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1 Introduction

The quintessential quantum process in biology and chemistry involves electrons switch-
ing between two states. Two examples are electron transfer reactions in proteins when
an electron moves from an orbital on the donor moiety D to an orbital on the acceptor
moiety A and bond formation or bond breaking in an enzyme when electrons shift
from a non-bonding state to a bonding state or vice versa. The energy expectation
values of the two states E1(t) and E2(t) vary in time due to motions along a reaction
coordinate, but also due to thermal fluctuations of the remaining degrees of freedom
of the combined reaction–protein system. Often the interaction energies which couple
the two electronic states involved in the reaction are weak, i.e., are small compared
to the temporal variations of E1(t) and E2(t). In this rather typical case the actual
reaction process is confined to moments when the two electronic states become en-
ergetically degenerate [E1(t) = E2(t)] or, to use a widely accepted phrase, when the
curves E1 and E2 cross.

In this lecture I will discuss curve crossing specifically in a protein environment.
We will study how interactions between a two-dimensional quantum system and a
protein matrix affect the curve crossing process. In particular, we will demonstrate
how the influence of the protein on the process can be captured succinctly through
stochastic quantum mechanics. Such description allows one to separate protein dy-
namics and the evolution of the quantum system: a molecular dynamics simulation
is carried out to characterize the motion of the protein; the results of the simulations
are then employed in a stochastic quantum mechanical calculation involving only the
quantum mechanical degrees of freedom. The best known and most widely studied
curve crossing process, electron transfer, will serve as an example.

The major part of this lecture has been reported in [1, 2, 3]. Section 5 is taken from
notes of my Theoretical Biophysics Course given during 1982-1987 at the Technical
University of Munich.

Three advantages arise from the suggested description. First, and most obvi-
ous, the procedure is computationally and conceptually simpler than combining a
quantum mechanical and a molecular dynamics description into a single calculation.



Second, and equally important, such description focusses on the essential contribution
of the protein environment to the quantum system and, thereby, yields a better un-
derstanding of the reaction studied. Lastly, one can consider the molecular dynamics
simulations, carried out classically, as the high temperature limit of a quantum me-
chanical description and use the results for a fully quantum mechanical description in
which the protein matrix is represented as a bath of quantum mechanical oscillators,
suitably chosen to match the results of molecular dynamics simulations.

The description provided here does not account for forces which the quantum
system exerts back onto the classical system. This deficiency is insignificant in those
cases in which many degress of freedom of the protein matrix are weakly coupled
to the quantum process. This situation arises, for example, in electron transfer, in
which case long-range Coulomb forces couple essentially the whole protein matrix to
the quantum process; in this case the effect of the protein motion on the electron
transfer involves many small, additive contributions such that a back-reaction of the
quantum system becomes actually immaterial. However, in case that some degrees
of freedom of the protein matrix are strongly affected by the quantum system such
that the curve crossing event induces forces which correlate the protein motion with
the evolution of the quantum system, one must resort to a description combining
quantum mechanics and classical molecular dynamics as outlined in other sections of
these proceedings. But even if such behaviour arises, which is expected to be the case
only for a small number of degrees of freedom, one is left with a need to account for
contributions of the remaining degrees of freedom, for which purpose one may want
to resort to a description as outlined below.

The lecture describes first the case in which the force generated by the quantum
system and influencing the protein is not neglected. Representing the protein as an
ensemble of harmonic oscillators permits one to solve the response of the protein.
This renders a closed evolution equation for the density matrix of the quantum sys-
tem which exhibits a non-linear term accounting for the effect of the quantum system
onto the protein and back onto the quantum system. The latter term is neglected
in the following sections and two approaches are considered. In a first approach the
protein matrix is represented as a classical system which contributes time-dependent
secular terms to the Hamiltonian of the quantum system [1]. We demonstrate how
these terms affect the curve crossing process, resorting to the well-known Kubo the-
ory of line shapes [4]. We show how the stochastic process which represents the time
dependence of the stated secular terms can be characterized through an independent
molecular dynamics simulation. We focus, in particular, on the case that the sto-
chastic process is of the Ornstein-Uhlenbeck type, i.e., corresponds to a Gaussian
equilibrium distribution of diagonal energies; in this case a simple analytical descrip-
tion for the quantum system can be given. In a second approach [2, 3], often referred
to as the spin-boson model, we consider the case that the protein matrix is represented
through a bath of quantum mechanical oscillators linearly coupled to the quantum
system, but not subject to energy redistribution. We show that the overall effect of



such bath depends on average quantities which, at physiological temperatures, can
be rather readily obtained from classical molecular dynamics simulations. The sec-
ond approach can be shown to become equivalent to the first approach in certain
limits, e.g., at high (physiological) temperatures and for line shape functions which
are wide compared to the frequencies involved in energy redistribution among protein
vibrational modes, limits which prevail in case of electron transfer in proteins. We
complete the lecture with a discussion of applications of the suggested descriptions.

2 The Generic Model: Two-State Quantum Sys-

tem Coupled to an Oscillator

The model we consider first is extremely simple, yet it encapsulates the essence of
a reaction process in a protein governed by a quantum mechanical curve crossing
process. The reaction process connects a state |1〉 and a state |2〉, e.g., two electronic
states of a substrate. Examples are (i) an electron transfer process from a donor D
to an acceptor A, where |1〉 and |2〉 represent the states before electron transfer, i.e.,
A D, and after electron transfer, i.e., A−D+, and (ii) bond breaking in which case |1〉
describes the electronic state corresponding to a covalent bond and |2〉 describes the
electronic state corresponding to the broken bond.

In the following we adopt the representation

|1〉 =

(
1
0

)
, |2〉 =

(
0
1

)
(1)

such that the Hamiltonian of the quantum system is

Ĥ =

(
E1 v
v E2

)
(2)

where v denotes the coupling between the states |1〉 and |2〉 and where E1,2 are the
associated energy expectation values of these states. The essential aspect of the
quantum system is that it is coupled to the protein matrix through a dependence of
the elements of Ĥ on the state of the protein matrix. For the sake of simplicity we
assume here that only the energies E1,2 depend on the protein environment and that
v is constant. Also, we represent presently the protein through a single harmonic
oscillator. This oscillator exhibits its coupling to the quantum system through a shift
of its equilibrium position in going from state |1〉 to state |2〉. Such behaviour is
captured by the energy functions

E1 =
p2

2m
+

1

2
mω2q2 (3)

E2 =
p2

2m
+

1

2
mω2(q − qo)

2 (4)



Replacing the diagonal elements of the Hamiltonian in (2) by these expressions evi-
dently leads to a dependence of the quantum system on the momentum and position
of the Hamiltonian representing the protein environment.

Following the procedure for quantum/classical molecular dynamics simulations
described in [5] and elsewhere in these proceedings one can state the equation of
motion for both the density matrix %(t) of the two state quantum system and of the
oscillator. It holds

%̇ =
i

~
[%, Ĥ] (5)

mq̈ = − tr

(
%

∂

∂q
Ĥ

)
(6)

where (5) is the Pauli equation and (6) the Newtonian equation of motion where the
force of the classical particle is evaluated according to the Hellman-Feynman theorem;
trA denotes the trace of the operator A. In the following we wish to describe the
situation that the quantum system is initially, i.e., at t = 0, in state |1〉 such that
the Pauli equation (5) is solved subject to the initial condition

%(0) =

(
1 0
0 0

)
. (7)

This initial condition implies, in particular,

[%(t)]22 = 0 , t ≤ 0 . (8)

Evaluation of the force exerted onto the oscillator, i.e., the r.h.s. of (6), yields

− tr

(
%

∂

∂q
Ĥ

)
= −mω2q + %22(t) c (9)

where we introduced the expression

qo = c / m ω2 (10)

and used %11(t) + %22(t) = 1. Inserting this into (6) leads to

q̈ + ω2q =
c

m
%22(t) . (11)

Equation (11) describes a forced oscillator. Defining

ξ = q̇ + i ωq (12)

and
F (t) =

c

m
%22(t) (13)



one can write (11) as a first order differential equation

ξ̇ − i ωξ = F (t) . (14)

We note that, according to (8), holds F (t) = 0, t ≤ 0.
We want to solve now Eqs. (12–14) in case that the harmonic oscillator, at t ≤ 0,

has not been coupled yet to the quantum system and exhibits a time-dependence

q(t) = Ao sin(ωt + δ) , t ≤ 0 . (15)

The corresponding form of ξ(t), defined in (12), is

ξo(t) = ξ(0) eiωt , t ≤ 0 , ξ(0) = ωA0e
iδ . (16)

The solution of (14) which matches this functional behaviour is for t ≥ 0

ξ(t) = ξo(t) + δξ(t) . (17)

δξ(t) =
∫ t

0
dt′

c

m
%22(t

′) eiω(t−t′) (18)

where δξ(t) describes the effect of the force (13) on the oscillator. This expression
can be inserted into the Pauli equation (5). Noting

E1 =
1

2
m |ξ(t)|2 (19)

E2 =
1

2
m |ξ(t) − iωqo|2 (20)

we obtain the non-linear evolution equation

%̇ =
i

~


%,




1
2
m
∣∣∣ξo(t) +

∫ t
0 dt′ c

m
%22(t

′) eiω(t−t′)
∣∣∣2 v

v 1
2
m
∣∣∣ξo(t) +

∫ t
0 dt′ c

m
%22(t

′) eiω(t−t′) − iωqo

∣∣∣2



 .

(21)
The evolution equation (21) accounts for the effect of the quantum system on the

protein (oscillator) and its back-reaction onto the quantum system. The treatment
of this system has been discussed in the lecture by Berendsen in this conference.
The description provided can be generalized to a situation in which the protein is
represented by an ensemble of harmonic oscillators. In this case the interaction
between the quantum process and the protein matrix spreads over many degrees of
freedom. For some of these degrees of freedom the coupling might be strong such
that it cannot be neglected. For most degrees of freedom the coupling should be so
weak that it’s effect, in particular, in the concert of the overall motion of the protein,
can be neglected. In the following sections we will disregard the perturbation δξ(t)



[cf. (18)] on the quantum system and replace the non-linear evolution equation (21)
by the linear evolution equation

%̇ =
i

~

[
%,

(
1
2
m |ξo(t)|2 v

v 1
2
m |ξo(t) − iωqo|2

)]
. (22)

This equation accounts for an effect of the harmonic oscillator on the quantum sys-
tem. The simplification introduced will allow us to generalize our treatment in several
ways. We can replace the single oscillator by an ensemble of oscillators, in fact, even
by an ensemble of quantum mechanical oscillators. We can also represent the ensem-
ble of classical oscillators by a random process governing the time-dependent matrix
elements in the Hamiltonian in (22). We will demonstrate further that the essential
characteristics of the ensemble of oscillators representing the protein marix can be
obtained from classical molecular dynamics simulations. These generalizations and
the connection to molecular dynamics simulations are a most welcome feature of the
theory presented below. Nevertheless, it appears desirable to include in these gener-
alizations the back-reaction of the quantum system on the environmental dynamics
as described by (21).

3 Two-State System Coupled to a Classical Medium

[1]

In this section we assume a two-state quantum system with energies (secular terms)
E1 and E2 which depend on the conformation of the whole protein described through
the vector R(t) ∈ R

3N for the case of a protein with N atoms. The Hamiltonian
reads then

H̃I =

(
E1[R(t)] v

v E2[R(t)]

)
. (23)

We assume that the protein motion captured by R(t) leads to curve crossing events,
i.e., to situations t = t′ in which E1[R(t′)] = E2[R(t′)] holds. The matrix element v
induces transitions between the two states of the quantum system. We assume in the
following that v is time-independent, an assumption made for the sake of simplicity,
but which ought to be relaxed in a more complete theory. We want to assume also
that the system has a finite life time τo in state |2〉. This property will be accounted
for by an operator

KI =

(
0 0
0 τ−1

o

)
(24)

which, save for a factor ~, represents an optical potential.
The goal of the theory is to determine the 2 × 2 density matrix %̃(t) which obeys

∂t%̃(t) =
i

~

[
%̃(t), H̃I(t)

]
− − [%̃(t), KI ]+ . (25)



where [ , ]− presents the commutator and [ , ]+ presents the anti-commutator. For
an evaluation of %̃(t) it is helpful to adopt a new basis. Let ( α(t) β(t) )T denote the
state of the quantum system at time t. One introduces the new basis through the
scalar transformation (

α′(t)
β ′(t)

)
= uo(t)

(
α(t)
β(t)

)
(26)

where uo(t) is a scalar function which obeys the differential equation

∂tuo(t) =
i

~
E1[R(t)] uo(t) , uo(0) = 1 . (27)

One can demonstrate that the density matrix in the new representation obeys a Pauli
equation with Hamiltonian

HI =

(
0 v
v ∆E[R(t)]

)
(28)

and
∆E[R(t)] = E2[R(t)] − E1[R(t)] (29)

leaving (24) unmodified. The new representation yields the same values for the
diagonal elements of the new density matrix %(t) as the density matrix %̃(t) in the
old representation, i.e., the probabilities to find the system in state |1〉 or state |2〉
are identical in the old and new representation.

The density matrix %(t) obeys the Liouville equation

∂t%(t) =
i

~
[HI(t), %(t)]− − [K, %(t)]+ . (30)

This equation shows that a description of the coupling between the protein matrix
and the two-state quantum system can be reduced to an evaluation of the so-called
energy gap function ε(t) = ∆E[R(t)] from a molecular dynamics simulation.

To link a molecular dynamics simulation to the quantum system, one monitors in
the molecular dynamics simulation the function ε(t) at time instances t = t1, t2, . . .
and employs the resulting values for an evaluation of %(t). Such evaluation is based
on a solution of Eq. (30) for a piecewise time-independent Hamiltonian H̃I

%(t + ∆t) = P %(t) P† , P = exp
[
∆t(

i

~
H̃I − K̃I)

]
. (31)

Evaluating the exponential operator P through Taylor expansion and grouping terms
of odd and even powers yields [1]

%(t + ∆t) =

(
cos ∆tγ 1 + i

sin ∆tγ

γ
A

)
%(t)

(
cos ∆tγ̄ 1 − i

sin ∆tγ̄

γ̄
Ā

)
e−∆t/τo

(32)



where 1 stands for the identity matrix, γ̄, Ā denote the complex conjugate of γ, A,
and the abbreviations

γ =
√

Ω2 + ω2 , ω = V/~ , Ω =
1

2~
(∆EMD − i~

τo

) , A =

(
Ω ω
ω −Ω

)
(33)

are used. Corresponding calculations have been carried out in [1]. The fluctuations
of the energy gap ε(t) as a controlling factor for the rate of electron transfer in the
photosynthetic reaction center had been studied by means of molecular dynamics
simulations as soon as the structure of this protein had been discovered [6, 7]. A
further molecular dynamics analysis in terms of the Marcus theory of electron transfer
[8, 9] (see also below) has been provided in [10].

In case of electron transfer reactions in proteins the interaction matrix element
v in (1, 23, 28) accounts for the electronic tunneling between electron donor and
electron acceptor moieties. The evaluation of v for electron tunneling pathways in
proteins has been studied extensively by Onuchic as described elsewhere in these
proceedings.

To evaluate the density matrix %(t) one carries out a classical molecular dynamics
simulation which provides one with the vector R(t) describing the momentaneous pro-
tein conformation. One determines then the corresponding energy gap ∆E[R(t)] for
which purpose one obviously needs to know the expressions for the energies E1[R(t)]
and E2[R(t)]. For example, in case of an electron transfer reaction state |1〉 de-
scribes an electron configuration AD and state |2〉 an electron configuration A−D+

where A and D are electron acceptor and donor moieties in the protein. Knowing the
atomic partial charges corresponding to AD and to A−D+ one can evaluate E1[R(t)]
and E2[R(t)] as the Coulomb energies of the acceptor and donor moieties with the
protein matrix, to which one adds the redox energies of the states AD and A−D+.
Unfortunately, a particular molecular dynamics simulation leading to a particular his-
tory of R(t)–values is not necessarily representative and one needs to average either
over the dynamics started with many different initial conditions (ensemble average)
or carry out a suitable time average.

The situation, which we wish to describe, starts from the quantum system in state
|1〉, i.e., from [c.f. (7)]

%(0) =

(
1 0
0 0

)
(34)

The system will transfer to state |2〉 in which state it decays with life time τo/2 such
that, ultimately, state |1〉 will be completely depleated. In case that τ is sufficiently
short and ∆E[R(t)] is random one expects that the population of state |1〉 exhibits
an approximate exponential decay

%11(t) ≈ exp(−kcl t) . (35)

The decay constant kcl may be evaluated through

[ kcl ]
−1 ≈

∫ ∞

0
dt %11(t) . (36)



4 Two State System Coupled to a Stochastic Medium

[1]

A difficulty of the description outlined in Sect. 3 is the need to average the den-
sity matrix %(t) over many histories of the energy gap function ∆E[R(t)]. In this
section we link the molecular dynamics simulations to the quantum system through
an interpretation of ∆E[R(t)] as a stochastic process. In this case one can describe
the evolution of the quantum system to second order in v, as defined in (23, 28),
averaged over all possible histories of the protein. Beside being eminently useful in
applications the description provided in this section makes it also transparent which
characteristics of the fluctuations of ∆E[R(t)] are essential for the control of the
quantum system by the protein.

We consider here the simplest case that the properties of ε(t) = ∆E[R(t)] can be
captured by a so-called Ornstein-Uhlenbeck process [11, 12]. This stochastic process
is characterized through three properties. The first characteristic property is the
average value

〈ε〉 =
1

Nt

Nt∑
j=1

ε(tj) . (37)

The second characteristic property implies that the distribution of values ε(t1), ε(t2) . . .
is Gaussian such that the distribution is completely characterized through the root
mean square deviation σ defined through

σ2 =
1

Nt

Nt∑
j=1

ε2(tj) − 〈ε〉2 . (38)

The third characteristic property is related to the normalized correlation function of
the energy gap

Cεε(t) =
1

σ2

(
〈ε(t)ε(0)〉 − 〈ε〉2

)
. (39)

This function is conventionally evaluated through

Cεε(t) =
1

σ2

1

M

M∑
α=1

(
〈ε(t + tα)ε(tα)〉 − 〈ε〉2

)
(40)

for, e.g., M = 100, where tj denotes time instances along the simulations which are
spaced far apart, e.g., 10 ps. Obviously, Cεε(t) captures the dynamic properties of
ε(t). The present description in terms of an Ornstein-Uhlenbeck process assumes that
Cεε(t) is well described by a single exponential decay, i.e., by

Cεε(t) ≈ exp(−t/τ) (41)

such that the dynamics is presented sufficiently through a single decay time τ .



A quantity which conforms to the three characteristics of the Ornstein-Uhlenbeck
process is distributed according to a probablity distribution p(ε, t) which obeys the
Fokker-Planck equation

∂t p(ε, t) = L p(ε, t) , L =
σ2

2τ
∂εp0(ε)∂ε [p0(ε)]

−1 . (42)

where

po(ε) =
1√
2πσ

exp
[
−(ε − 〈ε〉)2/2σ2

]
. (43)

The assumption that ε(t), as monitored in a simulation, obeys an Ornstein-Uhlenbeck
process is made here mainly for the sake of simplicity. The general framework of the
theory presented allows other stochastic processes to represent the coupling of the
protein matrix to the quantum system. We note that the Ornstein-Uhlenbeck process
actually describes a Brownian harmonic oscillator [12].

By employing the theory in [13, 14] one can express the density matrix

%(t) =
∫

d∆E ′ I(∆E ′)%o(∆E ′|t) (44)

where

%o(∆E ′|t) = exp

[
−it

~

(
0 v
v ∆E ′ − i~/τ

)](
1 0
0 0

)
exp

[
it

~

(
0 v
v ∆E ′ + i~/τ

)]

(45)

Here %o(∆E ′|t) represents the density matrix for a Hamiltonian (25) with a time-
independent energy term ∆E ′, i.e., it can be evaluated by means of (32, 33), applying
these formulas for arbitrary dt. I(∆E ′) is the Kubo line shape function [4]

I(∆E ′) =
1

π
Re

〈
0

∣∣∣∣∣ 1
i
~
(u − ∆E ′) − L

∣∣∣∣∣ 0
〉

. (46)

Expressions (44-46) yield an approximation, accurate to third order in v, for the di-
agonal elements of %(t). However, the approximation includes all orders of v in order
to conserve the trace of the density matrix and to ascertain convergence to the exact
%(t) in the limits of slow or fast stochastic motion measured on a time scale ~/v [4]. A
method for the evaluation of the line shape function (46) is described in the appendix.
Other computational strategies are decribed in [15, 13, 16, 17, 18]. A systematic ap-
proximation to matrix elements of the inverse of Fokker-Planck operators is provided
by the generalized moment expansion. This approach is described systematically in
[19] where it is considered, however, for real operators; a generalization to complex
operators, as they occur in (46), is straightforward.

The aim of the present theory is to determine the time-dependence of the occu-
pancy of state |1〉 which is initially populated, i.e., to determine [%(∆E ′|t)]11. As in



the description in Sect. 3 this state eventually should become completely unpopulated
and we assume a behaviour described by a mono-exponential decay

[%(∆E ′|t)]11 ≈ exp[−kST
cl (∆E ′) t )] . (47)

We assume the same approximation for the (1,1) element of %o(∆E ′|t), i.e.,

[%o(∆E ′|t)]11 ≈ exp[−ko(∆E ′) t ] (48)

and can establish then ko(∆E ′) through

[ko(∆E ′)]−1 ≈
∫ ∞

0
dt[%o(∆E ′|t)]11 (49)

which applies if (48) holds exactly. Note that we do not define the rates through the
time derivative of the density matrix element itself since, of course, this derivative
vanishes at t = 0. One can conclude then from Eq. (44)

exp[−kST
cl t ] ≈

∫
d∆E ′ I(∆E ′) exp[−ko(∆E ′) t ] . (50)

Differentiating both sides at t = 0 yields

kST
cl ≈

∫
d∆E ′ I(∆E ′) ko(∆E ′) . (51)

In the present case three parameters determine the operator L in (46, 42) and,
hence, the functional form of I(∆E ′), namely, 〈ε〉, σ2, and τ defined in (37), (38) and
in (41, 42), respectively. 〈ε〉 determines the center of I(∆E ′) on the ∆E ′ axis. The
parameter σ2 can be absorbed into the scale of the ∆E ′–axis. The corresponding line
shape function is then, using u′ = u/σ, ∆ε = ∆E ′/σ,

I(∆ε) ∼ Re

〈
0

∣∣∣∣∣ 1

i(u′ − ∆ε) − ρ ∂u′po(u′)∂u′ [po(u′)]−1

∣∣∣∣∣ 0
〉

(52)

which expresses the line shape function in dimensionless variables. Here,

ρ =
~

2τσ
(53)

is the single dimensionless parameter which describes the dynamic effect of fluctua-
tions in ∆E(t), large ρ values corresponding to rapid fluctuations. Since the effect of
< ε > and σ can be absorbed through shift and scaling of the ∆E–axis, the parameter
ρ constitutes the only parameter which determines the shape of I(∆E) and, hence,
the effect of the protein matrix on the quantum system. In case of the photosynthetic
reaction center of Rhodopseudomonas viridis studied in [1] a value ρ = 0.03 was de-
termined which is so small that a motional narrowing of the distribution I(∆E ′)
relative to the wide equilibrium distribution of ∆E can be neglected, i.e., I(∆E ′) is
described well assuming that the protein matrix is characterized solely through an
equilibrium distribution of all of its degrees of freedom. We will study a respective
model for the protein matrix in the next two sections. However, in case of a narrow
equilibrium distribution of ∆E, i.e., with a width of the order of ~/τ or smaller, one
would expect that the fluctuations of ∆E(t) will modify I(∆E) significantly.
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Figure 1: Electron transfer rates kcl(ε) evaluated by means of molecular dynamics simu-
lation and the theory in Sect. 3 at 300 and at 80 K. In the calculations the redox energy
E = ε was varied as shown on the horizontal axis. The corresponding rate constants are
labelled MD 300 and MD 80. The figure shows also rate constants evaluated according to
the theory in Sect. 3, except that the data for the energy gap ∆E were generated by means
of an Ornstein-Uhlenbeck process employing random numbers. The corresponding rates
are labelled OU 300 and OU 80. A third set of rate constants kST

cl , labelled ST 300 and
ST 80, has been calculated according to the theory in Sect. 4, i.e., according to Eq. (51)
(dashed lines). From [1].

Applications The theory outlined in this and in the previous Section has been ap-
plied in the framework of molecular dynamics studies of the photosynthetic reaction
center of Rh. viridis [14, 1]. Figure 1 compares the resulting electron transfer rates.
The theory in the present Section has also been applied to describe the dynamics of
radical pairs connected through a polymer chain which mediates a time-dependent
exchange interaction [15, 13]. In the latter case the polymer folding motions, ana-
lyzed through molecular dynamics simulations, induces a stochastic variation of the
exchange interaction. The theory has been applied also to magnetic resonance imag-
ing microscopy [17, 18, 20]. In this case the spins of water protons, diffusing in a
magnetic field gradient, experience a stochastic separation of their spin-up and spin-
down states. This leads to an NMR spectrum which depends on the diffusion space
and on the Brownian motion of water; the spectrum, in a proper analysis, reveals
the geometry of the diffusion space. In [15, 13, 17, 18] the Kubo line shape function
had been evaluated numerically through a discretization of the operator L in (46).
The algorithm presented there, e.g., in [18], can be applied to a class of stochas-
tic processes governed by a so-called Smoluchowski equation. These processes cover
Gaussian and non-Gaussian equilibrium distributions po(ε).



5 Two State System Coupled to a Single Quantum

Mechanical Oscillator

The goal in the following is to describe a two state quantum system coupled to a
bath of quantum mechanical harmonic oscillators. We begin with the case that the
bath contains only a single oscillator. Such situation is decribed by the Hamiltonian

Ĥ(s)
qo =

(
Ĥ(s)

r v

v Ĥ(s)
p + E

)
(54)

where

Ĥ(s)
r =

p̂2

2m
+

1

2
mω2q2 (55)

Ĥ(s)
p =

p̂2

2m
+

1

2
mω2

(
q − c

mω2

)2

(56)

denote harmonic oscillator Hamiltonians of the reactant and product states. The
additive energy term E denotes here a shift of the zero energy of the product state
relative to the reactant state, e.g., denotes the redox energy difference between states
AD and A−D+; E will be considered a variable in the following. If one wishes
to describe a process going from the product (A−D+) state to the reactant (AD)
state the sign of E in (54), representing the redox energy difference, needs to be
reversed. This property will be envoked below when we consider both processes, i.e.,
AD → A−D+ and A−D+ → AD.

The eigenstates and eigenvalues of the Hamiltonians (55, 56) are well-known from
elementary quantum mechanics; they are

〈q|n〉(r) = φ(r)
n (q) =

(
λ

π

) 1
4

(2nn!)−
1
2 Hn(

√
λq) e−

1
2
λq2

(57)

ε(r)
n = ~ω(n +

1

2
) (58)

〈q|n〉(p) = φ(p)
n (q) =

(
λ

π

) 1
4

(2nn!)−
1
2 Hn(

√
λ(q − c

mω2
)) e−

1
2
λ(q−c/mω2)2 (59)

ε(p)
n = ~ω(n +

1

2
) (60)

where
λ = mω/~ (61)

and where Hn(y), n = 0, 1, 2 . . . denote the Hermite polynomials. The reactant states
describe an oscillator centered around q = 0, the product state an oscillator centered
around [c.f. (10)]

qo = c/mω2 . (62)



The propagator for the harmonic oscillator is well known. In case of the reactant
state the propagator is

〈q′|e−iH
(s)
r (t−to)/~|q〉 =

[
mω

2iπ~ sinω(t − t0)

] 1
2

× (63)

exp

{
imω

2~ sinω(t− t0)

[
(q′2 + q2) cosω(t− t0) − 2 q′ q

] }
.

This is equivalent to

〈q′|e−iH
(s)
r (t−to)/~|q〉 =

[
λ

2π sinhξ

] 1
2

× (64)

exp

{
− λ

4

[
(q′ + q)2 tanh

ξ

2
+ (q′ − q)2 coth

ξ

2

]}
.

ξ = i ω(t − to) . (65)

In case of the product state, the same expression applies after replacing q → q − qo

and q′ → q′ − qo.
The reactant states (57) are occupied in thermal equilibrium with probability

p(r)
n = xn(1 − x) , x = e−~ω/kT , (66)

a result which is well-known from elementary statistical mechanics. The correspond-
ing equilibrium state density matrix of the reactant state oscillator ρ(r)

o has the matrix
elements [

ρ̂(r)
o

]
mn

= p(r)
n δnm . (67)

The density matrix can also be written

ρ̂(r)
o = 2 sinh (~ω/2kT ) e−H(r)/kT . (68)

The transitions from reactant to product states are induced through the matrix el-
ements v in (54). In case of electron transfer in proteins, the coupling is induced
through electron tunneling between prosthetic groups in the protein. The corre-
sponding energy values v are very small, usually of the order of 10−4 eV. As a result,
reactant states |n〉(r) and product states |m〉(p) couple only when they are essentially
degenerate. The overall rate of transfer from reactant states R to product states P
is then

kqo(R → P ) =
2π

~2
v2Sqo(E) (69)

where

Sqo(E) =
∞∑

n,m=0

p(r)
n |(r)〈n|m〉(p)|2 δ

(
E + ε(p)

m − ε(r)
n

~

)
(70)



is the so-called spectral line shape function.
We seek to express the line shape function (70) in a more compact form. For this

purpose we use the identity

δ

(
E + ε(p)

m − ε(r)
n

~

)
=

1

2π

∫ +∞

−∞
dt eitE/~ e−itε

(r)
n /~ eitε

(p)
m /~ . (71)

Employing the definition of the density matrix (67) one can write (70)

Sqo(E) =
1

2π

∫ +∞

−∞
dt eitE/~

∞∑
n,m=0

(r)〈n| ρ̂(r)
o e−itĤ

(s)
r /~ |m〉(p)(p)〈m| eitĤ

(s)
p /~ |n〉(r) (72)

or, equivalently, using (68)

Sqo(E) =
1

2π

∫ +∞

−∞
dt eitE/~ 2 sinh

~ω

2kT
tr
(
e−Ĥ

(s)
r /kT e−itĤ

(s)
r /~ eitĤ

(s)
p /~

)
. (73)

Expressing the trace as an integral over q′ we conclude that the spectral line shape
function is

Sqo(E) = (74)

1

2π

∫ +∞

−∞
dt eitE/~ 2 sinh

~ω

2kT

∫ +∞

−∞
dq
∫ +∞

−∞
dq′ 〈q′| e−i(t− ~/kT )Ĥ

(s)
r /~|q〉〈q eitĤ

(s)
p /~|q′〉 .

The propagator (64) allows one to evaluate the line shape function (74). One
employs

〈q| eitĤ
(s)
p /~|q′〉 =

[
λ

2π sinhη1

] 1
2

× (75)

× exp

{
− λ

4

[
(q′ + q − 2qo)

2 tanh
η1

2
+ (q′ − q)2 coth

η1

2

]}
.

η1 = − iωt . (76)

and, displacing time into the complex plane to account for the equilibrium (temper-
ature T ) density matrix,

〈q′| e−i(t− ~/kT )Ĥ
(s)
r /~|q〉 =

[
λ

2π sinhη2

] 1
2

× (77)

× exp

{
− λ

4

[
(q′ + q)2 tanh

η2

2
+ (q′ − q)2 coth

η2

2

]}
.

η2 = iωt − ~ω/kT . (78)

Inserting (75–78) into (74) results in the expression

Sqo(E) =
1

2π

∫ +∞

−∞
dt eitE/~

λ sinh
(

~ω
2kT

)
π
√

sinhη1 sinhη2

I(t) . (79)



where

I(t) =
∫ +∞

−∞
dq
∫ +∞

−∞
dq′exp

[
−α (t)(q + q′)2 − β (q + q′ − 2qo)

2 − γ (q − q′)2
]

(80)

α =
λ

4
tanh

η2

2
(81)

β =
λ

4
tanh

η1

2
(82)

γ =
λ

4

(
tanh

η1

2
+ tanh

η2

2

)
(83)

Expression (79–83) for the spectral line shape function played an important role
in the theory of spectral transitions of so-called F-centers in solids as reviewed in [21].
The expression can be further simplified [21]. For this purpose one transforms to new
integration variables u = q + q′ and u′ = q − q′. Noting that for the Jacobian holds
∂(u, u′)/∂(q, q′) = 2, the integral (80) reads

I(t) =
1

2

∫ +∞

−∞
du
∫ +∞

−∞
du′ exp

[
−α (t)u2 − β (u − 2qo)

2
]

exp
[
− γ u′2] . (84)

Completion of the square in the first exponent results in the expression

I(t) =
1

2
exp

[
−4q2

o

(
β − β2

α + β

)]
×

×
∫ +∞

−∞
du′ exp

[
− γ u′2] ∫ +∞

−∞
du exp

[
−(α + β) (u − s)2

]
. (85)

where
s = 2βqo / (α + β) . (86)

Since Re(γ) > 0 and Re(α + β) > 0 the Gaussian integrals can be evaluated in a
straightforward way and one obtains

I(t) =
π

2
√

γ(α + β)
exp

[
−4q2

o

(
β − β2

α + β

)]
. (87)

We note here that this expression and, hence, Sqo(E) do not depend on the sign of
qo. This is to be expected due to the reflection symmetry of the harmonic oscillator
potential. This behaviour implies, however, that a description of a process going from
product states to reactant states does not require a change in the sign of qo, even
though that such change appears to be intuitively necessary.

Using definitions (81–83) and the properties of hyperbolic functions one can show

λ sinh
(

~ω
2kT

)
2
√

sinh(η1) sinh(η2) γ(α + β)
= 1 (88)



One can also simplify the exponent in (87). One obtains

β − β2

α + β
=

λ

4

(
tanh

η1

2
− tanh2 η1

2

tanhη1

2
+ tanhη2

2

)
=

λ

4

tanhη1

2
tanhη2

2

tanhη1

2
+ tanhη2

2

. (89)

Using tanhα + tanhβ = sinh(α+β)/coshα coshβ the latter expression can be further
rewritten

β − β2

α + β
=

λ

4

sinh η1

2
sinh η2

2

sinh(η1

2
+ η2

2
)

=
λ

4

−sinh
(

iωt
2

)
sinh

(
iωt
2

+ ~ω
2kT

)
sinh

(
~ω
2kT

)

=
λ

4

− sinh
(

iωt
2

) [
sinh

(
iωt
2

)
cosh

(
~ω
2kT

)
+ sinh

(
~ω
2kT

)
cosh

(
iωt
2

)]
sinh

(
~ω
2kT

)

=
λ

4

[
sin2ωt

2
coth

~ω

2kT
− icos

ωt

2
sin

ωt

2

]
(90)

which yields

β − β2

α + β
=

λ

8

[
(1 − cosωt) coth

~ω

2kT
− i sinωt

]
(91)

Combining Eqs. (62, 79, 87, 88, 91) results in the final expression

Sqo(E) =
1

2π

∫ +∞

−∞
dt exp

[
itE/~ − c2

2m~ω3
coth

~ω

2kT
(1 − cosωt) + i

c2

2m~ω3
sinωt

]

(92)

We note here that the rate for the reverse process, i.e., for going from the product
state P to the reactant state R, is given by

kqo(P → R) =
2π

~2
v2Sqo(−E) (93)

which differs from (69) solely through the sign of E.
The integral in (92) can be carried out and the line shape function expressed as

a series of regular, modified Bessel functions Ik(x) [21]. The result is

Sqo(E) =
e−Λ(1+2no)

ω

(
no + 1

no

)sj/2 ∞∑
k=−∞

δ (k − s(E)) Ik

(
2Λ
√

no(no + 1)
)

(94)

where Λ = 1
2
mω2q2

o/~ω = c2/2m~ω3 is the so-called reorganization energy in units
of vibrational quanta ~ω, no = e−~ω/kT /(1−e−~ωj/kT ) is the average number of quanta
thermally excited in the oscillator, and s(E) = (E − 1

2
~ω)/~ω counts the number of

oscillator levels up to energy E. The summation in (93) is over integers k such that
one and only one term in the sum contributes anytime that s(E) assumes an integer
value. As mentioned above, expression (93) was originally developed to describe
optical transitions in solids [21]; it was introduced for the description of thermal
electron transfer by Jortner [22, 23].



6 Two State System Coupled to a Multi-Modal

Bath of Quantum Mechanical Oscillators

In case of a two state quantum system coupled to a bath of harmonic oscillators the
Hamiltonian (54–56) above is replaced by

Ĥqb =

(
Ĥr v

v Ĥp + E

)
(95)

where

Ĥr =
∑
j

(
p̂2

j

2Mj

+
1

2
Mjω

2
j q

2
j

)
(96)

Ĥp =
∑
j


 p̂2

j

2Mj
+

1

2
Mjω

2
j

(
qj − cj

Mjω2
j

)2

 (97)

The Hamiltonians Ĥr and Ĥp describe here the same situation as in case of the
Hamiltonian (54–56), except that the coupling is to an ensemble of oscillators which
represent the protein matrix. One can absorb the masses Mj in the definition of the
positions qj of the oscillators such that we assume in the following

Mj = 1 ∀ j . (98)

The eigenstates of the Hamiltonians (96, 97) are denoted by 〈~q|~n〉(r) and 〈~q|~m〉(p),
respectively, where ~q = (q1, q2, . . .)

T collects the coordinates describing the protein
matrix and where ~n = (n1, n2, . . .) denotes the set of quantum numbers nj of the
individual oscillators. We assume that all degrees of freedom of the protein matrix
are harmonic. The eigenstates and eigenvalues are explicitly

〈~q|~n〉(r) =
∏
j

〈qj|nj〉(r,j) =
∏
j

(
λj

π

) 1
4

(2n
j nj!)

− 1
2 Hmj

(
√

λjqj) e−
1
2
λq2

j (99)

ε
(r,j)
~n =

∑
j

~ωj(nj +
1

2
) (100)

〈~q|~m〉(p) =
∏
j

〈qj|mj〉(p,j)

=
∏
j

(
λj

π

) 1
4

(2m
j mj !)

− 1
2 Hmj

(
√

λj(qj − cj

ω2
j

)) e−
1
2
λj(qj−cj/ω2

j )2 (101)

ε(p,j)
n =

∑
j

~ωj(mj +
1

2
) (102)

where
λj = ωj/~ (103)



The overall rate of transfer from reactant states to product states can be written
again in the form

kqb(R → P ) =
2π

~2
v2Sqo(E) (104)

where, according to (70, 71), the line shape function is

Sqb(E) =
1

2π

∫ +∞

−∞
dt eitE/~

∏
j


 ∞∑

nj ,mj=0

p(r,j)
nj

e−itε
(r,j)
nj

/~|(r,j)〈n|m〉(p,j)|2 eitε
(p,j)
mj

/~


 .

(105)
with

p(r,j)
n = xn

j (1 − xj) , xj = e−~ωj/kT , (106)

Each of the factors on the r.h.s. of (105) corresponds to the single respective term in
(72), i.e., to a term which has been evaluated above [c.f. (92)]. Comparision with (92)
allows one then to evaluate (105) as well. This leads to the expression [24, 25, 26]

kqb(R → P ) =
v2

~2

∫ +∞

−∞
dt eitE/~ eiQ1(t)/π~ e−Q2(t)/π~ (107)

where

Q1(t) =
π

2

∑
j

c2
j

~ω3
j

sinωjt (108)

Q2(t) =
π

2

∑
j

c2
j

~ω3
j

coth
~ωj

2kT
[1 − cos(ωjt)] . (109)

One can express the rate for the backward reaction by reversing the sign of E in this
expression [26]

kqb(P → R) =
v2

~2

∫ +∞

−∞
dt e−itE/~ eiQ1(t)/π~ e−Q2(t)/π~ . (110)

A kinetic system with two states R and P is described by the vector ~p(t) =
(pR(t), pP (t))T where the components pR(t) and pP (t) account for the probability to
observe, at time t, the states R and P , respectively. ~p(t) obeys the rate equation

d

dt

(
pR(t)
pP (t)

)
=

( −kqb(R → P ) kqb(P → R)
kqb(R → P ) −kqb(P → R)

)(
pR(t)
pP (t)

)
(111)

which needs to be solved for some initial condition. In the present case we con-
sider a system starting in state R, i.e., the initial condition is ~p(0) = (1, 0)T . The
corresponding solution of (111) is(

pR(t)
pP (t)

)
=

1

kqb(R → P ) + kqb(P → R)

[(
kqb(P → R)
kqb(R → P )

)
+ (112)

+

(
kqb(R → P )

−kqb(R → P )

)
exp {− [kqb(R → P ) + kqb(P → R)]}

]
.



Accordingly, the state R decays with a rate kqb(R → P ) + kqb(P → R) to an
equilibrium mixture of the states R and P , i.e., the relaxation rate krel of the initial
state R, according to (107, 110) is

krel = 2
v2

~2

∫ +∞

−∞
dt cos(−itE/~) eiQ1(t)/π~ e−Q2(t)/π~ . (113)

Since Q1(t), according to (108), is an odd function of t we note that in

eiQ1(t)/π~ = cos(Q1(t)/π~) + i sin(Q1(t)/π~) (114)

the real part is an even function of t and the imaginary part is an odd function
of t. Since, according to (109) Q2(t) and, hence, also exp(−Q2(t)/π~) is an even
function of t, the time integral involving sin(Q1(t)/π~) vanishes and one is left with
the expression [26]

krel =
2v2

~2

∫ +∞

0
dt cos(−itE/~) cos(Q1(t)/π~) e−Q2(t)/π~ . (115)

The result obtained, at first sight, appears to be of little value since evaluation
of the functions Q1(t) and Q2(t), according to (108, 109), requires knowledge of the
quantities c2

j/~ω
3
j for the ensemble of oscillators. Fortunately, it is possible to achieve

the evaluation in case that the spectral density

J(ω) =
π

2

∑
j

c2
j

ωj
δ(ω − ωj) (116)

is known. In fact, one can express

Q1(t) =
∫ ∞

0
dω ω−2J(ω) sinωt (117)

Q2(t) =
π

2

∫ ∞

0
dω ω−2J(ω) coth

~ω

2kT
(1 − cosωt) . (118)

We want to demonstrate in the next section that the density J(ω) can be determined
from molecular dynamics simulations in which the function ε(t) = ∆E[R(t)], as
defined in (29), is monitored. In fact, J(ω) is the spectral density of ∆E[R(t)].

7 From the Energy Gap Correlation Function ∆E[R(t)]

to the Spectral Density J(ω) [2]

In this section we will derive a relationship which connects, in the limit of high
temperature, J(ω) and the auto-correlation function Cεε(t) of the energy gap function,
introduced in Section 4. We start from definition (39) of Cεε(t) and express, according
to (97),

ε(t) = Ĥp − Ĥr + E (119)



where the Hamiltonian operators will be interpreted as Hamiltonian functions of
classical bath oscillators, an identification which holds at high temperatures. One
obtains

ε(t) = − ∑
j

cjqj(t) +
∑
j

1

2
ω−2

j c2
j . (120)

The time average of ε(t) in the reactant state, i.e., for 〈qj〉R = 0, is

〈ε〉R =
∑
j

1

2
ω−2

j c2
j . (121)

In the product state holds 〈qj〉P = cj/ωj and, hence, the corresponding average of
ε(t) is

〈ε〉P = − ∑
j

1

2
ω−2

j c2
j + E . (122)

We want to evaluate now the equilibrium correlation function Cεε(t) for the protein
in the reactant state R. For this purpose we start from the expression

Cεε(t) =
〈 (ε(t) − 〈ε〉) (〈ε(0) − 〈ε〉) 〉

〈ε(0) − 〈ε〉 〉2 (123)

The quantity δε(t) = ε(t) − 〈ε〉 which enters here is, using (121),

δE(t) = − ∑
j

cjqj(t) . (124)

In the high temperature limit the motion of the bath oscillators is described by

qj(t) = Aj cos(ωjt + ϕj) . (125)

The numerator C1(t) of the r.h.s. of (123) can then be written

C1(t) = 〈δε(t) δε(o)〉

=

〈∑
j

cj Ajcos(ωjt + ϕj)




 ′∑

j

cj′ Aj′cosϕj′


〉

=
1

4
〈∑

j,j′
cj cj′ Aj Aj′ [ exp ( i (ωjt + ϕj + ϕj′) ) +

+ exp (−i (ωjt + ϕj + ϕj′) ) + exp ( i (ωjt + ϕj − ϕj′) ) +

+ exp (−i (ωjt + ϕj − ϕj′) ) ] 〉 (126)

where the initial phases ϕj and ϕj′ are uniformly distributed in the interval [0, 2π).
In carrying out the averages in (126) we follow Rayleigh [27, 28] and note that for

the averages over the phases holds

〈 exp ( i (ϕj + ϕj′) ) 〉 = 0 ; 〈 exp ( i (ϕj − ϕj′) ) 〉 = δjj′ . (127)



This yields

C1(t) =
1

2

∑
j

c2
j 〈A2

j 〉 cos ωjt . (128)

Using the well-known fact that the average energy of a harmonic oscillator is kBT ,
i.e.,

1

2
ω2

j 〈A2
j〉 = kB T , (129)

one concludes

C1(t) =
N∑

j=1

c2
j

kBT

ω2
j

cos ωjt . (130)

This can be expressed, employing the definition (116) of J(ω),

C1(t) =
2kBT

π

∫ ∞

0
dω

J(ω)

ω
cos ωt . (131)

Noting C(t) = C1(t)/C1(0) one obtains finally

Cεε(t) =

∫∞
0 dω J(ω)/ω cos ωt∫∞

0 dω J(ω)/ω
, (132)

a relationship which has been stated before [29, 30].
We want to express J(ω) through Cεε(t). Fourier’s theorem yields

2

π

∫ ∞

0
dt cos ωt

[ ∫ ∞

0
dω′ J(ω′)

ω′ cos ω′t

]
=

J(ω)

ω
(133)

and, hence, one can state

J(ω)

ω
=

2

π

[ ∫ ∞

0
dω

J(ω)

ω

] ∫ ∞

0
dt Cεε(t) cos ωt . (134)

The integral
∫∞
o dωJ(ω)/ω can be expressed in terms of the variance σ2 = 〈ε2〉 −

〈ε〉2. For this purpose we consider first a subset of Nj bath oscillators with identical
frequencies ωj . We designate these oscillators by a second (beside j) index α. δE(t),
according to (124), is

δE(t) = − ∑
j

∑
α

cjα Ajα cos (ωjt + ϕjα) . (135)

In this expression appear the quantities

Ujα = cjα Ajαcos (ωjt + ϕjα) (136)

Uj =
∑
α

Ujα (137)



which will be characterized further; specifically, we seek to determine the distribution
of Uj .

The distribution of the quantity (137) for oscillators in thermal equilibrium has
been provided by Rayleigh [27, 28]. Following his procedure one notes

Uj =
∑
α

cjα Ajα cos (ωjt + ϕjα)

= cos (ωjt)
∑
α

cjα Ajα cos ϕjα − sin (ωjt)
∑
α

cjα Ajα sinϕjα

= γj cos (ωjt + ϑj ) (138)

where

γj =

√√√√(∑
α

cjα Ajα cos ϕjα

)2

+

(∑
α

cjαAjα sinϕjα

)2

(139)

tanϑj =

(∑
α

cjαAjα sinϕjα

) / (∑
α

cjαAjα cos ϕjα

)
. (140)

Rayleigh has shown [28] that γj and ϑj are randomly distributed for large Nj . The
distribution pj(γj) of γj is

pj(γj) =
2

δ2
j

γj exp

(
−γ2

j

δ2
j

)
, δj =

∑
α

c2
jα A2

jα . (141)

The distribution of the phase angles ϑj is immaterial as the derivation below will
show. According to the above calculations Uj behaves like a single oscillator with
randomly distributed amplitudes γj and randomly distributed phases ϑj .

Let us consider now a particular oscillator of this ensemble, described by fixed γj

and ϑj ,
Uj(t) = γj cos (ωjt + ϑj) . (142)

Sampling such Uj(t) at many time points t = t1, t2, . . . leads to a distribution [31]

p̂j(Uj) =




1

π
√

γ2
j −U2

j

for Uj ≤ γj

0 for Uj > γj .
(143)

For a large ensemble of oscillators with a distribution of γj and ϑj values as described
above the distribution of Uj can be determined now in a straightforward way. For
the oscillator (142) all ensemble elements with γj ≥ Uj contribute. The distribution
p̃(Uj) for the whole ensemble of bath oscillators is, therefore,

p̃(Uj) =
∫ ∞

Uj

dγj pj(γj) p̂j(Uj)

=
∫ ∞

Uj

dγj
2

δ2
j

γj exp

(
−γ2

j

δ2
j

)
1

π
√

γ2
j − U2

j

. (144)



The integral can be evaluated analytically. For this purpose we introduce the variable
y = γ2

j − U2
j . Using ∫ ∞

0
dy

1√
y

e−λy =

√
π

λ
(145)

one obtains

p̃(Uj) =
1√
πσ̃2

exp

(
−U2

j

σ̃2
j

)
, (146)

i.e., a Gaussian distribution.
According to (135–137) holds δE =

∑
j Uj. Since each of the terms in this sum

is Gaussian–distributed, the distribution of δE is Gaussian as well, namely,

p(δE) =
1

2πσ2
exp

(
−(δE)2

2σ2

)
(147)

σ2 =
1

2

∑
j

σ2
j =

1

2

∑
j,α

c2
jα A2

jα . (148)

In the classical, i.e., high temperature, limit holds at equilibrium

σ2 =
1

2

∑
j,α

c2
jα 〈A2

jα〉 =
1

2

∑
j,α

2 kB T

ωj

2

c2
jα (149)

where we have used (129). One can then express the sum over the coefficients c2
jα

through J(ω) using the definition of the latter, i.e., (116), and, hence, one can con-
clude

σ2 =
2kBT

π

∫ ∞

0
dω

J(ω)

ω
. (150)

We can finally provide the desired expression of J(ω). Employing (150) in (134)
yields

J(ω)

ω
=

σ2

kB T

∫ ∞

0
dt C(t) cos ωt . (151)

Accordingly, J(ω) can be determined from a molecular dynamics simulation which
records the fluctuations of ε(t) = ∆E[R(t)] and determines then the energy gap
correlation function (123). In case that the gap correlation function obeys a simple
exponential decay (41) one can evaluate (151) further and obtains

J(ω)

ω
=

η ω

1 + ω2τ 2
, η =

σ2τ

kBT
, (152)

a form of J(ω) known as the Debey function.



8 Evaluating the Transfer Rate[2, 3]

We want to discuss now the evaluation of the relaxation rate krel. The evaluation is
based on Eqs. (115, 117, 118) and requires knowledge of the spectral density J(ω)
given by (152). For this purpose the material properties σ, τ and 〈ε〉 are required
as determined through a molecular dynamics simulation. Typical values of σ and
τ are 3.9kcal/mol and 94 fs, determined for electron transfer at T = 300 K in the
photosynthetic reaction center in Rhodopseudomonas viridis [1]. The value of 〈ε〉 is
difficult to determine precisely and one may rather determine the rate krel as a func-
tion of E and shift krel(E) along the energy axis according to available experimental
information. krel(E), at physiological temperatures, assumes a maximum value for a
given E–value and one may argue that in a given protein the rate process has been
optimized through adapting the additive contributions 〈ε〉 and redox energy difference
E.

In case of J(ω), given by the Debye function (152), one can determine Q1(t)
defined in (117)

Q1(t) =
∫ ∞

0
dω

η sinωt

ω ( 1 + ω2τ 2 )
=

ηπ

2

[
1 − exp

(
− t

τ

) ]
(153)

Using 1 − cosωt = 2 sin2(ωt/2) one can write (115)

krel(E, T ) =
(

2v

~

)2 ∫ ∞

0
dt cos

(
Et

~

)
cos

[
η

2~

(
1 − e−t/τ

) ]
×

× exp


−2η

π~

∫ ∞

0
dω

sin2
(

ωt
2

)
ω ( 1 + ω2τ 2 )

coth

(
β~ω

2

)
 . (154)

To simplify this expression we define x = t/τ , y = ωτ , and γ = η/h which yields

krel(E, T ) =
(

2V

~

)2

τ
∫ ∞

0
dx cos

(
Eτ

~
x
)

cos
[
γπ

(
1 − e−x

) ]
×

× exp


−4γ

∫ ∞

0
dy

sin2
(

xy
2

)
y ( 1 + y2 )

coth
(

~

2kBτ
· y

T

) . (155)

A typical numerical value for V/~ is 5 ps−1 [1].
A straightforward numerical evaluation of (155) is time consuming since it involves

a double integral. One can use a more convenient, albeit approximate, expression for
the exp[· · ·] factor in the integrand of (155). We define for this purpose

q2(x) =
∫ ∞

0
dy

sin2
(

xy
2

)
y (1 + y2)

coth (αy) , α =
~

2kBτT
. (156)



As demonstrated in [2], q2(x) is a monotonously increasing function of x. The main
contribution to (156) stems from the region of small x. One may employ an expansion
of q2(x) which holds for small x

q2(x) ≈ x2

4
[ f(α) − lnx ] (157)

where

f(α) =
∫ ∞

0

y dy

1 + y2
[coth(αy) − 1] . (158)

Since q2(x) is E–independent one can use the same numerical approximation for all
E–values considered. Hence, for a given temperature obtaining k(E, T ) at all different
E values requires one to evaluate q2(x) only once. Then (155) is evaluated using

kappr(E, T ) =
(

2V

~

)2

τ
∫ ∞

0
dx cos

(
Eτ

~
x
)

cos
[
γπ

(
1 − e−x

) ]
e−4γq2(x) (159)

with q2(x) given by (157, 157).

High Temperature Limit In the limit of high temperature the expression (115)
of the electron transfer rate can be evaluated by the method of steepest descent.
This approximation is based on a quadratic expansion of Q2(t) around its minimum
at t = 0. The procedure requires one to determine the quantity

µ =
d2

dt2
Q2(t)

∣∣∣∣∣
t=0

(160)

The expression for Q2(t) in (154) yields

µ =
∫ ∞

0
dωJ(ω) coth

(
β~ω

2

)
. (161)

Unfortunately, for many choices of J(ω) this expression diverges and the steepest
descent method cannot be applied. However, we note that the divergence of (161)
is due to ω → ∞ contributions to the integral over J(ω). Since the number of
modes in a protein are finite, the divergence in (161) is due to an artificial analytical
form of J(ω). If one would assume a cut-off frequency ωc, i.e., replace J(ω) by
J(ω) θ(ω − ωc), a divergence would not arise in (161). One may, hence, assume that
the second derivative (160) actually exists, approximate

Q2(t) ≈ 1

2
µ t2 , (162)

and employ this in a steepest descent method.



At a sufficiently high temperature, contributions to the integral in (115) arise only
in a vicinity of t = 0 where (162) is small. In this case, one can approximate Q1(t)
in (154) linearly around t = 0

Q1(t) ≈ ν t ; ν =
d

dt
Q1(t)

∣∣∣∣∣
t=0

(163)

where

ν =
∫ ∞

0
dω

J(ω)

ω
. (164)

By using the approximations (162) and (163) in (115), if E is not close to 0, one
obtains [32, 33, 2]

krel(E, T ) ≈ 2πV 2

~

1√
2πδ2

exp

[
−(E − Em)2

2δ2

]
. (165)

where

δ2 =
~µ

π
=

~

π

∫ ∞

0
dω J(ω) coth

(
β~ω

2

)
(166)

Em =
ν

π
=

1

π

∫ ∞

0
dω

J(ω)

ω
. (167)

At a high enough temperature, i.e., for T > 100 K, according to our numerical
calculations, one can show further [2]

δ = σ ; Em =
σ2

2kBT
. (168)

According to (167), Em is actually temperature independent. Hence, one can rewrite
(165) into a form which agrees with the rate as given by the classical Marcus theory

kM(ε, T ) =
2 π V 2

~

1√
2πfkBTq2

o

exp

[
−(ε − 1

2
fq2

o)
2

2kBTfq2
o

]
(169)

where

f q2
o = 2 εm =

σ2

kBT

∣∣∣∣∣
T=300K

. (170)

Low Temperature Limit At low temperatures, one can employ (158) for α =
~/2τkBT → ∞, to approximate q2(x) further. It can be verified

lim
α→∞ f(α) =

π2

12α2
. (171)



The value of the integral in (159) results mainly from contributions at small x. Ac-
cordingly, at low temperatures one can assume the overall integrand to be dominated
by the interval in which γπ2x2 /12α2 is small. Therefore, one can apply (157) to
expand the exponential part of (159),

e−4γq2(x) = exp

(
γx2 lnx − γπ2x2

12α2

)
(172)

= exp ( γx2 lnx )


 1 −

(
γπ2x2

12

) (
2kBτT

~

)2

 .

Then the electron transfer rate at T → 0 can be expressed

k(E, T ) ≈ k(E, 0) − k1(E)

(
2kBτT

~

)2

, (173)

where

k1(E) =
(

2V

~

)2

τ
∫ ∞

0
dx cos

(
Eτ

~
x
)

cos
[
γπ

(
1 − e−x

) ] (
−γπ2x2

12

)
exp ( γx2 lnx ) .

(174)
From (173), one concludes that at low temperatures, the electron transfer rate is
actually changing very slowly with temperature. This behavior has been found in
many observations [34, 35].

Results In Fig. 2 we present calculated electron transfer rates krel(E, T ) as a func-
tion of the redox energy difference E for temperatures T = 10 K and T = 300 K,
and compare the results to transfer rates predicted by the Marcus theory, e.g., by
Eq. (169, 170). One can observe that at physiological temperatures, the rate evalu-
ated from the Marcus theory in a wide range of E–values, agrees well with the rate
evaluated from the spin–boson model at T = 300 K, a behavior which is expected
from the high temperature limit derived above. However the Marcus theory and the
spin–boson model differ significantly at T = 10 K. At such low temperature the rate
as a function of E for the spin–boson model is asymmetrical. This result agrees with
observations reported in [36] which show a distinct asymmetry with respect to Em

at low temperatures. Such asymmetry is not predicted by the models of Marcus and
Hopfield [37, 38, 39].

If one makes the assumption that biological electron transfer systems evolved their
E-values such that rates are optimized, one should expect that electron transfer rates
in the photosynthetic reaction center are formed through a choice of E → Emax, such
that k(Emax) is a maximum. In Fig. 3 we present corresponding maximum transfer
rates, k(Emax) as well as k(E, T ) for non-optimal values of E = Em ± δ, where δ =
2.5 kcal/mol. Experimental data of electron transfer processes in the photosynthetic
reaction center show increases similarly to those presented in Fig. 3 [40, 41, 42,
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Figure 2: Comparison of electron transfer rates k(ε, T ) shown as a function of ε evaluated
in the framework of the spin–boson model (solid lines) and by Marcus theory (dashed lines)
at temperatures 10 K and 300 K. The functions are centered approximately around εm.
From [3].

35]. However, Fig. 3 demonstrates also that electron transfer at E-values slightly
off the maximum position can yield a different temperature dependence than that
of k(Em, T ), namely temperature independence or a slight decrease of the rate with
decreasing temperature. Such temperature dependence has also been observed for
biological electron transfer [35]. As Nagarajan et al. reported in [35] the temperature
dependence of the transfer rate resembles that of k(Em, T ) in photosynthetic reaction
centers of native bacteria and in (M)Y210F-mutants with tyrosine at the 210 position
of the M–unit replaced by phenylalanine. However, a replacement of this tyrosine by
isoleucine [(M)Y210I-mutant] yields a transfer rate which decreases like k(Em − δ, T )
shown in Fig. 3. This altered temperature dependence should be attributed to a shift
of the redox potentials, i.e., Em → Em − δ.

The combination of simulation methods and analytical theory outlined in this
lecture has proven to be a promising approach to describe redox processes in proteins.
Neither approach by itself can be successful since, on the one hand, proteins are too
heterogeneous and ill understood to be molded into simple models, on the other
hand, simulation methods are blind, leaving one with too much information and as
a result, with none. The present example, connecting a single simulated observable,
the medium redox energy contribution ∆E(t), with a model of the quantum system,
avoids superfluous or undetermined parameters and can be extended readily to other
curve crossing processes in proteins. We like to mention, finally, that there have been
numerous similar investigations of biological electron transfer [43, 44, 45, 46].
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A Numerical Evaluation of the Line Shape Func-

tion

We want to provide here an algorithm for the evaluation of the line shape function
(46). The algorithm suggested is based on an expansion in terms of the right [(u|m〉]
and left [〈ñ|u)] eigenfunctions of the operator L = D ∂u p0(u) ∂u [p0(u)]−1 given in
the Fokker-Planck Eq. (42). These eigenfunctions are in the present case

(u|n〉 =
1√
π

2−n

n!
e−u2

Hn(u) , 〈m̃|u) = Hm(u) (175)

where Hm denotes the Hermite polynomial. We assume in the following σ = 1,
i.e. measure u in units of σ and D in units of σ−2. In general, the eigenfucjtions
and eigenvalues of the stochastic operator are not available in analytical form and



an evaluation of the line shape function is based on discretization of the coordinate
u and of the operator L. The eigenfunctions form a bi-orthogonal system [47] , i.e.,
defining 〈m̃|n〉 = int+∞

−∞du\m|u) (u|n〉, the following property applies

〈m̃|n〉 =
1√
π

2−n

n!

∫ +∞

−∞
du Hm(u)e−u2

Hn(u) = δmn . (176)

One can show that the function spaced spanned by the eigenfunctions is complete,
i.e., any element of {f(u), u ∈ ] − ∞,∞[, f continuous} can be expanded. The
eigenvalues of L follow from the property [47]

L|n〉 = −2mD|n〉 , 〈m̃|L† = −2mD〈m̃| . (177)

According to [47] holds

(u|n + 1〉 = 2u(u|n〉 − 2n (u|n − 1〉 , 〈m̃|u|n〉 =
1

2
δmn+1 + nδmn−1 . (178)

From this and Eq. 177 we obtain

〈m̃|i(u − u′) − L|n〉 = (2nD − iu′)δmn +
i

2
δmn+1 + i nδmn−1 ≡ Bmn(u′) (179)

where B is an infinite-dimensional, tri-diagonal matrix. Obviously

(u|0〉 = po(u), 〈0̃|u) = 1 (180)

Equation (46) yields then

I =
1

π
Re

[
B−1(u′)

]
00

. (181)

In order to evaluate [B−1(u′)]00 we start from

(
1 0 . . .

)
B−1(u′)




1
0
...


 =

[
B−1(u′)

]
00

(182)

which can be written as


1
0
...


 = B(u′)




y0

y1
...


 , y0 =

[
B−1(u′)

]
00

. (183)

The latter equation together with Eq. (179) can be written in matrix notation


−iu′ i
2

0 . . .
i 2D − iu′ i

2
0 . . .

0 2i 4D − iu′ i
2

0 . . .
...

. . .
. . .

. . .
. . .

. . . . . .
0 . . . 0 2ni 2nD − iu′ i

2
. . .

...
... . . .

. . .
. . .

. . .
. . .







y0

y1

y2
...

yn
...




=




1
0
0
...
0
...




(184)



For the numerical solution a finite dimension N = 2000 is assumed for the matrix B.
The ensuing problem has been discussed in [48], albeit for a real matrix B. The

use of a finite-dimensional matrix B can only be justified for u′ � N .
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