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We investigate how electron transfer is controlled by protein motion in photosynthetic reaction centers. Our study is based on
molecular dynamics (MD) simulations of two electron transfer steps in the reaction center of Rps. viridis at physiological and at
lower temperatures. The classical simulations of protein nuclear motions are complemented by a quantum mechanical description
for the electron transfer, incorporating in a two-state model a coupling to the classical protein motion through a fluctuating
diagonal contribution which is determined as the energy difference AE(¢) between reactant and product states at each instance of
time. The properties of AE(1). the distribution p(AE) and correlation function (AE({+1)AE(7)), are investigated and a sto-
chastic quantum mechanical model for electron transfer is introduced that incorporates three characteristics of AE(¢), namely its
mean value, its rms-deviations from the mean, and the mean relaxation time of its correlation function. The calculations which
go beyond second-order perturbation theory predict a bell-shaped dependence of the electron transfer rate on redox energies with
a so-called inverted region and with a width of about 20 kcal/mol (about 10 kcal/mol for the stochastic model ). Rapid (0.05 ps)
dielectric relaxation after electron transfer induces a shift of the mean (AE) which causes reactant and product states to become
sufficiently out of resonance and which, thereby, prevents electron back-transfer. It is shown that all components of photosyn-
thetic reaction centers contribute rather evenly to the coupling between electron transfer and medium.

1. Introduction
1. 1. Properties of photosvnthetic reaction centers

Within photosynthetic organisms, membrane-bound protein-pigment complexes - the photosynthetic reac-
tion centers — perform the primary process of photosynthesis, the transformation of light energy into an electri-
cal membrane potential. In a reaction center, energy conversion is initiated by photo-excitation of a primary
donor followed by electron transfer steps which yield a pair of negative and positive charges separated across
the width of a cell membrane (for reviews see refs. [1-3]). Reaction centers of purple photosynthetic bacteria
of Rb. sphaeroides [4-6] and Rps. viridis [ 7-9 ], whose structures are available at high resolution, provide ideal
systems to study photo-induced charge separation. For the reaction center of Rps. viridis, the cofactors involved
in the conduction of the photo-excited electron and the electron transfer kinetics [ ,2,10] are depicted in fig. 1.
A photon excites a bacteriochlorophyl dimer, the so-called special pair (Ps), which then rapidly transfers an
electron to a bacteriopheophytin Hy, possibly via bacteriochlorophyl B, [11,12]. In a second step, an electron
is transferred to a menaquinone Q, (a ubiquinone in Rb. sphaeroides) and, in a third step, to a ubiquinone Q.
This electron transfer chain is optimized to achieve a high quantum vyield, i.e., absorption of a photon results
with very high probability in the reduction of Qg [13]. This chain is optimized also for high energy efficiency,
although to a lesser degree than for high quantum yield [14].

An essential feature of electron transfer in the photosynthetic reaction centers is its peculiar temperature
dependence. Fleming et al. [15] measured the rate of the electron transfer Ps—H, as they lowered the temper-

0301-0104/91/% 03.50 © 1991 Elsevier Science Publishers B.V. All rights reserved.



422 K. Schulten, M. Tesch / Coupling of protein motion to electron transfer

K

i,

Fig. 1. Cofactors of the reaction center of Rps. viridis without
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and Hy, of the so-called “non-functional branch” do not partici-
pate in the electron transfer processes.

ature from 300 down to 8 K, and found the electron transfer rates to increase in both reaction centers. At 8 K,
the rate in Rps. viridis is a factor of four larger than the rate at room temperature; in Rb. sphaeroides the rate is
twice as large. Kirmaier and Holten [16] determined the rates for the electron transfer H, - Q4. The rate is
temperature-independent in Rps. viridis; in Rb. sphaeroides, the rate at 5 K is three times larger than the rate at
room temperature.

Of interest is also the dependence of transfer rates on the redox energies of donor—-acceptor pairs involved in
the transfer chain. Two experiments show how electron transfer rates change when the redox energies of the
donor-acceptor pair are altered. Kirmaier et al. [17] replaced the native H, by a bacteriochlorophyl, a replace-
ment which changed the redox energy by about 0.1 eV. Such genetically engineered reaction centers show the
following behavior: (1) the electron transfer Ps—H; is slowed down insignificantly; (2) the quantum yield for
P¢ Hi formation is the same as for the wild type reaction center; (3) the charge recombination to the ground
state is about ten times faster than in the wild-type reaction center; (4) the reduction of Q, is about three times
slower than in the wild type; and (5) as a result of (3) and (4) the quantum yield for P Qx5 formation de-
creases to about 60%. In another set of experiments investigating the transfer H; —Q,, Gunner and Dutton [ 18]
replaced the menaquinone Q,4 by other quinones, varying the redox energies in a range of about 0.4 eV. These
authors observed a rather weak dependence of the rate on temperature and redox energy.

1.2. Previous simulations

The availability of high-resolution structures allows investigations of photosynthetic reaction centers at a mo-
lecular level. For example, by molecular dynamics (MD) simulations Treutlein et al. [14] and Creighton et al.
[19] simulated the dynamics of the primary charge separation process. Warshel et al. [20] calculated the tem-
perature dependence of the rate for the transition HT Q. =H_Qx by “dispersed polaron” simulations assuming
that the characteristics of the system, i.e., structure and free energy envelope, are independent of temperature.
In the present paper, we extend these studies and examine systematically the role of the thermal motion of the
atoms in the photosynthetic reaction center of Rps. viridis on the electron transfers Ps—H; and H; - Q..

1.3. Similarity to electron transfer in liquids
We like to emphatically suggest that our study is not only relevant for biological redox processes, but actually

for any electron transfer process in organic media which have recently received much attention in a variety of
studies [21-24]. The reason is that the photosynthetic reaction center, in many respects, behaves like an organic
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liquid in that the bulk of its atoms are coupled through their partial charges and through long-range Coulomb
forces to its redox processes. This “liquid”, however, has a particular (and well-known ) structure which bears
the important advantage that it can serve as a proper starting point for MD simulations. The covalent bonding
of the protein, deviant from properties of real liquids, does not affect very much the dynamics on the time scales
relevant to the primary electron transfer processes in photosynthetic reaction centers.

One may criticize that MD simulations are based on artificial force fields and that quantitative agreement
with the real system is limited. We like to claim that even if this critique to some degree applies, the simulated
protein system provides an interesting medium and electron transfer system in its own right, one for which every
detail is under numerical control, and understanding electron transfer in a simulated protein should be of nearly
as much interest as understanding electron transfer of, say, pyrene-dimethylaniline in methanol. A reason is that
the effect of the environment on electron transfer is transmittel between medium and donor-acceptor system
through Coulomb forces, which are actually rather faithfully presented in simulations. The simulations can shed
light on some essential aspects of electron transfer theories which, so far, have been largely phenomenological in
that they provide a microscopic description for some of the properties employed in these theories. Prime ex-
amples, in this respect, are the so-called solvent polarization coordinate and the “diffusion constant” describing
Brownian motion along this coordinate as introduced, for example, by Sumi and Marcus [25].

1.4. Spin-boson formulation of electron transfer-medium coupling

The present paper can be considered only a first step towards understanding the coupling between medium
and electron transfer in the photosynthetic reaction center since we treat the atomic motion of the reaction
medium classically, a treatment which is valid only in the high-temperature limit — a limit which, most likely,
applies rather well at physiological temperatures at which the protein carries out its biological function. In an
accompanying paper [26] we investigate the role of quantum effects of the protein nuclear motion and show
that these effects indeed play a small role at 7=300 K.

The simulations presented below suggest that the role of atomic motion of the medium (protein) on electron
transfer can be cast in the form of the approximate Hamiltonian

2
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Here, #' describes a Hamiltonian which governs the electron transfer. This Hamiltonian depends on the energy
difference AE between reactant and product electronic states which is given by

AE(1)=AEg+ 3 ca(qa(t) —Goa) - (2)

The simplest form of the Hamiltonian #” is that of a two-state operator expressed in terms of the Pauli matrices
o, and g;

€ o AE(1)
27 2

H'=Vo,+ o;, (3)
where 1 describes the electronic coupling and € can be interpreted as a redox energy. The second term in the
Hamiltonian describes an ensemble of independent oscillators which are coupled to the electron transfer (ap-
proximately) linearly through AE(?), i.e., displacements of the oscillators alter the energy difference between
reactant and product states. The oscillators which represent vibrational and librational motions may be subject
to frictional forces as described in ref. {27]. The frequencies w, which contribute to eq. (1) are of the order of
10-100 ps~'. Egs. (1-3) define the so-called spin-boson problem of quantum mechanics which has been stud-
ied exhaustively in ref. [28]. A similar Hamiltonian has been investigated by Onuchic [29]. The Hamiltonian
in ref. [29] differed from egs. (1-3) in that the author incorporated a dependence of the equilibrium position
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Goo ON the electronic state replacing gou by goa0s. In the spirit of the Born-Oppenheimer approximation we adopt
in our simulations the view that the medium is too inert that even though, in principle, it is coupled to the
electronic state, the medium cannot adapt to virtual transfers, like electron tunneling. Hence, we consider only
Hamiltonians which are either in the reactant form, like eq. (1), or in the product form, like eq. (5) below. An
adaptation of the medium to momentaneous electronic states in terms of a centroid approximation (for the
electron part) in the framework of a path integral description has been developed and investigated in refs.
[30,31].

In the limit k7> fiw,,, ¥ ¢, the ensemble of oscillators can be described classically and AE(¢) can be obtained
from a classical simulation of the atomic motion of the medium. The properties of such AE(¢) will be investi-
gated below. The Fourier spectrum AE(w) of AE(t) reveals the distribution of frequencies w, since, according
to eq. (2), the spectrum can be written

AE(0) =Y Cadad(w—0y) , (4)

where A, are the respective vibrational amplitudes, the thermal average of which measures classically
J2kT/mw2. Our simulations below determine AE (w) and, thereby, allow one to estimate the distribution of
frequencies w,. One can then estimate very roughly the low-temperature behavior assuming zero point vibra-
tions of the oscillators in eq. (1). The zero point vibrations, even at very low temperature, give rise to a (static)
distribution of AE(¢) values. This indicates that the medium in a quantum mechanical description will sustain
an effect on electron transfer at low temperatures at which classical simulations yield vanishing amplitudes A,
and, hence, vanishing coupling. To appreciate this argument one should note that the long range of the Coulomb
force couples essentially all atomic partial charges to electron transfer, such that the combined effect of zero
point vibrations can be significant. Counteracting in this respect are, however, cancellations of the coupling due
to charge neutralization. Our simulations below reveal, however, that despite such cancellations a coupling AE(¢)
remains which increases significantly with the volume of the medium.

A quantum mechanical calculation based on a spectral function J(@) =42, (C%/MyWa)d(wW—w,) Which
reproduces the key characteristics of our classical simulation, i.e., the distribution p(AE) and the relaxation
time of the correlation function (AE(¢)AE(0) ), has been completed recently [26].

In the accompanying paper [26] we will employ the spin-boson model and evaluate the ensuing electron
transfer rates in the temperature range 0-300 K to demonstrate the effects of zero point vibrations and the
deviation from classical behavior.

1.5. Spin-boson model and dielectric response to electron transfer

At this point we may paraphrase, in the framework of the Hamiltonian (1), another essential result of this
paper, namely, that electron transfer in the photosynthetic reaction center is followed by a very rapid (0.05 ps)
dielectric relaxation of the medium. This relaxation corresponds to a change of the equilibrium positions gon 0f
the oscillators in eq. (1), i.e., after the transfer the Hamiltonian is

1 &
%”:(AE()‘{'Z Ca(Qa_q’0a)>+z(Emwi(qa—qba)2+ —.;Ln;) ©)

This description can be interpreted quite literally: the long-range Coulomb interaction exerts an influence on
the medium after electron transfer, shifting the equilibrium positions of modes (goa —g0q ) slightly and rapidly.
A suggestion to this effect had been made by Onsager [32]. A corrollary of this description is that the relaxation
should proceed very rapidly in the bulk, and proceed even at very low temperatures, since small shifts
Joa — Ge d0 NOt create barriers and involve equilibration times of only a few vibrational periods. Such behavior
is born out of our MD simulations presented below. Our simulations provide a molecular description of the



K. Schulten, M. Tesch / Coupling of protein motion to electron transfer 425

dielectric relaxation and, hence, complement earlier studies on continuum models. The need for such descrip-
tions had been advocated, for example, in ref. {24].

1.6. Relationship of spin-boson model to Marcus theory of electron transfer

We like to draw finally the analogy between the description of electron transfer in terms of the Hamiltonians
(1,5) and the existing theories of electron transfer. The analogy is actually very close and can be drawn using
the well-known [33,34] Marcus free energy diagram depicted in fig. 2. In drawing this diagram one assumes
that the energies of reactant and product states depend on a solvent polarization coordinate g in the form

Er(q)=1ifq*, Ee=3ifg—gp)*—¢, (6)

where g encompasses the nuclear configurations and, hence, the polarization of the medium (we disregard pres-
ently intramolecular degrees of freedom ).

The medium undergoes thermal fluctuations which correspond to a Brownian motion along the medium po-
larization coordinate in fig. 2, described by a time series of g(z) values. An approach based on such a description
has been investigated in refs. [25,35]. The quantity in fig. 2 which controls the quantum mechanical transition
between reactant and product states is the energy difference AE(¢) =Eg[q(¢) ] — Ep[4(?)] which can be expressed

AE(t)=fgpq(1) + € —3fap (7)

i.e., as a linear function of the medium polarization coordinate.

Before transfer the time series g(¢) is distributed according to the Boltzmann weight p(q) =exp[—Er(q)/
kT], and after transfer according to p(q) =exp[—Ep(q)/kT]. According to eq. (7) AE(t) is then Gaussian-
distributed, however, with different distributions before and after the transfer. Our simulations below reproduce
such behavior for AE(¢). The Gaussian shape is actually to be expected in a protein or any other large system,
namely, as argued in ref. [36] due to the central limit theorem. The simulations allow one to state then that the
potentials Eq (¢) and Ep(q) can be chosen harmonic, actually with identical force constants f'since the widths
of the Gaussian distributions of AE(7) before and after transfer are very close.

An analysis of AE(¢) resulting from MD simulations shows that eq. (7), according to eq. (2), arises through
thermal excitations of low-frequency modes of the protein, the coupling being due to charge displacements as-
sociated with these modes. An important attribute of this result is that the number of modes coupled to electron
transfer due to the long range of the Coulomb force is very large and, hence, large AE(¢) values can arise through
many small additive contributions without any individual mode exhibiting nonlinearities. This feature has at-
tracted much attention and is discussed in ref. {37]. Another important result of our simulations is that the
phenomenological properties assumed in stochastic descriptions like in refs. {25,35] are provided here from
microscopic principles.

An example for the value of microscopic descriptions is the resulting interpretation of the solvent polarization

AE(1)

potential energy
>

Fig. 2. Sketch of free energy curves before (Ex) and after (Ep)
electron transfer as a function of a schematic one-dimensional
protein conformational coordinate g. The reorganization energy

0 9 9 2 [49] as well as the energy difference AE(¢) for a particular g(?)
protein conformation q are indicated.
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coordinate in fig. 2. In our simulations this coordinate represents the configurations of atomic partial charges in
the protein. The simulations revealed that a single coordinate suffices to characterize the underlying multi-
dimensional space since the quantity relevant for the medium-electron transfer coupling is actually scalar, namely
the energy AE(t) (see egs. (1,2)). The solvent polarization coordinate g serves merely as a parameter to rep-
resent the random occurences of AE ().

A systematic study of the low-temperature limit along the line suggested by the Hamiltonian (1-3) can be
carried out following the analysis of the spin-boson problem by Legget et al. [28]. This is the subject of the
accompanying paper [26] which uses the present investigation to determine the suitable spin-boson Hamilto-
nian (1-3). The present paper establishes the properties of the medium coupling only in the classical, i.e., high-
temperature, limit, however, in this limit agrees with the results reported in ref. [26].

1.7. Overview

We like to outline briefly the contents of this paper. The methods employed for our MD simulations are
described in section 2. The theory which describes the coupling of electron transfer and protein motion in terms
of a two-state quantum system which experiences a diagonal perturbation through the surrounding protein is
presented in section 3. This section introduces as an essential mathematical tool for the study of stochastic
quantum systems the line shape formalism [38,39] which provides a useful and transparent representation of
the relationship between medium properties and electron transfer. It should be stressed that the approach used
goes beyond the second-order perturbation methods employed in most other investigations. The results of our
simulations and of the quantum mechanical description of electron transfer are presented in section 4. We con-
clude the paper with a summary in section 5.

2. Simulations

MD simulations were carried out using the program X-Plor/Charmm [40,41]. Our simulations are based on
the X-ray structure of the photosynthetic reaction center of Rps. viridis [7-9]. The large size of the reaction
center defies simulations over time periods as long as required for the present study. Therefore, we employed
the stochastic boundary method [42,43] to confine the simulation to a subset of the reaction center. Our setup
of the stochastic boundary and equilibration of the system are described in refs. {44,14]. The simulated region
contained about 5800 of the 12637 reaction center atoms including all cofactors shown in fig. 1. To take into
account electrostatic interactions between atoms inside the simulated sphere and charged residues in a shell
from 29 to 37.5 A, we adopted the extended stochastic boundary method as described in ref. [14]. 74 water
molecules, discernable in the X-ray structure, were described by means of the TIP3 model. For Coulomb and
van der Waals interactions, we employed in our simulation a cutoff radius r.,,= 10 A. We used an integration
step of | fs and applied the SHAKE algorithm [45] for bonds with non-water hydrogens. In order to describe
the protein at various temperatures the protein was “cooled” by means of MD simulations for which the sto-
chastic boundary layer was set at the desired temperature and, thereby, acted as a cold bath [44].

The charge distributions of neutral and ionized chromophores were taken from INDO calculations [46]. For
the excited special pair P* we assumed the ground state charge distribution. All other atomic partial charges were
adopted from Charmm force field parameters [41]. The charge state for the amino acids are those for pH=7,
assuming standard pK values, except for the following groups: the glutamate L 104 was protonated and the Fe,
charge was changed to +2. We performed simulations at temperatures 300, 200, 120, 80, 50, and 10 K. It is
certainly not appropriate to describe a protein classically at very low temperatures as remarked in section 1.

For each temperature, we distinguish three simulation phases. A first 25 ps phase denoted by “PsH;Q,”
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describes the reaction center before any electron transfer; in this phase all chromophores are neutral. A second
10 ps phase, denoted by “Pg HL Q4 ™, describes the protein after electron transfer Ps— H; with Pg positively
charged and H, negatively charged. A third 5 ps phase, denoted by “Pg H, Qx ”, describes the protein after
electron transfer H; —»Q, with Pg positively charged and Q4 negatively charged. In some cases, e.g. for the cal-
culations at 300 K, the simulation times were actually longer to improve statistics. Electron transfer was mod-
eled by instantaneously changing the charge distributions of the involved chromophores according to the INDO
charge distributions mentioned above.

Dielectric fluctuation and relaxation accompanying electron transfer were monitored by calculation of the
energy difference AEy(7) between reactant state (before electron transfer, index R) and product state (after
electron transfer, index P). As discussed in section 1, AEyp () governs the quantum mechanical transition
between reactant and product states. Due to the motion of the protein represented by a multi-dimensional con-
figuration vector ¢(¢), the energy difference

AEvp(1)=Ep[q(1)]—Er{q(1)] (8)

between the two states is fluctuating in time. When the protein motion is simulated with chromophore charge
distributions according to the reactant state, AEy(#) corresponds to the energy required to instantaneously
transfer an electron from reactant to product state without changing the nuclear conformation. Likewise, after
an electron transfer, —AFE\;p(¢) is the energy required for a transfer from the product state back to the reactant
state.

The energy difference AE\p(#) connected with a virtual electron transfer was determined on the basis of the
MD trajectory g(¢) as follows: protein configurations g(¢) were sampled at 5 fs intervals; for each configuration
the potential energy was evaluated twice, once with chromophore charge distributions corresponding to state R
to obtain Ex[¢(¢) ], and once with chromophore charge distributions corresponding to state P to obtain Ep[q(?) 1;
we then determined AEyp () =Ex[g(2) ] — Ep[g(t) ]. For this evaluation we employed a cutoff radius of 40 A,
a choice discussed in section 4.1. We carried out the same calculations also in 1 fs intervals rather than in 5 fs
intervals. The results showed that the longer time intervals yield smooth representations of AE(¢), i.e., a repre-
sentation without artificial discontinuities and artificial Fourier components.

In our MD simulations we obtain AEyp(¢) only within an additive constant encompassing redox and Born
energies since AEy () contains only contributions of the protein matrix. The associated contribution of the
protein matrix A ,,,, to the reorganisation energy {47] (see fig. 2) is -

A=4({AEup Yp —{AEup Yr) = —3AAE . (9)

Here ¢ )gp denote the time averages of AEyp in the state of R or P. The actual reorganization energy for a
protein needs to be scaled by the high-frequency dielectric constant due to electronic polarizability ¢, i.e., A o=
A/e. Likewise, one finds that the free energy difference between the reactant state and the product state, i.e., the
quantity €, in eq. (6), can be expressed as

€0 =3({AEyp Yp +{AEup )r) - (10)

3. Electron transfer theory

In this section we describe the effect of thermal fluctuations of AEy;»(¢) on electron transfer rates. For this
purpose we adapt existing electron transfer theories in solution [33,34,47,48,25,35]. MD simulations treat the
protein motion classically, i.e., such simulations do not properly account for intramolecular high-frequency
motions which require a quantum mechanical description. Hence, our simulations can only describe coupling
of the transfer process to classical motions of the protein matrix. To motivate our expression for the electron
transfer rate we consider here Fermi’s golden rule, replacing this approximation later. We assume, following
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Sumi and Marcus [25], that two classes of motion couple to electron transfer, high-frequency vibrations with a
final state energy density %, (E) and classical degrees of freedom with a final state energy density % (E).
Fermi’s golden rule approximates then the transfer rate as follows

+00
~ 2
Fwe= 2 1V1? [ de S4(6) Fpu(=0) (11

Here %,,,(E) can also account for the electronic and Born energy contributions to the redox energy Eegox-Bom
by shifting its energy scale accordingly (see section 4.5). The functions %, (E) and % (E) depend only on the
static level density and Boltzmann distribution in the initial states and expression (11) can only hold as long as
the relaxation times governing the motion of the nuclear degrees of freedom are long compared to the time scale
relevant for the electron transfer process. If one assumes that this condition for the relaxation times does not
hold for the classical degrees of freedom, one needs to describe the electron transfer rate in a manner which
accounts explicitly for the time-dependence of the coupling between the classical degrees of freedom and elec-
tron transfer. Let us assume that the latter description results in a rate k. (€). To obtain the rate which includes
the effect of both the classical and the quantum mechanical degrees of freedom, one needs to replace eq. (11)
by

kee= | deka(€) Fom(—0) - (12)

—o0

This description corresponds to the use of a “reaction window™ in ref. [35], the width of which is described by
Sam(E).

We outline here only briefly the properties of the line shape function %, (E) assuming that a small number
of quantum mechanical degrees of freedom are included in the description, and that these degrees of freedom
are harmonic. In this case %, (E) is the Franck-Condon and Boltzmann-weighted energy density of final states
given by the convolution

N N
antBr=[ a5, [ 0B, [ 4B, [ [1508) |o £ B EBuwnsin ). (13)
Each of the line shape functions S;(E) describes a single harmonic degree of freedom and is [50]
—Aj(142m) [, 92 o
S,(E)=9_<”J+1) » 5(k_s,.)13.(2/1, n,(n,+1)>, (14)
fle nj k=—0o d

where 4; = 1fg?/hw; is the reorganization energy of that degree of freedom in units of vibrational quanta, n,;=
e~ hw/kT [ (| —e—"wi/kT) is the average number of quanta thermally excited in the oscillator, s;= (E—E;) / (hw;)
counts the oscillator levels, and /,, denotes the regular, modified Bessel function of integer order [51]. Expres-
sions (13,14), originally developed to describe optical transitions in solids [50], were introduced to thermal
electron transfer by Jortner [52,49].

We focus our attention in this paper only on the properties of the classical contribution to the transfer rate k.
In fact, in our simulations below all degrees of freedom, including intramolecular vibrations of the chromo-
phores, were described classically. This implies the functional form %, ( —€) =(€— Eregox— Epom) and implies
that the e-dependence of k,(¢€) can be interpreted as a dependence of the transfer rates on redox energy. A
quantum mechanical description has been completed by us recently [26]. -
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3. 1. Two-state model coupled to classical medium

We consider electron transfer as a transition in a two-level quantum system, one level representing the state
R before electron transfer, the other level representing the state P after electron transfer. The two states are
separated by the energy AEyp (¢) which fluctuates in time. Electron transfer is described by a two-state density
matrix p(¢) which obeys the Liouville equation

a(0= 110,001~ 160010, #0=(5 L ) r=(0 2. (15)
Here # () is the Hamiltonian of the two-state system. The parameter € represents the energy “exchanged” with
the degrees of freedom described by %, (¢€) (see eq. (12)), AEyp(¢) introduces the fluctuating energy differ-
ence between reactant and product states, and ¥ couples both states. The operator " describes relaxation of the
system in state P. We employed the notation [A4, B] . =AB BA. p,, is the probability to find the system in the
reactant state. The initial condition is p,,=1, p;2=p>=p,,=0. Shifting both of its diagonal elements by
§(AEup () —€) converts # (¢) into the operator # introduced in eq. (3). It should be noted that the solution
of eq. (15) is exact to all orders in ¥, rather than only to second order as in the common descriptions involving
Fermi’s golden rule.

In contrast to a classical picture [33,34,47] in which, due to weak coupling between reactant and product
states, an electron can only be transfered when the energies of the two states are approximately equal - in terms
of fig. 2 at the point g~ ¢ - the two-state model, in principle, permits transfer for all protein conformations.

The solution of eq. (15) for a piecewise time-independent Hamiltonian J# is

p(t+At)Y=Pp(1) P, g’:exp[At(-fil- Jf—f)] (16)

Evaluating the exponential operator through Taylor expansion and grouping terms of odd and even powers
yields

plt+Al) = (cosAtyﬂ+1 smyAty )p(t)(cos Atjl—i smyAz‘y ) =T (17)

where 1 stands for the identity matrix, 7, A denote the complex conjugate of y: A, and the abbreviations

y=J2+ 0%, w=V/h, Q= Zh(AEMD_eJ?) A=(fj _“’Q> (18)

are used. Within a mono-exponential approximation for the decay of p,, (¢, ¢) holds

[kEfD(e)]"=Tdtpu(e, 0, | (19)
o

where we have denoted an e-dependence of p and of k¥P which arises through eq. (18). In section 4.5 we will
present the transfer rates kMP(€) obtained by this approach. We note finally that the scale for € chosen here is
such that the rate assumes its maximum at €., = {(AEyp ) r-

3.2. Two-state model coupled to stochastic medium

The key property of the protein matrix which enters into the two-state model of electron transfer is the energy
difference AEyp (). The question arises in how far a cumbersome simulation of the whole protein is necessary
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to provide this quantity. Does a stochastic model exist that can provide AEsr(¢), which, when entered into the
two-state Hamiltonian (15) instead of AE\(¢), reproduces the transfer rates kN®? Such stochastic process
may also allow one to investigate which characteristics of AEy, () are essential in determining the transfer rate,
i.e., which characteristics need to be controlled by a protein to optimize electron transfer. In the following we
will introduce the most rudimentary stochastic process possible which is chosen to reproduce three statistical
properties of AEyp(2), namely the mean value (AEyp), the rms-deviations o from thie mean, and the mean
relaxation time 7 of fluctuations of AEyp(¢). We will find further below that the corresponding model qualita-
tively reproduces the rate kMP(¢), but with a narrower e-dependence.

The stochastic process we suggest is the so-called Ornstein—Uhlenbeck process described by the Fokker—Planck
equation [53,54]

Sp(u,)=Zp(u, 1), L=D3,po(u)d,[po(u)]". (20)

Here p(u, t) is the probability to observe for the stochastic variable a value u at time ¢. The probability distri-
bution p(u, t) as described by eq. (20) converges asymptotically towards the (equilibrium ) distribution py(u),
ie., lim,_ ., p(u, t)=po(u) which, for an Ornstein-Uhlenbeck process, is a Gaussian with width ¢ and mean

<uy

Po() = J;—E,exp[—(u-—<u>)2/2021 : | 21)

The parameter D in eq. (20) governs the temporal behavior of the Ornstein-Uhlenbeck process. One can derive
[54] that the equilibrium correlation function

_ u()u(0)y —<u? '
="y Cuy? @2
exhibits a simple exponential decay governed by D
C(t)=exp[—2Dt/ad?] . (23)

The Ornstein-Uhlenbeck process can be employed to model an “observed” random process &£(¢). This is
possible if the distribution function 5, (&) obtained from a long time sampling of £(¢), i.e., of AEyp(?), is Gaus-
sian. Comparison of j,(£) with eq. (21) yields the parameters (%) and o. Furthérmore, the correlation function
of the process expressed through the time average

10
' ry 2
LE(+HE ) ) —<O (24)

~ .1
o= T E e

must be approximated well through a mono-exponential
C(t)y~exp[—~1t/1]. A (25)

This approximation allows one to identify D through D=0¢?/271 (cf. egs. (23,25)). In our simulations we have
determined C(¢) actually through
~ L ¥ Et+4)E8(1)— <52
Cit)y=— Lo2n (26)
D=3 L&
for M=20 and where ¢; denotes time instances along the trajectory which were spaced by 1 ps; the time course
of C(t) for each t; was monitored over a time span of 5 ps.
We want to describe now AE\p(¢) through an Ornstein-Uhlenbeck process. One can establish the parameters
which determine such a process by monitoring in an MD simulation the following: the equilibrium distribution
Do(AEMp) and the equilibrium autocorrelation function C(¢) defined according to eq. (26) with é(¢) = AEup(?).
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One can then readily determine (), g, and D. We will see below that j,(AE) is, in fact, very close to a Gaussian
and that the correlation function can be approximated by a mono-exponemial; however, the latter approxima-
tion is not completely satisfactory.

By employing the theory in refs. [39,36] one can express the density matrix

P(€|1)=JdAE'f(AE')Po(f—AE'Il), (27)
where

ey itfe vV 1 0 itfe vV
”°“‘AE“)‘°""[W1(V AE'—ifz/t)](O 0>exD[ﬁ(V AE’+ifz/r>]' (28)

Here po(e—AE’ |t) expresses the density matrix for a Hamiltonian (15) with a time-independent energy term
AE',i.e., it can be evaluated by means of eqs. (17,18). # (AE") represents the Kubo line shape function [38]

= Lreldl ! I > |
j(AE)—nRe<0|(i/fz)(u—AE’)—.?|0 . (29)
Expressions (27-29) yield an approximation accurate to third order in ¥ which, however, accounts also for
contributions of all orders of ¥ [39]. This approximation conserves the trace of the density matrix and con-
verges to the exact results in the limits of both slow or fast stochastic motion measured on a scale #/V [38]. A
numerical method for the evaluation of the line shape function (29) is described in appendix A. We will dem-
onstrate below that, in the present case, the approximation corresponding to eqgs. (27-29) is accurate. We like
to emphasize that the description given goes beyond second-order perturbation theory in that all orders of V'
contribute. :

In order to determine the rate k3T (€) we proceed in a way which differs from that suggested in ref. [36]
yielding a numerically more stable approximation. We note that eq. (18) implies that the density matrix ele-
ment [p(€|t)],, is approximated by a single exponential

[p(elt) 11 ~exp[—kET(e)t)] . ' (30)
We assume the same approximation for the (1, 1) element of po(e—~AE'|1), i.e.,
[po(e—AE'|1) ] mexp[ —ko(€~AE" )t] (31)

and establish k(e —AE" ) through the identity
[Ko(e=AE")1="= [ d (po(e—AE' 1D ] (32)
0

which holds if eq. (31) holds exactly. (Note that we do not define the rates through the time derivative of the
density matrix element itself since, of course, this derivative vanishes at =0.) One can conclude then from eq.
(27)

exp[-—k?ﬁ(e)t]zjdAE’J(AE’)exp[—ko(e—AE')t] . (33)
Differentiating both sides at t=0 yields

kE.T(e)zJ.dAE’J(AE’)kO(e—AE'). (34)

In the present case three parameters determine the functional form of £ (AE). A first parameter is (u) = (AE)
and, according to eq. (21), determines the center of .# (AE) on the AFE axis. A second parameter is o [see eq.
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(21)]. This parameter can be absorbed into the scale of the AE-axis. The corresponding line shape function is
then, using ¥’ =u/o, Ae=AE/ o,

A 1 1
7 (4¢) R"'<°Ii(u'—Ae)—pau,p(,(u')au,[po<u')1-'t°>’ (33)

which expresses the line shape function in dimensionless variables. Here,
p=Dh/a> (36)

is the single dimensionless parameter which describes the dynamic effect of fluctuations AE(?), large p values
corresponding to rapid fluctuations. Since the effect of () and o can be absorbed through shift and scaling of
the AE-axis, the parameter p constitutes the essential parameter which determines the shape of .# (AE).

3.3. Relationship to Marcus theory

The description in terms of egs. (34,29) makes the dependence of the electron transfer rate on the stochastic
properties of the medium, i.e., on (AE), ¢ and p, transparent. This dependence is accounted for by the line
shape function (29, 35). In the limit p—O0 this function converges to the distribution jo(AE) [38]. In this limit
the rate kST (¢€) is then essentially the same as the rate described by the Marcus theory [33,34]. This can be seen
as follows.

The rate ko (¢ —AE), defined in eq. (31), assumes significant values only in a narrow range of width V" around
e~AE. One may, in fact, assume that the rates ko(€—AE) vanish, except at e=AE' =0, where the rates can be
determined according to

< . 2 bl
o . ,osingy 1 (4_1/1) Ik
(o] _rldte (costy + T ) Y=3 5 I; ranls 1. (37)

One can then state k3T (€) ~ Ky o (€). In second-order perturbation theory would hold
22

ko= —5—8(AE—¢) . (38)
and, hence,

2nV?
KT (€)= 5 h(e) - (39)

We like to show now that the factor j,(€) reproduces the AGy-dependence of the Marcus theory. We first note
that j,(AE) describes the probability that reactant and product states are separated by the energy AE. In case of
potentials Eg (¢) and Ep(q) defined in eq. (6) and for an initial Boltzmann distribution in Eg (¢) one can derive
(see for example ref. [36])

_ (AE+€0_%.fq12))2]‘ (40)

I
5 ( AE)—
Po(AE) J2nfkTgp exp[ 2kTfq3

We note further that, according to the Marcus theory, the corresponding electron transfer rate k{*(¢,) is pro-
portional to the Arrhenius factor determined by the point g of intersection of Er(q) and Ep(g) depicted in
fig. 2

kM (o)~ | znj];Texp[— E—-——R[‘i’}(f"”]. (41)
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One readily derives g(€,) = (3/9% — &) //g» and, hence,

! (o %qu}
k?/la ~ - ]
e T e""[ 2Tfa3

where we have renormalized eq. (41) to energy space. Obviously, egs. (40) and (42) represent the same depen-
dence on ¢, i.e., on AG,. We conclude, therefore, that in the limit p— 0 the stochastic quantum mechanical model
and the Marcus theory yield the same dependence of the transfer rate on AG,.

In the so-called motional narrowing limit of very large p the line shape function .# (AE) coalesces to the J-
function 6(AE — ( AE) ). However, this limit is hypothetical since p is about 0.03 for the simulations presented
below. One may expect, however, that any p> 0 leads to an ¢,-dependence of the transfer rates k3T which is
narrower than that predicted by the Marcus theory.

(42)

3.4. Relationship to %,.(¢)

A broadening of k5 (¢;) can arise due to medium vibrational modes with frequencies of the order of ¢/#. For
an explanation we consider a two-state system as studied by Kubo [38]. If the states are described by the Ham-
iltonian #(¢) defined in eq. (15) then, even in case | V| <e and € significantly larger than |AE(¢) |, a transition
between the states can be induced in case AE(¢) has suitable Fourier components. The motion giving rise to
AE(t) can “lend” or “borrow” energy needed for the transition. This contribution, to a large degree, is equiva-
lent to a description incorporating in eq. (12) quantum mechanical vibrational modes through the factor %,,,(€)
providing, thereby, a ““broad reaction window” [35]. The reason why a classical oscillator can resemble a quan-
tum mechanical oscillator in that it exchanges with another quantum systems energy quanta % arises from the
fact that a classical oscillator, irrespective of its amplitude, has the same frequency w. A distinction between a
classical and a quantum oscillator is, however, that the latter has a nonvanishing amplitude and, hence, nonvan-
ishing interaction even at very low temperature.

To prove the limitation to energy exchange 7w between classical oscillator and quantum electron transfer
system we consider Hamiltonian (1) in a form which assumes that the coupling 8E(¢) describes the contribu-
tion of a single oscillator of frequency w

H'(t)=0,V+ (5, +3, coswt)os . - (43)

As is well-known [55], the time evolution of the density matrix of such systems, described by the three-dimen-
sional vector m= (Re p,,, Imp,,, p;| —p22), can be evaluated by means of the Bloch equation

c%m: %mxH(t);‘ H=(V,0,d8,+3, coswt) . (44)

One can transform the three-dimensional coordinate system in which m and the “field” H are defined such that
the new z-axis points along the time-independent vector Hy= (V, 0, &;). For §,>> | V|, the case considered here,

~ this transformation does not affect in an essential way the interpretation of m; as the difference between reactant

and product state occupancy. In the transformed system acts the time-dependent “field” (> | V|, 60>>6;)

H=(6,V/6,,0,8,) coswt . (45)

For fiw~ d, the effect of this field can be accounted for by transforming to a frame rotating with frequency * w
around the new z-axis and assuming in the rotating frame the effective static field

Hee=(3,V/do, 0, 6o F hw) . (46)

This field induces transitions between reactant and product states on a time scale t=dy#/| V|d,. In the present
case of electron-vibrational coupling this time scale is a critical parameter determining the relevance of the
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interaction considered. Assuming dy/| V| ~ 103 and a coupling strength &, of 0.2 kcal/mol for a single vibra-
tional mode one estimates 7~ 10 ps. One must note that, because of the resonance condition Aiw= Jd,, only pro-
tein vibrations in the frequency range (J, 1 V') /% contribute to the effect described.

It is also important to realize that the description given here does not conserve energy of the combined elec-
tron-nuclear system, a feature which may not matter at high temperatures, but certainly does at low tempera-
tures. As discussed below, the fact that the transfer rates k}P(¢) originating from AEyp(#) have a very broad
e-dependence attests to the relevance of the coupling between electron transfer and vibrational modes described

here.

4. Results

First, we present some results which hold for the electron transfer Ps—H, as well as H; - Q..

4.1. AE,p(t) and the range of Coulomb interaction

We investigated the dependence of AEy,n(¢) on the cut-off radius r.,, used for calculating AE\p(¢) and ob-
served that the absolute values of AEy(?) depend sensitively on r.,,. This dependence is presented in fig. 3.
One can recognize that changes in r.,, alter dramatically the values of AE\p(¢). There are two aspects to this.
First, our findings require one to include in a calculation of AEyp(¢) a very large number of atomic partial
charges, i.e., even those far away from a donor-acceptor pair. Second, the result in fig. 3 demonstrates that the
influence of the protein on electron transfer does not stem from a small number of groups, e.g., some groups
close to a donor-acceptor pair, but rather involves collective motion involving essentially the whole protein,
possibly also the protein environment, i.e., a membrane fraction and water. This feature implies that charge
neutralization in the protein does not lead to nearly complete cancellation of the coupling of the medium to the
electron transfer, but rather that a significant coupling remains and increases with increasing volume. A further
result is presented in fig. 4 which compares two sets of AEyp(¢) values evaluated for different r,, values. The
results show that even though the absolute values of AEyp () are rather dependent on r,, the fluctuations for
different r.,, are qualitatively similar, except that the magnitude of fluctuations of AEyp(¢) significantly in-
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Fig. 3. AEyp values as a function of the cutoff radius r.,, evalu- Fig. 4. AE\p(?) for two values of the cutoff radius r.,,, analyzed
ated for the reactant phases of the electron transfers Ps—H, (solid for the electron transfer Pg— H, before transfer.

line) and H; »Q, (dashed line). To determine AEy,p, we halted
the simulations in phase PsH; Q4 and in phase P$ H Q4 at one
time instance (' and evaluated AEyp(¢7) for various values of

Teut
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creases with increasing cutoff radii. The AEyp(¢) values below all have been evaluated with an r,,, value of 40
A.

Fig. 4 demonstrates also the important fact that the fluctuations of AEyp () exceed the electronic coupling V
by three orders of magnitude, i.e., one can certainly expect a significant coupling between protein motion and
electron transfer.

4.2. Distances and mobilities of cofactors

The electron transfer rate through the electronic matrix element depends on the donor-acceptor distance. To
determine center—center distances, we first determined a geometrical center of each chromophore by averaging
over the central ring atoms (atoms involved in bonds drawn as thick lines in fig. 1). Our simulations yield the
following main results. Together with an overall contraction of the reaction center upon cooling [44], all average
distances as well as fluctuations of the distances between chromophores decrease with lowering the temperature.
As a result of the charge transfers, the distances are not changed significantly, except in the case of the Q,-Qp
distance as discussed in section 4.4. Typical center-center distances are presented for two temperatures in fig.
5.

The chromophore mobilities, measured by averaging rms-deviations of the central ring atoms (see fig. 1) of
each chromophore, decrease almost linearly when the temperature is lowered. Typical values for a bacterioch-
lorophyl or a bacteriopheophytin are 0.25 A at 300 K and 0.05 A at 50 K. The mobilities of corresponding
chromophores for the two branches are very similar; for certain temperatures the mobilities in the L-branch are
higher than those in the M-branch, for others the mobilities in the L-branch are smaller than those in the M-
branch.

4.3. Electron transfer Ps—H,

Comparison of simulated, averaged structures before and after the electron transfer Ps— H;_reveals no major
structural changes induced by the transfer, i.e., the respective differences in atomic positions and the differences
of center-center distances of cofactors are significantly smaller than the fluctuations due to thermal motions.

In fig. 6, the energy difference AE\p(¢) between the reactant state PsH, Q, and the product state P¢ Hf Q4
is shown for different temperatures before and after the electron transfer. In fig. 7, the distributions jo(AE)
before and after electron transfer Ps— H; are depicted for different temperatures. It is noteworthy that the dis-
tributions jy (AE) are well matched by Gaussians, an issue discussed in ref. [36].

The features of AEyp () immediately recognized in figs. 6, 7 are the following. Before the transfer, AEyp (¢)
fluctuates around a mean value (AEyp, > . This mean value (AEyp Y g decreases with decreasing temperature.
Within about 100 fs after the transfer AEy, (¢) relaxes towards a lower mean value (AE ) p. This rapid dielectric
relaxation was found at all temperatures. After relaxation AEyp(¢) fluctuates around a new mean value { AEyp Yp.
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Fig. 5. Center-center distances between Pg and B, at 300 and 80

K. Each distance was averaged over a time interval of 0.5 ps. At

5 10 15 20 t=35 ps an electron was transfered from Pgto Hy and at =15 ps
time[ps] from Hy 10 Q..

transfer H, ->Q i~
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Fig. 7. Distributions jo(AEMmp ) before (solid) and after (dashed) Fig. 8. Fourier spectrum of AEy, (¢) before and after the electron
electron transfer Ps— H; at different temperatures. For evalua- transfer Ps—H,, at T=80 K.

tion of the distributions after the transfer the first picosecond was
omitted. The energy axis presents actually negative values.

Fluctuations of AEyp(?) decrease with decreasing temperature. The energy difference AAE=( AEypYr—
(AEup ) p measures about 10 to 14 kcal/mol and is approximately the same at all temperatures. Assuming =2,
eq. (9) yields temperature-dependent reorganisation energies A, between 2.5 (300 K)) and 3.5 kcal/mol (10
K). The free energy contribution of the protein to AG, according to eq. (10) is for the same e-value in the range
11.7 (300 K) to 13.6 kcal/mol (10 K).

The fact that we find a fast and sizable dielectric response to electron transfer even at low temperatures, and
that no major structural changes are induced by the transfer, together with a detailed analysis of the contribu-
tions to the “solvation” energy AAE show the following. One cannot assign specific groups as major contributors
to AAE, but rather AAFE is a sum of many small contributions. These contributions seem to be due to small
reorientations of polar groups. This result has also been reported and analyzed in detail in ref. [14].
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We have also determined the Fourier (cosine) spectra of AEyp(¢). All spectra in this paper were evaluated
for a 5.12 ps time interval with a time resolution of 5 fs using the IMSL FFTRC [56] routine. The spectra before
and after electron transfer are shown in fig. 8 at 80 K. Spectra at other temperatures are very similar. The spectra
in fig. 8 show a broad band of frequencies in the range 0-40 ps—!. The amplitudes on the average decrease from
lower frequencies to higher frequencies. The frequency spectrum is broad, lacking distinct features; i.e., there
are no dominant frequencies present. Upon lowering the temperature (by a factor of two from 300 to 80 K)) the
amplitudes decrease in accordance with the fluctuations shown in fig. 7. The overall frequency distribution
remains unchanged, none of the frequencies get frozen out preferentially. Electron transfer leads to an overall
increase of the frequency amplitudes which reflects the non-equilibrium situation of the system after a transfer.

It is of interest to compare the spectra of the energy autocorrelation function C(¢), essentially AE (w), with
the Fourier spectra C,(w) of the velocity autocorrelation functions studied in ref. [27]. The distinction between
the spectra is apparent: first, AE (w) lacks distinct high-frequency bands. This difference may, however, be due
to the fact that C(¢) involves contributions of many atoms whereas the velocity autocorrelation functions in ref.
[27] describe single atom vibrations (see also discussion below). A second difference is that the low-frequency
part of AE(w) exhibits a band confined to frequencies below w~40 ps—', whereas C,(w) has a significantly
broader low-frequency band. This feature indicates that the protein motions underlying the low-frequency con-
tributions to AEyp(¢) experience less friction than in the case of single atom motion. The low frequency is also
indicative of a possible role of long-wavelength, i.e., collective motions of the protein matrix. However, we have
not been able to identify such contributions. Similar conclusions can be drawn regarding the spectra AE(w) for
the transfer H; - Q,.

4.4. Electron transfer H, —Q

The transfer H, —»Q, was studied at temperatures 80 and 300 K. In contrast to the electron transfer Ps—H,,
which is not accompanied by any significant structural rearrangement, we find a significant structural response
in case of H; - Q.. This response is depicted in fig. 9. After an electron is transfered to Q,, this cofactor moves
away from H, , towards Fe, and Qg, the next electron acceptor. Upon electron transfer the center—center distance
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Fig. 9. Superposition of structures of cofactors before and after the electron transfer H; —»Q, at 300 K; both structures were averaged
over 0.5 ps. A significant shift of Q4 (bold) as result of the electron transfer can be seen. The transfer-induced motion of residue M250
(grey), a tryptophan, is also shown.
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between H, and Q, increases by 0.68 A at 300 K and by 0.4 A at 80 K, whereas the distance Q,—Fe, shrinks by
about 0.2 A. According to eq. (47) below, the altered distances decrease the electronic coupling ¥ between H_
and Q, by about 50% and increase the coupling between Q4 and Qg by 30%, i.e., the changed couplings accel-
erate the forward-transfer Q,— Qg and slow down the competing back-transfer Q,— H,. Considering the fact
that the rates of the forward and the backward transfer are of the same order of magnitude (see fig. 1), the
structural rearrangements of the chromophores may contribute to a high overall quantum yield.

As shown in fig. 10, for the electron transfer H, — Q4 the energy difference AEy> () between the reactant state
P¢ HT Qa4 and the product state P& H, Qx before and after transfer displays very much the same features as the
transfer Ps— H; : fluctuations around a mean value { AEyp ) g before transfer, rapid dielectric relaxation follow-
ing the transfer, and then fluctuations around a new mean value (AEyp)p. The solvation energy AAE for this
reaction is greater by almost a factor of two than AAE for the transfer Ps—H;. This implies that the protein
contribution to the reorganization energy Ao = 5 kcal/mol (eq. (9), e=2) is greater for the transfer H; »Qa
than for the transfer Ps—H, . The corresponding value for € as defined in eq. (10) for H  —»Q, at 300 K is 14.1
kcal/mol. The decrease of (AEyp g and (AEyp > p due to a lowering of the temperature is significantly larger
than for the transfer Ps—H;.

As for the electron transfer Ps—H, the Fourier spectra before and after the transfer H; »Qa do not differ
significantly from each other (see figs. 11, 12) and, as before, the amplitudes of the spectra decrease by a factor
of two upon a lowering of the temperature from 300 to 80 K. But in contrast to the Fourier spectra for the
transfer Ps—H; , the frequency composition of these spectra exhibit a significant temperature dependence. Com-
parison of figs. 11 and 12 show that the 300 K spectra for the transfer H; »Q, consist of a band of frequencies
which is slightly broader than for the 80 K spectra.

4.5. Rate of electron transfer Ps—H,

In this section we present the rates for the electron transfer Ps— H, resulting from the two descriptions out-
lined in sections 3.1 and 3.2: kMP(¢€) from the two-state model based on AEyp(¢) and k3] (¢€) from the descrip-

tion involving a stochastic model.
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Fig. 10. AEyp(¢) for the electron transfer Hy —Q,4 at 300 and 80

K. At 1= 1.0 ps an electron was transfered. The mean values were

03 10 i averaged over a 10 ps time span before and over 5 ps after the
time[ps] transfer.
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Fig. 11. Fourier spectra of AE\(¢) before and after the electron Fig. 12. Fourier spectra of AEyp (1) before and after the electron
transfer H; - Q, calculated for a 5 ps simulation at 7=300 K. transfer Hy -»Q, calculated for a 5 ps simulation at 7=80 K.

4.5.1. The rates kP

The rates kMP(¢€) were evaluated by solving numerically egs. (17, 19) for time steps At=35 fs and piecewise
constant AEyp (¢). The time series AEyp(Z;), /=1, 2, ... has been based on MD simulations at 300 and at 80 K.
We averaged results over five time series, each S ps long.

The parameters ¥ and 1 which enter the Liouville equation (15) have been chosen as follows. For V we
assumed

V=Vye oRor a=14A"", (47)

a spatial dependence which had been suggested in refs. [57,47]. The value Rp, is the average center—center
distance between Pg and H; and has been determined for phase PsH; Q, of the simulation to be Rpa=17.8 A.
For V, we assumed a value V,/#~217 fs~! which resulted in V/#=5 ps~, the value employed in ref. [15].
Note that the value V,/# does not relate to any direct observable since the edge~edge distance determines V(r).
We assumed a life time =5 ps, a value which is considerably longer than the simulated dielectric relaxation
time (response time to transfer) which measures 0.05 ps. The values ¥ and 7 were adjusted to obtain maximal
values of kMP(€) of (3 ps) !, i.e., the value observed for the transfer Ps—H,. We like to emphasize, however,
that otherwise the values of ¥ and 1 are immaterial for the subsequent discussions.

The rates resulting from our simulations are presented in fig. 13. The main result of our calculations is that
the fluctuations of AEyp(¢) induce a very broad e-dependence of kP (¢). In fact, the electron transfer rate
kMP is approximately constant over the range 14 to 22 kcal/mol at 300 K, over the range 16 to 23 kcal/mol at
80 K, and decreases rapidly to zero for values of € moving away from these intervals. The kMP(¢€) curves are
centered around the peaks of the distributions j,(AE) shown in fig. 7 which explains the shift of the rate curves
at 300 and 80 K relative to each other by about 2 kcal/mol.

The rates kMP(€) depicted in fig. 13 constitute a main result of this paper. The rates presented have been
averaged over five simulations, each 5 ps long. One would expect that further averaging alters to some extent
the e-dependence of kMP depicted in fig. 13. The e-dependence of kMP is similar to the AG,-dependence of
transfer rates in the Marcus theory [33,34] and other theories of electron transfer (see ref. [18]), in particular,
the dependence shows an inverted region, i.e., a decrease both for high and low € values. The e-dependence of
kMP(¢) implies that electron transfer rates in the photosynthetic reaction center are insensitive to alterations of
the redox energies of respective chromophores over a range of about 15 kcal/mol.
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0.5
Fig. 13. Electron transfer rates & (¢) at 300 and at 80 K as a

function of the energy ¢ “‘exchanged” with the quantum-mechan-
ical degrees of freedom. One set of rates k}P denoted by
MD_300 and MD_80 has been evaluated using in the two-state
model AEy (1) and averaging over five runs (solid lines); a sec-
ond set of K3V rates denoted by OU_300 and OU_80 has been
evaluated similarly, but using in the two-state model AEqy(?)
values generated according to an Ornstein—-Uhlenbeck process
(grey lines); a third set of rates k57 denoted by ST_300 and

15 20 25 30 ST_80 has been calculated according to the stochastic model in
€ [kcal/mol] section (3.2) (dashed lines).
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Shifts of the distribution j,(AE) resulting through dielectric relaxation after electron transfer (as depicted in
fig. 7) cause the kMP(¢) curves to shift relative to € by the same amount; i.c., dielectric relaxation causes the
peak of kMP(¢) to shift by 10 to 12 kcal/mol after electron transfer. If one assumes that the electron transfer is
optimized, i.e., %m(—€) in eq. (12) overlaps well with k¥ (¢), and that %, ( —¢€) is not changed significantly
by the electron transfer, the shifted kNP (€) may not overlap well with %,,( —¢€).-This behavior, presented sche-
matically in fig. 14, provides a mechanism which slows down the rate of backward transfer relative to the rate
of forward transfer. The shift by €,=11.7 kcal/mol corresponds to the stabilization of the product state
P*H Q, below the state P*H, Q4. The value 6 kcal/mol observed for this stabilization includes intramolecular
electronic contributions as well as protein contributions.

Fig. 14 can explain also why some rates are more sensitive to alterations of redox energies than others; the
dependence on redox energies is different if %, (—¢€) overlaps in the center of k}P(€) or at the edge of
kMP(¢€). Accordingly, one can rationalize, in principle, the changes of transfer rates for Ps—H;, H; - Q,4, and
H, —Ps in the genetically engineered reaction center in ref. [17].

4.5.2. The rates k37
To investigate which properties of AEyp(¢) are essential determinants for the e-dependence of kMP(€) we

evaluated the electron transfer rates according to the simple stochastic model introduced in section 3.2. This
model accounts for the distribution p,(AE) in fig. 7. Matching of the Gaussian distributions yields o-values of
5 kcal/mol at 300 K, 3.5 kcal/mol at 80 K, and (AEyp) values of 18.3 kcal/mol at 300 K, 20.3 kcal/mol at 80
K.

The stochastic model also accounts for the mean relaxation time of the correlation function in eq. (23). This
correlation function is presented in fig. 15. The match of a mono-exponential decay at both temperatures, i.e.,
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C

200 400 600 800
time [fs]

Fig. 15. Comparison of the autocorrelation function C(¢), de-
fined in eq. (23) evaluated from AEyp(?) and mono-exponen-
tial fits at 300 and 80 K. The mono-exponential fits yield the mean
relaxation times.

(8]

arbitrary units

AE/c

Fig. 16. Comparison of the static distribution Jo(AE) and the
line shape function .# (AE) for various values of p= D /6> ( )
Po(AE), (——) F(AE) for p=0.07, (———-=) same for p=0.7,
(--++) same for p=7. The line shape function .# (AE) has been

evaluated as described in ref. [58].

300 and 80 K, results in 72 0.1 ps, which according to eq. (23) corresponds to D/g*=10 ps~'. Fig. 15 shows
that the match at times ¢> 200 fs is rather poor. The deviation is indicative of contributions to C(¢) with slower
relaxation times. The determination of kMP(€) according to egs. (20-29) requires the numerical evaluation of
the line shape function .# (AE') defined in eq. (29). A method for the evaluation of . (AE") is presented in
appendix A.

The rates kST (¢€) at 300 and at 80 K are depicted in fig. 13. The e-dependence of k3 (¢€) is bell-shaped, peaked
at the maximum of the distributions jo(AE). The shape of k5T (¢) is essentially identical to the line shape func-
tion £ (AE') since in the convolution integral (34) the width of k(e— AE') is of the order V, i.e., measures only
about 0.1 kcal/mol.

We have derived above that the shape of # (AE) and, hence, of k3T (¢€) is controlled by the parameter p defined
ineq. (36). The case of static disorder in AE is described by p=0, slow fluctuations AE(¢) correspond to p< 1,
and fast fluctuations to p>> 1. In fig. 16 we compare line shape functions for vanishing p (static disorder), and
for p values 0.07, 0.7, 7. Fig. 16 demonstrates that, for small p values, # (AE) matches closely jo(AE), a dis-
cernable, but small deviation developing for p=0.07. A value p=0.7 yields a distinct deviation from o (AE)
and, in the case p=7, the motional narrowing limit is being approached. The p value corresponding to the
simulations at 300 K is 0.03. According to fig. 16 one can expect in the case of simulated AE(¢) values that
J(AE) is essentially identical to jo(AE). Since the e-dependence of the rates k3 (e) actually matches then
Po(AE) closely, according to the derivation provided in section 3.3 the rates k3" (¢) reproduce then the same
AG,-dependence as predicted by the Marcus theory of electron transfer. This implies the motional narrowing
effects due to protein dynamics are negligible. This finding provides strong support for the conventional second-
order perturbation treatment of electron transfer in proteins.

The rates k3T (¢) do not display a broad plateau like the rates kX (¢); their width is only half of the width of
the rates kMP(¢). This difference between the rates kNP (€) and k5 (¢) is due to the fact that the stochastic
process (Ornstein-Uhlenbeck process ) is too idealized, being based only on time-averaged quantities of AEyp (£).
In fact, a comparision of the energy autocorrelation function C(¢) in fig. 15 with velocity autocorrelation func-
tions of single atoms in ref. [27] suggests that AE(¢) is made up of single mode contributions which have a
broad low-frequency Fourier spectrum and a high-frequency spectrum characterized by a few sharp lines. An
average over such a spectrum would yield spectra as in figs. 8, 11 and 12, namely, a dominant low-frequency
band and small, but essential contributions at high frequencies. We suggest that, according to the mechanism
outlined in section 3, high-frequency contributions to AE(?) are the origin of the deviation between kMP(e) and
k3 (e).



442 K. Schulten, M. Tesch / Coupling of protein motion to electron transfer

4.5.3. The rates k9Y

In order to test in how far the discrepancy between kMP(¢€) and k5T (€) might not be due to errors in our
analysis of AEyp(t), we generated random sequences AEqy (¢) according to an Ornstein-Uhlenbeck process
which reproduces distribution (21) and autocorrelation function (22) (we assumed the same parameters
{AEup), 0 and D as for the evaluation of k3" ). The generation of the random sequence AEqy(?) is described
in appendix B. We then replaced AEyp(?) by AEq(2) in evaluating the electron transfer rate as described in
section 3.1. The rates obtained are denoted by k3V(¢).

The rates kQU(¢€), averaged over ten sequences 5 ps long of AEqy(?), are displayed in fig. 13. The rates

QU(¢) are in good agreement with the rate k3 (¢€) indicating that two possible errors in our analysis are insig-
mﬁcam. (i) an error due to the approximations in the line shape approach as discussed in ref. [39], (ii) an
error due to the use of discrete time steps in calculating rates by the two-state model which, in principle, could
introduce spurious frequency behavior.

The difference in width between kMP (e) and kQV (¢€), therefore, should be due to the broader frequency spec-
trum of AEyp () compared to the frequency spectrum of AEg (). In fig. 17 the frequency spectrum AFou(w)
of AEqy (2) is presented. This spectrum, when averaged over a large number of Ornstein~Uhlenbeck processes,
converges to the Lorentzian [w?+a?] ' witha=D/o? (seeeq. (22)). The amplltudes of AEqy(w) in the low-
frequency range (1-20 ps—') are larger than the amplitudes of the spectrum of AEMD(w) in this range. How-
ever, this difference cannot account for the deviation between kP (¢) and kZ'(€) (k§V(€)). We conclude,
therefore, that the broad e-dependence of the electron transfer rates kMP(¢) reflects the coupling of higher-
frequency vibrations to electron transfer as explained in section 3.3.

The main characteristic of the e-dependence of k¥P(¢), the wide range of relatively large rate values with only
a weak e-dependence, is corroborated by observations reported in refs. [ 17,18 ], namely, that redox-energy changes
of up to 0.4 eV affect transfer rates in photosynthetic reaction centers only to a small degree. The authors of ref.
[18], in fact, needed to include modes with three frequencies to match an expression of the type of egs. (11, 13,
14) to the observed redox energy dependence of transfer rates. Since one expects a simple Marcus type redox
energy dependence for the rate kST the observations reported in ref. [ 18] may be indicative of the role of higher-
frequency vibrations discussed above. In fact, in ref. [ 18] the authors matched their data through an expression
of the type of eq. (11) using higher frequency vibrations represented through %m(€). This contribution pro-
vided an additional broadening of the AG-dependence of transfer rates required to fit the observations. In this
respect the data appear to support the simulations: the rates kST (€) which represent a classical mechanical
behavior of coupling to low medium frequencies appear to have too narrow an energy dependence which, how-
ever, is broadened through higher-frequency medium vibrations and librations, as exhibited through k37 (¢€) and
as explained above. In ref. [25] such broadening had been achieved in a stochastic Marcus model through
introduction of a “wide reaction window” which corresponds to employing in eq. (11) a broad Hm(€). It
appears then that one of the main results of this paper, the broad e-dependence of kMP, is corroborated by the
approaches assumed in refs. [18,25].

amplitude
[

Fig. 17. Fourier spectrum of AEqy(#) obtained from the Orn-
20 40 60 80 100 120 140 stein-Uhlenbeck process, calculated for a 5 ps series and with
@ [1/ps] 300 K parameters. Also shown is a fit to a Lorentzian.
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5. Summary

Understanding how organic media control redox processes remains a major challenge. The challenge involves
on the scale of a large biopolymer one of the most fundamental questions of chemistry: how do electronic and
nuclear degrees of freedom cooperate to transform an electronic state and nuclear configuration into another
electronic state and nuclear configuration. Photosynthetic reaction centers with an easily controlled, namely
light-induced, electron transfer chain which at the same time is observable well by spectroscopic means, has
made possible some of the most important research in this respect. These protein complexes are good laborato-
ries for the study of electron transfer in structurally well defined circumstances, they also add a new challenge:
the reaction centers contain 12 electron donor-acceptor groups in a geometrical setting (see fig. 1 presenting 8
of the chromophores) which does not make it apparent why the conducted electrons follows always one and the
same path through the set of chromophores in fig. 1. For example, we do not yet have a satisfactory answer to
the question why the electrons with essentially 100% certainty go to H;_ rather than to Hy,, a group located in a
manner nearly symmetric to that of H,. Along which path does the electron tunnel to H,? Which role do the
nuclear degrees of freedom play at this instance, the one described in refs. [30,31]? Also a question in need of
further investigation is why the electron transfers do not slow down significantly (actually in some cases in-
crease) as temperature is lowered (see ref. [26 ] and references cited therein).

Above we have attempted to address some of these issues using the fact that the availability of the structure
of the photosynthetic reaction centers provides the opportunity to guide research on redox processes by MD
simulations. These simulations, at worst, allow one to “play” with concrete molecular models to stimulate one’s
phantasy and, at best, allow one to obtain solid information on the behavior of the nuclear degrees of freedom
in the classical limit. The work reported is only a beginning, a difficult one due to the fact that the photosynthetic
reaction centers investigated are very large, such that current computational technologies make simulations of
the complete system, or large enough sections of it, difficult. The advent of massively parallel computers actually
has improved this situation [59,60] and, most likely, simulations of photosynthetic reaction centers and of
other redox proteins will proliferate after such computers become more widely available.

The simulations presented above describe the nuclear degrees of freedom classically, quantum mechanical
simulations of biopolymers being currently out of sight. Also, the effect of the electron on the nuclear degrees of
freedom through the considerable change of chromophore charge distributions accompanying transfer has been
described in a very arbitrary manner. Nevertheless, the shift of a completé electron charge at an arbitrary in-
stance in time revealed a very rapid dielectric response of the protein, a feature which certainly relates to the
ability of the nuclear degrees of freedom to interact effectively with the electron during the tunneling event.
Since neither the quantum nature of nuclear motion nor the electron tunneling process can be directly described
through simulations, one needs to resort to a model which entails the essentials of electron-nuclear coupling
and is simple enough to be amenable to a quantum mechanical analysis. The spin-boson model described in
section | and confirmed to some degree by the results of the MD simulations, as presented in section 4, qualifies
in this respect. Further investigations should be carried out in the framework of the spin-boson model rather
than in the framework of cumbersome MD simulations. For example, the low-temperature behavior of electron
transfer in reaction centers can be studied in the confines of the spin~boson model following ref. [28]. We have
recently completed such investigation [26].
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Appendix A. Numerical evaluation of line shape function

We evaluate the line shape function through expansion in terms of the right ((u|m)) and left ({Aju))
eigenfunctions of the operator £=DJ,p,(u)d,[po(u) ]! given in the Fokker-Planck equation (20)

2_.
n!

n

e™*H,(u), (m|uy=H,(u), (A.1)

1
<ul">=ﬁ

where H,, denotes the Hermite polynomial. We assume in the following o= 1, i.e., measure u in units of o and D
in units of ¢~2. It holds [51]

2-n 7 ,
<ﬁun>=ﬁ | b (e L0 =0, (A2)

i.e. {Mm|u)d and {u|n) form a bi-orthogonal system. One can show that this system is complete, i.e., it spans the
function space {f(u), ue [ —oo, co], fcontinuous}. The eigenvalues of & follow from the property [51]

LInd==2mD|n>, (Mm|LT=-2mD{m|. (A.3)
According to ref. [51] holds
<u}n+1)=2u<u}n>—2n(u|n—-l>, <m|utn>=%6mn+l+n5mn—l- (A~4)

From this and eq. (A.3) we obtain
Cli(u—u') = Ln> = (2D =it Yo+ 5 Smne1 +iSmn—1 = Bn ('), (A.5)

where B is an infinite-dimensional, tri-diagonal matrix. Obviously
Cu|0>=po(u), (Dlup=1. (A.6)
Eq. (29) yields then

J:%Re[B“‘(u’)]OO. (A.7)

In order to evaluate [ B~ ' (1’ ) Joo We start from

1
(l0...)B"(u’)<0)=[B“(u’)]oo, (A.8)

which can be written as

1 . Yo
0|=Bw )|y |, vo=[B~"(t')]}oo- - (A9)
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The latter equation together with eq. (A.5) can be written in matrix notation

i )2 0o . o\ /1
i 2—iw /2 0 wl [o
0 .2i 4D.—iu' ?/z ‘0 || 0 A10)
0 0 2ni 2D—iw i/2 .. \y.] Vo

For the numerical solution a finite dimension N=2000 is assumed for the matrix B.
The ensuing problem has been discussed in ref. [61 ], albeit for a real matrix B. The use of a finite-dimensional
matrix B can only be justified for u” < N.

Appendix B. Simulation of Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process [53,54] is defined by the probabilities [u=AE(?)]

p<u>=\/leaexp[—(u—<u>)2/2a21, (B.1)
pl(ut, )|(u<to)1-ﬁexp{—[u(z.) u(ty)e-Pa0o ]2 2s] | (B.2)

where At=1,—1t,, s=(0%/2) (1 — exp[ —2DAt/6?]). p{u(t,) |u(ty) ] denotes a conditional probability. (u), ¢
and D are defined by eqs. (21, 22) based on the AEy(¢) values of the MD simulations and were given the
same values as used for the evaluation of k5T (¢€).

To generate a sequence of u(¢)-values w1th the properties given in eq. (B.2), we produced two different sets
of Gaussian-distributed random numbers as described in ref. [61]; one set denoted by U has the same width o2,
and the other set denoted by W has a width s=102(1— exp[ —4DAt/0?]), At=5 fs. The time series of u(t,)
was then generated according to u(#,+,)=w,+u(t,) exp[2DAt/c?], where #(t,) is a value from the set U and
w, is a value from the set W.
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