of the field is very important.
Secondly, the chance of hitting the target once the substrate has
reached the mouth of the active site cleft, at about the 2k T contour
level. is over 90%. It therefore makes sense to talk about a large
effective target area in this context,

Since the use of a grid representation of space limits the ac-
curacy with which fine details can be modelled. the fact that the
fate of the substrate trajectory is effectively determined once it
reaches the 2k T contour level has another important consequence.
It makes the simulation relatively insensitive to the local details
of the electrostatic field. and the local trajectory behavior in the
active site close to the copper. and hence insensitive to inaccuracies
in these factors. In addition the accuracy of the simulation is not
reduced by the imprecise representation of the target and its
surroundings.

Apart from the discretization of space. a number of approxi-
mations and simplifications must be made in order perform the
protein simulations. We now consider the possible errors arising
from these.

Sharp et al.

Firstly, the field outside the grid clearly cannot be represented
with the same detail as that inside. For the protein simulations.
the potential was set to zero outside the grid. effectively truncating
the force field. Since far from the protein the monopole con-
tribution to the potential dominates. an estimate of the effect of
this truncation error on the simulated association rates can be
made using eq 3. The edge of the grid is about 50 A from the
center of the protein. With a net monopole charge of —4e for the
protein, and an ionic strength of 144 mM. numerical integration
of eq 5 for a centrosymmetric potential gives a correction of less
than an angstrom, or less than 2%, for this radius. No appreciable
correction occurs for ionic strengths down to | mM. What this
means is that under these conditions the diffusion rate to the grid
surface from infinity is essentially the same whether the field is
present or not. At zero ionic strength the radius correction is about
27%. Inclusion of the higher order muitipole terms will reduce
the size of this correction by reducing the repulsive effect of the
net negative charge. Since absolute zero ionic strength conditions
can never actually be obtained in practice, due to the presence
of protein counterions, buffer etc., the effect of truncating the field
outside the grid in this case is probably also small. Although
truncation of the fields does not affect the conclusions reached
in this work, better representations of the field should be used if
required. Two better approximations are to use either a centro-
symmetric monopole ficld or to use a continuous dielectric ap-
proximation for calculating the potential outside the grid.

A second approximation is the use of the linearized Poisson—
Boltzmann equation used to calculate the field. This significantly
overestimates potentials above 1k7. This effect will be consid-
erable within the active site, where the potential is very large close
to the copper. However, since the probability of hitting the target
after reaching the 2k T contour level is over 90%, the simulation
is probably not that sensitive to the overestimate of the potential
further inside the active site.

No attempt has been made to include desolvation of the anion
as it proceeds through the narrow part of the active site channel.
This effect would reduce the steepness of the potential gradient
in the active site. It is likely therefore that the probability of escape
from the channel is larger than we calculate. Another unknown
is the superoxide diffusion constant. The value used, 100 A2/ns,
is typical for similar sized anions, although, depending on the
solvation state of the ion, this may vary by about a factor of 2.2
The diffusion constant is also assumed to be uniform. particularly
within the active site. This may not be true, since the protein-
bound water within the cleft may resuit in slower diffusion. Again,
however, the high probability of the ion hitting the copper after
having reached the mouth of the active site is unlikely to be much
reduced due to either changes in the diffusion constant or de-
solvation effects. The superoxide may get to the copper faster
or slower, but the rate is calculated only from the fraction of
trajectories that reach the copper compared to those that do not.

Finally, we have negiected the rotational diffusion of the protein
in these simulations. However, the rotational diffusion coeff. of
a macromolecule the size of SOD is of the order of 0.06 rad/ns.*
For a rapidly diffusing particle such as superoxide, with a
translational diffusion coefficient around 100 A2/ns, the effect
of rotational diffusion would be expected to be small."®

Simulations including both the nonlinear Poisson-Boltzmann
equation and rotational diffusion are currently underway in order
to check these conclusions. :

In summary, the good agreement with analytical results at 5%.
the robustness of the simulations with respect to the time step and
surface representation and the ability to use computationally very
simple procedures for the reflective boundary condition and force
determination mean that this procedure for irregular-body
Brownian dynamics can be made to converge rapidly and accu-
rately for any arbitrary shape and field. Representation of very

(24) Conway, B. E. Jonic Hydration in Chemisiry and Biophysics: El-
sevier: Amsterdam,. 1981; Chapter 4.

(25) Tanford. C. Physical Chemistrv of Macromolecules: Wiley: New
York. 1961: Chapter 6.



irregular, real shapes, such as enzymes, is straightforward.
Complex electrostatic fields can also be represented easily. Using
this method, we have demonstrated for the first time that a sig-
nificant enhancement of the association of superoxide to superoxide
dismutase is provided by this field and that this enhancement is
decreased as the ionic strength is increased from zero to physio-
logical ionic strength. The relative decrease is very similar to the
experimentally determined decrease in enzyme rate.!> Morover,

3031

this work shows that the correct ionic strength behavior is only
obtained when both the shape of the enzyme and the dielectric
discontinuity at the protein surface are included in the simulations.
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