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Abstract

In microscopic MRI (∼ 10µm resolution), diffusion boundaries impermeable to water

on a millisecond time scale distort the line shape function of the observed frequency

spectra from the transverse magnetization in a manner similar to motional narrowing

in MR spectroscopy. Reconstruction techniques developed for macroscopic imaging

interpret these distortions as spatial deformations of objects. This distortion of fre-

quency spectra is demonstrated for geometrically simple objects, and it is shown

how in such cases the reconstructed images should be interpreted and how diffusion-

induced distortions in frequency space may actually be exploited to enhance image

contrast around compartmental boundaries. The distortions are properly described

by Kubo’s line shape function for which suitable numerical algorithms are provided.

A parameter is introduced that provides an estimation of the extent of diffusion-

induced distortions which can vary from an enhancement of image intensity near

boundaries to, for extreme motional narrowing , a focusing of image intensity around

compartment centers.
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Introduction

The investigation of microscopic objects, such as single cells, by the method of mag-

netic resonance imaging (MRI), requires an understanding of the effects of diffusion in

order to correctly interpret the obtained images (5). On the time scale (milliseconds)

of typical measurements, water molecules can diffuse a distance as large or larger

than the spatial resolution of the instrument (1) which is presently below 10µm and

may become even finer (2, 3). As a result, techniques of image reconstruction from

frequency profile data that work well for conventional, macroscopic MRI, can lead

to distorted density profiles of images in MRI microscopy. As we will show, these

distortions actually add new image contrasts, and a proper interpretation of these

can be utilized to the advantage of microscopic MRI.

The physical origin of the distortions is the diffusion of water molecules near

impermeable compartmental walls such as membranes. This diffusion affects the

frequency-position relation of MRI spectra. The actual relation must be described

by the theory of line shape functions (4). In this article we determine the effect of

diffusion on the line shape function for several geometric settings which are prototyp-

ical for microscopic biological tissues. We first investigate a one-dimensional diffusion

space to develop a theoretical understanding of the diffusion-induced effects. We then

consider spins diffusing in a sphere, spins diffusing in a spherical shell, and, finally,

spins diffusing in a sphere as well as in a disjunct shell surrounding the sphere. The
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spheres may be viewed as structurally idealized models of biological compartments

like liposomes, air bubbles, or single cells. For the sake of simplicity we assume all

physical boundaries to be impermeable on the time scale of an MRI measurement.

Towards the end of the paper, a brief discussion of experimental realities is given

which addresses the consequences of permeable compartmental walls, natural line

widths, and other practical limitations. Some of these considerations are further

discussed in Chapter 4 of Ref. (5).

For a confirmation of an approach based on the theory of line shape functions

we describe computer simulations of diffusion-mediated relaxation processes in the

same geometrical settings. The simulations yield results close to those obtained by

calculations involving the theory of line shape functions. Both calculation schemes

predict that, interestingly, diffusion effects do not blur an image as one may expect

at first, but rather result in a contrast enhancement of diffusion boundaries, in halos,

and in point-like artifacts. These effects will be presented in images that have been

reconstructed from simulated data.

The work presented here is an extension of results compiled in (6).
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Theory

At the most elementary level the MRI procedure requires one to extract spatial in-

formation from frequency profiles. The process of reconstruction begins with spin

density distributions derived from frequency spectra. This derivation requires a pre-

cise knowledge of the frequency-position relation, usually provided by a magnetic

field

~H = (Ho + Gz)ẑ [1]

which results from the superposition of a linear gradient Gz with a homogeneous

field Ho. Ordinarily, because every spin’s precession frequency is proportional to the

local magnetic field, the frequency spectrum I(ω) faithfully mirrors the spin density

ρ(z), that is, I(ω) ∝ ρ(ωo + γGz) where γ denotes the gyromagnetic ratio of protons

and ωo = γHo. This familiar relationship is illustrated in Fig. 1. Unfortunately, in

microscopic MRI, diffusion can render the simple frequency-position relation invalid,

even when [1] remains correct.

Diffusion is generally expected to contribute to blurring of images. For exam-

ple, studies on paramagnetic contrast agents have shown that biological contours are

blurred since contrast agents affect not only the tissue compartments to which they

are confined but, through diffusive water exchange, also affect surrounding regions

(7, 8, 9, 10, 11). Thus, one might expect that diffusion blurring should become
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prevalent in microscopic imaging, yet this may not necessarily be the case.

When one examines the effects of diffusion within microscopic compartments, one

predicts a distortion of the frequency spectrum of the transverse magnetization due

to the well-known effect of motional narrowing (12). Figure 1 suggests how motional

narrowing can falsely indicate a sharply peaked density of spins where in fact the

spins uniformly populate the sampling region. If one assumed the usual relation,

ρ(z) ∝ I(zo +ω/γG) where zo = ωo/γG, in interpreting a motion-narrowed spectrum

such as that shown dashed in Fig. 1, then after image reconstruction one would arrive

at an artificially narrow density distribution. This implies that compartments may

appear smaller than they actually are. As we will demonstrate below, other artifacts

can appear which do not directly reflect the actual spin density distribution.

We now derive the line shape function, which describes the frequency response

of the transverse magnetization of water protons (spins). The line shape function is

obtained by a Fourier transform of the observed FID signal. A theoretical description

of this signal can be based on the diffusion-Bloch equation (13)

∂tm⊥ = (∇ · D∇− iΩ(~r) − 1

T2
)m⊥. [2]

This equation is obeyed by the transverse magnetization m⊥ = mx + imy of a spin

ensemble diffusing in an external magnetic field. The diffusion constant D character-

izes the rate of diffusion; the angular precession frequency Ω(~r) is proportional to the

strength of the local field H(~r)ẑ, i. e., Ω(~r) = γH(~r); and T2 is the native relaxation
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time.

An analytical solution of [2] can be obtained for spins diffusing in an unbounded

space in the presence of the magnetic field [1]. To derive this solution we first separate

out the native relaxation and the precession due to the homogeneous field Ho by

defining m⊥ = m′
⊥exp(−iωL − 1/T2), where ωL = γHo. This yields instead of [2]

∂tm
′
⊥ = (D∂2

z ± iγGz)m′
⊥ . [3]

A solution for an initial Gaussian distribution of magnetization

m′(z, t = 0) =
1√
πδ2

exp

(
−(z − z̄)2

δ2

)
[4]

which satisfies the boundary conditions

m′(z = ±∞, t) = 0 [5]

is

m′(z, t) =
1√

πδ2
(
1+ 4Dt

δ2

) exp

[
−((z − z̄) ± iDγGt2)

2

δ2(1 + 4Dt
δ2 )

± iγGzt − (Dγ2G2t3)

3

]
. [6]

A derivation is provided in Appendix A. This result generalizes the well-known for-

mula of Hahn and Torrey (14, 13) and is very useful to test numerical algorithms,

such as the simulation program presented below. We reiterate that [6] describes the

case of unbounded diffusion.

We next derive an expression of the line shape function for the case of diffusion

in a bounded spatial domain. Mathematically, the boundaries of the domain impose
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boundary conditions on the solution of [2], namely, that the diffusive flux (or, equiv-

alently, the magnetic flux) vanishes at the boundary. For a one-dimensional domain

with boundaries at ±zb, one has the conditions

∂zm⊥(z, t)|z=±zb
= 0 . [7]

The other diffusion domains considered below are three-dimensional with spherical

boundaries, and for those the boundary conditions corresponding to [7] require that

the radial component of the gradient of m⊥(~r, t) vanishes at the barrier.

The solution of [4] requires one to specify an initial condition. In both one and

three dimensions, we assume an initial condition of a uniform, normalized transverse

magnetization

m⊥(z, t = 0) = m⊥(~r, t = 0) = 1 . [8]

as occurs experimentally after a 90◦ pulse.

For the moment we consider only one-dimensional diffusion. We proceed to solve

diffusion-Bloch equation [2] by noticing that it has the formal solution1

m⊥(z, t) = e(D̂+iΩ(z)−1/T2)tm⊥(z, 0)

where D̂ = D∂2
z is the diffusion operator for a position-independent diffusion coeffi-

cient D and Ω(z) = γ(Ho + Gz).

1The diffusion constant will be written as D, and the diffusion operator ∇ · D∇ written as D̂.
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The total magnetization is given by a spatial average over the local magnetization

M(t) =
∫

dz m⊥(z, t) =
∫

dz e(D̂+iΩ(z)−1/T2)t m⊥(z, 0) [9]

= 〈1 e(D̂+iΩ(z)−1/T2)t po〉.

The brackets 〈. . .〉 denote the integral. The magnetization m⊥(z, 0) is initially equal

to the (normalized) equilibrium distribution po(z).

The real part of the Fourier transform of M(t) gives the frequency spectrum

I(ω) =
1

2π
Re

∫ +∞

−∞
dt eiωtM(t)

=
1

2π
Re 〈1 1

D̂ + i(Ω(z) − ω) − 1/T2

po〉. [10]

This expression, except for the relaxation term 1/T2, was first derived by Kubo

(4, 15). I(ω) is the line shape function for a spin ensemble diffusing in a linear

gradient field.

Expression [10] cannot be evaluated analytically. A numerical solution can be

obtained by invoking a finite difference approximation. To accomplish this, the dif-

fusion space is divided into n equal intervals of length ∆z = 2zb/n along the z-axis.

For k = 1, ..., n the kth interval, denoted by [k], is centered at zk = −zb + (2k − 1)∆z

such that z1 = −zb + zb

n
and zn = +zb − zb

n
. The finite difference approximation

represents functions f(z) by n-dimensional vectors. The equilibrium distribution po,

for example, becomes a vector ~p ∈ IRn with kth component

pk = po(zk), k = 1, . . . , n ; [11]
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i. e., pk is proportional to the spin population in the interval [k].

To evaluate [10] we define an operator Ô(ω) = D̂ + i[Ω(z) − ω] − 1/T2 for each

frequency value ω at which we want to know the intensity. The calculation of the

inverse of Ô(ω)—as required in [10]—by means of a finite difference scheme is not

straightforward. In order to evaluate [10], we notice that in a discretized form the

right hand side of [10] can be written 1
2π

Re〈~1O−1(ω) ~p〉, where the brackets now

represent a summation over k instead of an integral and O represents the discrete

matrix form of Ô. Rather than evaluating ~c(ω) = O−1(ω) ~p through matrix inversion

of O(ω), we solve the linear equation

O(ω)~c(ω) = ~p [12]

for the unknown vector ~c(ω). To accomplish this we have employed a Gauss-Seidel

elimination scheme (16). This method of evaluating [10] was suggested and applied

in (17) for line shape functions of electron spins.2

The algorithm suggested requires one to discretize Ô(ω) into a complex n × n

matrix O(ω). We will first consider the discretization for the case of one-dimensional

diffusion, and later generalize the method to three-dimensional diffusion. After dis-

2The present work was undertaken after one of the authors (K. S.) remarked to Paul Lauterbur

in 1989 that the line shape function function shown in Fig. 1 of this reference qualitatively describes

the effect of diffusion between two parallel plates on a frequency distribution of a spin ensemble and

should also describe diffusion effects on images reconstructed in MRI.
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cretization, Ω(z) and 1/T2 contribute a term i(Ωk−ω)−1/T2 to the diagonal of O(ω),

where in this notation, Ωk = Ω(zk).

The diffusion operator D̂ describes the exchange of particles between intervals

(elements of ~p) and will contribute to off-diagonal elements of O(ω). To discretize

D̂ we choose the representation suggested in (18, 19, 20, 21) which satisfies detailed

balance, a desirable property for the discretization of D̂ in dimensions higher than

one. For one-dimensional diffusion, D̂ can be represented by a tridiagonal matrix

(18, 20, 21, 22)

D̂(z) → Djk =




−(Dk−1,k + Dk+1,k) j = k

τ−1
√

pj

pk
j = k ± 1

0 otherwise

[13]

where τ−1
√

pj

pk
denotes the jump rate from interval [k] to the neighboring interval

[j] and is related to the diffusion constant by τ−1 = D/(∆z)2. This last formula is

the correct finite difference analogue to Einstein’s diffusion relation (17, 23). In this

representation Djk denotes the diffusion rate from interval [k] to [j] and Djj controls

the flow from interval [j] to intervals [j − 1], [j + 1]. The elements D−1,1 and Dn+1,n

appearing in [13] are set to zero in accordance with the boundary conditions (18).
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The matrix O(ω) that provides the discrete representation of Ô is then

Ojk =




−(Ok−1,k + Ok+1,k) + i(Ωk − ω) − 1/T2 j = k

τ−1
√

pj

pk
j = k ± 1

0 otherwise

[14]

The calculation described is carried out for a series of ω values in the expected range

of the frequency distribution. For each choice of ω the unknown ~c(ω) defined in [12]

is determined and I(ω) evaluated according to

I(ω) =
1

2π
Re〈~1 Ô−1(ω) ~p〉 =

1

2π
Re
(
~1 · ~c(ω)

)
=

1

2π

n∑
k=1

Re (ck(ω)) . [15]

In order to illustrate this expression, we present in Fig. 2 the contributions

I(ω, zk) = Re (ck(ω)) to [15]. The quantity I(ω, zk) can be interpreted as the fre-

quency distribution of spins which are initially placed at position z = zk and are then

free to diffuse. For fixed spins this quantity is I(ω, z) ∝ δ(ω − γGz); i. e., in this

case I(ω, z) is centered narrowly along the diagonal of the (ω, z)-plane. Fig. 2 shows

that diffusion distorts I(ω, z). The maximum of I(ω, z) mostly follows the diagonal

of the (ω, z)-plane, however, diffusion results in a broadening of the ω-dependence

for any fixed z. Near the boundaries z = −zb and z = +zb of the diffusion space,

the frequencies of fixed spins are at γ(Ho − Gzb) and γ(Ho + Gzb), respectively, i. e.,

at the boundaries of the ω-interval shown in Fig. 2. Diffusion shifts the maxima of

I(ω, zk) towards the center of the ω-interval. These shifts result in a narrowing of the

total frequency distribution I(ω) [15] as discussed further below.
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We now generalize the above algorithm to three-dimensional diffusion domains.

A straightforward application of the algorithm would lead one to a three-dimensional

discretization scheme for Ô(ω) such as considered in (20) which yields matrices Ojk

of dimensions n ≈ 106. Solving [12] for such large dimensions is very formidable

even though the matrix Ojk is very sparse (21, 24). To avoid such time-consuming

numerical procedures, we have adapted an approximation scheme that yields very

satisfactory results, as will be demonstrated below by comparison with simulations.

An approximate expression for the line shape function I(ω) for higher dimen-

sional diffusion can be developed by modifying the equilibrium population vector ~p

to represent the appropriate density profile along the z-axis, i. e., along the direction

of the field gradient. The components pk take the form

pk ∝




1

r2 − z2
k

linear geometry

spherical geometry

[16]

where r is the radius of the object and −r ≤ zk ≤ r, zk = −r + (2k − 1)r/n for

k = 1, ..., n. We normalize pk such that
∑

k pk = 1. The approximation involved in

this description assumes that all spins with the same z value yield identical contri-

butions to the spectrum I(ω). This, however, is not necessarily the case since the

compartmental boundaries will usually depend on the x, y-coordinates, and, hence,

spins with identical z-coordinate but different x, y-coordinates are not equivalent with

respect to diffusion. The approximation involved here replaces an x, y-dependence of
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the line shape function by an average value which depends only on zk. Comparisons

with complete simulations (presented below) reveal that the suggested approximation

is quite accurate.

The theory described applies only to simple, undivided diffusion spaces. Cases

of practical interest, such as a sphere surrounded by solvent, can be dealt with by

dividing diffusion spaces and evaluating line shape functions separately for each com-

partment. For example, a spherical compartment of radius ri surrounded by solvent

can be described in three steps:

(i) Obtain the frequency spectrum I(i)(ω) of a sphere of radius ri.

(ii) Obtain the frequency spectrum I(ii)(ω) inside the spherical shell, limited by an

inner radius ri and an outer radius ra using

pk ∝




r2
a − z2

k ri < |zk| < ra

r2
a − r2

i 0 < |zk| < ri

[17]

where zk = −ra + (2k − 1)ra/n, k = 1, 2, ..., n. Again, this is only an approxi-

mation in the sense that the x, y-dependence of the line shape function has been

replaced by an average.

(iii) Scale and combine the frequency spectra (i) and (ii)

I(ω) ∝ S(ii)V(i) I(i)(ω) + S(i)V(ii) I(ii)(ω) [18]
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where S(α) =
∫
dω I(α)(ω), α = i, ii denotes the integral over the signal intensity

in each subvolume V(i) = 4π
3
r3
i and V(ii) = 4π

3
(r3

a − r3
i ). [18] implies the de-

sired property, that the ratio of the integrals S̃(i)(ω) =
∫
dω S(ii)V(i) I(i)(ω) and

S̃(ii)(ω) =
∫
dω S(i)V(ii) I(ii)(ω) is equal to the ratio of the corresponding volumes,

i. e.,

V(i)

V(ii)

=
S̃(i)

S̃(ii)

. [19]

A Simulation Program

We have developed a simulation algorithm to investigate relaxation and diffusion ef-

fects in one, two, and three dimensions. This algorithm does not require the approxi-

mations mentioned above. Since the simulations are very computer time-consuming,

calculations have been carried out only to demonstrate the accuracy of the line shape

function description, in particular, for the case of three-dimensional geometries, for

which the line shape function description suggested above is only approximate.

For a particular native relaxation rate and external magnetic field strength, the

program simulates independent “spins” (spin ensembles) by solving the Bloch equa-

tions classically and representing diffusion as random walk. The particles are assigned

diffusion steps according to

~r(tn+1) = ~r(tn) +
√

2D∆t ~ξ , [20]
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where the components ξi of the random vector ~ξ are uncorrelated random numbers

obeying the distribution

p(ξi)dξi =
1√
2π

e−ξ2
i /2dξi . [21]

The time steps ∆t = tn+1 − tn are chosen short enough to ensure that the time

evolution of the system is represented appropriately.

The relaxation of the magnetization is separated into a longitudinal component

mz and into a transverse component m⊥ = mx + imy. An explicit finite difference

approximation to the Bloch equation can then be written

mz(tn+1) = (mz(tn) − mo
z) e−∆t/T1 + mo

z

m⊥(tn+1) = m⊥(tn) e−∆t/T2−iω̄∆t

[22]

where mo
z is the equilibrium magnetization in the local magnetic field ~B(~r(tn+1)),

and where ω̄ is the mean Larmor frequency over one time step ∆t. A more detailed

description of the simulation program is provided in Appendix B.

We are primarily interested in the time evolution of the transverse magnetization

of the whole spin ensemble, M⊥(t) =
∑

all spins m⊥(t). M⊥(t) is acquired by having

the program write M⊥(tn) to a file at regular time intervals, e. g., 10 ∆t. This data

file can be thought of as recorded from an actual experiment. The frequency spectrum

for the simulated spin ensemble is obtained by taking the Fourier transform of M⊥(t).

Since m⊥(t) is available only at the discrete times tn, it follows that M⊥(t) will be

known at only these times, too. A fast Fourier transform (FFT) of the (discrete)
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data set, {M⊥(tn)}, will yield the discrete, complex frequency spectrum M̃(ωk). Any

reconstruction procedure must utilize the absorption signal which corresponds to the

real part of M̃(ωk) (25, 26), denoted here by I(ωk). In symbolic form, the procedure

is

I(ωk) = Re (FFT[ {M⊥(tn)} ]) . [23]

The simulation results have been compared in (6) (not shown here) for one-

dimensional diffusion with the analytical solution [6] to calibrate the accuracy of the

simulation, e. g., the necessary sample size. In Fig. 3 below we compare results of

simulations of one-dimensional diffusion with the description based on the line shape

function [10]. The simulation program allows one to describe spin frequency distribu-

tions also for three-dimensional diffusion, in principle to any desired accuracy, and,

thereby, serves as a standard to which one can compare the approximate description

suggested above.
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Numerical Results

To demonstrate the effects of motional narrowing on frequency spectra and to under-

stand the impact of these effects on reconstructed images, we consider various simple

geometrical settings. In each case we show frequency spectra calculated according to

the line shape function formalism [15] as well as by simulation [23] for different diffu-

sion constants. This will reveal the influence of diffusion on the line shape function,

and will also provide a comparison of the theoretical methods.

The first setting consists of a linear diffusion space with impermeable boundaries.

This can be realized by a cube filled with water and a gradient parallel to one of the

edges: all the spins within a plane perpendicular to the gradient cannot be discerned,

and the problem can be reduced to one dimension. The following parameters describe

the one-dimensional diffusion space as well as the three-dimensional objects to be

presented later: a length (or diameter) of 40µm, four diffusion constants in the range

3 · 10−4 ... 3 · 10−7, and a field gradient of 0.02T/m.

Figure 3 presents frequency spectra for a one-dimensional diffusion interval for

four different diffusion constants, the values of which are representative of those oc-

curring in biological tissues. Spectrum (c) corresponds to diffusion in pure water.

The two extreme cases of fast and slow diffusion show what was suggested above.

For slow diffusion (a) the spectrum closely reflects the uniform spin density; it is flat
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(undistorted) across the center and narrowly peaked very close to the boundaries.

For fast diffusion (d) the spectrum exhibits a singly peaked shape typical of motional

narrowing .

In all cases presented in Fig. 3, the spectra resulting from the theory of line shape

functions and those obtained through simulations agree well. The fluctuations in the

simulated spectra are due to finite samples as can be seen by the following argument.

The total sample of 160 000 particles simulated corresponds to an average number

of about 1250 particles in each of the 128 discretization bins which represented the

continuous frequency domain. As a result, fluctuations of the order of 3% (∼ 1/
√

N)

are expected. Nevertheless, Fig.3 shows that the simulation closely reproduces the line

shape function, and one can conclude that in the case of one-dimensional diffusion,

the simulation program yields accurate results. The simulation can then be used in

turn to check approximations introduced to describe line shape functions for three-

dimensional diffusion domains.

The spectra in Fig. 3 (b and c) reveal how as the diffusion constant increases,

the two peaks located at the boundaries in Fig. 3 (a) move toward the center. With

increasing diffusion constants the two peaks merge and, in limit of high motional

narrowing , produce the single peak observed in Fig. 3 (d).

The intensity maxima seen in Fig. 3 can be understood as follows. Diffusing

spins do not precess at a constant Larmor frequency, but rather experience the local



20

frequencies along their diffusion paths. The spectra observed reflect the diffusive

movements of the spins. The observed magnetization signal conveys only the average

frequency over one full precession of the magnetization vector3 (4). In Fig. 4 various

diffusion trajectories are visualized. Schematic (straight) diffusion trajectories have

been drawn for time intervals ∆T ≈ 2π/γG∆z that are comparable to a period of

precession. In case of slow diffusion (a) the mean positions of the diffusion trajectories

are distributed evenly over the whole diffusion interval. In the case of fast diffusion

(c) ‘reflection’ at the boundaries pushes the mean positions towards the center of

the diffusion interval. As a result, the frequency of the resonance signal—actually

the average frequency over a time interval of length ∆T—will be shifted towards the

center frequency.

The spectra presented in Fig. 3 imply that the particle density ρ(z) will be misrep-

resented if it is assumed to be proportional to the signal intensity, i. e., ρ(z) ∝ I(Ω(z)).

Image reconstruction based on this assumption will transform diffusion-induced dis-

tortions of frequency spectra into diffusion-induced distortions of spin density; i. e.,

distortions will appear as low density (dark region) at the boundaries and high density

(bright region) at positions corresponding to the peaks of I(ω). Interpreting Fig.3 (d)

3Since only differences in the precession frequency are relevant in determining the location of the

signal origins, it is only the differential precession due to the gradient field, and not the precession

due to the homogeneous component of the magnetic field, that has to be considered.
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without these considerations would lead to the erroneous assignment of a large spin

density at the center of the diffusion space.

It is desirable to derive a control parameter which allows one to estimate to what

extent bounded diffusion will distort the frequency distribution and, thereby, the

reconstructed image. Such a parameter should depend on the gradient G, the size of

the diffusion interval in the direction of the gradient, and the diffusion constant D.

The following considerations attempt to identify the time scale and the spatial

scale over which diffusion induces a nuclear spin to experience dephasing relative to

precession at its average position. We provide two avenues to obtain such parameters.

A first avenue identifies the parameters through inspection of solution [6] for the

magnetization of diffusing spins in a field with a linear gradient G. The last term

in the exponential of [6] describes a position-independent relaxation which can be

written as a factor exp[−(t/τ1)
3 ] where the time scale τ1 of relaxation is given by

τ−1
1 =

3

√
Dγ2G2

3
. [24]

This result, briefly discussed in Appendix A (see [35]), was given by Hahn and Torrey

(14, 13). One can also obtain a spatial scale δ1 by considering the second term in the

exponent of [6] and writing its contribution as a factor exp[±i z
δ1

t
τ1

] where the length

scale δ1 is

δ1 = 3

√
D

3γG
. [25]
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A second avenue to obtain parameters which allow one to estimate the effect of

diffusion on MRI images involves the following qualitative considerations. Diffusion

implies that over a time scale τ2, position differences develop on a length scale δ2

determined by

δ2
2 ∼ D τ2 [26]

At the same time, the existence of a field gradient G implies that two spins at locations

that are separated by a distance δ2 along the gradient experience dephasing on the

time scale τ2 determined by

τ−1
2 ∼ γ G δ2

π
. [27]

One can now solve the two relationships [26], [27] for either δ2 or τ2. Using [26] and

eliminating δ2 in [27] yields

τ−1
2 ∼ 3

√
Dγ2G2

π2
, [28]

an expression which reproduces the Hahn and Torrey (14, 13) result [24] except for

a factor of about 0.6. Using [26] to eliminate instead τ2 yields4

δ2 ∼ 3

√
πD

γG
[29]

which reproduces [25] except for a factor of about 2.

4For heuristic reasons, we have kept an extra factor of π in expression [29] while disregarding all

other numerical factors: the resulting parameter q assumes the numerical value q = 1 for values of

G and D at which edge intensity peaks just begin to merge to a single central intensity peak.
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To interpret the resulting length scale of [29], we note that both [26] and [27]

establish a relation between time and length—a relation which, in [26] stems from

diffusion laws, and in [27] is a consequence of dephasing by a field gradient. In deriving

[29] we set the two time scales equal, implying that δ2 is the length of the diffusion

path over which a particle gets out of phase by 2π compared to a spin with fixed

position. In Fig. 4 δ2 as given by [29] would correspond to the net displacement of

the paths shown if we set ∆T = τ2.

Expression [29] provides an estimate of the distance from the boundary at which

the intensity peaks in Fig. 3 appear. According to [29] the following δ2-values corre-

spond to Fig. 3 (a, b, c, d): 2.3µm, 4.8µm, 10µm, 23µm. Inspection of Fig. 3 shows

that these values agree qualitatively with the shifts of the left and right intensity

peaks away from the adjacent boundaries, except for δ2 = 23µm. A δ2-value of ap-

proximately half of the length l of the diffusion domain (l = 40µm) indicates that

the motional narrowing limit of a single peak has arisen, as is the case for Fig. 3 (d).

A value δ2 � l would correspond to a single, narrowly focussed peak far into the

motional narrowing limit.

One can introduce the unitless parameter q = δ2/
l
2
, i.e.,

q = 3

√
8 π D

γ G l3
, [30]

as a control parameter for the extend of motional narrowing . q-values smaller than

one, but not too small, indicate an enhancement of intensity near the edges of the dif-
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fusion domain, q-values larger than one indicate that the motional narrowing regime

with a single intensity peak applies, and the magnitude of q indicates how strongly

peaked the intensity is.

The q-values for Fig. 3 (a–d) are listed in the caption. The values agree with the

qualitative features in Fig. 3, i.e., the case q < 1 corresponds to enhanced intensity

near the boundary as in Figs. 3 (a, b, c), the case q > 1 corresponds to a single

intensity peak as in Fig. 3 (d).

We now consider a spin ensemble that is homogeneously distributed in a spherical

diffusion space which is outwardly bounded by an impermeable shell. In Fig. 5 we

present, for spins diffusing within a sphere of radius ra =40µm, frequency distortions

given by the line shape function [15] and resulting from simulations. For stationary

particles, a spherical diffusion domain will lead to a parabolic frequency spectrum

reflecting the density distribution profile [16]: r2
a − z2 (|z| ≤ ra). The parabolic

profile is easily recognized in Fig. 5 (a) as corresponding to slow diffusion (D =

3 · 10−7 cm2/s) and is still apparent in Fig 5 (b) which corresponds to faster diffusion

(D = 3·10−6 cm2/s). Just as in the case of a one-dimensional geometry, diffusion leads

to a decrease of the spectrum at the edges ω1 ≈ −γGr and ωn ≈ γGr and induces two

spectral peaks moving towards the center of the spectrum as the diffusion constant

increases. The peaks in the three-dimensional case are not as clearly discernible as in

the one-dimensional case (cf. Figs. 3 and 5). For slow diffusion small shoulders appear
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in the spectrum, only slightly distorting the parabolic density profile. Reconstruction

of the spectra in Fig. 5 (a, b), however, will assign brightened, clearly visible shells

of high spin density corresponding to the shoulders. Examples will be presented

below. Figures 5 (c, d) for fast diffusion show more similarity to the corresponding

one-dimensional cases, i. e., Figs. 3 (c, d). As the diffusion constant is increased the

two shoulders merge (c) and finally form a single peak at the center (d).

As explained earlier, simulations have been conducted primarily to test the accu-

racy of the line shape function description. Such a test becomes especially germane

in three dimensions where the theory has been advanced through various approxima-

tions. In comparing the results of the two methods as shown in Fig. 5, it can be seen

that there are discrepancies, especially at the shoulders, but the main features agree

well. The simulations have been carried out with spin ensembles of 160 000 spins

except for Fig. 5 (d) for which case only 40 000 spins were used. The large number of

particles reduces statistical fluctuations and reveals the true shape of the spectra.

Since we use the same set of parameters in three dimensions that we applied

in one dimension, the control parameter q retains the values listed in the caption

of Fig. 3 if we set l = 2r. Comparing the line shapes in Fig. 5 to those in Fig. 3,

one can observe that the shoulders in Fig. 5 are farther away from the boundaries

than the corresponding peaks in Fig. 3. This shift comes from the surrounding shell

hindering free diffusion not only at the boundaries shown, but also to a certain degree
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at positions inside the diffusion interval—a consequence of a round rather than a

cubic diffusion space. Nevertheless, q can still be used to characterize the resulting

line shape function.

More structure in the spectrum I(ω) emerges when an additional diffusion barrier

(membrane) is placed into the system at radius ri < ra. Frequency spectra for such

subdivided compartments are shown in Fig. 6. Inside each barrier the distortions to

the spectrum are similar to those seen in Fig. 5. This can be noticed most easily

in Fig. 6 (b) which clearly shows four frequency peaks, two stemming from the inner

compartment, and two stemming from the outer compartment. It turns out that

noticeable motional narrowing effects from a spherical boundary only occur inside

that boundary. In Fig. 6 we see shoulders only on the inside of the boundaries. This

is because only a small fraction of the spins in the outer compartment will be reflected

by the inner membrane, and so the distortions on the outside are too small to be seen.

In Fig. 6 we can also consider the effect of the relative size of the diffusion domain.

The parameter q suggests that the size of the diffusion domain has an effect on I(ω)

which is inverse to that of the diffusion constant. The values for q (listed in figure

caption) indicate that the motional narrowing effects caused by the inner shell are

comparable to the one caused by the outer shell for a diffusion constant about ten

times as high. The different influences on I(ω) of the size of the compartment and

of the diffusion constant can also be seen when comparing Figs. 5 and 6. It is of
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particular interest to note that Fig. 6 (c) shows a single intensity peak for the inner

sphere, but two peaks for the outer shell, whereas Fig. 6 (d) shows a single peak both

for the inner sphere and the outer shell. This behavior is in agreement with the q-

values listed in the figure caption: in case of Fig. 6 (c) q = 1.06 for the inner sphere,

q = 0.53 for the outer shell, whereas in case of Fig. 6 (d) the q-values for both the

inner sphere and the outer shell are larger than one.

Figures 5 and 6 demonstrate that the approximate line shape function descrip-

tion of the diffusion effects on MRI signals agrees well with the signals determined

by simulations. The two methods agree least well in Fig. 6 (c) where the shoulders

of the line shape function appear diminished in the simulation results. This is to

be expected as a consequence of our approximation scheme. Nevertheless, a recon-

struction of the simulated spectrum would produce essentially the same image as the

spectrum derived from the line shape function: in both cases a bright ring will ap-

pear at a radius determined by the q-value for this figure. One can conclude that the

line shape function description provides a tool with which we can proceed to investi-

gate the influence of motional narrowing on the final product of microscopic MRI, a

reconstructed image.
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Reconstruction

In this section we present two and three-dimensional reconstructions for the spherical

diffusion domains investigated above. As input data we used the spectra calculated

using the line shape function algorithm [15] to avoid artifacts caused by noise which

would appear if simulated spectra were used. Since all the objects have spherical sym-

metry, a single frequency spectrum contains all the information necessary to recon-

struct the three-dimensional structure of the corresponding original. Reconstruction

methods are described in (27).

We use available reconstruction software (VIEWIT of NCSA at Urbana-Cham-

paign) which employs a backprojection algorithm. The appearance of edge enhance-

ment in reconstructed images requires frequency encoding in at least one direction

since diffusion makes its mark solely on the frequency spectrum.

A two-dimensional reconstruction can be thought of as a projection of the fre-

quency spectrum onto a plane (comparable to an X-ray image). Generally, one as-

sumes the frequency spectrum to be proportional to the spin density. Figure 8 presents

a set of such images for various objects and a range of diffusion constants.

The columns in Fig. 8 correspond to the four different geometries which are

presented schematically in Fig. 7. In the outer columns we find the two struc-

tures investigated above: a spherical compartment in the left column and in the



29

right column, a sphere of radius rinner surrounded by an outer shell with radius

router where rinner/router = 2. The two center columns portray impermeable hollow

spheres (air bubbles) of radius rinner that are surrounded by filled shells that extend

to router. For the second column from the left rinner/router = 4, and for the third one

rinner/router = 2. All objects have an outer diameter of 40 µm. The top row of Fig. 8,

representing densities undistorted by diffusion, gives an impression of the geometrical

setting (cf. Fig. 7). The remaining rows represent reconstructed images for diffusion

constants in the range 3 · 10−7 ... 3 · 10−4 cm2/s.

The most obvious property of the images in Fig. 8 is that diffusion has a pro-

nounced effect on the reconstructed images. Nearly all the images are different from

each other, and, in comparing the images by row, one can see that the rate of diffusion

determines the images as much as does the geometrical setting. At moderately low

diffusion rates bright rings at the outside boundary appear as anticipated. As diffu-

sion rates increase, these rings become brighter and move inwards until they finally

form a single spot at the center of the spheres. The images in the bottom row show

almost no difference between the different compartmental geometries, however, one

needs to note that the diffusion constant assumed there (3 · 10−4 cm2/s) is ten times

higher than that of pure water, and, therefore, such extreme motional narrowing will

not occur in biological systems.

One can also see that motional narrowing effects can lead to misconceptions about
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the form of an object when image reconstruction techniques are applied without

proper interpretation. Representative of a single cell, the spherical object imaged

in the first column has been distorted by diffusion which has caused an edge to

appear brighter and with a smaller diameter than the actual cell boundary. In the

remaining three objects it is particularly interesting how the inner boundaries have

been represented and in how far they resemble the actual objects.5 For such spheres

as we consider here (i. e., with a radius on the order of 100µm or less) we see no

evidence of any brightened rings surrounding the sphere. Images of hollow spheres

exhibit instead a blurring of the inner boundaries rather than an edge enhancement.

Yet, when the inner membrane serves also to confine water within, as in the column

at the far right, a bright ring again appears, shrunken in diameter.

Motional narrowing effects are even more clearly pronounced in images recon-

structed in three dimensions. As an example Fig. 9 presents such an image for the

model depicted in Fig. 7 (d). The diffusion constant assumed is 3 ·10−6 cm2/s. Clearly

visible in the image in Fig. 9 are the two shells of high intensity caused by the shoul-

ders seen in Fig. 6 (b). Unlike the two-dimensional reconstruction in Fig. 8, the

three-dimensional image shows the two shells at the same intensity. This implies

that, in contrast to a two-dimensional reconstruction, the relative brightness of rings

5The hollow objects in column 2 and 3 could be, for example, air bubbles, but it should be

pointed out that susceptibility differences may cause further distortions of such objects.
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and spots in a three-dimensional reconstruction does not provide information con-

cerning the size of the actual object.

So far we have ignored relaxation and the corresponding broadening of the nat-

ural line width of a resonance signal. This broadening could, in principle, mask the

diffusion effects shown, such as those in Fig. 9. In order to overcome this consequence

of spin relaxation one needs a strong enough field gradient such that the natural

line width is smaller than the features of the back-projected line shape function. To

investigate the dependence on the natural line width, we carried out a corresponding

line shape function calculation for a gradient6 of 0.02T/m and a T2 value of 50ms, as

can be found, e. g., in liver tissue (28). The geometrical setting and diffusion constant

have been chosen as in Fig. 9. The reconstructed three-dimensional image is shown

in Fig. 10. Because of the natural line width, the features in Fig. 10 are blurred to

some extent compared to those in Fig. 9. Nonetheless, the image in Fig. 10 still shows

the same structure as in Fig. 9; only the contrast is reduced. We conclude that for

gradients of the order 0.02T/m, relaxation does not eliminate the features that are

a consequence of motional narrowing .

Another factor which can limit the appearance of motional narrowing effects in

microscopic MRI of biological tissues is the permeability of biological boundaries.

Prerequisite for motional narrowing effects are diffusion barriers which are largely

6Gradient fields of this strength are used in clinical MRI equipment.
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impermeable on the time scale of an MRI measurement. It is possible that not all

biological boundaries are impermeable enough. Cell membranes, for example, often

allow rapid passage of water. In addition, in cells the diffusion constant of water may

decrease from the center towards the cell membrane which would make the motional

narrowing effects discussed here less discernible.

To estimate the impermeability of a membrane, one can compare the average

time t1 it takes a particle inside a sphere of radius r to diffuse to the boundary at r,

t1 = r2/6Dw, to the average time t2 it takes a particle to leave the sphere. Assuming

a membrane thickness d and diffusion constant Dm in the membrane, the latter time

can be estimated to be t2 = dR/3Dm (8). A list of permeabilities P for liposome

membranes of thickness d, as characterized by P = Dm/d, is provided in (29). It

seems that the permeability of biological membranes, although often greater due to

ion channels, is not too different from that of liposomes (30). If one considers the most

permeable of liposome membranes studied in (29) characterized by Dm/Dw ≈ 10−4

and uses the geometry r = 10µm, d = 5nm, one finds t1/t2 ≈ 0.1. One can conclude

that about ten times as many particles reach the membrane and are reflected by it

as pass through it. In other words, the majority of water molecules confined by a

membrane with Dm/Dw = 10−4 will contribute to motional narrowing .

These results have encouraged us to suggest experiments which would specifically

look for edge enhancement (31). Entirely within the realm of practicality would be
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images of ultra-thin water-filled glass capillaries, of only about 50µm in diameter.7

Since the achievable signal-to-noise ratio in an NMR experiment is proportional to

the sample volume, special radio frequency coils are necessary for imaging samples

less than 1mm in diameter. A size reduction of the radio frequency coil improves coil-

sample coupling and increases the coil sensitivity. It has been shown previously (33)

that pixel resolutions less than 10µm can be achieved using such coils. Initial mea-

surements of spectroscopic linewidth, using samples of water within capillary tubes,

indicate that a pixel resolution less than 3µm is attainable (32), which we predict

would be sufficient to observe edge enhancement as long as the applied gradient is

less than about 10G/cm.

7A specific design of such an experiment has been suggested by Peck, Webb, and Magin (32)
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Conclusion

We have demonstrated by means of computer simulations and a description in terms of

Kubo’s line shape function that diffusion plays an important role in generating image

contrast on a microscopic length scale. Our investigation has led to the following

interpretations of MRI micrographs: (i) intensity halos in an image point to the

existence of otherwise invisible compartmental boundaries, (ii) water free volumes

appear smaller than they actually are and may be overlaid by an intensity emanating

from frequency distortions of the surrounding water, and (iii) motional narrowing

effects within a cell can be regarded independently of the surrounding water.

We have discussed briefly two factors—natural line widths and permeable bound-

aries—that may offset or limit the appearance of motional narrowing effects in micro-

scopic MRI of biological tissues. We have shown that both factors can certainly limit

such effects, although neither should ordinarily be expected to eliminate motional

narrowing effects.

Before motional narrowing effects are investigated in microscopic MRI of bio-

logical tissues, it should be fruitful to look for such effects in controllable phantom

systems. In model systems such as a film of water between glass plates (1D case),

water-filled glass capillaries (2D), or liposomes with a highly impermeable membrane

(3D), edge enhancement should be observable. Such observations could demonstrate
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the viability of motional narrowing effects for edge enhancement in biological micro-

scopic MRI. Experiments on a two-dimensional system (water-filled glass capillaries)

are already under preparation (32).
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Appendix:

A Analytic Solution for m(z, t)

The solution for Eq. [3]

∂tm⊥ = (D∂2
z ± iγGz)m⊥ [31]

can be determined by exploiting an analogy to the Schrödinger equation of a particle

with charge q in a homogeneous electric field E

ih̄∂tΨ = (− h̄2

2µ
∂2

z − qEz)Ψ. [32]

Eq. [31] results from the following transformations to Eq. [32]: h̄ → 1, t → it,

1
2µ

→ D, qE → iγG. The boundary condition [5], m(±∞, t) = 0, corresponds to

the condition of vanishing wave function at infinity in the quantum mechanical case.

The equivalence of [31] and [32] allows one to use the known Green’s function of [32]

(34, 35) for a spin ensemble with initial magnetization of Gaussian shape centered at

zo,

m(z, t = 0) =
1√
πδ2

exp

(
−(z − z̄)2

δ2

)
[33]

yielding

m(z, t) =
1√

πδ2
(
1+ 4Dt

δ2

) exp

[
−((z − z̄) ± iDγGt2)

2

δ2(1 + 4Dt
δ2 )

± iγGzt − (Dγ2G2t3)

3

]
. [34]
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as solution of [31].

The spatial integral of [34] m(t) =
∫+∞
−∞ dz m(z, t) describes the temporal behavior

of a homogeneous overall magnetization of the spin ensemble. The integral reproduces

the result of Hahn and Torrey (14, 13)

m(t) ∝ e−
Dγ2G2t3

3 . [35]

B The Simulation Program

The simulations assume that the observable magnetization results from a quantum

mechanical ensemble average over a macroscopic number of nuclear magnetic spins

and that the ensemble can be represented by a relatively small number of classical

spin ensembles, each ensemble accounting for only a small fraction of the observable

magnetization while representing a very large number of spins. [A similar description

for electron spins was employed in (36).] Assuming this, we employ the Bloch equa-

tion for a classical description of the magnetization. Since microscopic interactions

between different nuclear spins (e. g., dipole-dipole) are taken into account by the T1

and T2 parameters in the Bloch equations, the classical spins ensembles, hereafter

simply called “spins,” are non-interacting, and the total magnetization will be given

by the vector sum over all the spins at any time during the simulation. We can thus

illustrate the simulation algorithm by describing the steps performed for a single spin.
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Step 1: Initialization

At an initial position, chosen randomly within the accessible diffusion space, the

magnetization is represented by a vector pointing in the negative x - direction to

simulate an initial π/2-pulse.

Step 2: Relaxation

Next, the Bloch equations are iterated according to Eq. [22]. If in the simulation one

wishes to include magnetic field inhomogeneities in addition to the gradient field, it

is necessary to switch to a coordinate system whose z-axis is aligned with the local

magnetic field. This can be accomplished by applying the following transformation in

the case that Bx and By are not both vanishing, i. e., the field is not already aligned

with the z-axis,

~x → T ( ~B)~x [36]

where the matrix T ( ~B) is defined by

T ( ~B) =




BxBz

B Br

ByBz

B Br
−Br

B

−By

Br

Bx

Br
0

Bx

B
By

B
Bz

B




, [37]

and where B = | ~B| and Br =
√

B2
x + B2

y . In the study presented here no such field

inhomogeneities were assumed, yet this feature can be quite useful in calculating mag-

netic relaxation under a variety of circumstances, including, for example, magnetic

relaxation in the presence of superparamagnetic contrast agents.
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Transformation [37] is performed when appropriate, and then, for an aligned

coordinate system the Bloch equations can be solved easily. For simplicity we consider

only the deviation from equilibrium of the longitudinal magnetization by subtracting

away the equilibrium magnetization,

mz −→ mz − mo
z. [38]

With this last transformation the time evolution of the magnetization can be written

as

~m(tn+1) = Rz(ω∆t) D~m(tn). [39]

where D and Rz(ω∆t) denote the matrices describing decay and precession of ~m,

respectively. D and Rz(ω∆t) are given by

D =




e−∆t/T2 0 0

0 e−∆t/T2 0

0 0 e−∆t/T1




and

Rz(ω∆t) =




cosω∆t sinω∆t 0

−sinω∆t cosω∆t 0

0 0 1




.

The product Rz(ω∆t) D is then
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Rz(ω∆t) D =




e−∆t/T2cosω∆t sinω∆t 0

−sinω∆t e−∆t/T2cosω∆t 0

0 0 e−∆t/T1




.

where T1 and T2 represent the times for longitudinal and transverse relaxation, ω

the Larmor frequency for the local magnetic field and ∆t the length of a time step.

We tried several time steps and used ∆t = 50ms in the simulations presented. Af-

ter returning to laboratory coordinates by reversing transformation [38]8 the new

magnetization vector is obtained.

Step 3: Diffusion

Diffusion is simulated by Brownian motion of the spins. Each “diffusion step” is

generated by a Monte-Carlo algorithm. The step width is taken from a distribu-

tion corresponding to that of Brownian motion at the same diffusion constant (see

Eq. [21]). If the particle reaches a boundary it will be reflected. This reflection is

performed so as to give a reasonable displacement by conserving the length of the

step (37, 38).

Fig. 11 introduces the notation used to describe the reflection method. Take, for

example, a spin which starts out at position ~p1 and moves towards ~p2, crossing a

boundary at radius R. This step may be denoted as ~∆p = ~p2 − ~p1. The point ~p3

8Since T is a rotation matrix T−1 =T T holds.
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where the path crosses the boundary is given by

~p3 = ~p1 + λ ~∆p, [40]

with

λ± =
−(~p1 · ~∆p) ±

√
(~p1 · ~∆p)2 − | ~∆p|2(|~p1|2 − R2)

| ~∆p|2 . [41]

The sign determines whether the reflection takes place inside or outside of the sphere.

For an inside reflection ‘+’ has to be chosen, for an outside reflection ‘–’, as shown in

the right part of Fig. 11. Knowing ~p3, the final position ~p2
′ can be computed by

~p2
′ = ~p2 − 2

(~p3 − ~o) · (~p2 − ~p3)

R2
(~p3 − ~o) [42]

where ~o represents the center of the sphere.

Step 4: Data acquisition

After applying steps 2 and 3 a pre-defined number of times, an observable like the spin

magnetization can be extracted. This may be either the total magnetization or, e. g.,

just the x-component, or even derived information like the frequency distribution of

the magnetization.

Steps 2 through 4 are repeated until the desired simulation time has elapsed.
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List of Figures

1 Relation between measured frequency spectrum and spin distribu-

tion for a spin ensemble under the influence of a linear gradient field.

The density distribution along the z-axis is projected onto a spec-

tral function (spectrum) by the gradient. This spectral function is

the observable, and the spin distribution is then deduced from it.

Schematically shown are two spectra which could be observed from

the transverse magnetization of a homogeneous spin distribution. The

rectangular (—) spectrum would result from fixed spins while for dif-

fusing spins the peaked (- -) spectrum would be observed as a result

of motional narrowing . When the spins remain fixed, the rectangular

frequency spectrum reflected about the field gradient yields the ac-

tual spin density. In case of sufficiently fast diffusion, the frequency

spectrum, when reflected about the field gradient, yields an artificially

focussed spin concentration.
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2 Contributions I(ω, zk) to the line shape function for one-dimensional

diffusion, calculated from I(ω, zk) = Re (ck(ω)). The z-axis represents

the diffusion interval [−zb, zb] whose length is 40 µm. The frequency

interval shown [γ(Ho−Gz1), γ(Ho+Gzn)] corresponds to the frequency

range one would observe without diffusion. (D = 10−5 cm2/s, G =

0.02T/m.)

3 Frequency spectra I(ω) for one-dimensional diffusion in a 40µm in-

terval. The smooth curves correspond to the line shape function eval-

uated according to Eq. [15]. The jagged curves have been determined

by simulation, according to Eq. [23] and as described in the section,

A Simulation Program. The bounds of the diffusion domain are indi-

cated by vertical dashed lines. The frequency is shown as ω/γG in µm.

The field gradient is 0.02 T/m. The diffusion constants assumed are:

a) 3 · 10−7, b) 3 · 10−6, c) 3 · 10−5, and d) 3 · 10−4 cm2/s. The q-values

(introduced later) are: a) 0.11, b) 0.24, c) 0.53, and d) 1.14. Simulated

were 160 000 particles.
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4 Schematic explanation of motional narrowing near compartmental

walls. Each figure (a, b, c) shows representative spins diffusing in a

one-dimensional diffusion space as time evolves from top to bottom.

The spin paths are shown as solid lines, their average positions over

the presented paths are shown by vertical dashed lines. The rate of

diffusion increases from (a) to (c): (a) D � (∆z)2/∆T , (b) D ≈

(∆z)2/∆T , (c) D � (∆z)2/∆T .

5 Comparison of spectra for diffusion in a sphere of diameter 40µm.

(smooth curves: line shape function jagged curves: simulation results)

The parameters chosen are the same as in case of Fig. 3. The corre-

sponding q-values [30] are the same as those listed in the caption of

Fig. 3. Simulated were 160 000 particles for (a-c), 40 000 for (d).

6 Comparison of spectra for diffusion in a subdivided sphere. Inside

a sphere of radius 20µm an impermeable sphere of 10µm radius is

centered, both spheres are indicated by the dashed lines. Smooth:

line shape function, jagged: simulation, parameters as in Fig. 3. The

corresponding q-values [30] are as follows: for the 20µm radius a) 0.11,

b) 0.24, c) 0.53, and d) 1.14; the corresponding values are double for

the 10µm radius. Simulated were 200 000 particles for (a-c), 40 000 for

(d).
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7 A pictorial guide of the models whose images appear in Fig. 8. The

order of the columns in Fig. 8 is the same as the horizontal order

here. The image reconstructions have been performed for four spherical

models; each 20µm in radius, and (a) containing uniform spin density,

(b) a hollow center 5µm in radius separated by a membrane from the

surrounding uniform spin density, (c) a spherical membrane 10µm in

radius otherwise as (b), and (d) containing a uniform spin density that

is divided by a membrane at a radius of 10µm. The boundaries shown

are impermeable, the shading indicates the spin distribution.

8 Two-dimensional reconstructions from frequency spectra. Geome-

tries are described in Fig. 7. The width of each square is 40µm. Dif-

fusion constants assumed are from top to bottom: no diffusion (undis-

torted image), 3 · 10−7, 3 · 10−6, 3 · 10−5, 3 · 10−4 cm2/s. The intensities

cannot be compared directly because the visualization program auto-

matically scales the images so that they use the whole grey scale. In

the image at the far right of row 4, the center has been cut out to make

the outer ring visible.
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9 Three-dimensional reconstruction for the case of a spherical compart-

ment of radius rinner surrounded by spherical shell with rinner = 1
2
router

as in Fig. 7 (right). Diffusion constant assumed is 3 · 10−6 cm2/s. The

surrounding cube has sides of length 40µm. The q-values are 0.24 and

0.49 for the outer and inner shell, respectively.

10 The effect of lifetime broadening on the three-dimensional recon-

struction of the same object as shown in Fig. 9. A T2 value of 50ms

and a field gradient of 0.02T/m was assumed.

11 Left: Definition of points used to describe reflections. Right: Correct

choice of the sign of λ in [41].
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Figure 1: Relation between measured frequency spectrum and spin distribution for

a spin ensemble under the influence of a linear gradient field. The density distribution

along the z-axis is projected onto a spectral function (spectrum) by the gradient. This

spectral function is the observable, and the spin distribution is then deduced from

it. Schematically shown are two spectra which could be observed from the transverse

magnetization of a homogeneous spin distribution. The rectangular (—) spectrum

would result from fixed spins while for diffusing spins the peaked (- -) spectrum would

be observed as a result of motional narrowing . When the spins remain fixed, the

rectangular frequency spectrum reflected about the field gradient yields the actual spin

density. In case of sufficiently fast diffusion, the frequency spectrum, when reflected

about the field gradient, yields an artificially focussed spin concentration.
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Figure 2: Contributions I(ω, zk) to the line shape function for one-dimensional

diffusion, calculated from I(ω, zk) = Re (ck(ω)). The z-axis represents the dif-

fusion interval [−zb, zb] whose length is 40 µm. The frequency interval shown

[γ(Ho − Gz1), γ(Ho + Gzn)] corresponds to the frequency range one would observe

without diffusion. (D = 10−5 cm2/s, G = 0.02 T/m.)
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Figure 3: Frequency spectra I(ω) for one-dimensional diffusion in a 40µm inter-

val. The smooth curves correspond to the line shape function evaluated according to

Eq. [15]. The jagged curves have been determined by simulation, according to Eq. [23]

and as described in the section, A Simulation Program. The bounds of the diffusion

domain are indicated by vertical dashed lines. The frequency is shown as ω/γG in

µm. The field gradient is 0.02T/m. The diffusion constants assumed are: a) 3 · 10−7,

b) 3 · 10−6, c) 3 · 10−5, and d) 3 · 10−4 cm2/s. The q-values (introduced later) are:

a) 0.11, b) 0.24, c) 0.53, and d) 1.14. Simulated were 160 000 particles.
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Figure 4: Schematic explanation of motional narrowing near compartmental walls.

Each figure (a, b, c) shows representative spins diffusing in a one-dimensional diffusion

space as time evolves from top to bottom. The spin paths are shown as solid lines, their

average positions over the presented paths are shown by vertical dashed lines. The

rate of diffusion increases from (a) to (c): (a) D � (∆z)2/∆T , (b) D ≈ (∆z)2/∆T ,

(c) D � (∆z)2/∆T .
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Figure 5: Comparison of spectra for diffusion in a sphere of diameter 40µm.

(smooth curves: line shape function jagged curves: simulation results) The param-

eters chosen are the same as in case of Fig. 3. The corresponding q-values [30] are

the same as those listed in the caption of Fig. 3. Simulated were 160 000 particles for

(a-c), 40 000 for (d).
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Figure 6: Comparison of spectra for diffusion in a subdivided sphere. Inside

a sphere of radius 20 µm an impermeable sphere of 10 µm radius is centered, both

spheres are indicated by the dashed lines. Smooth: line shape function, jagged:

simulation, parameters as in Fig. 3. The corresponding q-values [30] are as follows:

for the 20 µm radius a) 0.11, b) 0.24, c) 0.53, and d) 1.14; the corresponding values

are double for the 10 µm radius. Simulated were 200 000 particles for (a-c), 40 000 for

(d).
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Figure 7: A pictorial guide of the models whose images appear in Fig. 8. The

order of the columns in Fig. 8 is the same as the horizontal order here. The image

reconstructions have been performed for four spherical models; each 20µm in radius,

and (a) containing uniform spin density, (b) a hollow center 5µm in radius separated

by a membrane from the surrounding uniform spin density, (c) a spherical membrane

10 µm in radius otherwise as (b), and (d) containing a uniform spin density that is

divided by a membrane at a radius of 10 µm. The boundaries shown are impermeable,

the shading indicates the spin distribution.
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Figure 8: Two-dimensional reconstructions from frequency spectra. Geometries

are described in Fig. 7. The width of each square is 40 µm. Diffusion constants

assumed are from top to bottom: no diffusion (undistorted image), 3 · 10−7, 3 · 10−6,

3 · 10−5, 3 · 10−4 cm2/s. The intensities cannot be compared directly because the

visualization program automatically scales the images so that they use the whole

grey scale. In the image at the far right of row 4, the center has been cut out to make

the outer ring visible.
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Figure 9: Three-dimensional reconstruction for the case of a spherical compart-

ment of radius rinner surrounded by spherical shell with rinner = 1
2 router as in Fig. 7

(right). Diffusion constant assumed is 3 · 10−6 cm2/s. The surrounding cube has

sides of length 40 µm. The q-values are 0.24 and 0.49 for the outer and inner shell,

respectively.
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Figure 10: The effect of lifetime broadening on the three-dimensional reconstruc-

tion of the same object as shown in Fig. 9. A T2 value of 50 ms and a field gradient

of 0.02 T/m was assumed.
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Figure 11: Left: Definition of points used to describe reflections. Right: Correct

choice of the sign of λ in [41].


