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General random matrix approach to account for the effect of static disorder
on the spectral properties of light harvesting systems
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We develop a random matrix model approach to study static disorder in pigment-protein complexes in
photosynthetic organisms. As a case study, we examine the ring of B850 bacteriochlorophylls in the peripheral
light-harvesting complex ofRhodospirillum molischianum, formulated in terms of an effective Hamiltonian
describing the collective electronic excitations of the system. We numerically examine and compare various
models of disorder and observe that both the density of states and the absorption spectrum of the model show
remarkable spectral universality. For the case of unitary disorder, we develop a method to analytically evaluate
the density of states of the ensemble using the supersymmetric formulation of random matrix theory. Succinct
formulas that can be readily applied in future studies are provided in an appendix.
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I. INTRODUCTION

Biological functions that involve electronic processe
e.g., light reception in vision or light harvesting in photosy
thesis, are dominated necessarily by quantum mechanica
havior. Since living systems exist at physiological tempe
tures, they are subject to large disorder and ordinary,
T50, quantum theory cannot provide proper descriptions
such processes. The development of suitable stochastic q
tum mechanics descriptions for strong disorder is a key c
lenge in biological physics. Meeting this challenge is of
terest for life scientists who seek to analyze experime
data and improve the understanding of mechanisms und
ing biological function, but it is also of interest to physicis
since available theories find new relevant applications
need to be significantly extended. The present study focu
on the description of static disorder in light-harvesting co
plexes that have been intensely investigated both experim
tally and theoretically during the past decade. We dem
strate that random matrix theory can provide a succ
formulation that describes the level densities and, hopef
also soon the optical properties, of quantum biological s
tems.

Compared to the light-harvesting~LH! systems of plants
bacterial light-harvesting systems exhibit a large degree
symmetry. The photosynthetic apparatus of purple bact
contains several hundred chromophores per reaction ce
@1#, which are organized in ringlike structures. The photos
thetic units ofRhodospirillum (Rs.) molischianum@2# and
Rhodopseudomonas (Rps.) acidophila@3# contain two types
of light-harvesting complexes located in the membrane. T
larger of the two, LH1, directly surrounds and transmits e
ergy to the reaction center. The reaction center is respons
for converting electronic excitation energy to a more sta
charge separation across the membrane. The other pro
pigment complex, LH2, is not in direct contact with the r
action center, but rather transfers the energy it absorb
LH1.

The LH2 exhibits an eight-fold symmetry in the case
1063-651X/2002/65~3!/031916~12!/$20.00 65 0319
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Rs. molischianumand a nine-fold symmetry in the case
Rps. acidophila. In Rs. molischianum, LH2 contains 8 units,
each consisting of a peptide pair, a lycopene, a B800 ba
riochlorophyll ~BChl! and two B850 BChls~see Fig. 1!.
Each of the peptides consist of a single transmembrane h
The BChls are named after their absorption maxima~in
terms of nanometer!. The eight lycopenes, eight B800 BChl
and 16 B850 BChls of LH2 all form separate concent
rings. The coupling between B800 BChls is not very stro
due to their relatively large separation@4# ~around 20 Å),
however the B850 ring is packed closely enough~BChl sepa-
ration of around 9 Å) to warrant a description in terms of
effective (16316) Hamiltonian as introduced in Ref.@5#.

In this paper we will present a random matrix mod
@6–8# describing such an effective Hamiltonian in the pre
ence of an ensemble of random perturbations as a mod
static disorder. The density of states and the absorption s
trum will be the main focus of our study. In addition to
numerical study of the density of states and the absorp
spectrum, we will present a framework to compute the d
sity of states analytically for Gaussian unitary disorder.

The model we study is described as the sum of a de
ministic part ~the noise-free effective Hamiltonian! and a
random part~describing static disorder!. Such deterministic
plus random systems have been studied earlier by analy
methods by Pastur@9# and Zee@10# in the context of largeN
limits, N denoting the size of the Hamiltonian. However, t
model we study has finite size (N516). Therefore, for the
analytical study of the density of states, we will adopt
approach by Guhr@11#, based on the supersymmetric form
lation of random matrix theory introduced by Efetov@12# to
construct a solution in terms of the unperturbed spectru
which is exact for anyN.

In the rest of the paper we will specifically consider t
effective Hamiltonian for LH2 ofRs. molischianum. How-
ever, the framework we present is general enough to be
plied to any effective Hamiltonian description of a photosy
thetic system, with or without a regular arrangement
BChls. If and when an effective Hamiltonian description b
©2002 The American Physical Society16-1



in
s
f

l-
el
il
e
th
a
to
es
lly

uni-
ec-
a

on-
en-
etric
e
the

te

ear-
an

ts

are

n

hls
ule
ar-
ole

to
ria
ple,

m
ons
m-
uta-
s

,
g
g
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comes available, the cynobacterial photosystem I@13# may
provide such a candidate, as well as phicobiliprote
@14,15#, peridinin containing proteins of dynoflagellate
@16,17#, or the peripheral light-harvesting complex LHCII o
green plants@18#.

The organization of this paper is as follows: In the fo
lowing section we will introduce the random matrix mod
describing static disorder in the context of effective Ham
tonians of the BChl rings in purple bacteria. In Sec. III w
present four different ensembles and a numerical study of
density of states, as well as examine the implications of r
dom matrix universality. We will also study the approach
universality by comparing ensembles of different siz
Then, in Sec. IV, we will develop a method to analytica

FIG. 1. ~Color! The peripheral light-harvesting complex, LH2
of Rs. molischianum. The B850 ring is shown in blue, the B800 rin
is shown in light green and the lycopenes are shown in light oran
The protein backbone is rendered in tube representation.@Figure
produced with the program VMD@43#.#
03191
s

-

e
n-

.

evaluate the density of states in the context of Gaussian
tary disorder and express the final result in terms of the sp
trum of the noise-free problem. Section V will contain
numerical study of the absorption spectrum in a similar c
text. Appendix A contains a number of notations and conv
tions we use in the paper in reference to the supersymm
formulation of random matrix theory. In Appendix B w
summarize the analytical results of Sec. IV regarding
density of states for unitary disorder for easy use.

II. A RANDOM MATRIX MODEL FOR THE EFFECTIVE
HAMILTONIAN OF LIGHT-HARVESTING

COMPLEXES

An effective Hamiltonian for the circular BChl aggrega
in LH2 is expressed in terms of single BChlQy excitations
@5#

H05S ea v1 W13 W14 ••• v2

v1 eb v2 W24 ••• W2N

W31 v2 ea v1 ••• W3N

••• ••• ••• ••• ••• •••

v2 WN2 WN3 WN4 ••• eb

D , ~1!

whereea andeb denote the alternating site energies andv1
andv2 are the nearest neighbor coupling terms. The nonn
est neighbor interaction terms can be described by
induced-dipole–induced-dipole coupling given by

Wi j 5CS di•dj

r i j
3

2
3~r i j •di !~r i j •dj !

r i j
5 D ~2!

where di are unit vectors along transition dipole momen
from the ground state to theQy state of thei th BChl andr i j
are the vectors connecting BChlsi and j measured along the
vectors connecting the Mg atoms. The atomic positions
determined from crystallographic data@2,5#. The unit transi-
tion dipole moment vectorsdi are taken along the directio
from NB to Mg in the BChl@19# ~see Fig. 2!.

Since the distance between neighboring B850 BC
~around 9 Å) is comparable to the size of a BChl molec
@4#, it is not a very good approximation to describe the ne
est neighbor couplings via induced-dipole–induced-dip
interactions. In Eq.~1!, N52n is the number of BChls in the
ring. For LH2,n58 or 9 for Rs. molischianumand forRps.
acidophila, respectively. Ideally this system has perfectCn
symmetry that will be broken by thermal fluctuations. Due
their similar structure, the LH1 complexes of purple bacte
can also be studied using the same framework. For exam
the number of BChl molecules in LH1 ofRs. rubrum is
determined to be 32@20#.

The five parameters describingH0, namely,ea , eb , v1 ,
v2, and C need to be determined experimentally or fro
quantum chemistry computations. Various such computati
@4,5,19,21–24# do not agree on the values of these para
eters. In an early study, using the results of such a comp
tion @25#, Hu et al. @5# have determined these value
as follows: ea[eb513 362 cm21, v15806 cm21, v2

e.
6-2
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GENERAL RANDOM MATRIX APPROACH TO ACCOUNT . . . PHYSICAL REVIEW E 65 031916
5377 cm21, andC5519 310 Å3 cm21. However, it is gen-
erally considered that the values cited for nearest neigh
coupling terms,v1 andv2, and the difference between the
is too large@19,22#. For example, Sundstro¨m et al. @4# sug-
gestv15339 cm21, v25336 cm21. ~For a detailed discus
sion regarding Hamiltonian parameters see Ref.@22#.!

In the following we will be using the effective Hamil
tonian parameters obtained by Tretiak and co-work
@21,22#. We takev15363 cm21, v25320 cm21, and eb
2ea5166 cm21. We would like the observed spectr
maximum to coincide with the energy of the second and th
energy levels ofH0, which are doubly degenerate and a
known to carry all oscillator strength in the absence of no
as a result of Cn symmetry @5#. Enforcing E25E3
511 765 cm21 @850 nm#, we obtain ea512 447 cm21

and eb512 613 cm21. Finally, we need to determine th
coupling constantC for the transition-dipole–transition
dipole interactions. This is fixed by comparing, e.g.,W13, to
the value computed in Ref.@22#, which is 2102 cm21.
Hence, we obtainC5348 000 Å3 cm21. The spectrum of
the noise-free Hamiltonian with this choice of parameters
shown in Fig. 3. The degeneracy structure of the noise-
Hamiltonian follows from theCn symmetry of the problem
and is independent of the parameters chosen.

In the following we will study static disorder of the effec
tive Hamiltonian given above. Static and dynamic disord
of similar light-harvesting complexes have been the focus
many studies@5,23,24,26–34#. In the present framework we
will consider a thermal ensemble of LH2 effective Hamilt
nians. As a description of this ensemble, we will consider
sum of the noise-free effective Hamiltonian described ab
and a random part representing thermal fluctuations

H5H01R. ~3!

Here the matrixR is drawn from a certain probability distri
bution P(R). It can be assumed that a particular choice
P(R) is the correct description of thermal disorder in t

FIG. 2. The orientation of induced-dipole moment unit vecto
di in the B850 ring of LH2. The induced dipole moments vecto
are almost in the plane of the BChl ring and make an angle of ab
7° out of the plane.
03191
or

s

d

e

s
e

r
f

e
e

f

effective Hamiltonian picture. Since neither the construct
nor the properties of such a distribution will be an easy m
ter, we will have to make some simplifying assumptions
the nature ofP(R). This course of action can be justified b
the presence of universality in random matrix theories@8#,
i.e., the independence of a number of spectral proper
from the choice of the random matrix distribution. Althoug
most results on random matrix universality are based on
large-N limit, we will demonstrate below by numerical stud
ies that remarkable spectral similarity persists for an
semble of a finite size as small asN516.

In the following section we will consider four separa
ensembles from whichR is chosen. In the first two en
semblesR is a real symmetric matrix, in the third it is
complex Hermitian matrix, and in the fourth it is a diagon
real matrix. In Sec. IV we will chooseR to be a member of
the Gaussian unitary ensemble~GUE!, to make an analytica
computation of the density of states possible. Although
microscopic spectral quantities, such as the level spacing
known to be strongly dependent on the symmetry class of
ensemble in question@7#, the bulk of the spectrum, which w
will be mainly interested in, is rather insensitive to the cho
of the ensemble as long as the variance of the distributio
properly scaled. To examine the effects of random ma
universality, we also study a noninvariant distribution and
diagonal distribution of disorder.

III. THE DENSITY OF STATES AND THE EFFECT
OF UNIVERSALITY

In this section we introduce a number of random mat
ensembles, describing the disorder termR in Eq. ~3!. We will
be specifically interested in the study of the density of sta
~or the spectral density, as it is sometimes called! and post-
pone a similar study of the absorption spectrum to Sec

ut

FIG. 3. The spectrum of the noise-free HamiltonianH0 for the
parameters given in the text. The degeneracy structure is a resu
the Cn symmetry.
6-3
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MELIH K. ŞENER AND KLAUS SCHULTEN PHYSICAL REVIEW E65 031916
Below we present a numerical comparison for the density
states for different ensembles.

It is known from various studies in random matrix theo
that the exact shape of the probability distribution defin
the random ensemble is largely irrelevant for the behavio
a number of spectral properties. This property is referred
as universality@8#. This term is not unambiguously define
however. Within a given symmetry class~e.g., orthogonal vs
unitary symmetry! microscopic spectral distributions such
two-point correlators and nearest neighbor spacing distr
tions are known to depend only on the second moment of
probability distributionP(R) of the ensemble. However, th
bulk shape of the density of states can be sensitive to
choice of P(R) even when one remains within the sam
symmetry class, as one can ascertain by comparing Gau
matrix ensembles with ensembles that have quartic term
the exponent of their distribution functions. The bulk of t
density of states enjoys a different kind of universality, ho
ever, as realized by Wigner’s semicircle law@6,7#. When the
widths of the distributions are properly scaled, all thr
Gaussian Dyson ensembles are known to have the s
overall density of states up toO(1/N) effects. Below we will
see the manifestation of this kind of universality for both t
density of states and the absorption spectrum across diffe
ensembles.

The density of states of an ensemble in Eq.~3!, given by
a probability distributionP(R) is defined in terms of the
ensemble average

r~v!5K (
i 51

N

d~v2Ei !L , ~4!

where^•••&[*d@R#P(R) . . . andEi are the eigenvalues o
H5H01R.

In the first ensemble we consider,R will be a member of
the Gaussian orthogonal ensemble~GOE!,

P1~R!5N1 expS 2
1

2nGOE
2

tr~RTR!D ,

5N1)
i

expS 2
1

2nGOE
2

Rii
2 D

3)
i , j

expS 2
1

nGOE
2

Ri j
2 D . ~5!

This ensemble is invariant under orthogonal transformatio
namely,P(R)5P(OTRO), for an orthogonal matrixO. To
examine the effects of universality we will also conside
noninvariant ensemble in whichR is still real and symmetric.
Following Eq.~5! we choose

P2~R!5N2)
i

f ~nGOE ,Rii !)
i , j

f ~A2nGOE ,Ri j !, ~6!

where
03191
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f ~n,x!5H 1

2A3n
, uxu,A3n

0, otherwise

~7!

is the flat probability distribution with widthn. The distribu-
tion of individual matrix elements are chosen to have
same width as their GOE counterparts.

In the third ensemble,R will be chosen from GUE

P3~R!5N3 expS 2
1

2nGUE
2

tr~R†R!D ,

5N1)
i

expS 2
1

2nGUE
2

Rii
2 D

3)
i , j

expS 2
1

nGUE
2 ~~ReRi j !

21~ Im Ri j !
2!D ,

~8!

which will also be studied analytically in the following sec
tion.

The final ensemble we consider describes diagonal di
der. It is given by

P4~R!5N4)
i

expS 2
1

2ndiag
2

Rii
2 D)

i , j
d~Ri j !. ~9!

Diagonal disorder in the present context has previously b
studied in Ref.@5#. The relevance of diagonal disorder com
from molecular dynamics studies, where it was observed
fluctuations of the diagonal matrix elements are much lar
than the interaction terms@35#.

To achieve a proper comparison between different
sembles their widths have to be taken carefully into accou
It is known in the case of Dyson ensembles that for a pro
comparison( i j n i j

2 should be fixed to a constant, wheren i j is
the variance of the (i , j )th matrix element. Following this
argument we obtain

ndiag
2 5

N

2
nGOE

2 5NnGUE
2 . ~10!

In comparison to the width of the absorption spectrum o
tained in hole burning spectroscopy experiments@36#, Hu
et al. @5# have obtained a diagonal disorder width of arou
ndiag5170 cm21. Using this value in Eq.~10! we obtain
nGOE560.1 cm21 and nGUE542.5 cm21. These values
will be used throughout the rest of the paper.

We have performed numerical studies of the density
states for the ensembles introduced above. These are de
strated in Figs. 4, 5, and 6. We first compare the density
states for the two real symmetric ensembles~5! and ~6!. Al-
though universality results manifest themselves usually
the limit of large matrices, it is amazing to see~Figs. 4 and 5!
that even for an ensemble of mesoscopic size such as the
studied here, the global density of states remains largely
6-4
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GENERAL RANDOM MATRIX APPROACH TO ACCOUNT . . . PHYSICAL REVIEW E 65 031916
changed under the change of the probability distribution
individual matrix elements. Even across different univers
ity classes~GOE vs GUE vs diagonal disorder! defined fur-
ther by Eqs.~8! and ~9!, remarkable spectral similarity pe
sists, when the widths of the distributions are taken i
account~see Fig. 6!.

Finally we have also examined the approach to univer
ity as a function of the matrix size defining the ensemb
This has been accomplished by comparing the density
states for Eqs.~5! and ~6! in the case of a 32332 and an 8
38 ensemble of matrices. For these new ensembles,
noise-free part of the HamiltonianH0 has been constructe
by artificially extrapolating the structure of the B850 ring
LH2 as introduced in Sec. II, to one with 32 BChls a
another one with eight BChls, respectively. Although a
BChl ring is relevant for a study of LH1, the eight BChl rin
is artifical from a biological point of view. The results of th
study, shown in Fig. 7, are in accordance with the expe
tion that the universality becomes more manifest with
creasing matrix size. However, even in the case of th
38 ensemble the difference between density of states is
markably small.

FIG. 4. The density of states forN5238 for an ensemble of
real symmetric disorder obtained numerically. The width of the
semble isnGOE560.1 cm21. The case where the disorder term
chosen from the Gaussian orthogonal ensemble~solid line! is barely
distinguishable from an ensemble of flat distributed matrix eleme
with the same width~dotted line!. See also Fig. 5.

FIG. 5. The difference in numerically obtained density of sta
for Gaussian orthogonal disorder and an ensemble of flat distrib
matrix elements as in Fig. 4 obtained by diagonalizing 360 000
matrices from each ensemble. The scale is identical to that of Fi
hence the difference is generally within two percent of the ma
mum of the density of states.
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IV. ANALYTICAL COMPUTATION OF THE DENSITY
OF STATES

In this section we present an analytical calculation of
density of states~4! of the ensemble~3!, where the random
part R is a complex Hermitian matrix drawn from the prob
ability distribution

P~R!5NR expS 2
1

2n2
tr~R†R!D , ~11!

where the normalization constant is given by

NR5
2N(N21)/2

~2pn2!N2/2
. ~12!

We will proceed by applying a Hubbard-Stratonovitc
transformation to reduce the ensemble average to an inte
over a space of (111)3(111) supermatrices. Our nota
tional conventions can be found in Appendix A.

The density of states~4! can be expressed as

r~v!5
1

p
ImK tr

1

v22~H01R!
L , ~13!

where we have usedd(x)5(1/p)Im(1/(x2 i e)) with i e be-
ing a small imaginary increment. In Eq.~13! and below,v2

denotes thatv has a small negative imaginary incremen
which is used to decide the sign of corresponding princi
value integrals.

At this point it can be seen that, for an invariant probab
ity distribution P(R)5P(U†RU), UPU(N), such as Eq.
~11!, H0 can be replaced by its diagonal partG
5diag(g1 , . . . ,gN), where

-

ts

s
ed
0
4,
i-

FIG. 6. The numerically obtained density of states for thr
different universality classes with properly chosen widths~see text
for the determination of the widths!: Gaussian orthogonal disorde
with width nGOE560.1 cm21 ~solid line!, Gaussian unitary disor-
der with width nGUE542.5 cm21 ~dashed line! and diagonal dis-
order with widthndiag5170 cm21 ~dotted line!. The individually
pronounced peaks occurring for Gaussian unitary disorder ca
understood in terms of the strong level repulsion present in uni
ensembles given by Mehta. The level repulsion~and, therefore, the
separation! is not as strong for orthogonal or diagonal disorder.
6-5
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FIG. 7. The approach to universality: Th
density of states~top! and their differences~bot-
tom! for Gaussian orthogonal disorder and an e
semble with flat distributed matrix elemen
~compare to Figs. 4 and 5! for a 32332 ensemble
~left! and an 838 ensemble~right!. The results
are obtained by diagonalizing 10 000 000 mat
ces for the 838 case and 20 000 000 matrices f
the 32332 case. The scales for the top and bo
tom figures are identical.
tio

on

q

c
u-
H05U0
†GU0 , U0PU~N!, ~14!

since the Jacobian of the transformationR→U0RU0
† is unity.

The unperturbed eigenvaluesg i are obtained by directly di-
agonalizingH0 and are given in Fig. 3.

Finally, using the identity

tr
1

A
5

1

2

]

] j
U

j 50

det~A1 j !

det~A2 j !
, ~15!

we can express the density of states in terms of a parti
function

r~v!5
1

2p

]

] j
U

j 50
Im Z~ j !, ~16!

Z~ j !5E d@R#P~R!
det@v22~G1R!1 j #

det@v22~G1R!2 j #
. ~17!

The ratio of determinants in Eq.~17! can be converted to
Gaussian integrals using Eqs.~A3! and ~A4! from the Ap-
pendix A

Z~ j !5E d@f#d@x#

3expF i S f

x
D †

•S v22G2 j 0

0 v22G1 j D •S f

x
D G

3I R , ~18!

where theR integral is now of Gaussian form

I R5E d@R#NR expS 2
1

2n2
tr R2D

3exp~2 if†
•R•f2 ix†

•R•x!. ~19!

The Hubbard-Stratonovitch transformation consists of c
verting this integral over anN3N matrix to an integral over
a (111)3(111) supermatrix. The Gaussian integral in E
~19! can be easily evaluated by completing the squares,
03191
n

-

.

I R5expS 2
1

2
n2 tr~ff†2xx†!2D ,

5expF2
1

2
n2 strS ~f†

•f! ~x†
•f!

~f†
•x! ~x†

•x!
D 2G ,

5E d@s#Ns expS 2
1

2n2
strs2D

3expH 2 i strFs•S ~f†
•f! ~x†

•f!

~f†
•x! ~x†

•x!
D G J .

~20!

Here, s is a (111)3(111) Hermitian superma-
trix. The normalization constantNs is equal to 1, since
*d@s#exp(2(2n2)21strs2)51 due to the supersymmetri
nature of the integral: the bosonic and fermionic contrib
tions cancel each other.

Now thef andx integrals in Eq.~18! can be performed
by another completion of squares and using Eq.~A5!. This
reduces the partition function to

Z~ j !5E d@s#expS 2
1

2n2
strs2D

3)
i 51

N

sdet21F S v22g i2 j 0

0 v22g i1 j D 2sG .
~21!

To further simplify the partition function we will make a
change of variables to

s→s1Q,

Q5S v22 j 0

0 v21 j D , ~22!

and superdiagonalizes ass5uSu†, whereuPU(1u1) and
S5diag(s0 ,is1) contains the eigenvalues ofs. In these new
variables the integration measure can be written as

d@s#5dm~u!d@S#B2~S!, ~23!
6-6
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GENERAL RANDOM MATRIX APPROACH TO ACCOUNT . . . PHYSICAL REVIEW E 65 031916
wheredm(u) is the Haar measure of the superunitary gro
U(1u1), andd@S#5ds0ds1. The integrals over the eigenva
uess0 and s1 run along the real axis. The Jacobian of t
transformation is given in terms of the Berezinian,B(S)
51/(s02 is1). Thus, the expression for the partition functio
becomes

Z~ j !5E d@S#B2~S!)
i 51

N

sdet21~S1g i !Iu~S!,

Iu~S!5E dm~u!expS 2
1

2n2
str@uSu†1Q#2D . ~24!

The last integral can be recognized as an Itzykson-Zu
Harish-Chandra integral@11,37,38#, which can be evaluated
by solving for the kernel of the heat equation in the space
the underlying superunitary group. The final result is given
Ref. @11#

Iu~S!5
1

2pn2

expS 2
1

2n2
str~S1Q!2D

B~S!B~2Q!
1F. ~25!

Here F is a boundary contribution known as an Efeto
Wegner term, which is proportional to@12x( j )# where

x~ j !5H 0, if j 50,

1, otherwise.
~26!

We shall neglectF below, since it does not contribute to th
density of statesr(v) after the derivative with respect to th
source termj in Eq. ~16!.

After noting that,B(2Q)51/(2j ), the expression for the
density of states~16! reduces to

r~v!5
1

2p2n2
ImE d@S#B~S!)

i 51

N

sdet21~S1g i !

3expS 2
1

2n2
str~S1v2!2D . ~27!

To separate the bosonic and fermionic eigenvalue integ
we employ a ‘‘Feynman trick’’ to rewriteB(S) as

B~S!5
1

s02 is1
5E

0

`

da exp@2a~s02 is1!# ~28!

and using the definition of a superdeterminant from App
dix A we obtain

sdet21~S1g i !5
is11g i

s01g i
. ~29!

A final expression for the density of states, valid for a
finite sized ensemble described by a fixed Hamiltonian plu
random part from GUE, is thus obtained as
03191
,

r-

f
n

ls

-

a

r~v!5
1

pE0

`

daA0A1 , ~30!

A05
1

p
ImE

2`

`

dje2j2

)
i 51

N
1

j2 i e2
1

A2n
~v1n2a2g i !

,

A15E
2`

`

dhe2h2

)
i 51

N S ih2
1

A2n
~v1n2a2g i !D ,

where we have explicitly substituted the imaginary inc
ment i e where it would contribute.

The expression~30! for the density of states can be eval
ated by realizing thatA0 yieldsd functions at the poles using
the identity

1

p
Im)

i 51

N
1

x2 i e2si
5(

i 51

N

d~x2si !)
j 5” i

N
1

x2sj
, ~31!

and thatA1 is just the integral of a Gaussian times a po
nomial.

The application of Eq.~30! to the spectrum of the en
semble defined by Eq.~1! is a laborious task because theN
eigenvaluesg i of the deterministic part enter as paramete
in the analytical expression. This is best carried out with
help of a symbolic algebra program such asMATHEMATICA

@39# and is outlined in Appendix B. A final formula for the
density of states is given by Eq.~B9!. In Sec. IV A we per-
form some consistency checks on Eq.~30! for various limits.

A. Consistency checks for the analytical expression
for the density of states

As a first test we consider the deterministic limit,n→0,
where the density of states~30! should coincide with the
spectrum of the deterministic part,

rD~v!5(
i 51

N

d~v2g i !. ~32!

Without loss of generality we will assume that the eige
valuesg i are nondegenerate. Using Eq.~31! one can rewrite
the bosonic contributionA0 as

A05~A2n!N21(
i 51

N

expF2
1

2n2
~v1n2a2g i !

2G)
j 5” i

N
1

g j2g i
,

5~A2n!N21A2pn(
i 51

N

d~v2g i !e
2a(v2g i )

3)
j 5” i

N
1

g j2g i
, ~33!

where we have used the Gaussian representation of ad func-
tion and the limit of smalln to rewrite
6-7
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expF2
1

2n2
~v1n2a2g i !

2G
5A2pnd~v2g i !e

2a(v2g i )e2O(n2). ~34!

Similarly, the fermionic contributionA1 can be rewritten as

A15
A2pn

~A2n!N11E2`

`

dyeia(y2 iv)d~y2 iv!)
i 51

N

~ iy1g i !.

~35!

The remaining integrals in Eq.~30! are then easily evaluate
by utilizing thed functions, reducing to the expression~32!
for the noise-free density of states.

As another consistency check, we consider the case w
the deterministic part is a multiple of the identity matrixG
5g1, hence allg i5g. Sinceg only shifts the eigenvalues
v, we can set it to zero. Then the density of states sho
coincide with the well known result@7# for the GUE,

rGUE~v!5
1

A2n
(
j 50

N21

w j
2S v

A2n
D , ~36!

w j~x!5
1

A2 j j !Ap
e2x2/2H j~x!,

whereH j (x) are the Hermite polynomials andw j (x) are the
oscillator wave functions.

In order to proceed we will use the identity

1

p
Im

1

~xi2 i e2s!N
5

~21!N21

~N21!! S ]

]xD N21

d~x2s!, ~37!

and rewriteA0 as

A05
1

~N21!! S ]

]xD N21

e2x2 U
x5(v1n2a)/~A2n)

, ~38!

where we have evaluated the derivatives of thed function by
integration by parts.

The fermionic contributionA1 is given by

A15E
2`

`

dhe2h2S ih2
1

A2n
~v1n2a!D N

. ~39!

Both A0 andA1 can be represented by Hermite polynomia
using the identities

Hn~x!5~21!nex2S ]

]xD n

e2x2
5

2n

Ap
E

2`

`

dhe2h2
~x2 ih!n.

~40!

After some algebra the density of states~30! can be ex-
pressed in terms of the oscillator wave functions
03191
re

ld

r~v!5
AN

n E
0

`

dtwN21S v

A2n
1t D wNS v

A2n
1t D . ~41!

One arrives at the expression~36! for the Gaussian unitary
ensemble using the following identity@11#:

E
0

`

dtwN21~x1t !wN~x1t !5
1

A2N
(
j 50

N21

w j
2~x!. ~42!

V. THE ABSORPTION SPECTRUM

The absorption spectrum measures the optical respons
the system as a function of the frequency. The average
sorption spectrum can be formulated in a way similar to
average density of states@40#. Let us label the localized ex
citations at individual sites byum&, and the eigenstates of th
system byu ĩ &5(mci(m)um&. Then the transition dipole mo
ments for each of the eigenstates can be written as

Di5(
m

ci~m!dm , ~43!

wheredm are unit vectors along the direction of the induc
dipole moments of individual sites.

The directionally and ensemble averaged absorption s
trum can be written as

a~v!5
4p2vn

3c K (
i

uDi
2ud~v2Ei !L , ~44!

whereEi are the energy eigenvalues and^•••& once again
denotes the ensemble average.

Unlike the density of states~4! however, the absorption
spectrum cannot be expressed solely as an average invo
the energy eigenvalues of the system, since the trans
dipole momentsDi depend on the expansion coefficients
the eigenstates. We find it impossible to carry out the a
lytical computation of the preceding section for the case
the absorption spectrum. Therefore the absorption spect
will be treated only numerically.

As explained in Sec. II, the transition dipole momentsdm
used in Eq.~44! are determined using the structure data
the LH2 of Rs. molischianum@2#.

In a manner parallel to Sec. III, we first compare e
sembles within the same symmetry class, namely, Gaus
orthogonal disorder~5! and a similar ensemble with flat dis
tributed matrix elements~6!. The results of such a compar
son is given in Figs. 8 and 9, where it can be seen t
universality is even more strongly manifest than in the c
of the density of states. This is naturally due to the averag
with respect to oscillator strengths in Eq.~44!. In the absence
of disorder all of the oscillator strength is at the second a
third energy levelsE25E3 @5#. When the disorder term is
turned on, other states, especially the first energy level, g
nonzero contributions to the absorption spectrum. Howe
the absorption spectrum still remains dominated by the n
nondegenerate second and third energy levels. A sim
comparison across universality classes is given in Fig. 1
6-8
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Finally, as in Sec. III, we examine the approach to univ
sality for the absorption spectrum. Once again it is seen
for an ensemble of larger sized matrices the universalit
more strongly manifest~see Fig. 11! and even in the 838
case the difference between Gaussian and flat ensemble
mains within about a percent. One can also observe tha
moving to a higher number of components the absorp
spectrum shifts to the red and becomes narrower, as expe
for such aggregates@40#.

VI. CONCLUSIONS

We have developed a random matrix model to study
fective Hamiltonians of light-harvesting complexes and a
plied our framework to the peripheral light-harvesting co
plex, LH2, of Rs. molischianum. In addition to an analytica
study of the density of states in the case of Gaussian un
disorder, we have examined the effects of random ma
universality on the density of states and the absorption s
trum of the photosynthetic effective Hamiltonians. We o
serve that despite the small size of the matrices in ques

FIG. 8. The numerically obtained absorption spectrum for
ensemble of real symmetric disorder. The width of the ensemb
the same as in Fig. 4. Once again, the Gaussian orthogona
semble~solid line! is virtually indistinguishable from an ensemb
of flat distributed matrix elements with the same width~dotted line!.
See also Fig. 9. The vertical line denotes the 850 nm@11 765 cm21#
line.

FIG. 9. The difference in absorption spectra for a Gaussian
thogonal ensemble and an ensemble of flat distributed matrix
ments as in Fig. 8. The scale is identical to that of Fig. 8, hence
difference is generally within half a percent of the maximum of t
absorption spectrum.
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signs of universality are strongly present even across s
metry classes. The framework developed in this paper ca
applied to many similar systems described by an effec
Hamiltonian under the effect of thermal disorder.
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APPENDIX A: NOTATION AND CONVENTIONS

In this appendix we outline our notation and conventio
for superanalysis, which parallel those found in Ref.@41#.
The reader is referred to Berezin’s work@42# for a detailed
introduction to superanalysis.

We denote theN generators of a complex Grassmann
gebra byxk which satisfyx jxk52xkx j . We will adopt the
conjugation of the second kind where (xk* )* 52xk . and
(xkx l)* 5xk* x l* .

A ( p,q) supervector

F5S f
x D

hasp commuting componentsfk andq anticommuting com-
ponentsx l . A (p,q) supermatrix

F5S a s

r b D

n
is
n-

r-
e-
e

FIG. 10. The absorption spectra for three different universa
classes with widths given in Fig. 6: Gaussian orthogonal disor
~solid line!, Gaussian unitary disorder~dashed line!, and diagonal
disorder~dotted line!. The pronounced double peak occurring f
Gaussian unitary disorder can again be understood in terms o
strong level repulsion in unitary ensembles. Namely, the degene
second and third eigenvalues get rapidly separated from each
due to noise, but maintain their high oscillator strengths.
6-9
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FIG. 11. The approach to universality: Th
absorption spectra~top! and their differences
~bottom! for Gaussian orthogonal disorder and a
ensemble with flat distributed matrix elemen
~compare to Figs. 8, 9, and 7! for a 32332 en-
semble~left! and an 838 ensemble~right!. The
scales for the top and bottom figures are identic
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acts on the space of (p,q) supervectors, wherea and b are
p3p andq3q commuting matrices ands andr are p3q
and q3p anticommuting matrices, respectively. Transpo
tion is defined as in

FT5S aTrT

2sTbTD , ~A1!

so that (FF)T5FTFT. The Hermitian conjugation is define
naturally as F†5(FT)* , so that for any supervecto
F, (FF†)†5FF† and for any supermatrixF, (F†F)†

5F†F as in the case of ordinary vectors and matrices.
The supertrace and the superdeterminant of a su

matrix are defined as strF[tr a2tr b and sdetF[det(a
2sb21r)(detb)21, respectively. This ensures that they s
isfy the relation, sdetF5exp(str lnF), along with many other
familiar identities for traces and determinants.

Unitary matrices, diagonalization, and Lie groups ha
their corresponding natural superanalogues@42#, so that for
any super-Hermitian matrix,H, H5U†LU, where L
5diag(lb ,il f) for U being a superunitary matrix andlb
and l f ordinary diagonal real matrices. The eigenvalues
lb are called bosonic whereas the ones inl f are called fer-
mionic. Even some results in harmonic analysis over unit
groups generalize rather naturally to superunitary group
in the case of Itykson-Zuber-Harish-Chandra integr
@11,37,38# that we employ in Sec. III.

Differentiation of Grassmann numbers are introduced
the natural way (]/]xk)x l5dkl . This implies, together with
the nilpotency of Grassmann generators, that the Taylor
pansion of any Grassmann valued function truncates aft
finite number of terms. The integration of Grassmann nu
bers are defined according to*dx50 and *dxx51/A2p.
The prefactor is choosen in such a way as to satisfy

E df* dfdx* dx exp~ if* f1 ix* x!51, ~A2!

wheref is an ordinary complex number andx a Grassmann
number.

The power of the supersymmetry method comes from
ability to express ratios of determinants in terms of Gauss
integrals. With our conventions it follows
03191
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e
n

E d@f* #d@f#exp~ if†Hf!5
1

det~H/2p!
, ~A3!

E d@x* #d@x#exp~ ix†Hx!5det~H/2p!, ~A4!

for any Hermitian matrixH, and bosonic and fermionic vec
tors f andx. Similarly,

E d@F* #d@F#exp~ iF†FF!5
1

sdet~F !
, ~A5!

for a supervector,F, and a Hermitian supermatrix,F.

APPENDIX B: THE DENSITY OF STATES FOR UNITARY
DISORDER

In this appendix we summarize the results from Sec.
regarding the analytical formulation of the density of sta
of effective Hamiltonians in the case of Gaussian unita
disorder.

We consider an ensemble of finite sized matricesH5H0
1R where the deterministic partH0 is a fixed matrix and the
probability distribution for the disorder termR is given by
Eq. ~11!. The density of states of this ensemble is then giv
by

r~v!5
1

pE0

`

daA0A1 , ~B1!

A05
1

p
ImE

2`

`

dje2j2

)
i 51

N
1

j2 i e2
1

A2n
~v1n2a2g i !

,

A15E
2`

`

dhe2h2

)
i 51

N S ih2
1

A2n
~v1n2a2g i !D ,

whereg i are the eigenvalues of the deterministic part,H0 , n
is the width of the distribution andN is the size of the ma-
trices, which we will assume to be even. Although the de
vation of Eq.~B1! requires advanced mathematics, the res
can be utilized with basic calculus and the help of a symbo
6-10
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algebra program. Below we will simplify Eq.~B1! as much
as possible, but due to the presence ofN parameters, the
eigenvalues,g i , of the unperturbed effective Hamiltonian
the final expressions are best evaluated using a symboli
gebra program such asMATHEMATICA @39#.

In order to evaluate the density of states~B1! we note that
A0 results ind functions at the poles andA1 is the integral
of a Gaussian times a polynomial. Without loss of genera
we will work with the case of nondegenerateg i . The degen-
eracies can be treated by taking the proper limits at the e
Also we will work in energy units, whereA2n51.

The ‘‘bosonic part’’A0 of Eq. ~B1! can be evaluated with
the help of the identity

1

p
Im)

i 51

N
1

x2 i e2si
5(

i 51

N

d~x2si !)
j 5” i

N
1

x2sj
. ~B2!

Integrating thed functions results in

A05(
i 51

N

e2[ ~1/2!a1(v2g i )]
2

)
j 5” i

N
1

g j2g i
. ~B3!

For the evaluation of the ‘‘fermionic part’’A1 we intro-
duce the following constants:

I k[E
2`

`

dhe2h2
h2k5

~2k21!!! Ap

2k
. ~B4!

ThenA1 can be written as a polynomial ina, v, andg i

A15~21!N/2(
k50

N/2

I (N/2)2k~21!k

3 (
sPSTN

2k
)
p51

2k S 1

2
a1~v2gsp

! D , ~B5!

whereST
n is the set ofn-element subsets of the finite setT

and TN[$1, . . . ,N%. In order to write Eq.~B5!, we have
used the identity

)
i 51

N

~h1si !5(
j 50

N

hN2 j (
sPSTN

j
)
p51

j

ssp
, ~B6!

and that*2`
` dhe2h2

hk vanishes for odd k.
After a shift of integration variables the density of stat

can be written as
el,

s.

03191
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r~v!5
~21!(N/2)11

p (
i 51

N E
2(v2g i )

`

dae2[(1/2)a] 2

3)
j 5” i

N
1

g j2g i
(
k50

N/2

I (N/2)2k~21!k

3 (
sPSTN

2k
)
p51

2k S 1

2
a1~g i2gsp

! D . ~B7!

This expression can be recognized as polynomial terms iv
and g i . The remaining integration yields prefactors of th
form

Jk~A!52E
A

`

dte2t2tk

5H 2GS k11

2 D2GS k11

2
,A2D , k even, A,0,

GS k11

2
,A2D , otherwise,

~B8!

whereG(n,x) is the incomplete gamma function. The fo
mula for the density of states~now free of any integrations!
can then be written as a combinatorial expression

r~v!5
~21!(N/2)11

p (
i 51

N

)
j 5” i

N
1

g j2g i

3 (
k50

N/2

I ~N/2!2k~21!k (
sPSTN

2k
(

m50

2k

JN2m~v2g i !

3 (
rPSs

m
)
q51

m

~g i2gsrq
!. ~B9!

The reader is invited to repeat this calculation at least
the case of 232 random Gaussian unitary matrices~with
g15g250) and compare it to the well known result fo
GUE, namely,r(v)5(1/Ap)e2v2

(112v2). It should be
noted that the combinatorial load of this computation
creases dramatically withN. This formulation can also be
utilized to examine the functional behavior of the density
states in an interval containing a small group of eigenval
as part of a larger spectrum, if one treats the eigenva
outside this interval in a ‘‘mean field’’ setting. This will be
the subject of a further study.
.
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