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The coherent electron spin. motion in radicals induced by the hyperfine coupling to nuclear spins is
described semiclassically. The nuclear spins are treated as constant classical vectors around which the
electron spin precesses. The ensemble average over all nuclear spin configurations is taken yielding the
electron spin correlation tensor <S(0)S(¢)>. Borrowing from the theory of rotational diffusion the effect
of electron hopping between molecules on the spin correlation tensor is described. The treatment is applied
to the time evolution of the electron spin state of a radical pair initially prepared in a singlet state.

I. INTRODUCTION

The unpaired electron spins in free radicals carry
out a coherent motion which is induced by the hyperfine
interaction between electron and nuclear spins. The
motion entails the precession of the electron spin around
the combination of nuclear spins with afrequency of 1/10
ns™ to 1/100 ns™ depending onthe strength of the hyper-
fine coupling., When radical paivs are generated in awell-
defined electron spin state, e.g., a singlet spin state,
this motion can be observed through the radical re-
combination products the spin multiplicity of which is
determined by the relative orientation of the electron
. spins at the instance of recombination. External mag-
netic fields alter the electron spin motion and, there-
by, also the yields of (singlet vs triplet) recombination
products.! An analysis of the observed magnetic field
effect can yield valuable information about the micro-
scopic diffusion of the radical pair over the time period
of a few nanoseconds, about the solvent mediated force
field between the radicals and the reaction propensities
to singlet and triplet products.®® For such analysis one
needs an accurate knowledge of the relative orientation
of the electron spin, as a function of time. In principle
this can be predicted on the basis of the hyperfine cou-
pling constants known from ESR spectra®* but for radi-
cals with large numbers of nuclear spins the quantum
mechanical analysis is cumbersome. if not impossible,

Calculations carried out for large nuclear spin sys-
tems have shown, however, a remarkably simple func-
tional behavior of the electron spin probability of radi-
cal pair ensembles,
age taken over all nuclear spin configurations of the
pairs. The results suggest that one may employ with
advantage a method of directly evaluating the average
spin probability without taking recourse to the details
of the electron spin motion in the various nuclear spin
configurations. In fact, a very simple expression of
the triplet probability of radical pairs at high fields had
been derived previously.*? In this paper we provide a
theory for the average electron spin motion for arbi-’
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trary fields and provide a simple analytical descrip-
tion for the case of zero magnetic field,

The theory provided in this paper is based on the ob-

_servation that in a radical with a large nuclear spin

system hyperfine coupled to the unpaired electron spin
on the average, the total nuclear spin is much larger
than the electron spin §. Hence, the hyperfine'-induced
precession of electron and nuclear spins around each
other leaves the nuclear spin approximately unaltered.
This leads us to treat the nuclear spins as classical
vectors and to describe the electron spin motion as a
precession around the constant vector resulting from a
linear combination of nuclear spins and external field
B as illustrated in Fig. 1 for the radical pair pyrene~
N, N-dimethylaniline (*Py”~ +2DMA®*). The electrons in
the separate radicals precess with different frequen-
cies around axes oriented differently in space and,

thereby, change their relative orientation. The nu-

clear spin contribution to the electron spin precession
depends on the nuclear spin configuration represented
in Fig. 1 by the polymer-type vector sums of the nuclear
magnetic moments. The averaging over the nuclear
spin configurations indeed will follow the statistical
treatment of polymers.’

FIG, 1.
sion in the pyrene—dimethylaniline (ZPy'+ *DMA*) radical pair.

Schematic illustration of the electron spin preces-
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The theory described allows us to include in a simple
manner the effect of the hopping of the unpaired elec-
trons between different molecules. After a jump the un-
paired electron finds a new, random nuclear spin con-
figuration. The hopping may then be described as a
random change in the direction and rate of precession
of the electron spin.  As the motion of the precessing
electron spin is reminiscent of the motion of a freely
rotating molecule, it is not surprising that the spin
motion of the hopping electron turns out to be mathe-
matically equivalent to a molecule undergoing rota-
tional diffusion. Our treatment can therefore use the
theory of the latter process as developed by Gordon. ®

Il. SEMICLASSICAL DESCRIPTION OF THE
HYPERFINE-INDUCED SPIN MOTION

The Hamiltonian which governs the hyperfine coupling
induced spin motion in radical 1 and 2 is

H=H; +H,; (1)
where (i =1, 2)

Hi =w051,+;a;k Iik -S; ) (2)
and

wo=guB/H, (3)

is the Larmor frequency of an electron in the magnetic
field B aligned along the z axis, The Hamiltonian as-
sumes for simplicity identical g values for the two un-
paired electrons in the radical pair, includes only the
isotropic part of the hyperfine coupling tensors and ne-
glects the weak nuclear spin Zeeman interaction.

The starting point for our semiclassical description
of the electron spin motion is to treat in (2)

L= ; i L )

as a constant classical vector not affected by the elec-
tron-nuclear spin interaction, i.e,, the electron spin
S, is precessing around the vector

w; = ugB/h +1,, (5)

with frequency w;. In reality both 8; and w; change with
time but for large nuclear spin systems one can assume
the variation of I; and, therefore, of w; to be negligible,
This assumption limits, however, the applicability of our
description to radicals with large nuclear spin systems,
i.e., it complements in this respect the exact quantum
mechanical description possible only for small nuclear
spin systems,

As pointed out above we seek to describe the electron
spin motion for an ensemble of radical pairs which in-
cludes all possible nuclear spin configurations, The
statistical distribution of I; for all nuclear spin ori-
entations on radical i corresponds to the distribution of
the end-to-end distance of a freely jointed polymer (see
Fig. 1) with “bond lengths” a;,[I,,(I;, +1)]}/2. One has
for the end-to-end distribution in the volume element
L +dl; (see Ref. 5)

3293

f @) =6/4n) 2 exp(- 51273, (6)
where
g 1
T3 ='6-Z:alzklik(1ik+1) (7

and I;, denotes the nuclear spin quantum number, e.g.,
3 (1) for proton (nitrogen), The Gaussian form of this
distribution is only accurate if the mean square effec-
tive magnetic moment of the nuclei 732 is very much
larger than the contribution due to any single spin

@yl 15l +1), Therefore, Eq. (6) cannot be expected
to yield a good description for the distribution of I, in
case that one or only a few nuclear spins give a domi-
nant contribution to the hyperfine coupling,

The triplet probability of an ensemble of radical
pairs inijtially (£ =0) in a singlet state is

pr) =(tr[Qs(0) Q- (1)]), ’ (8)

where

Qs(t):%-sl(t) * 5, ©)

Qr(t)=1+8,(t)-8,(t),

are the projection operators (at time #) on the singlet

.and triplet electron spin state, respectively. trdenotes

the sum over all expectation values of the electron spin
states and ( ) stands for the average over all nuclear
spin configurations

Al L) = [dn [aLr@)r @A, L),

This representation of the triplet probability as an
equilibrium time correlation function Eq. (8) is com-~
pletely general and can be used as a ¢onvenient starting
point no matter what the mechanism of spin motion,
With the spin Hamiltonian chosen here, the time cor-
relation function expression for pr can be written in a
form which allows us to take the averages corresponding
to each of the radicals separately '

10)

pr(t)=% =T :,T, (11)
where ;T denotes the spin correlation tensor
L T=(rS,(0)8,(2)), (12)

the trace being taken only over the electron spin state
of radical /., The tensor product:in the S;,, S;., S;,
representation is defined as follows
1T : zT =%(1Too 2T-— +1T*- zT-o +1T-0 ZT -
+ 1T-- 2T¢ +) +%(1Tu 2T-: + IT-z zTu
+1T g2 Te. +4T -2T¢0)+1T112Tu- (13)

{in deriving (11) we have used tr[S,(t)-8,(t)]=0.}

I1l. EVALUATION OF T= @r[S(0) S(t)])

We wish to determine now the time behavior of the
spin'correlation tensor (12) (we omit the index i in this
section), The spin operator S(¢) obeys the equation of
motion

Zdt‘ 8(t) =wx (), (14)
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where w is defined by Eq, (5). The solution of this

equation which describes the precession of S around

w is
8()=u(t)8(0)u(~2),

(s) -

where U(Z) is a rotation matrix in the spin $ representa-

tion ‘
.”‘”=(i;; z:x) , (16)
where
v= cosze/z expiwt/2)+sin6/2 exp(~iwt/2), (17)
w = — siné sin(wt /2), (18)
x=expl(i¢p), (19) -

and the angles 6 and ¢ define the orientation of w. Eq.

(15) then yields

-iwux 2
S.¢)= ( wx?2 iww‘c) ’ (20)
. = 2,2
iwvx  wx
S.0= ( 72 —iwx > ’ - (21)
- 1 /v =w? -Ziwvx)
Silt) = 2\ 2iwt%x  wr-u? (22)

In these expressions the average ow}er the azimuthal
angle ¢ can be carried out immediately, Since {x)
=(%) =(x® =(x® =0 one obtaing

T = tr [S(0)M® 5(0)], (23).
where M®(¢) assumes a diagonal form
@w?®» .0 0
MO@E)=| 0 GR) 0 (24) °
0 0 (wi-ud

In the case of zero field and high field the averages

in

(24) can be evaluated readily, At zero field one finds

MO@)=5[1 +AZC(t/7')] 1, (25)
where ‘
Clx) =(1 = 2¢2) exp(~x2), | (26)

and 7 is defined as in Eq. (7). At high fields one has
6=0 and, hence, v?=expliwt) and v7 -u?=1, The aver-

age of e'“? is in cylindrical coordinates
o 1.2 3/2 © .
e ‘>=27;(Z;) fn dr 1,

_ xf dlexp[-1(I2+12%)7%]expliwt).

(27)

By virtue of w =[(wo+1,?+12]"/25 wy+I,, which holds

in the limit of large w, one obtains
' T (T .
(@' =explivt) 7= [l exp(~ 4127+ L),

and hence,

(28)
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eiwot e“”(t/r) 0 0
M) = 0 ettt /) 0 ], (29)
| 0 0 1
where
e'"(x) =exp(~x2), (30)

’

IV. HYPERFINE COUPLING-INDUCED TRIPLET
PROBABILITY WITHOUT ELECTRON HOPPING

The evaluation of the tensor T for zero field and high
field leads by virtue of Eqs. (11) and (13) to the follow-
ing analytical expressions for the triplet probabilities:

Zero field,

prt)=3 [ =gt /r)g® (¢ /7,)],

(31)

£90) =31 +20()], (32)
High field,

pr(t)=3[1 =V(t/r) e (¢ /7,)] . (33)

In Fig. 2 we compare for the *Py” +2DMA®* radical
pair these expressions with the triplet probabilities
resulting from the exact quantum mechanical treatment
in Ref. 4, One finds excellent agreement between the
quantum mechanical results (which in the zero field
case involve great numerical effort) and the semi-
classical predictions (31) and (33). As lim,_ g(x)
=% the triplet probability at zero field assumes asymp-
totically the value 3. This is in agreement with the
quantum-mechanical calculation taken at 40 ns, “As
this calculation describes a coherent motion, how-
ever, it exhibits further oscillations at longer times.
One can expect (31) and (33) to be valid for times #
<min(r/ay,). ;

The expression (31) yields an immediate interpreta-
tion of the oscillations of p,(t) at zero field in Fig. 3.
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FIG, 2. Comparison of the triplet probability of the unpaired
electron spins in *Py~+2DMA"* predicted by the semiclassi-
cal approximation, i.e., Eqs. (31) and (33), [—] and evaluated
from an exact quantum mechanical analysis (Ref. 4) [0]. Hy-
perfine coupling constants assumed are Py: 4X (ag=2.3 Q),
4X(ay=5.2 G); DMA: 6X(acy, =12.0 G), 1X(ay=12.0 G),
3% (ay =6.25 G),
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These features are due to the functions g(f /7,) and.
glt/ 7,) which describe damped oscillations originating
from the precession of the electron spins S; and 8, with
various precession frequencies and around various
axes. These oscillations are totally analogous to the
dips observed in the orientational correlation functions
of free rotors in the gas phase.® The first oscillation
in Fig. 3 is due to the electron spin on the ®DMA* radical
with an 7; value of 4,35 ns. The second oscillation is
due to the *Py" radical with weaker hyperfine coupling
and, therefore, a larger 7, value of 14,13 ns.

V. HOPPING OF PRECESSING ELECTRON

We want to evaluate now the spin correlation tensor
T = (8(0) 8(¢)) for the case that the electron is not resid-.
ing permanently on one molecule but is jumping between
different molecules. The correlation tensor without
jumping has been determined for the case of zero and
high field in Sec. III. When jumping occurs one must
further average over all possible sequences of jumping
events, To describe this, we employ the theory of ro-
tational diffusion pioneered by Gordon® and outlined in
Ref. 7. Let us denote by T () the contribution to T(t)
due to electrons which have undergone » -1 jumping
events up to time ¢ so that

ST =

n=

=(t[s@ 35 mewrso)] ).

The jumping events are assumed to be independent and
“to occur by first order Kinetics. “The mean residence
time is 7. The probability of not observing a jump by
time ¢ is then exp(~#/7,) and, therefore, the time evolu-
tion of 8(¢) without jump is described by

MO(F) = exp(—2/7,) MO(2).

Because the jumping events are independent, the follow-
ing recurrence relation holds

T,

(34)

(35)

t
M ‘"’(t)=ra‘f dt' Mt ¢ YM D) (36)
. 0
For B =0 this becomes

glt/t,)
T C
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2 10 f f
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FIG 3. Time dependence of the spin correlation function
g(t/Ty) of the unpaired electrdn in 2DMA* (7,=4.35 ns) for vari-
ous residence times "o {a) Tp—=; (b) 74=100 ns; (c¢) Ty=10ns;
(d) Ty=1ns; (e) Tg=3ns; (f) Tp=0. The hyperfine couphng con-.
stants assumed are given below Fig. 2.

_tion to the integrals in Eq. (39).
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M®(t) =g P/, (37)
where

g®t/my=5[1+2C(t/m)]exp(=rt/7), (38)
and

(/7Y =2 fot/rdng)(é —x) 20 (), (39)

x=1/70. (40)

For B -~ » the time evolution operators have the form

elwot e(n)(t/T) . 0 0
M™(¢) = 0 Coetete™(y/r) 0 ], (41)
o 0 1
where
et /TY=e Nt /1) exp(~Nt/7), (42) -
t/r :
e™t/n=r [ axe® ( L _x) e (), (43)

In the case that only one of the unpaired electrons of
a radical pair engages in the hopping between the mole-
cules constituting radical 1, the triplet probabxhtles
(31) and (33) assume the form

Zero field,
prlt) =1 [1 —g(t/rl)g“” t/t)1, (44)
g(t/n) Z g™ (t/m (45)
ngh fxeld
prt)=3[1 =et/7)e @(t/7,)], (46)
e(t/'rl,)=2: e™(t/1). / @n

_ Unfortunately, the functions g(x) and e(x) cannot be ex-

pressed in analytical form, They can be evaluated nu-
merically, however, according to a scheme suggested
by Gordon. ® This scheme involves discretization of x,
i.e., x~x,=0, x1, %5, ..., replacing thereby the func-
tion g ™(x), for example, by the vector G with com-
ponents .

G=g "), ; (48)
and the convolution (39) by the matrix operatioh
G™M=AG"), (49)

where A is a tridiagonal matrix the elements of which
are determined by the choice of numerical approxima-
One obtains then

G=), G”=(1-A)'G®, (50)
n=1 ‘

where the evaluation of the inverse of 1 -A is a simple
matter as the matrix is tridiagonal. The functional be-
havior of the function g(t/7;) {r; corresponding to the
®DMA* radical) for various 7, values is presented in
Fig, 3. For long residence times 7, > 7; one finds
g(¢/r,) to approach g ® (¢t/7,) which is to be expected
since g ©(t/1,) describes the spin correlation for in-
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finite residence time. A finite 7, induces, however, a
decay of g(t/7,) to zero at long times, For very small
7o g(t/7y) approaches the value 1, i, e., the electron is
' hopping so frequently that the spin precession comes to
a halt due to an effectively zero hyperfine interaction.

The functional behavior of g(t/7,) can be 1llustrated
also by means of its Laplace transform

§(s) =f dxe™* g(x), _ (51)
which can be evaluated readily according to Eqs. (38)
and (39) from

gPs)=g s +1y/7,), (52)

§<">(s)=11_§(°>(s+ﬂ)gr("-“(s). (53)
To To '

This yields immediately

ap gWs +71,/7,)
g(s)= 1-(r,/79)2 ruﬁ(s 3-71/70) - (59)

For 7,/74~0, i.e., infinite residence time Ty, One has
g(s) =g ®(s) and, hence, g(t/7,)=g®(t/7,). We can also
use this representatlon to discuss the case pf very rapid
hopping, i.e., 7,/79~. Inthis limit we need retain
only the short time behavior of g‘°’(t) since the Laplace
transform is to be evaluated at large argument, that is

é‘”’(s + 1‘-) = J exp[—-(s + l)x] g9 (x)dx
To 0 To

o) o

o1 _._._3_5.4.... . (55)
71 3
s+ — [(g+-~L
To To

The fact that only the short time behavior of g @(¢) is
involved is related to the fact that the electron spin can
only precess for a short time before a jump randomiz-
ing the nuclear spin configuration occurs. Substituting
this approximation for g‘“’(s) into the expression for
g(s), we obtain

gls)= 1

= . | (56)

If 7,/7, is very large 4/(s +7,/7,)? is ‘quite small
whlch case g(s) has the simple form

gls)= 1 . . (57)

(s +4 3’-)
T

This implies that g(¢) decays exponentially

£(£)-onf 2 2)

This exponential decay of g is just what is expected for

‘the small step diffusion of the electron spin vector due

to the rapidly varying hyperfine interaction when the
electron jumps often. As such, itis also the form that
would be predicted by the simple relaxation theories
which assume fast modulation.

" Even when ‘the decay of g to zero is not exponential,
this decay can be usefully characterlzed by the corre-
lation time 7, defined by

%

TC=J; g(%)dt. (59)

For large residence times 71,~ 70/2, i.e., 7, tends to
infinity as is to be expected from the fact that g (¢ /7,)
assumes asymptotically a nonzero value. If the resi-
dence time is short the decay of g is also slow, as
shown in Eq. (58) and 7, also tends to infinity as 7,~0.
That is, for an mfm:tely rapid hopping process, g(¢)
becomes ‘essentially 1, for any finite time,

In Fig. 4 we present the triplet probability for
the 217'y +?DMA* radical pair at zero and high field
for the case that the 2DMA"* electron is hopping.
Figure 4 demonstrates that electron hopping slows
down the singlet—triplet transition at short times.

- At long times the hopping process changes the asymp-

totic behavior of pr(t) which assumes the asymptotic

'
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FIG. 4. Triplet probability of the 2Py~ and 2DMA®* radical

pair in case of electron hopping between DMA for various
residence times 7, at zero field and high field. For designa-
tion of the curves, i.e., residence times of the 2DMA* unpaired
electrons, see Fig. 3. The residence time of the *Py” unpaired
electron is assumed to be infinite, Hyperfine coupling con~
stants are given below Fig, 2,
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value £. If the hopping of the 2DMA* electron is in-
finitely rapid, the orientation of that electron spin will
remain fixed and the asymptotic value of the triplet
probability becomes 4. In general, for a finite but non-
zero residence time, the asymptotic value is §, a re-
sult which can be derived from Eq. (44). In the case
of high magnetic fields, the asymptotic value § is not
altered by the hopping process which shows clearly that
the effect of electron hopping at longer times depends
on the applied magnetic field. An effect of an applied
field on electron spin relaxation of radical pairs in
systems where electron hopping is expected has been
observed by Klein and Voltz.® '

The residence time 7y is inversely proportional to
the concentration of the molecular species between
which the electron hopping takes place. If the electron
transfer is a diffusion controlled process one has

7o' =47Drcy, . (60)

where D is the diffusion constant, 7, the distance at .
which electron transfer takes place, and ¢, the con-
centration, Assuming D=10" cm®s™ and 7,=7 &
curved in Fig, 4 corresponds to a DMA concentration
of 0.2 mol I'", This example demonstrates that in
many instances, especially when electron hopping can
take place between the solvent molecules, the hyper-
fine~induced spin motion should be affected by electron
transfer processes.
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