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General random matrix approach to account for the effect of static disorder
on the spectral properties of light harvesting systems
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We develop a random matrix model approach to study static disorder in pigment-protein complexes in
photosynthetic organisms. As a case study, we examine the ring of B850 bacteriochlorophylls in the peripheral
light-harvesting complex oRhodospirillum molischianupformulated in terms of an effective Hamiltonian
describing the collective electronic excitations of the system. We numerically examine and compare various
models of disorder and observe that both the density of states and the absorption spectrum of the model show
remarkable spectral universality. For the case of unitary disorder, we develop a method to analytically evaluate
the density of states of the ensemble using the supersymmetric formulation of random matrix theory. Succinct
formulas that can be readily applied in future studies are provided in an appendix.
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[. INTRODUCTION Rs. molischianunand a nine-fold symmetry in the case of
Rps. acidophilaln Rs. molischianumLH2 contains 8 units,
Biological functions that involve electronic processes,each consisting of a peptide pair, a lycopene, a B800 bacte-
e.g., light reception in vision or light harvesting in photosyn-riochlorophyll (BChl) and two B850 BChls(see Fig. 1
thesis, are dominated necessarily by quantum mechanical bEach of the peptides consist of a single transmembrane helix.
havior. Since living systems exist at physiological tempera-The BChls are named after their absorption maxifira
tures, they are subject to large disorder and ordinary, i.eterms of nanomet@rThe eight lycopenes, eight B80OO BChls,
T=0, quantum theory cannot provide proper descriptions ofind 16 B850 BChls of LH2 all form separate concentric
such processes. The development of suitable stochastic quaings. The coupling between B800 BChls is not very strong
tum mechanics descriptions for strong disorder is a key chaldue to their relatively large separati¢d] (around 20 A),
lenge in biological physics. Meeting this challenge is of in-however the B850 ring is packed closely enodBkhl sepa-
terest for life scientists who seek to analyze experimentatation of around 9 A) to warrant a description in terms of an
data and improve the understanding of mechanisms underleffective (16<16) Hamiltonian as introduced in Rg6].
ing biological function, but it is also of interest to physicists  In this paper we will present a random matrix model
since available theories find new relevant applications of6—8] describing such an effective Hamiltonian in the pres-
need to be significantly extended. The present study focusesnce of an ensemble of random perturbations as a model of
on the description of static disorder in light-harvesting com-static disorder. The density of states and the absorption spec-
plexes that have been intensely investigated both experimeitrum will be the main focus of our study. In addition to a
tally and theoretically during the past decade. We demonnumerical study of the density of states and the absorption
strate that random matrix theory can provide a succincspectrum, we will present a framework to compute the den-
formulation that describes the level densities and, hopefullsity of states analytically for Gaussian unitary disorder.
also soon the optical properties, of quantum biological sys- The model we study is described as the sum of a deter-
tems. ministic part (the noise-free effective Hamiltoniarand a
Compared to the light-harvestingH) systems of plants, random part(describing static disorderSuch deterministic
bacterial light-harvesting systems exhibit a large degree oplus random systems have been studied earlier by analytical
symmetry. The photosynthetic apparatus of purple bacterimmethods by Pasty®] and Zeg10] in the context of largé\
contains several hundred chromophores per reaction centkmits, N denoting the size of the Hamiltonian. However, the
[1], which are organized in ringlike structures. The photosynimodel we study has finite sizeN& 16). Therefore, for the
thetic units of Rhodospirillum (Rs.) molischianufi2] and  analytical study of the density of states, we will adopt an
Rhodopseudomonas (Rps.) acidophiBa contain two types approach by Guhrll], based on the supersymmetric formu-
of light-harvesting complexes located in the membrane. Théation of random matrix theory introduced by Efetd?2] to
larger of the two, LH1, directly surrounds and transmits en-construct a solution in terms of the unperturbed spectrum,
ergy to the reaction center. The reaction center is responsiblghich is exact for any\.
for converting electronic excitation energy to a more stable In the rest of the paper we will specifically consider the
charge separation across the membrane. The other proteieffective Hamiltonian for LH2 ofRs. molischianumHow-
pigment complex, LH2, is not in direct contact with the re- ever, the framework we present is general enough to be ap-
action center, but rather transfers the energy it absorbs tplied to any effective Hamiltonian description of a photosyn-
LH1. thetic system, with or without a regular arrangement of
The LH2 exhibits an eight-fold symmetry in the case of BChls. If and when an effective Hamiltonian description be-

1063-651X/2002/663)/03191612)/$20.00 65031916-1 ©2002 The American Physical Society



MELIH K. SENER AND KLAUS SCHULTEN PHYSICAL REVIEW E65 031916

evaluate the density of states in the context of Gaussian uni-
tary disorder and express the final result in terms of the spec-
trum of the noise-free problem. Section V will contain a
numerical study of the absorption spectrum in a similar con-
text. Appendix A contains a number of notations and conven-
tions we use in the paper in reference to the supersymmetric
formulation of random matrix theory. In Appendix B we
summarize the analytical results of Sec. IV regarding the
density of states for unitary disorder for easy use.

IIl. ARANDOM MATRIX MODEL FOR THE EFFECTIVE
HAMILTONIAN OF LIGHT-HARVESTING
COMPLEXES

An effective Hamiltonian for the circular BChl aggregate
in LH2 is expressed in terms of single BOQ|, excitations

[5]
€ vy Wiz Wy - vy
U1 €p vy Wy -0 Wayy
Ho=| Ws1 > €, v Wan |, (1)
vy Wy Wy Wha oo €3

wheree, ande; denote the alternating site energies and
andv, are the nearest neighbor coupling terms. The nonnear-
est neighbor interaction terms can be described by an
induced-dipole—induced-dipole coupling given by

where d; are unit vectors along transition dipole moments
from the ground state to th®, state of theth BChl andr;;
are the vectors connecting BChlandj measured along the
- vectors connecting the Mg atoms. The atomic positions are
oo determined from crystallographic ddt2,5]. The unit transi-
tion dipole moment vectord; are taken along the direction
FIG. 1. (Color) The peripheral light-harvesting complex, LH2, from Ng to Mg in the BChI[19] (see Fig. 2
of Rs. molischianunirhe B850 ring is shown in blue, the B800 ring Since the distance between neighboring B850 BChls
is shown in light green and the lycopenes are shown in light orangearound 9 A) is comparable to the size of a BChl molecule
The protein. backbone is rendered in tube representaftiigure [4], it is not a very good approximation to describe the near-
produced with the program VMD43]. ] est neighbor couplings via induced-dipole—induced-dipole
interactions. In Eq(1), N=2n is the number of BChls in the
comes available, the cynobacterial photosystefh3] may  ring. For LH2,n=8 or 9 forRs. molischianunand forRps.
provide such a candidate, as well as phicobiliproteinsacidophila respectively. Ideally this system has perf€gt
[14,15, peridinin containing proteins of dynoflagellates symmetry that will be broken by thermal fluctuations. Due to
[16,17), or the peripheral light-harvesting complex LHCII of their similar structure, the LH1 complexes of purple bacteria
green plant$18]. can also be studied using the same framework. For example,
The organization of this paper is as follows: In the fol- the number of BChl molecules in LH1 dRs. rubrumis
lowing section we will introduce the random matrix model determined to be 3p20].
describing static disorder in the context of effective Hamil-  The five parameters describitity, namely,e,, €z, v4,
tonians of the BChl rings in purple bacteria. In Sec. lll wev,, and C need to be determined experimentally or from
present four different ensembles and a numerical study of thguantum chemistry computations. Various such computations
density of states, as well as examine the implications of ranf4,5,19,21-2%do not agree on the values of these param-
dom matrix universality. We will also study the approach toeters. In an early study, using the results of such a computa-
universality by comparing ensembles of different sizestion [25], Hu etal. [5] have determined these values
Then, in Sec. IV, we will develop a method to analytically as follows: €,=¢ez=13 362 cm?l, v,=806 cm?! v,

031916-2



GENERAL RANDOM MATRIX APPROACH TO ACCOUN' . .. PHYSICAL REVIEW E 65031916

— Energy (cm™)
- —
/
V\
13000 +
! \
\
\
12500 +
h /
~
f
A ./ 12000 T
-~
FIG. 2. The orientation of induced-dipole moment unit vectors
d; in the B850 ring of LH2. The induced dipole moments vectors

are almost in the plane of the BChl ring and make an angle of about 11500 -+

7° out of the plane.
P FIG. 3. The spectrum of the noise-free Hamiltontdp for the

_ 1 _ 3 1 o parameters given in the text. The degeneracy structure is a result of
=377 cm !, andC=519310 Acm . However, it is gen- the C, symmetry.

erally considered that the values cited for nearest neighbor
coupling termsp 4 andv,, and the difference between them
is too large[19,22. For example, Sundstno et al. [4] sug-
gestv;=339 cm!, v,=336 cmil. (For a detailed discus-
sion regarding Hamiltonian parameters see [R&d].)

In the following we will be using the effective Hamil-
tonian parameters obtained by Tretiak and co-worker
[21,22. We takev;=363 cm ', v,=320 cm*, and ¢4
—€,=166 cm!. We would like the observed spectral

effective Hamiltonian picture. Since neither the construction
nor the properties of such a distribution will be an easy mat-
ter, we will have to make some simplifying assumptions on
the nature ofP(R). This course of action can be justified by
ghe presence of universality in random matrix theofigs

I.e., the independence of a number of spectral properties
from the choice of the random matrix distribution. Although

maximum to coincide with the energy of the second and thir ost res_ul_ts on ra_ndom matrix universality are ba_tsed on the
energy levels ofHy, which are doubly degenerate and are argeN limit, we will demonstratg b_elqw by nqmencal stud-
known to carry all oscillator strength in the absence of noise®S that remarkable spectral similarity persists for an en-

as a result of C, symmetry [5]. Enforcing E,=Ej semble of a finite size as small As=16.
~11765 cn![850 nm, we obtain e,=12447 cnit In the following section we will consider four separate

- 1 . ensembles from whiclR is chosen. In the first two en-
and e;=12613 cm°. Finally, we need to determine the . oo piic’a " real symmetric matrix, in the third it is a
coupling constantC for the transition-dipole—transition- ;

dipole interactions. This is fixed by comparing, ey, to complex Hermitian matrix, and in the fourth it is a diagonal
the value computéd in Ref22], which is 102 g?r’l_l real matrix. In Sec. IV we will choosR to be a member of

Hence, we obtairC=348000 &cm L. The spectrum of the Gaussian unitary ensemlleUE), to make an analytical

the noise-free Hamiltonian with this choice of parameters iscomputahon of the density of states possible. Although the

shown in Eia. 3. The deaeneracy structure of the noise_fremicroscopic spectral quantities, such as the level spacing, are
nin Fg. o. 9 y Rnown to be strongly dependent on the symmetry class of the
Ham.|ltqn|an follows from theC, symmetry of the problem ensemble in questidi7], the bulk of the spectrum, which we
and is mdepen_dent of the parameters phosen. will be mainly interested in, is rather insensitive to the choice
In the following we will study static disorder of the effec-

tive Hamiltonian given above. Static and dynamic disorderOf the ensemble as long as the variance of the distribution is

of similar light-harvesting complexes have been the focus OPr(_)perIy _scaled. To examine the_ effe_cts OT rqndqm matrix
; universality, we also study a noninvariant distribution and a

many studie$5,23,24,26—3% In the present framework we diagonal distribution of disorder

will consider a thermal ensemble of LH2 effective Hamilto- '

nians. As a description of this ensemble, we will consider the

sum of the noise-free effective Hamiltonian described above IIl. THE DENSITY OF STATES AND THE EFEECT
and a random part representing thermal fluctuations OF UNIVERSALITY
H=Hy,+R. 3 In this section we introduce a number of random matrix

ensembles, describing the disorder téRnm Eq. (3). We will
Here the matrixR is drawn from a certain probability distri- be specifically interested in the study of the density of states
bution P(R). It can be assumed that a particular choice of(or the spectral density, as it is sometimes callaad post-
P(R) is the correct description of thermal disorder in thepone a similar study of the absorption spectrum to Sec. V.
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Below we present a numerical comparison for the density of

1
states for different ensembles. —— . |x|< V3w
It is known from various studies in random matrix theory f(v.x)=1 23 7
that the exact shape of the probability distribution defining 0, otherwise

the random ensemble is largely irrelevant for the behavior of
a number of spectral properties. This property is referred tés the flat probability distribution with widthv. The distribu-

as universality{8]. This term is not unambiguously defined tion of individual matrix elements are chosen to have the
however. Within a given symmetry clags.g., orthogonal vs same width as their GOE counterparts.

unitary symmetry microscopic spectral distributions such as  In the third ensembleR will be chosen from GUE
two-point correlators and nearest neighbor spacing distribu-

tions are known to depend only on the second moment of the p(

probability distributionP(R) of the ensemble. However, the P3(R)=Nzex
bulk shape of the density of states can be sensitive to the

choice of P(R) even when one remains within the same

symmetry class, as one can ascertain by comparing Gaussian N H exd — 1 R2
matrix ensembles with ensembles that have quartic terms in 4 ioe
the exponent of their distribution functions. The bulk of the

1
—tr(R'R) |,
VGuE

density of states enjoys a different kind of universality, how-

ever, as realized by Wigner’s semicircle 1§8;7]. When the x 1 exp( - ((ReR;))2+(ImMR;j)?) |,
widths of the distributions are properly scaled, all three i< VGUE

Gaussian Dyson ensembles are known to have the same (©)]

overall density of states up t6(1/N) effects. Below we will . . . . . .
see the manifestation of this kind of universality for both theWhich will also be studied analytically in the following sec-
density of states and the absorption spectrum across differeHeN: ] ) ) ) )
ensembles. The final ensemble we consider describes diagonal disor-

The density of states of an ensemble in E8), given by ~ der- Itis given by
a probability distributionP(R) is defined in terms of the

ensemble average P4(R)=N,]] exp( -
I

R

[[J 8Ri). (9

Vdiag

N
plw)= < 21 (w— Ei)> , (4 Diagonal disorder in the present context has previously been
o studied in Ref[5]. The relevance of diagonal disorder comes
from molecular dynamics studies, where it was observed that
fluctuations of the diagonal matrix elements are much larger
than the interaction tern{85].

To achieve a proper comparison between different en-
sembles their widths have to be taken carefully into account.
It is known in the case of Dyson ensembles that for a proper
comparisor;; Vizj should be fixed to a constant, wherg is
the variance of thei(j)th matrix element. Following this
argument we obtain

where(---)y=[d[R]P(R) ... andE; are the eigenvalues of
H=Hy+R.

In the first ensemble we consid&,will be a member of
the Gaussian orthogonal ensem@&OE),

1
Pl(R)=N1exp<— >—tr(R'R)
2vG0E

1
=N;[] exp - ——R? N
Y 4 VéOE" IﬁmgIEW%OE:NVéUE- (10
1, In comparison to the width of the absorption spectrum ob-
XL[J_ exp — 2 Rij (5  tained in hole burning spectroscopy experimef@§], Hu
GOE

et al. [5] have obtained a diagonal disorder width of around

hi ble is invar d h | ‘ _ vgiag=170 cm. Using this value in Eq(10) we obtain
This ensemble is invariant under orthogonal transformations, ™! 501 cnrl and vg,c=42.5 cmt. These values

namely, P(R)=P(OTRO), for an orthogonal matriO. To will be used throughout the rest of the paper.
examine the effects of universality we will also consider a \yio have performed numerical studies of the density of
noninvariant ensemble in whidRis still real and symmetric.  giates for the ensembles introduced above. These are demon-
Following Eq.(5) we choose strated in Figs. 4, 5, and 6. We first compare the density of
states for the two real symmetric ensemb&sand (6). Al-
Po(R)=N, 11 f(veoe.RiI] f(\2veoe Ry, (6) though universality results manifest themselves usually in
i i<] the limit of large matrices, it is amazing to sgegs. 4 and b
that even for an ensemble of mesoscopic size such as the one
where studied here, the global density of states remains largely un-
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FIG. 4. The density of states fd(d=2x8 for an ensemble of FIG. 6. The numerically obtained density of states for three

real symmetric disorder obtained numerically. The width of the en-different universality classes with properly chosen widtbse text
semble isvgoe=60.1 cml. The case where the disorder term is for the determination of the widtlisGaussian orthogonal disorder
chosen from the Gaussian orthogonal ensertgatid line) is barely  with width v5oe=60.1 cm'! (solid ling), Gaussian unitary disor-
distinguishable from an ensembile of flat distributed matrix elementsler with width vg,e=42.5 cm ! (dashed ling and diagonal dis-
with the same widtHdotted ling. See also Fig. 5. order with widthv;,q=170 cm ! (dotted ling. The individually

. o ronounced peaks occurring for Gaussian unitary disorder can be
changed under the change of the probability distribution O{jnderstood in terms of the strong level repulsion present in unitary
!nd|V|duaI matrix elements. E\(en across d|fferer_1t universalansembles given by Mehta. The level repulsiand, therefore, the
ity classe GOE vs GUE vs diagonal disordedefined fur-
ther by Eqgs.(8) and (9), remarkable spectral similarity per-
sists, when the widths of the distributions are taken into
account(see Fig. 6.

Finally we have also examined the approach to universal-
ity as a function of the matrix size defining the ensemble. In this section we present an analytical calculation of the
This has been accomplished by comparing the density odensity of state$4) of the ensemblé3), where the random
states for Egs(5) and (6) in the case of a 3232 and an 8 partR is a complex Hermitian matrix drawn from the prob-
X8 ensemble of matrices. For these new ensembles, thability distribution
noise-free part of the Hamiltoniad, has been constructed

separatiopis not as strong for orthogonal or diagonal disorder.

IV. ANALYTICAL COMPUTATION OF THE DENSITY
OF STATES

by artificially extrapolating the structure of the B850 ring in 1 N

LH2 as introduced in Sec. Il, to one with 32 BChls and P(R)=Ngex _;IV(R R) |, (11)
another one with eight BChls, respectively. Although a 32 v

.BCh|.I'.II”Ig IS relevapt fOI’. a study of LHl' the eight BChI N9 \where the normalization constant is given by

is artifical from a biological point of view. The results of this

study, shown in Fig. 7, are in accordance with the expecta- N(N—1)/2

i . i . e 2

tion that the universality becomes more manifest with in- Ng=—————-. (12)
creasing matrix size. However, even in the case of the 8 (2mv?)N7?

X 8 ensemble the difference between density of states is re-
markably small. We will proceed by applying a Hubbard-Stratonovitch
transformation to reduce the ensemble average to an integral

0.015 over a space of (£1)X(1+1) supermatrices. Our nota-
7z 001 tional conventions can be found in Appendix A.
8 0.005 //\ The density of stateg}) can be expressed as
I 0 A N AN\,
g VV/ "V 'V YV
g-0.005 p(w)=£|m r— (13)
& -0.01 T 0 —(Ho+R)/’
-0.015 _ o
where we have used(x) = (1/m)Im(1/(x—i€)) with ie be-
11500 12000 =~ 12500~ 13000 13500 ing a small imaginary increment. In E€L3) and below,w ™

Energy (cm ) denotes thatw has a small negative imaginary increment,

FIG. 5. The difference in numerically obtained density of states?VNich is used to decide the sign of corresponding principal
for Gaussian orthogonal disorder and an ensemble of flat distribute¥@lue integrals. S .
matrix elements as in Fig. 4 obtained by diagonalizing 360 000000 At this point it can be seen that, for an invariant probabil-
matrices from each ensemble. The scale is identical to that of Fig. 4ty distribution P(R)= P(UTRU), UeU(N), such as Eq.
hence the difference is generally within two percent of the maxi-(11), Hgo can be replaced by its diagonal pait
mum of the density of states. =diag(ys, - - - ¥n), Where
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| 32x32 | 8x8
Z o 0.8
E 0.6 0.6 FIG. 7. The approach to universality: The
§ o os density of stategtop) and their differencegbot-
g tom) for Gaussian orthogonal disorder and an en-
02 . semble with flat distributed matrix elements
11000 12000 13000 14000 11500 12000 12500 13000 13500 (Compare to Figs. 4 and $or a 32X 32 ensemble
= I S (left) and an 8<8 ensembldright). The results
E o.002 0.0l are obtained by diagonalizing 10 000 000 matri-
£ dA A A g [\ M f\/\ An AN /\ /\ /\ /\A N ces for the &8 case and 20 000 000 matrices for
3 WYV U ' TV \/ VYWY V\\/ the 32< 32 case. The scales for the top and bot-
g -0.002 0-01 tom figures are identical.
11000 12000 13000 14000 11500 12000 12500 13000 13500
Energy (cm™) Energy (cm™)
Ho=U{T'Uy, UyeU(N), (14)

1
|R=eXP( — 5 tr(d’d’T_XXT)Z) :
since the Jacobian of the transformat®a- U R U} is unity.
The unperturbed eigenvalues are obtained by directly di- r{ 1, ’<(¢,T. ¢ (x™ ¢,))2
=ex

agonalizingH, and are given in Fig. 3. v st T t
Finally, using the identity (¢7x) (xx)

: 1
trlz 1 9 de(A+J_), (15 :f d[a]NUexp< - Fstr#)
A 290 J.:Ode'(A—J) 4
we can express the density of states in terms of a partition wexpl —i st U_((‘ﬁT' ¢ (x' ¢))
function 6" x) "0/l
(20)
19 . "
plw)=-—— Im Z(j), (16) Here, ¢ is a (1+1)X(1+1) Hermitian superma-
2m d) j=0 trix. The normalization constani, is equal to 1, since
fd[o]lexp(—(2+) Istro?)=1 due to the supersymmetric
) defw™ —(I'tR)+]] nature of the integral: the bosonic and fermionic contribu-
Z(l):f d[R]P(R) defo —(T1R—]1 (17 tions cancel each other.

Now the ¢ and y integrals in Eq(18) can be performed
by another completion of squares and using &®). This
reduces the partition function to

Z(j):j d[a]ex;{ - %straz)

The ratio of determinants in E§17) can be converted to
Gaussian integrals using EqQ#3) and (A4) from the Ap-
pendix A

2(0)- [ dro1dn

N _ .
0 =Y~ 0
_ . 1 —
Xexr{i((ﬁ)T_(w —T—] 0 . ¢) Xiljl sdet’ ( 0 P 0']
X 0 o —T'+j X 21)
XIr, (18 To further simplify the partition function we will make a
where theR integral is now of Gaussian form change of variables to
o—o+Q,
1
|R:fd[R]NReX[{——2tI’R2 w0 —j 0
2y Q= g (22
Xexp—i¢g'-R-¢p—ix -R-x). (19

) ) _ and superdiagonalize aso=uSu’, whereue U(1]1) and
The Hubbard-Stratonovitch transformation consists of cons= diag(s,,is;) contains the eigenvalues of In these new

verting this integral over ahl X N matrix to an integral over ygriables the integration measure can be written as
a (1+1)x(1+1) supermatrix. The Gaussian integral in Eq.

(19 can be easily evaluated by completing the squares, d[o]=du(u)d[S]B?(S), (23
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wheredu(u) is the Haar measure of the superunitary group, 1 (=
U(1]1), andd[S]=dsyds,. The integrals over the eigenval- plw)= ;Jo daAgA, (30)
uessy ands; run along the real axis. The Jacobian of the
transformation is given in terms of the BerezinigBy(S) 1 N 1
;1/(80_ is1). Thus, the expression for the partition function Ap== ImJ dée- ézl—[ ,
ecomes ™ o =i 1 ,
—le——(wt+voa— vy,
. 3 \/Ev( i)

2(j)= f d[SBX(S) L] sdet*(S+7)7(S), )
=" dne 11 (in——l (0t v2a—7)|,
o i=1 2v

. (29

IU(S)=J d,L(u)exp(—zivzstr[usuuQ]2

where we have explicitly substituted the imaginary incre-
. ) mentie where it would contribute.
The last integral can be recognized as an ltzykson-Zuber- The expressiofi30) for the density of states can be evalu-

Harish-Chandra integrdll1,37,3§, which can be evaluated ated by realizing thatl, yields & functions at the poles using
by solving for the kernel of the heat equation in the space ofhe jdentity

the underlying superunitary group. The final result is given in

Ref. [11] L N »
Al =S eIl = @

1
ex% — —Zstr(S+ Q)? o . . .
1 2v and thatA; is just the integral of a Gaussian times a poly-
(9= 5 +®. (29 pomial.

2 B(S)B(-Q)
m The application of Eq(30) to the spectrum of the en-

Here ® is a boundary contribution known as an Efetov- S€mble defined by Eq1) is a laborious task because the

Wegner term, which is proportional fd — x(j)] where eigenvaluesy; of the deterministic part enter as parameters
' in the analytical expression. This is best carried out with the

0, if j=0, help of a symbolic algebra program suchNasTHEMATICA
(26)  [39] and is outlined in Appendix B. A final formula for the
density of states is given by E¢9). In Sec. IV A we per-
form some consistency checks on E8Q) for various limits.

X(j):{

1, otherwise.

We shall neglectb below, since it does not contribute to the
density of statep(w) after the derivative with respect to the

source ternj in Eq. (16). A. Consistency checks fo.r the analytical expression
After noting that,B(— Q) =1/(2j), the expression for the for the density of states
density of state$16) reduces to As a first test we consider the deterministic limit;~0,

where the density of statg80) should coincide with the
spectrum of the deterministic part,

1 N
p(w)z—lmj d[SIB(S)[] sdetX(S+y))
222 i=1 N
L po(@)=2, o= ). (32)
xexp(——zstr(Ser‘)z). (27
2v Without loss of generality we will assume that the eigen-

To separate the bosonic and fermionic eigenvalue integralt alugs% are nor;c_iggsngate. Using E§1) one can rewrite
we employ a “Feynman trick” to rewritd3(S) as € bosonic contribulion, as

N N
! : - N-1 1 2 2 1
- - _ —i Ao=(V2v exp — w+via—y; ,
9= L~ [t -atsrion) @9 A (2, p[ Ltwrsta T
and using the definition of a superdeterminant from Appen- N
dix A we obtain =(\/§v)'\‘*1‘/2wyi§l Sw—y,)e" =M
is;+ vy
sdet }(S+ ;)= 1—%, (29 N
Sot7i <[] , (33
P#FiYiTYi

A final expression for the density of states, valid for any
finite sized ensemble described by a fixed Hamiltonian plus avhere we have used the Gaussian representatiorsdéiac-
random part from GUE, is thus obtained as tion and the limit of smallv to rewrite
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w)—(f dtey 1<f )w( = t) (41

= \27vé(w—y)e @@ Mg 00" (34  One arrives at the expressi¢86) for the Gaussian unitary
ensemble using the following identifyt1]:

1
ex ——(w+1/2a— -)2
%: 2]}2 7I

Similarly, the fermionic contributiond; can be rewritten as

- 1 N—-1
N dtoy_1(xFDen(x+)=—= > ¢%(x). (42
(ﬁwvﬂf dye 0~ sty —iw)[] (iy+y). | VN (=6

(39 V. THE ABSORPTION SPECTRUM

The remaining integrals in E430) are then easily evaluated ~ The absorption spectrum measures the optical response of

by utilizing the 6 functions, reducing to the expressi(®2)  the system as a function of the frequency. The average ab-

for the noise-free density of states. sorption spectrum can be formulated in a way similar to the
As another consistency check, we consider the case whegverage density of stat¢40]. Let us label the localized ex-

the deterministic part is a multiple of the identity matfix ~ Citations at individual sites bym), and the eigenstates of the

=v1, hence ally;=y. Sincey only shifts the eigenvalues, system by1|> S mci(m)|m). Then the transition dipole mo-

w, we can set it to zero. Then the density of states shoulthents for each of the eigenstates can be written as

coincide with the well known resu[{7] for the GUE,

1 N1 © DF% ci(m)dp,, (43
— 2
peue(®w)=— E @i ), (36)
V2w =0 V2v whered,, are unit vectors along the direction of the induced
dipole moments of individual sites.
0 1 oy, 00 The directionally and ensemble averaged absorption spec-
Pj(X)= —F—=¢ i(X), trum can be written as
V2ijiyn
47%wn
whereH;(x) are the Hermite polynomials ang|(x) are the a(w)= <2 D] 8(w—E; )> (44)
oscillator wave functions.
In order to proceed we will use the identity whereE; are the energy eigenvalues afd -) once again

denotes the ensemble average.
1 1 (—1)N-1 N-1 Unlike the density of state&) however, the absorption
P Im (x—ie—s)N = (N—1)! (a_x) 8(x—s), (37 spectrum cannot be expressed solely as an average involving
! the energy eigenvalues of the system, since the transition
dipole momentd; depend on the expansion coefficients of
the eigenstates. We find it impossible to carry out the ana-
lytical computation of the preceding section for the case of
, (38  the absorption spectrum. Therefore the absorption spectrum
x=(w+ v2a)/(\2v) will be treated only numerically.

As explained in Sec. Il, the transition dipole momedjs
where we have evaluated the derivatives of éffanction by  ysed in Eq.(44) are determined using the structure data of
integration by parts. the LH2 of Rs. molischianum2].

The fermionic contribution4, is given by In a manner parallel to Sec. Ill, we first compare en-
N sembles within the same symmetry class, namely, Gaussian
o ol 1 ) orthogonal disorde(5) and a similar ensemble with flat dis-
A= f_ dne”” ('77— Ty(“’“’ a)) : (39 tributed matrix element&). The results of such a compari-
son is given in Figs. 8 and 9, where it can be seen that
universality is even more strongly manifest than in the case
of the density of states. This is naturally due to the averaging
with respect to oscillator strengths in Ed4). In the absence
N n of disorder all of the oscillator strength is at the second and
‘7) e = 2_ - dne~ ’72(x—i )" third energy level€E,=E; [5]. When the disorder term is
X N ' turned on, other states, especially the first energy level, give
(400  nonzero contributions to the absorption spectrum. However,
the absorption spectrum still remains dominated by the now
After some algebra the density of state3)) can be ex- nondegenerate second and third energy levels. A similar
pressed in terms of the oscillator wave functions comparison across universality classes is given in Fig. 10.

and rewrite A, as

— 1 (9 N _XZ
A== lax)  ©

Both A, and.A; can be represented by Hermite polynomials
using the identities

Hn(x)=(—1)"e* (
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FIG. 8. The numerically obtained absorption spectrum for an  FIG. 10. The absorption spectra for three different universality
ensemble of real symmetric disorder. The width of the ensemble iglasses with widths given in Fig. 6: Gaussian orthogonal disorder
the same as in Fig. 4. Once again, the Gaussian orthogonal egsolid line), Gaussian unitary disordédashed ling and diagonal
semble(solid ling) is virtually indistinguishable from an ensemble disorder(dotted ling. The pronounced double peak occurring for
of flat distributed matrix elements with the same widdbtted ling.  Gaussian unitary disorder can again be understood in terms of the
See also Fig. 9. The vertical line denotes the 850 @M765cm™]  strong level repulsion in unitary ensembles. Namely, the degenerate
line. second and third eigenvalues get rapidly separated from each other

due to noise, but maintain their high oscillator strengths.
Finally, as in Sec. lll, we examine the approach to univer-

sality for the absorption spectrum. Once again it is seen thaligns of unjversality are strongly present even across sym-
for an ensemble of larger sized matrices the universality i$netry classes. The framework developed in this paper can be

more strongly manifestsee Fig. 11 and even in the 88  555lied to many similar systems described by an effective
case the difference between Gaussian and flat ensembles [§5miiionian under the effect of thermal disorder.

mains within about a percent. One can also observe that by
moving to a higher number of components the absorption
spectrum shifts to the red and becomes narrower, as expected ACKNOWLEDGMENTS
for such aggregatdg0]. . oL ,
The authors would like to thank A. Damjanoyit. Ritz,
and J. J. M. Verbaarschot for many useful discussions. This
VI CONCLUSIONS work has been supported by NIH Grants No. PHS 5 P41
We have developed a random matrix model to study efRR05969 and PHS 1 RO1 GM60946 and NRAC Grant No.
fective Hamiltonians of light-harvesting complexes and ap-MCA93S028.
plied our framework to the peripheral light-harvesting com-
plex, LH2, of Rs. molischianumin addition to an analytical
study of the density of states in the case of Gaussian unitary APPENDIX A: NOTATION AND CONVENTIONS

disorder, we have examined the effects of random maitrix | this appendix we outline our notation and conventions

universality on the density of states and the absorption spe¢s; superanalysis, which parallel those found in RefL].
trum of the photosynthetic effective Hamiltonians. We ob-The reader is referred to Berezin's wdi2] for a detailed
serve that despite the small size of the matrices in questioftroduction to superanalysis.

We denote théN generators of a complex Grassmann al-

0.004 gebra byy, which satisfyyx;x=— xix; . We will adopt the
% 0.002 /\ conjugation of the second kind wherg;)* = —x,. and
g NIV A~ () = xixi* -
g V - A (p,q) supervector
~-0.002
g 0.004
"o o[
-0.006 =1y

11500 12000 12500 13000 13500
nergy (em ) hasp commuting component$, andq anticommuting com-

FIG. 9. The difference in absorption spectra for a Gaussian orPOnentsy; . A (p,q) supermatrix
thogonal ensemble and an ensemble of flat distributed matrix ele-
ments as in Fig. 8. The scale is identical to that of Fig. 8, hence the
. . . . a o
difference is generally within half a percent of the maximum of the F= (
absorption spectrum. p b
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acts on the space op(q) supervectors, whera andb are 1
pxp andgXq commuting matrices and andp arepxq j d[¢* Jd[ plexp(i T Hep) = detH/2m)” (A3)
and gX p anticommuting matrices, respectively. Transposi-
tion is defined as in

T.T
Fl= ar
—o'b’

f d[ x* 1d[ x]exp(i x"H x)=de(H/2), (A4)
, (A1)

for any Hermitian matrixH, and bosonic and fermionic vec-
tors ¢ and y. Similarly,

so that F®)"'=dTFT. The Hermitian conjugation is defined

naturally as F'=(FT)*, so that for any supervector J d[D*Jd[®]expi D TFd)= 1 , (A5)
®, (PPN)T=ddT and for any supermatriE, (F'F)" sdetF)

=F'F as in the case of ordinary vectors and matrices. o )

The supertrace and the superdeterminant of a supefor @ supervectorb, and a Hermitian supermatrik,
matrix are defined as $te=tra—trb and sdeF=det(a
— O'b_lp)(detb)_l, respectively. This ensures that they sat- APPENDIX B: THE DENSITY OF STATES FOR UNITARY
isfy the relation, sdef = exp(str InF), along with many other DISORDER
familiar identities for traces and determinants.

Unitary matrices, diagonalization, and Lie groups have
their corresponding natural superanalog[#3, so that for
any super-Hermitian matrix,H, H=UTAU, where A
=diag(\,,iN;) for U being a superunitary matrix and,
and \; ordinary diagonal real matrices. The eigenvalues in

Ay, are called bosonic whereas the ones jnare called fer- probability distribution for the disorder teriR is given by

mionic. Even some results in harmonic analysis over unitant (11) The density of states of this ensemble is then given
groups generalize rather naturally to superunitary groups aﬁ‘y

in the case of Itykson-Zuber-Harish-Chandra integrals
[11,37,38 that we employ in Sec. lIl. 1 (=
Differentiation of Grassmann numbers are introduced in plw)= —f daAdgAy, (B1)
the natural way ¢/ dx,) xi= dx . This implies, together with mJo
the nilpotency of Grassmann generators, that the Taylor ex-

In this appendix we summarize the results from Sec. IV
regarding the analytical formulation of the density of states
of effective Hamiltonians in the case of Gaussian unitary
disorder.

We consider an ensemble of finite sized matrieesH,

+ R where the deterministic pal, is a fixed matrix and the

N
pansion of any Grassmann valued function truncates after a A —ilm * q e‘le_[ 1
finite number of terms. The integration of Grassmann num- “0" o ¢ =1 1 '
bers are defined according fay=0 and [dyx=1/y27. E—ie— A (w+v2a—1,)
14

The prefactor is choosen in such a way as to satisfy
© N 1
2 .
j do*dody*dyexpig* p+ix*x)=1, (A2) A1=f dne”Hl<l77—\/_7(w+v2a—yi) ,
o i "

where ¢ is an ordinary complex number anda Grassmann wherevy; are the eigenvalues of the deterministic pelg, v
number. is the width of the distribution andll is the size of the ma-
The power of the supersymmetry method comes from therices, which we will assume to be even. Although the deri-
ability to express ratios of determinants in terms of Gaussiawation of Eq.(B1) requires advanced mathematics, the result
integrals. With our conventions it follows can be utilized with basic calculus and the help of a symbolic
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algebra program. Below we will simplify E4B1) as much
as possible, but due to the presenceNoparameters, the
eigenvalues,y;, of the unperturbed effective Hamiltonian,

the final expressions are best evaluated using a symbolic al-

gebra program such asaTHEMATICA [39].
In order to evaluate the density of sta{@d) we note that
Ay results iné functions at the poles and, is the integral

of a Gaussian times a polynomial. Without loss of generality

we will work with the case of nondegenerate. The degen-

PHYSICAL REVIEW E 65031916

(- 1)(N/2)+1 N

p(w)= D f T e 1202
LIS W T

N/2

AT

iF YT i kzo I(le)fk(_l)k

2k
E H a+(7. %p))- (B7)
oe ST p=

eracies can be treated by taking the proper limits at the end.

Also we will work in energy units, wherg2v=1.
The “bosonic part” A, of Eq. (B1) can be evaluated with
the help of the identity

N
“im]] ——— Z S(x— s)H— (B2)

T o1 X—ie—s &) S

Integrating thed functions results in

P4

N
o=, e lW2at(0-n)?
=1 i#i Y

. (B3)
—%i

For the evaluation of the “fermionic part/4; we intro-
duce the following constants:

NN

> 2 (2k
= Jiwdne 7 k= o

Then A; can be written as a polynomial ia, », andy;

(B4)

N/2

Ay=(— 1)N/2k20 l nizy—k(— 1)

2k

x > 11
0'68%2 p=1

where S} is the set ofn-element subsets of the finite SBt
and Ty={1, ... N}. In order to write Eq.(B5), we have
used the identity

(B5)

§a+(w_ 7ap))1

-2

N
H 7]+S|
i=1 i

]
EHU. (B6)
s

and thatf” .d»ne~ ”znk vanishes for odd k.

This expression can be recognized as polynomial ternas in
and y;. The remaining integration yields prefactors of the
form

J(A) = zj dte Ptk
A

oT k+1
2

k+1
-T — A?%|,  k even, A<O,

k+1 ,
r T,AZ , otherwise,

(B8)

whereI'(n,x) is the incomplete gamma function. The for-
mula for the density of statg®ow free of any integrations
can then be written as a combinatorial expression

(- 1)(N/2)+1 N N 1

plw)=
i=1j#i

N/2

XE I niz)—k(—1)¥ Z E In-m(@— )

X > H(% 70)

pES

(B9)

The reader is invited to repeat this calculation at least for
the case of X2 random Gaussian unitary matricésith
v1=7v,=0) and compare it to the well known result for
GUE, namely,p(w)=(1\m)e *(1+2w?). It should be
noted that the combinatorial load of this computation in-
creases dramatically witN. This formulation can also be
utilized to examine the functional behavior of the density of
states in an interval containing a small group of eigenvalues
as part of a larger spectrum, if one treats the eigenvalues

After a shift of integration variables the density of statesoutside this interval in a “mean field” setting. This will be

can be written as

the subject of a further study.
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