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Abstract. We present a two-layered network of linear
neurons that organizes itself as to extract the complete
information contained in a set of presented patterns.
The weights between layers obey a Hebbian rule. We
propose a local anti-Hebbian rule for lateral, hierarchi-
cally organized weights within the output layer. This
rule forces the activities of the output units to become
uncorrelated and the lateral weights to vanish. The
weights between layers converge to the eigenvectors of
the covariance matrix of input patterns, ie., the
network performs a principal component analysis,
yielding all principal components. As a consequence of
the proposed learning scheme, the output units
become detectors of orthogonal features, similar to
ones found in the brain of mammals.

1 Introduction

One of the remarkable aspects of our visual system is
the fact that we can rapidly discern and identify the
important features of our visual environment. Visual
information is processed on successive levels of the
cortex. Simple features, edges or bars for instance, are
detected on the lowest levels, while the recognition of
complicated features takes place in higher areas of the
visual cortex. A whole range of specialized cells, so-
called feature detectors, are responsible for extracting
very specific features — like a moving bar —from a visual
scene (see, e.g., Hubel and Wiesel 1979). As those
feature detectors only process information from a
small part of the visual space, they act as filters on a
stimulus,

Although part of the synaptic connections in the
brain is genetically specified, postnatal visual input
plays an essential role in the organization, birth and
death of synapses (see, e.g., Cowan 1979). It is unlikely
that this organization follows a global plan. One rather

expects that local rules, like Hebb’s rule (Hebb 1949),
govern the postnatal organization of the brain and the
formation of feature detectors. These expectations
raise the general question how a sensory system, in
response to input information, can organize itself
according to local rules so as to form feature detectors
which encode mutually independent aspects of the
information contained in patterns presented to it.

In the following section, we present a simple, two-
layered neural network as a model for such a system.
We then test this model, presenting first colors and
then spatially varying intensity patterns to the
network.

2 The Network Model

The proposed network is two-layered, consisting of an
input and an output layer with N; and N, neurons,
respectively. The input and output units exhibit real,
continuous-valued  activities i=(i,, ..»iy) and
0=(0y,...,05). The two layers are completely inter-
connected and the strength of the synaptic connection
between input unit j and output unit m is denoted by
w;n. The set of weights connecting an output unit m
with all input units forms the weight vector w,, the
transpose of which is the m-th row of the weight matrix
W. The set of N, presented patterns is denoted by
{p"=(%,...Pk), ®=1,...,N,}. Activities of the input
units correspond to the presented patterns, i.e., i=p~.
Activities of the output units, in response to a pattern
P", are linear sums of the inputs weighted by the
synaptic strengths, i.e., 0* = Wp”.

Weights between layers are adjusted upon presen-
tation of an input pattern p* according to a Hebbian
rule, leading to an increase in synaptic strength if the
corresponding pre- and postsynaptic potentials are of
the same sign. If weight changes are small enough, the
update can be performed after presentation of all
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patterns, i.e.,

AW, =n{(p* = <P (00— (1)), M

where  is a positive parameter and where the brackets
{...> denote the average over the set of patterns. The
subtraction of averages in (1) can be interpreted as the
existence of thresholds of units. On the other hand,
subtracting averages is convenient from a mathemati-
cal point of view (Oja 1982) and allows us to assume in
the following {p*» =0 and {o*)>=0.

Let us first consider the case of one output unit.
Linsker (1988) showed that the weights of that unit, i
they obey a Hebbian rule like (1), evolve to maximize
the variance of the output for a set of presented
patterns. If the weights are normalized after every
update such that ¥ w =1, the Hebbian rule renders
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weights which characterize the direction of maximal
variance of the pattern set (Oja 1982). Equivalently, the
weightvector w, converges to the eigenvector with the
largest eigenvalue of the covariance matrix C of the
pattern set, with elements Cj, = {pp{). Diagonalizing
a covariance matrix corresponds to the statistical
technique of principal component analysis (see, e.g.,
Lawley and Maxwell 1963). Thus, a Hebbian learning
rule for Euclidian normalized weights yields the first
principal component of the input data set. The non-
vanishing weights w;; of the output unit define its
receptive field. The output unit then corresponds to a
feature detector which analyses the principal feature of
a presented pattern. In other words, the net represents
a so-called matched linear filter (Oja 1982).

However, a single unit only processes a fraction of
the total information contained in a pattern. In order
to transmit the complete information between the two
layers, as many output cells as the rank of the
covariance matrix C are required. Furthermore, in
order to become filters of mutually orthogonal fea-
tures, the output cells need to become uncorrelated.
For that purpose, we assume the existence of lateral,
hierarchically organized connections with weights u,,
between output units ! and m, where I <m. The activity
of the m-th output cell is then given by o%=w,, - p*
+ 3 W, p*. Then, following (1), changes of sy-

I<m

naptic connection strengths between input units and
output unit m are given by

Aw,, =1 (Cw,,l + k;m Upr ka) . )

Figure 1 shows a scheme of such network.

We propose that lateral weights adapt themselves
according to an anti-Hebbian rule: the strength of a
lateral synapse is lowered, if the corresponding pre-
and postsynaptic activities are of the same sign. Again,
we assume that changes are small, yielding a decrease

Fig. 1. Scheme of the proposed network. It consists of N, input
and N, output elements. Each input cell j is connected with each
output cell m, with connection strength w m The weights between
output cells are hierarchically organized, with connection
strength u,,, between units m and n. For the sake of simplicity,
only part of the units and connections is shown

in synaptic strength, if the corresponding output units
have correlated activities, namely

A= —plofop), ©)

where u is a positive learning parameter. The anti-
Hebbian rule is similar to the learning rule of
Kohonen’s novelty filter (Kohonen 1982) and to the
“unlearning” rule proposed by Hopfield et al. (1983).

As a result of the proposed learning scheme, the
weight vector w,, converges to the eigenvector c,, of C.
Equivalently, the output units, with initially random
receptive fields, become orthogonal feature detectors
that analyse mutually independent aspects of the
information contained in the set of presented patterns.
Because the output cells become uncorrelated, the
lateral connections vanish. A detailed mathematical
proof of these findings is given elsewhere (Rubner and
Tavan 1989).

Several authors have proposed inhibitory connec-
tions between output units in order to render their
activities uncorrelated (von der Malsburg 1973; Koh-
onen 1982; Rumelhart and Zipser 1985; Yuille et al.
1989). In our scheme, lateral connections are both
excitatory and inhibitory before they vanish, due to the
anti-Hebbian rule. This results in a purely feed-
forward network, which represents an important com-
putational advantage for a paralle] system. Principal
component analysis has also been associated with
linear feed-forward networks using optimization
methods with respect to a quadratic error function, i.e.,



back-propagation (Baldi and Hornik 1989). The ad-
vantage of our model consists in optimal feature
extraction without supervision and in the existence of
biologically plausible, local adaptation rules for the
weights.

In the following two sections we illustrate the
performance of the proposed network by numerical
simulations. One simulation step, or learning cycle,
consists in (i) updating weights between layers accord-
ing to (2), (ii) normalizing these weights, such that
¥ win=1, and (iii ) updating lateral weights according
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to (3). In applying these rules, it is implied that learning
parameters are small enough, so that the weight update
can be performed after presentation of all patterns.
Initial weights are chosen at random. The aymptotic
vanishing of the lateral connection strengths provides
a criterion for the convergence of the learning scheme.
We choose the number of learning steps large enough
that convergence is achieved within numerical
precision.

We first present spatially homogeneous color pat-
terns and show that the resulting output cells corre-
spond to color-opponent filters, similar to those found
by psychophysical experiments. The last section pre-
sents the results of simulations with patterns of spa-
tially varying intensity. The obtained feature detectors
are selective to varying orientations and spatial fre-
quencies and their receptive fields are similar to ones
of simple cells found in the striate cortex.

3 Opponent Color Processing

The first stage of human color processing takes placeat
the level of the retina, where three different types of
color-sensitive photoreceptors are present. They show
maximal absorption in the blue, green and red parts of
the visible spectrum and, therefore, are called blue,
green and red cones. Both psychophysical and neuro-
physiological experiments have shown that, at deeper
lying levels of the retina and subsequent layers of the
visual cortex, color processing is done in terms of
opponent cone signals. So, psychophysical color
matching data have provided evidence for the
existence of an achromatic channel and two color-
opponent channels, one red-green (r — g), the other one
blue-yellow (b— y) or vice versa (Judd 1949). As far as
the neurophysiological aspect is concerned, part of the
color sensitive cells in the retina, lateral geniculate
nucleus and the visual cortex exhibit spectrally oppo-
nent responses to light stimuli (see, e.g., De Valois et al.
1966; Livingstone and Hubel 1984). In order to
investigate color processing from an information-
theoretical viewpoint, Buchsbaum and Gottschalk
(1983) computed the covariance matrix of the cone
responses to a set of monochromatic stimuli. A prin-
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cipal component analysis of this matrix yields one
achromatic and two opponent chromatic channels,
similar to the ones recorded by psychophysical experi-
ments. Thus, a transformation from the space of the
initial three, partially overlapping cone mechanisms
into the space of uncorrelated, opponent channels
achieves an efficient information transmission. We
therefore expect that the network will organize itself
upon presentation of color stimuli so as to form
achromatic and color-opponent feature detectors. For
this purpose, we have generated a set of 162 different
color patterns with varying intensity and chromaticity
on an Apple RGB-monitor. We have measured the
XYZ-values of these color stimuli with a photometer
and have computed the responses r, g and b of the
human cones (Wyszecki and Stiles 1982). Correspond-
ingly, the network consists of three input units, each
representing a group of cones and three output units.
Initial weights between layers, as well as lateral
connection strengths, were chosen at random from the
intervall [—1, +1]. The different types of cones are
neither equally represented in number nor homoge-
neously distributed in the retina. Therefore, we take
into account effective cone populations, incorporating
the effect of spatial inhomogeneities. As red and green
cones are morphologically undistinguishable, only
neurophysiological data about the distribution of blue
cones in the retina are available (Ahnelt et al. 1987).
The number of blue cones in the central part of the
fovea, which is thought to play an essential role in the
perception of colors, amounts to about 3% of the total
number of cones. The relative number of red and green
cones has been estimated by comparing physiologi-
cally measured sensitivity curves of red and green
cones and the psychophysically determined luminous
efficiency function (Schnapf et al. 1987). Following
these data, we use for the relative number of red, green
and blue cones the ratio of N,:N,:N,=20:12:1.
Instead of explicitely taking these ratios into account
by simulating 33 input cells, we scale the weights
between the red, green and blue input units and the
output cells according to the above mentioned ratios.

Figure 2 displays the resuits of simulations by
showing the magnitude of the effective connections
leading to the three output units after 5000 learning
cycles and for learning parameters n=pu=0.5. The
strength of scaled synaptic weights from the red, green
and blue input cells are drawn on a wavelength axis, at
the location of maximal absorption of the red, green
and blue cones, respectively. The left part of Fig. 2
shows the weights to the first unit. All three connection
strengths are positive, indicating that the first unit
computes an intensity measure of the color stimuli.
The second unit, with weights displayed in the middle
part of Fig. 2 has negative connection strength to the
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Fig. 2. Scaled synaptic weights between the input units and
output units 1-3 (left to right). The connections to an output unit
from the red, green and blue input units are drawn on a
wavelength scale at the location of maximal absorption of the
red, green and blue cones, respectively. The strengths of connec-
tions are drawn on an arbitrary scale
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Fig. 3. Psychophysical data of color stimuli (y-axis) versus
activities of output units (x-axis). Each cross represents one of the
162 presented color patterns

blue input cell, whereas synaptic weights to the red and
green units are positive. Thus, the second output cell
resembles a color-opponent feature detector of the
y—b type. The connection from the third output unit
(right part of Fig. 2) to the red input unit is excitatory,
whereas its connection to the green unit is inhibitory.
The third output unit is a r—g color-opponent cell.
Figure 3 compares these results with psychophys-
ical data, as given by Judd (1949). Each cross represents
one color stimulus, where the abcissa is the magnitude
of the response of an output cell and the ordinate is the

corresponding psychophysical response. Thus, perfect
correlation between the activity of an output cell and a
psychophysical channel would cause the crosses to lie
on a line. The top part of F ig. 3 correlates the activities
of the first output unit in response to a presented
pattern with the predicted achromatic channel, while
the middle and bottom part correlate the activities of
the second and third output units with the predicted
y—>b and r—g channels, respectively. Although the set
of 162 presented color stimuli was rather small, all
three units are clearly correlated with the psychophys-
ical channels. The fact that the correlation is best for
the achromatic unit, is due to the ratio N,:N, of
effective red and green cone populations used in the
simulation. As mentioned above, this ratio has been
obtained by fitting neurophysiological data to the
luminous efficiency function, which approximately
corresponds to the spectral curve of the achromatic
channel. Note, that different ratios N,:N,:N, yield
r—g and b—y units with activities that are perfectly
correlated with the corresponding psychophysical
channels. This indicates that different amounts of red,
green and blue cones contribute to the formation of the
different color opponent mechanisms.

4 Orientation and Spatial Frequency Selective Cells

The processing of spatial information has, for a long
time, been a controversial issue. Simple cells which
represent the first stage of spatial information process-
ing in the primary visual cortex were first detected by
Hubel and Wiesel, who described them as feature
detectors, selective to edges or bars (Hubel and Wiesel
1962). On the other hand, these cells display approxi-
mately linear response characteristics and respond to
sine-wave gratings. Psychophysical experiments, as
well, have revealed the existence of spatial frequency
channels (Campbell and Robson 1968; Pollen et al.
1971). There has been a debate over the issue whether
the processing of spatial information is based on the
extraction of local features or on a Fourier-like
decomposition into spatial-frequency channels. How-
ever, it appears that both views may be appropriate
and even complementary (MacKay 1981). This view-
point is supported by a successful description of the
properties of simple cell receptive fields in a common
mathematical framework (Marcelja 1980; Daugman
1985; Jones and Palmer 1987c). In the following, we
examine which are the essential features of spatially
varying patterns and compare the receptive fields
obtained by our learning scheme with the ones of
simple cells.

For this purpose, we consider a rectangular lattice
of N; x Nj sensory input units representing the recep-
tive field of N, output units, with N,SN,N,. We



generate two-dimensional patterns of varying intensity
by first selecting random numbers s, n=1,..., N from
the interval [—1, +1]. Then, in order to introduce
information about the topological structure of the
receptive field, the random input intensities are corre-
lated, e.g., with their nearest neighbors in both direc-
tions. As a result, the component pj; of a pattern p* at
the coordinate (j,j) of the receptive field is given by
Py =5fj+Si- 15+ ST 15+ 55— 1 +5fj4 1. We assume van-
ishing boundary conditions, i.e., $o;=Si0=5n,+1j
=s,x;+1=0. Note, that this averaging of neighboring
signals corresponds to introducing an additional layer
with random activities and with fixed and restricted
connections to the input layer.

To outline the emerging filter characteristics of the
network, let us first consider the corresponding one-
dimensional case. As shown by Rubner and Tavan
(1989), the j-th component of the eigenvector w,
of the covariance matric C is proportional to
sin [knj/(N;+1)]. Hence, the eigenvectors are Fourier
components of a discrete, finite, one-dimensional
chain. Analogously, one can compute the eigenfunc-
tions and eigenvalues of C for the two-dimensional
case. (Note that, in the case of two-dimensional
patterns, the covariance matrix is strictly speaking not
a matrix, but a four-dimensional quantity. By combin-
ing two indices, we interpret C as a N;N;x NN;
matrix.) The value of the k-th eigenfunction at lattice
location (i,j) is proportional to sin[k,mi/(N;+1)]
sin[k,nj/(N;+1)] with integers k,e[1,N;] and
k, e[1, N{]. These eigenfunctions correspond to a two-
dimensional sinusoidal plane wave with discretized
frequencies, due to' the boundary conditions. The
eigenvalues are given by

t(ky, ky)=(1+2cos[mk,/(N,+1)]
+ 2 cos[mk,/(N;+ 1)])%/3.
Figure 4 shows |contour plots of the synaptic
distribution of the first eight output units after 2000

learning cycles for an input lattice of 14 x 10 units,
Solid lines indicate| positive, dashed lines negative

weights. Learning parameters  and pu were set to 0.05 -

and 0.1, respectively. The displayed receptive fields
correspond to the first eight eigenfunctions of the
covariance matrix, starting with k, =k, =1 (top left
part of Fig. 4). The following eigenfunctions appear in
order of decreasing eigenvalues. Note that, due to the
rectangular lattice, a degeneracy of eigenfunctions, as it
would follow from a|square input lattice (with (k,,k,)
=(k,, k,)), does not occur.

Receptive fields of simple cells in cat striate cortex
as recorded by Jones et al. (1987a, b) can be described
by Gabor functions (Marcelja 1980; Daugman 1985),
which consist of an oscillatory part, namely a sinus-
oidal plane wave and a Gaussian, exponentially decay-
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Fig. 4. From left to right and top to bottom: contour plots of
receptive fields of output units 1-8 in the case of a rectangular
lattice of 14 x 10 input units. The synaptic distribution D(,j)
between layers was constant. Solid lines indicate positive, dashed
lines negative weights. The number of learning cycles was 2000,
the learning parameters # and u were equal to 0.05 and 0.1,
respectively

ing part. As shown in Fig. 4, our learning scheme yields
mutually orthogonal, spatially oscillating receptive
fields of various frequencies. However, due to the
.chosen rectangular geometry of the input layer, an
exponential decay is absent. Such a decay can easily be
implemented. For that purpose, we scale the weights
between layers, i.e, we replace a synaptic weight
w(ij, m) between the input unit at lattice location (i, j)
and the m-th output unit by w'(ij, m)=D(i, j)w(ij, m),
where D(i,j) is a Gaussian distribution with D(j, j)
~exp[—(i—ip)*/o, —(i—jo)*/o,]. Here, o, and o,
control the width of the distribution and (iy, j,) is the
coordinate of the lattice center, i.e., (ig,jo)=(Ny/2,
Ni/2). This non-homogeneous distribution of weights
between layers could correspond to a higher density of
nearby input cells. Imposing a Gaussian distribution of
synaptic weights will change the eigenvalue spectrum
of the covariance matrix. As a consequence, eigenfunc-
tions with originally smaller eigenvalues can appear
earlier. Furthermore, if the Gaussian distribution is
rotationnally symmetric, the symmetry broken by the
rectangular lattice is reinstalled and cells with varying
orientation can appear. However, if the Gaussian
distribution is not rotationnally symmetric (i.e., if
0,/0,+1), the orientation of receptive fields is again
pre-determined, due to imposed symmetry axes. In this
case, degeneracy of eigenvalues is broken and mixing
of eigenfunctions does not occur.

Figure 5 displays contour plots of the receptive
fields of the first eight output cells after 10000 learning
cycles (from left to right and top to bottom). Solid lines
correspond to positive, dashed lines to negative synap-
tic weights. The input lattice was square, with 20 x 20
units. We imposed a Gaussian distribution of synaptic
weights with parameters ¢, =12 and 6, =15. Learning
parameters n and p were equal to 0.05 and 0.1,
respectively. Due to the non symmetric Gaussian
distribution of weights, all units have slightly
elongated receptive fields. The first unit corresponds to
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Fig. 5. From left to right and top to bottom: contour plots of
receptive fields of output units 1-8 in the case of a square lattice of
20 x 20 input units. The synaptic distribution D(i,j) between
layers was Gaussian with ¢, =12 and o, =15. Solid lines indicate
positive, dashed lines negative weights. The number of learning
cycles was 10000, the learning parameters # and u were equal to
0.05 and 0.1, respectively

a simple cell with all-inhibitory synaptic weights. The
receptive fields of the second and third units display an
excitatory and an inhibitory region and resemble
simple cells, selective to edges of a fixed orientation.
The fourth and sixth units have receptive fields with
two zero-crossings, corresponding to simple cells,
selective to bars of a fixed orientation. The seventh unit
is as well orientation selective, with four alternating
excitatory and inhibitory regions. This unit would
maximally respond to two parallel lines or bars with
fixed distance and orientation. All the described units
have receptive fields that resemble recorded receptive
fields of simple cells in the primary visual cortex (Jones
et al. 1987a—). Up to now, there has not been any
experimental evidence for receptive fields of the type of
the fifth and eighth units, displaying four and six lobes.
However, if the scheme of spatial information process-
ing in terms of a local Fourier analysis is correct, such
receptive fields might exist in the visual cortex.

We asked ourselves what feature detectors would
develop if we presented spatially non-homogeneous,
colored patterns to the network. We have found that, if
such patterns are presented, color opponent feature
detectors develop which combine the characteristics
depicted in Figs. 2 and 5. For example, red-green and
blue-yellow edge and bar detectors appear beside
achromatic feature analysers.

5 Conclusions

We have presented a self-organizing scheme for a two-
layered network of linear neurons. An anti-Hebbian
rule for lateral, hierarchically organized connections
between the output units renders cells with uncorre-
lated activities. Therefore, following a Hebbian rule,
the weights between layers converge so as to form
detectors of mutually independent features contained

in a presented pattern. The learning scheme is equiva-
lent to a principal component analysis, yielding all
principal components of the covariance matrix of
presented patterns. Therefore, the proposed model
yields a powerful mechanism for transmitting informa-
tion in a most efficient way. We have tested our model
with physiologically motivated input patterns. Pre-
senting a set of color stimuli to the network leads to the
formation of one achromatic and two color-opponent
feature detectors with response properties similar to
the results of psychophysical experiments. When the
net organizes itself upon presentation of spatially
varying patterns, the receptive fields of the emerging
output units resemble receptive fields of simple cells
found in the striate cortex.
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Note Added. After completion of this work, a similar model has
been proposed (Foldidk 1989), characterized by symmetric
lateral connections. As opposed to our model, the weight vectors
do not converge to the eigenvectors of the covariance matrix. We
have checked the case of symmetric connections; we were unable
to find parameter sets, for which the simulations led to com-
pletely uncorrelated cells.
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