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Algorithms are developed for the exact evaluation of the 3 j-coefficients of Wigner and the 6j-cocfTicients of

Racah. These coefficients arise in the quantum theory of coupling of 2ngular mementa. The method is

based on the exact solution of recursion relations in a particular order designed to guarantee numerical ' :
stability even for large quantum numbers. The algorithm is more efficient and accurate than thosc based on

explicit summations, p'xmcularly in the commonly arising case in which a2 whole set of related coefficients

is needed.

l. INTRODUCTION generating the strings of 3j- and 6j-coefficients (1), (2},9"

! . and (3). In Sec. IV we demonstrate numerically the ac-
curacy and efficiency of the algorithm. Computer
programs for the recursive evaluation of 3j- and $j-co-~
efficients will be made available.?

Commeoen algorithms for the evaluation of 3j- and 6j-
coefficients are based on the explicit expressions of
W1gner and Racah.? Calculations involving the quantum
mechamcal coupling of angular momenta often require

" the evaluation of whole strmgs of coupling coefficients Beside being most advantageous for numerical evalua-
of the kind: ' . tions, the recursion equations serve to make the func-
. ‘ tional properties of the angular momentura coupling co-
(’J7 :1» ’]} fz ;7':3) for all allowed j,, (1) efficients more transparent. In a second article fol-

. lowing this one,* it is shown (hal the recursion equations
. . . . for 3j- and 6j-coefficients can be solved using a discrete
(’J; ;]7: - I3 m ) for all allowed m,, (2) analog of the uniform WKB approximation to yield simple
LIS 1o analytic approximate expressions for individual coupling
A coeificients, which are aquite accur:z‘e even for modcrate
1 2 3
{ } for all allowed j,. () quanium numbers.
Ll
N RECUFG!O'\. RELATIONSEIPS FOR 3/- AN

Numerical exampies of these sets of coupling coef-
pies ping 6/-COEFFICIENTS

ficients are given in Figs, 1-3.

The existing algorithms, however, evaluate coupling The recursicn relaticnships which ecnnect tee ansular
coefficients separately and do not make use of relation- momentum ceepling cosfficients in {11, {2}, snd {3) bad
ships between the values of neighboring 3j- and 6j-co- been previously reported. Condon ard Snor ey § devivad
efficients. The algorithms, furthermore, are inappli- the recursion relationships for the 3j-coefficierts in {17,

cable for large angular momentum values (~100%) which, and Rose® presented the recurcion relationshiyp for th
~for example, occur frequently in problems of molecular  3j-coefficients in (2). In both instances the rociursion

“dynamics. - relationships were obtained from the interpretation of
We have now numerically tested an algorithm for the the strings of 3j-coefficients ia (1) and {2) as the cigen-
evaluation of 3j- and 6j-coefficients based on recursion vectors of certain anguiar momentum operaiors. Concon
. L. ) . . . - . -y Rac o wodg that
equations relating the coefficients in the strings (1), (2), and Shortley,. and srllj§equex.:l¥ n‘o»e;, suggesied tn‘a‘.
or (3). Tkis algorithm simultaneously generates all " these recursion equations might help evaluate the 3j-co-

coupling coefficients within these strings without more efficients. The recursion equation for the §j-coefiicients
J bl <3 - s e : 7 - :
numerical effort than is needed to evaluate a single in (3) have been given by Yutsis e al.” In an aprerdix
coupling coefficient. Further, this algorithm is nu- following this paper, we show that this recuision ¢gua-
. , »

. . i joi ‘on 2 i o roblem. In-
merically applicable for large angular momentum tion, too, originates f.wm an eigenvalue plot 618
7 5 1 % n \
quantum numbers. stead of now just quoting the recursicn equations of

Condon and Shortley, Rose and Yuisis ef al., we prasent

In the following, we will present the derivations of a unified derivation for these ihree recursion cqua’
the recursion equations which relate the coupling coef- - This derivation siarts off from three basic sum ruivs
ficients in (1), (2), or (3). in Sec. II we derive these which hold for 3j- and 6j-coefficients. ’
recursion relations algebraicaily from certain sum
rules satisfied by these coefficients. While this deriva- Let us first consider the 3i-coefficients in (1). ior ike
tion is the shortest available, it is somewhat remote 3j-coefficients there is an identity®

irom the definitions of the coefficients. Thus in the Ap-
pendix, we supply an alternate derivation starting , . . .
directly from the basic definitions of angular momeatum (= 1)z "2 amahemi (J v 2 3\

coupling. In Sec. III we then derive the algorithm for My Ma M)

L 1 js
my my o~/
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ill l } (4)
Fovli=4%, L=j.+a, and m{=3 (a,8=1+1) this identity

reduces to the three term recursion relationship

) . : . | ST .
(- 1\.’:677120]3«1.134»1/206 ]1 2 . ]3 2 Jg+ o ]3
i) my My, Mgl \B my—B ~m,

(21, + 1) Q’nl

Y B L ) (i J2  da)
\=8 ~m, my+8 i% Jsta 1

wiich connects the 3j-coefficients

Fper/2

= 2

1yripel/2

'ja'*'a I, \
n, -~ mz+;3/

@)

Ja=z

Iy Ja=%F dita Ji Ja s
my W, +B oma—-B8] 7 \my, m, my

[Jy Jat3 J3+Ci)

‘\m1 m,+B my—-B/)"°

retors mnltiplying these 3j-coefficients in Eq. (4%)
- and §j-ccelficienis containing a quantum number’
R n which cmssd expressions exist. Equation (4') with
a==~% and = - % is identical with a recuvsion relation-
shiiz previousty devived by Louck® starting fcom the

e

icbsch-—~Cordan ceries.

and

C

Reecursien velationships (£) properly comtined give a
recupesion relafionshio which only connects 3j-coef-
1" ents halonging to (1). To be specifie, the recursion
reixtionships (o be combined are

Zm . 7 . . .
(-1} 2(2j,+1) j,— prz {Jr Iz Js
(- 1) 2{2j,+1) [Ja my+1j (m1 m, m,

:[(71 +jp =gy =Jjatist+ 1)02"’!2)]1/2
[iv  J2— H Jst3z \
my, m,+i my- ‘

=[Gy +12+ s+ 2)(=jy +jp +ig + 1, +m, + 1)J/2
.71 Jat+3 js';';
my m2+2 my-%/’

N . . 1
20, . f. 1 7 Jo—3 Jat
0 (05 )

(52)

= - [(71 +fp+is + 1=y T +7s)U, + mz)u/z

X (]1 jz -1 js )
m, nm, n,
+ [(.71 "jz +j3 + 1)01 +j2 ‘ja)(iz“; mz)]”z

P I o o B o

X (jl j2 j3 (Sb)
my m, my)’
and

1
-1) 2 (25, + 2)j, - m, + 11272 {11 JetE dati
¢ ) (27 + 2}z —mq + 1] (/n1 Mmy+ it my—-3

-[(jj."'jz+j3+2)(-j1+j2+j3+1)02+7)12+1)]1/2
*(’h J2 js)

my W, m,
+[(i1 ~Ja +j3)(jx +ia =izt UUz‘"’z + 1)]1/2
w(Fr B+l

my my,  my)"

Inserting (5b) and (5c¢) into {5a) gives a recursion rela-
tionship for 3j-coeificients which may be written

XAU,H)("” 5 ww(}; 5

(5¢)

m; m, m my; m, nm,

+Gyrnagy (Mot T Y o, (62)

where
AGy) = [11 _02_13)2]1/2[(]2+J3+1)2__112]1/” -my ]”’
{6b)

B(,)
=~ (2j; + D U, + 1)my = jolis + 12, = 5,6, + 1Dong = m,)].

(8¢c)

Recursion equation (6), it will be shown below, together
with the normaiization condition

Z (27, +1) (]1 J2 Js ) =1’, ' n

M, Mg

is sufficient to determine except for an overall phase
factor the values of the 3j-coefficients in (1).

There exists yet another recursion equation for 3j-co-
efficients, which relates 3j-coefficients with different
magnetic quantum numbers, and which allows the evalu-
ation of the elements in (2). This recursion equation is
derived in much the same manner as Eq. (6). Hence,
we may only outline this derivation. It had already been
pointed out by Edmonds® that the identity

Jy Ja s Jv J2 Js
my m, mg Lol
l l l j l
— m 2 3 1 2 3
Z( v’ (m1 m —ml-m) (7713—m m, ml+m>

x( L L z) (®)

m--m, —~m m,

ba=lh+l+l,+my~my—m,

provides a suitable starting point for the derivation of



recursion relationships for 3j-coefficients. Setting I,
=1, I,=j,+8, and l;=j, + o (@, B=1+3) gives the three
term recursion relationship :

Biode F\ A Je Js
m; Mm; My 3 j3tB j2ta

- millz (__/1)%(.7.1 Ja+8B

Jta )
mamge1 /2 m;, m -—my-m

1 . : H 1 : .
x z Jo Ita ) 3 Ja*tB s
My=m My Wy tm M=y =M 1,
| (®)

which connects the 3j-coefficients

. . . + . A . °
(Jz .72‘*"3"l Ja 31\) , <11 1z Ja) and
my myt+z Mmy—3 My hl, Mg

(jx hta jms)_

1 1
my Myg—3 Myt 3

The factors multiplying thnse 3j-coefficients are atram
3j- and 6j-coefficients containing a quantum number }
for which closed expressions exist. From (8‘) can then
be obtained by a proper combination of three recursion
relationships the following equation which relates the
3j-coefficients belonging to (2)

h Ja is : jy Jz s
+ . +D
Clm, 1)<ml my+ 1 7;13—1> (ma) (m1 m, m3>

{ .}2 j3 - ’S
* Clm,) (n' my -1 m + 1> 0 (52)
where )
Clm,) =[G, = my + 1), +my) g +my + 1), =11 /3,
~ (8)
D1y} = jo{jy+ 1) + 4,00, + 1) =5,y + 1)+ 2mym,. (3¢)

It will be shown that Eq. (9) together with the normaliza-
tion condition

PR P Js 2
Z(zhn)( m2> -1

(10)
ma ny M, —ny; - .
is sufficient to determine except for an overall phase
factor the values of the 3j-coeificients in (2).

The recursion equation which selectively connects the
6i-coefficients bhelonging to the set (3) is derived in a
manner strikingly similar to the recursion equations {6)
and (9) above. Now the Biedenharn—Elliot identity **
_serves as'the starting point: '

jll jz js jl 2 Js
oL L YL )

.|

(10 12 i

S N

\ b

1o
A 52ﬂz

Sy {

Or=htiy Fia Tl L A
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If one sets I{=1, I!=j,+B, and =i, +a (a,8=21)

)
the sum over X reduces to two terms with A=/ 1, One
arrives then at the recursion relationship

é]il . z J3 }
5\3 Js*t8 frta

= 1l.17\/z (- 1)°\{]1 J2t JSZTS} {lé Ja ]'2;’0\%
T aei L ¥ A 1

3
LA ste ds
I, 1,

2

~ which connects the 6j-coefficients

{ Ja 2t a ].s+ﬁ( {h ]z 13} and
1,3 l._,

s f 7
N j; jata j3+5

The factors ia this recursion relations h1p consist of
6j-coefficients with a quantain number ¥ for which
closed expressions exist. Proper coinbination of three
racursion relationships (11°) yields '

) iy +1 j, .7.31 + F(G)) gjx Ja Jz{

i EGy + 1
3EGy 1 L L ls) L L 135

+ G, + DEG,) {7"1_
| 41

‘where

EIJl) = {Uiz - Uz "j')zl[(jz + 7-' + 1)2 *jxal{jjz -

XL, v L+ 1P =210 (12b)

F(]],) = l?‘] - 1) ]1(71 : -~. ,1\ 1 ]21\12 + 3‘) 4":(./4 . 1‘}
+ L+ l)j1(j1 + 1)+, + 1) - Jalja 1)}
+ (L + Dy Uy + 1) = o U, + D+, + 1)

- 25,0, + DL, + D

+ 134

Recursxon equation (12) together with the normalization
condition

7. : N 2
5 vyt ]3} -1 (3
1 N

Iy 1, 1

is suificient tc determine expect for an overail phase
factor the 6j-coefficients in (3).

Racah!! had pointed out that his explicit formulia is
not the only pathway for an evaluation of §j-coefiicients,
but that instead the recursion equation (117) equaily weil
furnishes an approach to the evaluation of €j~ce2tficients,
Racah and Fano noted that the coefficienis in these re¢-
cursion equations consis't"wr oi €j-coefficients with
quantum numibers 4 are determined throvgh the vnitary
property

> (2), + 102l / .
%l he }’ lo 13§ lll i Iy} 1

]1 ]2 vsl 11 2 ./'3!> .5
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¥ith, 1. Functional behavior of 3j-coefficients /(j;) =(_J} {3 8
{45 57 £128). The evaluation of f(j;) fellowed the recursion
algorithm described in Sec. 3. The domain of f/{j;} can be di-
vided into a classival and two nonciassical regions (Ref. 4),
I the classicel region f(jy) oscillates with slowly varying
amplitude; ix the nouclassieal regions () | monotonically
decays te zero, :

together with the associative property

o yhrheln (2, + 1) {]1 Jo Jal Viy J2 4, i s L
(-1) D N T L
. (‘1 b2 bl b3 0 Js b2 4
(14)
Icnee,
tne ideriities (13), (14), and (11) completely determine
the gj-coefficients save an overall phase factor. !
The similarity between the recursion equations (8) and
(9) for 3j-coefficients and the recursion equation (12) for
gj-coefficients as well as the similarity between the
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FIG, 2, Functional behavior of the Jj-coefficients g(m,)
=13 48 toimg) (= 32Sm,=<48), The evaluation of glm,) followed
the recursion algorithm described in Sec. 3. The domain of
(inty) can be divided into a classicai region and two nonclassi~
cal regions (Ref, 4). In the classical region glm;) oscillates
with slowly varying amplitude; in the nonclassical regions
Ig(my) | monotonically decays to zero.
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the very interesting ccnelusion can be drawn that

corresponding derivations is explained through the
existence of an asymptotic relationship between 3j- and
6j-coefficients *2;

[ Ja s ) =lm (- 1)"7 [, 2 2R + 1212

My omy iy, R~

x{ jl’ j2 j3 ) (15)

L, +R 1,+R 1, +Rf

where Iy~ ly=m,, I, -l;=m,, and [, -1, == m,. In fact,
Eq. (6) follows from Eq. (12) by taking the asymptotic
limit letting [, 1,, and I, go to infinity, whereas Eq. (9)
follows from Eq. (12) by letting Ju» Jas and I, go to in-
finity. We have chosen the series of 3j- and 6j-coef-
ficients in Figs. 1, 2, and 3 to be related through the
asymptotic relationship (15) as may be readily checkad.
The similarity of these diagrams is therefore an il-
lustration for Eq. (15).

IH. ALGORITHM FOR THE RECURSIVE
EVALUATICN OF 3/- AND 6/-COEFFICIENTS

The three-term recursion equations for 3j- and 6j-co-
efficients (6), (9), and (12) have been derived and it will

. now be shown how the Wigner and Racah coefficients can

be determined from these recursion equations.

To describe the proposed recursive algorithm, we
will first consider the evaluation of the string of 2j~-co-
eificients

o iy e o .
e R

The range of j, is finite, the smallest and largest values

being :

J1 mia=max{|j, j"j3|9 [mo |} and jy g =ds + s

Once proper starting values hava been given, the re-
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FiG. 3. Functional behavior of the Sj-coeffic;xents h(jy)

I3
= ::1}% 135 39} (48 =j; =128). The evaluation of h(j,) followed
the recursion algorithm described in Sec. 3. The domain of
h(jy) can be divided into a classical and two nonclassical re-

gions (Ref. 4). Tn the classical region h(jy) oscillates with

slowly varying amplitude; in the nonclassical regions [2(j,) |
monotonically decays to zero,
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cursive evaluation of all f(j,) according tg

le(jx + l)f(h + 1) + B(jl)f(jx) + (jl + 1)A01)f(jl~' 1) =0
(Cl)

can be performed. But, one should note that such a
recursion procedure to generate the quantities £(j,),
fG+1), f(j, +2), -+ canbe numerically stable only in’
the direction of increasing f(j,). The semiclassical ex-~.
pressions for 3j-coefficients,  reveal that f(j,) de-
creases rapidly to zero at the boundaries of the j,-do-
main j, .., and j;... This can also be seen from Fig. 1
which illustrates the typical j,-dependence of 3j-coef-
ficients. In order to assure numerical stability, the
recursive evaluation should therefore proceed from the -
boundaries jj ,,(left recursion) and j, .. (right re-
cursion) of the j,-domain towards the middle (classi-
cal®'!®) region. The classical region is defined here as
the set of j,-values for which there exists a classical
angular momentum vector diagram corresponding to the
3j-coefficient f(j,). It iS within this region that the typi-
cal magnitudes of the 3j-coefficients f(j,) are largest.

For the start of the recursion (6’) one observes that
Al mia) =0 and A(jy o +1)=0. The recursion relation
at the boundaries j, ,,, and j, ... thus becomes

B(jlmln)f(jlmln)+j1m£n A(jlmin+ l)f(jlmln"' 1):0

(16)
and
" B(y max) f Ui mar) T Urmax + 1D AU max) £ U1 max — 15 =0,
(17)
i.e., the three term recursion (6') reduces to two

terms. Thus, one starting value at each boundary,
namely f(j; n,) and £(j, ,.), is sufficient to start the
recursion (6') in each direction.

Let us now assume that the terminal 6j-coefiicient
FUymn and f(; ) have been given arbitrary values
and used to start the recursion (§). Thus, they are in
error by factors c; and c,, respectively. Applications
- of Eqs. (16) and (17) then yield the quantities ¢; f(j; qy,)
and ¢, f(j; ny)- Carrying the recursion further towards
the classical regions by means of the linear recursion
(67), tlie quantities

(5 fU, min); ¢ flitmiat 1);
€2 fUrmas)s €2 f(jlmu" 1);

will be generated. The common final j,-vaiue j, ,, for
the recursions from left and right should lie within the
classical j,~domain. The recursions from the left and
from the right must, however, match at j, =j, ,,q, SO
that we have the condition ¢y f(j; png) = €5 FUimea)- We
may therefore rescale the left recursion by the factor
€2 f Grmsa)/€1 f Uy mq) =¢,/¢c; to get

“Cp fUL s C fUimat 1) oo o5 €2 fUrmax—

Vi3 € fGymia) (left recursion),

«ee3 € (i mya) (right recursion)

1) 3 czf(jlm.az)Y

(18)

i.e., the series of 3j-coefficients in (1) off by a common
factor ¢,. To obtain the unknown ¢,, we employ the
normalization condition (7) which yields the absolute

1865 J. Math. Phys. Vol. 16 No. 10 Octobter 1975

~ determines the sign of c,.

‘magnitude of ¢,. The phase convention

. Nmax T2 I3 (Y™

sgn {(ml . m3>} =(=1) (19)
Rescaling the series (18) by
1/c, then gives the 6j-coefficients in (1). 1t has, hence,
been shown that the recursion (6’) can be started wit
arbitrarily chosen values ¢, f{j, o2} 20d ¢, £ 1.,) to ob-
tain simultaneously all 3j-coefficients in (1)

Let us consider now the evaluation of the 3i-coef-
ficients in (2),
ol Y (T2 J2 Js <.
g(’”z) = ("11 m, - ml -m, 3y Moapmyg SN, s"ZE max?
(21
by means of the recursion equation

C(m,+ 1) gm, + 1) + D(m,) gim,) + Clm,) g(ingy — 1) =0,

- @n
The range of allowed m,-values in (2) is finite, the
smallest m,-valve is m, ,, = max{~ j,, = j, = »i,} and the
largest m,-value is m, , = min{j,,j, = m,}. The func-
tional behavior of gim,) resembles that of £(;,) in that
g(m,) in general falls off tc zerc at the boundaries m,.,,,
and m, . of the nm,~domain (see also Fig. 2j. To as-
sure numerical stability, it is necessary to perform
the recursion (9’) from totn onds of the m,-caomain (Jeit
and right recarsion). As was the case for (67 the
terininal recursions contain ouly the twe ferms

D(mz mlu) 8("74 mlr +C ("72 min + ‘“ g(m2 ain 1\

D(mz max),g(nzz ma::) + C(N?'d n.a‘t) g("”z max

since C(m, ,,):=0 and C(snn, . + 1)
bitrary starting values ¢, g ””zm )
recursion by means of (20), {38), and (21) (e
the two series

€1 g('m'z mln); €y g(mz m£n+ 1); R

¢y (My ) (left recursion)
and

CZ g(nl'g‘ mu); CZ g’('nZ max 1) R ;

3

C, &{my ny4) (right recursion)

for some r1, ., in the classical m,-domain of ihe 3j-co-
efficients. To assure that the matching condition

¢, glmy nyg) =c, glm, ) hold, the left recurgion may be
rescaled by the factor ¢, g(m, o, 5)/c, g0, o). One then
gets

€2 8(My gy4); €5 (115 5+ 1)5 ..
ng(mz max 1); €2 g(m2 max) (22}
which represents the 3j-coefficients in (2}, scaled by the

unknown factor ¢,. ¢, is readily determined from the

K. Schulter and R.G. Gorgoen 1568



normalization condition (10) together with the phase
convention '

sgn \[/j‘ Iz s \)}
ax

\ny Mg —my—my 5

The desired j-cosfficients are then obtained after
muitiplying {22} by 1/¢,”

=(- i

(23)

.

Finally, we turn to the recursive evaluation of the
series of the §j-coefficients in (3)

SIS (/A A X B S .

h(]l): Ux lz l3 ISR 1 S]hna;' (3')
The smallest and largest j,-values are j, ,,, , = max{ij,
~Jsls Uy=Li} andj, . =min{j, +j,, I, +1,}. The 6j-
cartficients hljy) fall off to zero 2t the boundaries j, la
and ) .. A8 can be seen from the example given in Fig,
3 and i5 revealed for the general case oy the semiclassi-
cai expression for 6j-coefficients. ! Hence, the
recursion o

HEULF DRG, + 1) + FG)hGy) + Gy + O EG) iy - 1) =0
' (12%)

which connects ali possible 4(j,) should again proceed
sinmltancously from the bovndatiesj, mia (eft recursion)
and jy .. (right recursion) towards the middle j,-do-
maia. For the recursions at-the boundaries we have

£l e =0 and EGy,,,, +1)=0. Hence

(24)

i \ e L e 1YLl 1)
£ (.’1 rag s "(}’1 :r.*.r.) THwtat Ui T 1) "L'{J.‘. mia ™ 1)=0

aid

o (-';l ::lax> I’(J? max) + (jl mal+ 1) EUL t.:a,() h(jl aax 1\ = 0 (25)

vhich there exists a classical angular

wor tefrahedron corresponding to tire 6i-
in this domazin, typical magnitudes of
5 ave largest. The watching condition”
21101 me) 15 satisfied if the left recursion is
wotactor ¢, 1ff; oy 4)/¢y i ji ) Which gives -

TR o G

~ e ilda o 4

=1L e iy

1Y . ;
Vimax T l)«"'"zh’{\]imu)'

(27
so that finally all 6j-coefficients in (3) are evaluated.

V. ACCURACY AND EFFICIENCY OF
RECURSIVE ALGORITHM

% e would like to demonstrate now our claim that the

recursive algorithm for the evaluation of 3j- and 6j-co-
efficients is numerically accurate for small and large
‘gquantum numbers and, in general, inore efficient than
existing algorithms based on the explicit expressions
isr thnoot osefficients given by Wimer and Dacah, As
far as numerical effort is concerned. the advantageous
character of a recursive cvaluation is quite obvious. To
cblain the coupling coefficients in (1), (2), and (3), es-
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sentially only the series A(n), B(n) or C(n), D(»n) or En),
F(n), respectively, which eater as coefficients the
recursion equations {6), (9), and (12), need to be
calculated.

The fact that the recursive algorithm evaluates g
whole set of coupling coefficients is often an advantage,
for in many precblems of angular momentum coupling
whole sets of coupling coefficients like (1), (2), or (&)
enter. To give an example we may turn to the evaluation
of gj-coefficients, which are given through the expansion

j]l J]: ;7: E z/_/ {/—/ jl ]9\( {H jz ja}
"‘s g J. - - 1 . . . . . .
ja js Jo 7 ( ) Js s ]2) Js Ja I3

/‘/ j9 jl . (28)
Jr Ja Js
Evidently three strings of 6j-coefficients are needed in
the course of evaluating this expansion, namely

H y s _

. {ja js jg}’ . (33.)
{{7’ iz de| (3b)
Js s dsf’ _ -
H o z} (3¢)
J1 Js Js ’ ’

TFurthermore, to obtain the N 9j-coefficienis for all
allowed j,-quantum numbers, it is sufficien: to evaluate
(3b) and (3¢) once and {32) for all V allowed Jjy values,
Hence, to determine the values of 9j-coefiicients for atl
Ja, only N + 2 8j-recursions have to be periornied. These
considerations exemplify how strings of coupling co-

- efficients like (1), (2), and (3) naturaily enier ‘nto the

probleras of angular momentum coupling,

o

To answer the important question about
accuracy of the proposed algorithn,
tween recursively evaluated coupli
tabulated values of these coelficient its itself.
The axact representaiion of 3j- and 4 cilicients in
terms of prime number factors, as aiven in the faile of
Rotenberg ef al. ™ provides ihe accurate v - “5v these
coeificients. In Tables I, 11, and {1 we P af o ocome-
parison between 3j- and 6j-coefficients cenarated by
recursion and those obtained from the tabniation of
Rotenberg ef al. As can be seen, acrcement is found for
essentially all significant figures provided by the com-
puter representation of numerical eonstants (i.e., 16
significant digits in the double precision mode on a IBM

he numerical
varison be- -

a
coefiizients and

360,91).

Perhaps more important is the fact that the recursive
algorithm allows the evaluation of coupling coefficients
with very large quantum numbers, thus enlarging the
realm of ccupling coefficients accessible to numerical
methods: Since no tabulated values of large quantum
number coupling coefficients exist, the accuracy of the
rocureive algorithm must be demonstratad throuch a
test of its numerical stability. This iuis been done by
carrying out two simultaneous evaluations of 6j-coef-
ficients for large quantum numbers, the results of which

W Ol tomes aed O P~ o d .~~~



TABLE 1. Accuracy of recursively evaluated 3j=coefficients

L
¢ .

TABLE I, Accuracy of recursively evaluated 6j-coefficients

{13%.% 158/2 15112}-

L1 -Values of 3j-coefficients®

L1 Values of 6j-cocfficients®

; 0.278 886 675 511 3585 (0) 1 . 0.349 090 513 837 3299 (—1) I
0.278 886 675 511 3586 (0) I 0.349 090513 837 3284 (-1 11

2 - 0,953 462 589 245 5920 (- 1) I 2 ‘—0.3?4 302 503 9659791 (-1) I
—9.953 462 589 245 5920 (~1) I =0.374 302 303 965 9775 (-~1) U

3 -0.674 199 862 463 2420 (- 1) 1 3 0.189 086 639095 9559 (--1) I
~0.674 199 862 463 2420 (-1 1O 0,189 086 639 0959551 (~-1) II

4 0.153 311 035 167 9666 (0) I 4 0.734 244 825 492 8642 (- 2} 1
0,153 311 035 167 9666 (0) II 0.734 244 8254928510 (--2} I

5 - 0,156 446 554 693 6860 (0) I 5 -0.235893 518 508 1794 (—1) 1
- 0,156 446 554 693 6859 (0) 1T -0,235 893 518 508 1733 (~1) II

6 0.109 945 041 215 6550.(0) I ) 6 0.191 347 695521 5436 (~1)
0.109 945 041 215 6550 (0) II 0,191 347 695 521 5427 (-1) II

7 - 0,553 623 569 313 1718 (~1) I 7 0. lZé 801739 772 4172 (~2) 1
—0.5.53 623 569 313 1718(~-1) II " 0.128 801 729 772 4175 (~2) 1T

8 0.179 983 545-113 7785(~1) I 8 T-=0, 3193 001 836 623 052G (1) I
N 0,179 983 545113 7785 (- 1) I -0,193 001 836 629 0531 (-~ 1) 11

21: Rotenberg ef al.; 1. This paper.

* *I: Rotenberg et al.; O: This paper.

/ )

are presented in Table IV. One of the calculations was since the single precision calculation agrees with the

done in single precisiun mode (IBM 360/91) which pre- . double precizion calculation within its full range of
vides 6 significant digits for numerical constants, and ~ significant figures; as is shown for one example in
the other caiculations used double precision with 16 © Table TV. It is remarkabie ihat cven the small copef-
significant digits. Numerical stability is demonstrated ficients near the ends of the range are found with the
maximum possible reiative accuracy.
BADER TL, Acouracy of recursively evaluated 3j-coefficients ~ AppENDIX: DERIVATION GF RECURSION
R ‘ _.. EOUATION FOR ¢/ COEFFICIENTS AR SOLUTIONS
AR CICORE = =ON T
M Valres of 3j-coellicienis® TO AN EIGERVALUE PROBLIM
—15/9 0.209 153 875 288 6152 (1) 1 The remarkable resemblance beiween the sovies of
T 0.2090 158 973 288 6135 {(~ 1) 1I -
353 756 555 321 5250 (=1) I .
-13/2 0.833 756 553 321 5250 (- 1) ! ‘
0,853 756203 521 824uC (=1} 11
11/ © 0.908 293 370 568 630 (= 1) I me=mer SEEES e <
M= 0,908 295 379 S68 683C - I ) L1 Values of bi-cocifici nts®
. ~0.389 054 57 46 1691 { L 0,161 1023 (-5 1
- -~ 0,589 054 37T 046 o118 T
o 0,663 934 979 165 6306 1~1) 1 56 0,049 . )1
- - 0,653 732 97O 1656310 {~1) 11 0,049 6977 (=) 11
~ 0,619 (G098 8ERG t- 1) T ga  O-des o
e ~ 10,649 10528 3900 (— 1) 11 , 0,964 ) IT
_3/2 V~0.215 §01 310 5395 4037 (=1} [ 79 0,
-€,215 884 310 395 40.‘3«31- By U 0.
=0,778 9127117852390 (-1 1 80 0.
1/2. -0,778 912 711 785 2590 (--1) 1I 0.
1/2 0,369 764 371 039 3433 (~1) I 38 0.
! 0.359 764 371 y59 5431 (= 1) II 0.
3/2 0.?47 301 ::wOQ 0‘%1 2632(-1 1 96 0.
0.547 301 500 021 2631 (~1) II 0.
5/ —-0,759 678 €565 955 7610 (~1) 1 104 0,
L - 0,759 678 665 956 7610 (= 1) II 0.
%,, - 0,219 224 445 539 8920 (- 1) 1 112
- —=0,219 224 445 559 3921 (-1) II
< gro 0.101 167 74-3 250 7722 (0) I 12
T 00101 167 744 250 7721 (0) I
112 v.TH 128
2Romenbery o aloy I This worl. : 21: double precision: 11: sinule precision,
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- %.. Comparison »f the functional Lehavior of the €j-
fficionts iij) ={i! 3§ 43 (4554, 128) ovaluated through the
sion a _»'orithmldesqril:ed in See. 3. The targest ailowed
Ii-gaantum numbery ig L2y 120, The diagram shows that
Vi~ 1 conwins the nodes of Wi (@) Iy pag—1;=0 (b) Limax—1
=35 le) 1 e —1i=10, :

3j- and 6j-coefficients in ¥igs. 1, 2,3, and bound state
el {unctions may not have escaped the readers’ atten-
tic.. To carry further a comrparison between angular
mementum coupling coefficients and eigensolutions of
bound state problems we present in Fig. 4 the series of
dj-coefficients

[(2.:;1 + 1)(211 + 1)}1/2 {;1 ‘:2 ;3‘1 > jl mia sjl Sj).max:

T v2 3)
for different I;-values. j, . . =max{lj, =Jsl, Uy=1,1}
and jy o, =min{j, + j,, L, + i, are the smallest and largest
values j, can assume in order for the 6j-coefficients not
to vanish. It can be seen from Fig. 4 that /, takes on the
character of 2 quantum number which counts the nodes
) max =1, Of the series (W mae=min{j, + 45, j, +1,}). What
is the origin of this particular behavior of the coupling
coefficients ? The answer to this question is that 3j- and
6j-coefficients are by definition components of eigen-
vectors to certain eigenvalue problems. The coupling.
coefiicients in Figs, 1~4 just represent those eigen-
vectors. \

1QRN b OAA L I

That 3j-coefficients can be obtained through the
diagonalization of certain angular momentum cperators
has been known since the carly days of quantum me-
chanics. Hence, this will not he demonstrated here, but
we may refer the reader to Refs. 5 and 8. However, we
will show in the following which eigenvalue problem de-
fines 6j-coefficients, and will prove that the recursion
equations for 6j-coefficients are a consequence of-this
eigenvalue problem. The main reason for this algebraic
detour is to convince the reader that the recursion equa-~
tions derived above do indeed follow directly from the

. definition of the 6-j coefficients.

Let us consider a system composed of four angular
momenta J,, J;, L,, and L, such that b+ Jy+ L+ L, =
This system may be described by two different zero
total angular momentum states:

l(jzvjs)(lwls)jx) = ; (-1t {27, +1}2/2
!Uz:ja)j1 n) }(lz» Ly)jy ~m) - (A1)

and
Gy 100y oMy = 32 (= 1)1 {22, +1)172

X (G, 1) om0 [(Lyy )by = m). (A2)

The transformation matrix element (Uas oy 1307, |
X(Jzy 1ML, ju)y) defines then the 6j-coefficient

(Uzs 33002y 1335, |Gy 10005, )0,

=[(2j, +1)(21, + 1)pr2 P T2 Il (A3)
L1, 1,

it is a simple exercise in angular momentum algebra to
show that this definition is in agreement with the more
conventional definition of 6i-coefficients in terms of 3j-
coefficients, *° VUay 33005, 1,)j,) and FGzs 13)(15, 7)) are
hoth eigenstates of the anguiar momentum operators
T2 I3 L3, L3, but only the first state is also an eigen-
function of J,= (J, + 1,)?, whereas only the latter is an
eigenstate of L,*=(J, - L,)>. From elementary principles -
of linear algebra it then follows that the ¢olumns of :
Was JsXls, 1)1 1 oy LMLy, j,),) are the eigenvectors of the
operator L? in the 1y 73y, 1,)j ) -basis,

Let us evalvate L? in this basis. We first notice that
(3, +3,+ L+ L, L3]=0, hence, the application of L?
does net affect the total angular momentum state, We
may then express L? through operators whose action on
the intermediate states |(j,, Jaiym) and 1(ly, 1), ~ m) in
(1) are known:

Li=J% + L: +dy Ly, +dy L, + 2J, L, (A4)
We have cbviously
(3 + LD Uz j3), 1))

=0al, + 1) + L(1, + 1] Gy, )0, L)jy).

- The remaining operators in (4) applied to 1(j,, j,)(1,, L,)j,)

give

Jy=m
Z ‘[%ﬂi {((jzyja)jl)n !Jz- «lz’ la)j1 -m IL30



+ (Ug,ja)jlm |J2~ ((lz’ ls)ji f’m IL:;-

+ 2<(jz:j3)j1m iJZz «lz’ la)jl -‘"2 ILS‘}’ (A5)

The operators J, L, ,J, L, and J,,L,, only couple to
states |Gy, jo)iim + 1) 11y, L)j) = m = 1)), i (i, ja)jim - 1)
XI5, 1,)jy =m + 1), and '(];zrjs)jx'"» 1(;, I,)jy = m) where j{
=j;+1, Oand j=j, 1, 0.'5 But, in order that the state
(5) carries zero total angular momentum all terms with
j1#j; must cancel out, and hence may be disregarded in
the following calculation. The matrix elements ((j,,
3 W 1 (G, dgdim "), (o 1)y =m ALy W1y, 1)ig = m?),
etc. all split in orientation independent factors (j, i/, j2)
and (4,llL,ll j;} and m-dependent factors (Wigner—Eckart .
theorem). The m-dependent factors may be obtained
from Ref. 15. It should further be noted that the opera-
tors L,, L;, operate on the second angular momeriur
Iy in {(l;, I;)j, = m), whereas the operators .J,,, J,, oper-
ate;on the first angular momentum j, in 1(4,, Faljait) ..
This makes it necessary® to give negative values to the
> off-diagonal elements (j,l|Z,llj,+ 1). We cbtain then from
" (5) the expression ’
(/ l)fl-m
g Z.; ﬁ;lTﬂWE {- Gy = UM 52 Gy~ HI Lyl 7,

x[- Uy =m = DG, - m) Gy, da)i, -1 m+1 ] Wy 15)j, — 1
-m—ly

= Gy 1)y + 7 = 1y Gaddy = 1 = 1| (U, L)y = 1
-m + 1[

+20T = ") G Jodis =1 m [y, L)y =1 =m]]
+ (ol Gy Ll gy

< X[y m o+ DGy = m) Uiy m + 1] (U, 1)y = ~1]
+ (i, +m)(, - m + 1)y ja)jy 12 =1 Uy, 1)j, —m+1 |
=2m? (G, 3sdiy m | (liay 1)y =m]]
=iz + LIl Gy + TILg 1)
X[=(y +m + 1)(j, + m +2)( (G, jadjs +1 m + 1]
Xy, 1)y +1 —m~ 1]
=Gy=m+ 1)y =m +2) Uy joliy + 1 m = 1]
X{(lI1)j, +1 —=m+1]|

+ 200y + 1P =m?) Gy i)y + 1 [y )iy + 1 =m |}
. (A8)
Collecting terms with equal magnetic quantum numbers
leads to the cancellation of all in-dependent prefactors in
the sum, except for the phase (- 1)™. Carrying out the
m-summation gives then

23, (24, + 1025, = D12 Gy = LT 0y Gy = 11 Lol 3y
X ((jz»js)(lz» ls)jl -1 i
= 2§,y + 1) G121 35) Gall Lgil3y) s J5) s 23 |
+ 20, + (27, + 1)(2j, + 3)}}/2
X Gy + W, l150) Gy + TN Ly 1Gy) Gy da) (U, LYy + 1] (AT)

and, finrally, with the explicit algebraic expression for
Gl LD Qi /\}'LHL:;”J‘{)SAS

> - (a8)

. i3 = Go 3 NGy 4 5a+ 1Y = 21052 - (1, = LI, + 1, + 1) = 2] /2
( 2]. _ :{171 Gz dz) ][(]2".!3+1, Sty 2763 4 1lf
il -1y =23 27,((57, - (2, + DI/ \

{[03 + 1)2 = (jﬂ “js)z][(iz +j3 + 1)2 - (_7"_ + 1)2}r(7! + 1)2 - (tz -~ I;;)?I[(Zz + lq - 1)2 - (7 + 1)2]}1/2

(s IL?’JE +1) =

KeA

%[+ 1) = (i + 1) + 4yl +1)1}27, Gy + D

These matrix elements show that Li isa symmetric,
tridiagonal matrix. L? is readily diagonalized and must
have real, positive eigenvalues. However, such a
diagoralization procedure would provide redundant re-
sulis (eigenvectors and cigenvalues), since the eigen-

values of L} are known to be I,(/, + 1) with [, =1, .-,
n=0,1,2,.... Hence, it is sufficient to solve the
system of homogeneous equations

(L} - 1,0, + 1)x=0. (A11)

Because of the tridiagenal form of L%, this leads to
three-term recursion equations for the components of

X. These equations are identical with the recursion
equations derived above for 6j-coefficients. The solution
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2, + D12, + 1) @27, + 977 ‘ ’

Li l.'jl) :{'ix(fx + 1)[‘.j1 (71 + 1) +]'2(7'é + 1) +j3(f3 + 1)] + 12(12 + 1)'U1(j1 + 1) ‘rja(jz + 1) *.73(f3 + 1)] + 13(13 + 1)

{A9)

(A10}

of these recursion equations therefore corresponds
directly fo the solution of the eigenvalue problem (11).
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