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Reaction paths based on mean first-passage times
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Finding representative reaction pathways is important for understanding the mechanism of
molecular processes. We propose a new approach for constructing reaction paths based on mean
first-passage times. This approach incorporates information about all possible reaction events as
well as the effect of temperature. As an application of this method, we study representative pathways
of excitation migration in a photosynthetic light-harvesting complex, photosystem I. The paths thus
computed provide a complete, yet distilled, representation of the kinetic flow of excitation toward
the reaction center, thereby succinctly characterizing the function of the system. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1570396#
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I. INTRODUCTION

In many chemical and biological reactions, initial~reac-
tant! and final~product! states are known but reaction pat
ways connecting the two are not. Examples range in co
plexity from single-particle Brownian motion to
conformational changes of proteins, such as prot
folding.1,2 Finding reaction pathways is one of the most fu
damental challenges in chemistry and molecular biology.3,4 It
is important for unraveling reaction mechanisms and for
calculation of reaction rates.5

The origin of the concept of reaction path is found
studies of simple chemical reactions, where a reaction
transition from one potential energy minimum~reactant! to
another~product!. Such a reaction is usually considered
traverse across a saddle point that minimizes the pote
energy barrier between the two minima, and the reaction p
is constructed by locating the saddle point and then follo
ing the steepest descent of the potential surface from
saddle point. However, as researchers begin to study m
complex reactions, the validity and practicality of th
steepest-descent path is being called into question.3

In most cases of interest, reactions take place at fi
temperature and therefore are stochastic. Every reac
event follows a different path and takes a different amoun
time. Among all possible paths from the reactant to the pr
uct, we seek the path that is representative of all reac
events and thereby characterizes the reaction.6 In this regard,
the steepest-descent path has the important drawback o
including the effect of temperature. Since reactions
driven by thermal fluctuations, temperature dependence
reaction paths should be taken into account. For exam
suppose there is a direct path with high energy barriers a
roundabout path with low energy barriers. At high tempe

a!Electronic mail: kshulte@ks.uiuc.edu
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ture ~compared to the barriers! reaction events will occur
most likely along the direct path, while the steepest-desc
path will be the roundabout path regardless of temperatu

There have been efforts to find a better formulation
reaction path, like the maximum-flux path7,8 and the most
probable path.9 These methods succeeded to a certain ex
in elucidating reaction mechanisms. but they do not fu
satisfy the criterion of representativity. The method of mo
probable path comes closest to satisfying the criterion. In
method, an ensemble of reaction events of a fixed time in
val is considered. A probability is then assigned to ea
event, and the path followed by the most probable even
taken as the reaction path.10 But, it is not clear how to choose
the time interval beforehand and whether an ensemble
reaction events of a single time interval suffices to repres
the reaction.

This paper presents a new formulation of reaction pa
While previous approaches attempted to quantifypaths, we
use the concept of reaction coordinate which quanti
states. Reaction coordinate is a function of states that d
scribes where in the progress of a reaction a state is loca
A natural measure of the progress of reaction is provided
the mean first-passage time~MFPT! t~x! from statex to the
given product; the shorter the MFPTt~x! is, the closer the
statex is to the product. The MFPT depends on the ene
landscape, the temperature, as well as the boundary co
tions, and most important, it is an average over all react
events.11,12 Once the MFPTt~x! is determined for all states
reaction paths can be constructed by following the direct
along whicht decreases most rapidly.

II. REACTION PATHS BASED ON MEAN
FIRST-PASSAGE TIMES

The following describes the calculation of MFPTs a
the construction of reaction paths for two different settin
3 © 2003 American Institute of Physics
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diffusion on a potential surface and discrete kinetics. Fig
1 shows a schematic illustration of reaction path in these
settings. The equation for the MFPT@Eq. ~15!#, whose deri-
vation we outline in the following, was first derived i
Refs. 13 and 14 and a more detailed account can be foun
Ref. 11.

A. Diffusion on a potential surface

We first consider a reaction described as diffusion o
potential surfaceU(x) defined on a continuous spaceS. The
reactant and the product are specified by disjoint regionsR
andP, respectively, inS. Let P(y,x;t) andJ(y,x;t) be, re-
spectively, the probability density and the probability curre
at y of the diffusing particle, starting atx, after time interval
t. The probability density obeys the Smoluchows
equation15

] tP~y,x;t !5D¹y"$e
2bU~y!¹y@ebU~y!P~y,x;t !#%, ~1!

where D is the diffusion coefficient andb is the inverse
temperature. The differential operator¹y acts on functions of
y. From comparing the continuity equation

] tP~y,x;t !52¹y"J~y,x;t ! ~2!

and the Smoluchowski equation@Eq. ~1!#, an expression for
the probability current follows:

FIG. 1. Schematic illustration of reaction paths.S is the set of all accessible
states,R the reactant, andP the product.~a! A continuous system. Dashe
lines are contours of the reaction coordinate~the MFPT to the productP!
and the solid lines connectingR andP are reaction paths. See Sec. II A.~b!
A discrete system. Dots are accessible states and the arrows denote re
paths. See Sec. II B.
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J~y,x;t !52De2bU~y!¹y@ebU~y!P~y,x;t !#. ~3!

The Smoluchowski equation must be accompanied
initial and boundary conditions. The initial condition
P(y,x;0)5d(y2x). Since we are only interested in firs
passages to the product regionP, it is convenient to conside
the diffusion process on the regionS\P, the complement of
P. Therefore, there are two boundaries to take into acco
the boundary ofS and that ofP @Fig. 1~a!#.16 Let us denote
these boundaries by]S and]P, respectively. Since only firs
passages to the product regionP need to be considered, it i
assumed that the diffusing particle is absorbed on]P:

P~y,x;t !50, for yP]P. ~4!

For ]S, we assume the reflecting boundary condition for si
plicity’s sake:17

J~y,x;t !i]S for yP]S, ~5!

meaning that the currentJ is tangential to the boundary]S.
From the Smoluchowski equation@Eq. ~1!# we derive the

backward Smoluchowski equation which is used for cal
lating the MFPT. Since diffusion is a Markov process, t
probability densityP(y,x;t) can be written as

P~y,x;t !5E
S\P

dzP~y,z;s!P~z,x;t2s! ~6!

for an arbitrary intermediate times(0,s,t). Taking the
derivative with respect tot leads to

] tP~y,x;t !5E
S\P

dz P~y,z;s!] tP~z,x;t2s!

5E
S\P

dz P~y,z;s!D¹z

"$e2bU~z!¹z@ebU~z!P~z,x;t2s!#%. ~7!

After carrying out the integration by parts twice, one obta

] tP~y,x;t !5DE
S\P

dzebU~z!P~z,x;t2s!¹z

"@e2bU~z!¹zP~y,z,s!# ~8!

with the adjoint boundary conditions

P~y,x;t !50 for xP]P, ~9!

¹xP~y,x;t !i]S for xP]S. ~10!

The limit s→t leads to the backward Smoluchowski equ
tion,

] tP~y,x;t !5DebU~x!¹x"@e2bU~x!¹xP~y,x;t !#, ~11!

where we have used lims→tP(z,x;t2s)5d(z2x).
The probability that the diffusing particle reaches t

product regionP between timet and t1dt is equal to the
surface integral2dt*]P dsy"J(y,x;t) with respect toy over
the boundary ofP. The minus sign is due to the surfac
normal sy being defined to be pointing outward from th
regionP. Thus, the MFPTt~x! is given as

tion
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1315J. Chem. Phys., Vol. 119, No. 3, 15 July 2003 Reaction paths based on mean first-passage times
t~x!52E
0

`

dt tE
]P

dsy"J~y,x;t !

1E
0

`

dt tE
]S

dsy"J~y,x;t !, ~12!

where the second term can be added because the su
integral vanishes on the reflecting boundary]S @Eq. ~5!#. By
Gauss’s theorem, the surface integrals are transformed
volume integral:

t~x!5E
0

`

dt tE
S\P

dy¹y"J~y,x;t !. ~13!

We replace¹y"J(y,x;t) with 2] tP(y,x;t) by using the
continuity equation@Eq. ~2!#, integrate by parts~with respect
to t!, and obtain

t~x!5E
0

`

dtE
S\P

dy P~y,x,t ! ~14!

under the assumption that*S\P dy P(y,x;t) decays more
quickly than 1/t. Finally, using the backward Smoluchows
equation@Eq. ~11!# we find13,14

DebU~x!¹•@e2bU~x!¹t~x!#521. ~15!

Therefore, the MFPTt~x! can be determined by solving th
inhomogeneous partial differential equation on the reg
S\P. The boundary conditions fort are extracted from the
adjoint boundary conditions@Eqs.~9! and~10!# by using Eq.
~14!:

t~x!50 for xP]P, ~16!

¹t~x!i]S for xP]S. ~17!

Reaction paths are then constructed following the dir
tion of 2¹t, along whicht decreases most rapidly. Thus,
reaction pathx( l ), parametrized through the arclengthl, sat-
isfies

dx

dl
52

¹t

u¹tu
. ~18!

Since any point in the reaction regionR can be a starting
point of a reaction path, in general multiple reaction pa
are obtained unless the reactant region is narrowed down
single point. The resulting reaction paths are independen
the diffusion coefficientD because the latter affects only th
overall scale oft.

B. Discrete kinetics

Let us now consider a different setting, namely a re
tion described by transitions between discrete states. LetS be
the set of all accessible states. The reactantR and the prod-
uctP are given as disjoint subsets ofS. We denote byRji the
transition rate from statei to j, and for later use in Sec. IV
assume a probability loss ratel j for each statej. A discrete
master equation can be written for the probabilityPji (t) that
the system, initially in statei, is in statej after time interval
t:
Downloaded 08 Jul 2003 to 192.17.16.162. Redistribution subject to AI
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] tPji ~ t !5(
kÞ j

RjkPki~ t !2(
kÞ j

Rk jPji ~ t !2l j Pji ~ t !, ~19!

or in a matrix form,

] tPji ~ t !5(
k

K jkPki~ t !. ~20!

The transition matrixK jk is built as

K jk5Rjk for j Þk ~21!

K j j 52(
lÞ j

Rl j 2l j . ~22!

The master equation is accompanied by the initial conditi
Pji (0)5d j i . If there is no probability loss (l j50 for all j!,
the total probability is conserved, namely] t ( j Pji (t)50.

Following a similar procedure as used for the diffusi
process in the preceding section, we derive an equation
the MFPTt i from statei to P. Since we are only intereste
in first passages toP, it is convenient to consider the sub
system consisting of the states inS\P. This subsystem is
described by the master equation

] tPba~ t !5(
g

KbgPga~ t ! ~23!

with the initial conditionPba(0)5dba . We use Greek sub
scripts to indicate that the states inP are excluded. That is
Greek subscripts are assigned only to the states inS\P. The
transition matrixKbg is extracted from the original transitio
matrix K jk by eliminating the rows and columns belongin
to the states inP. Even when the total probability is con
served in the original system, the total probability in t
subsystem is not conserved. The passage toP accounts for
this probability decrease.

Using the Markov property,

Pba~ t !5(
g

Pbg~s!Pga~ t2s! for 0,s,t, ~24!

one obtains

] tPba~ t !5(
g

Pbg~s!] tPga~ t2s!

5(
g

Pbg~s!(
d

KgdPda~ t2s!. ~25!

Taking the limits→t leads to the backward master equati

] tPba~ t !5(
g

Pbg~ t !Kga . ~26!

Let jb be the transition rate from stateb to any state
in P:

jb5 (
j PP

K j b . ~27!

The MFPTta from statea to the product setP is then given
as
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1316 J. Chem. Phys., Vol. 119, No. 3, 15 July 2003 Park et al.
ta5E
0

`

dt t(
b

jbPba~ t !Yfa , ~28!

fa5E
0

`

dt(
b

jbPba~ t !. ~29!

Here fa is the total probability that the passage toP will
eventually occur. Because of the loss ratel j in each state,
fa is in general less than one and the denominator in
~28! is necessary for normalization. Finally, by using t
backward master equation@Eq. ~26!# and integrating by
parts, we find

(
a

faKag52jg , ~30!

(
a

tafaKag52fg ~31!

under the assumption that(b jbPbg(t) decays more rapidly
than 1/t. The solution to this coupled equation is given
terms of the inverse matrixKag

21 of the matrixKag :

fa52(
g

jgKga
21, ~32!

ta52(
g

fgKga
21Yfa . ~33!

These are the equations that we use in Sec. IV.
In the case of no loss (l j50 for all j!, jg is equal to

2(b Kbg and the solution can be stated in a simpler for

fa51, ~34!

ta52(
g

Kga
21. ~35!

In fact, when there is no loss, there is only one sink~through
the productP! in the system. The MFPT then may be deriv
simply by18

ta52E
0

`

dt t] t(
b

Pba~ t !

5E
0

`

dt(
bg

~eKt!bgPga~0!

52(
b

Kba
21. ~36!

In order to determine reaction paths based on the MF
t i (t i50 for i PP), we draw an analogy to the diffusion o
a continuous space considered earlier, where reaction p
follow the direction of the steepest descent of the MFP
2¹t. Let us interpret these reaction paths as sequence
jumps of infinitesimal distancee. Suppose a reaction pat
goes through a pointx. The next pointx8 the reaction path
visits is chosen out of the points lying at the distance oe
from x. The choice is made in such a way that the decreas
the MFPT per distance,@t(x)2t(x8)#/e, is maximized,
which is the same as following2¹t. For the reaction de-
scribed by discrete kinetics, a reaction path must be a
Downloaded 08 Jul 2003 to 192.17.16.162. Redistribution subject to AI
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quence of transitions leading to the product. Suppose a r
tion path goes through a statei. The next statej is chosen out
of all the states to which a transition from statei can occur.
According to the analogy with the continuous diffusion, t
choice should be made such that the decrease in the M
per distance is maximized. However, in the case of disc
kinetics, no notion of distance is givena priori. Neverthe-
less, an analogue of distance is provided by the transi
time 1/Rji from statei to j, and one can choose the next sta
j that maximizesRji (t i2t j ). For the transition step fromi to
j, the transition time 1/Rji may be interpreted as a cost, an
the MFPT decreaset i2t j as a gain. The scheme the
amounts to maximizing for each step the ratio between th
two times, namely the gain–cost ratio.

III. DIFFUSION ON THE THREE-HOLE POTENTIAL

We first apply the present method to the simplest n
trivial case, diffusion on a two-dimensional potential surfa
For this purpose we choose the three-hole potential

U~x1 ,x2!53e2x1
2
2~x221/3!2

23e2x1
2
2~x225/3!2

25e2~x121!22x2
2
25e2~x111!22x2

2
, ~37!

which was also studied by others regarding the tempera
dependence of reaction paths.8,9 As can be seen from the
contour plot in Fig. 2~a!, the potential features two dee
holes at~21,0! and ~1,0! and one shallow hole at~0,5/3!.
The two deep holes are considered as the reactant and
product. Roughly, there are two channels connecting the
actant and the product: the upper indirect channel via

FIG. 2. Reaction paths of the diffusion on the three-hole potential.~a! A
contour plot of the potential, with two channels connecting the reactanR
and the productP. ~b! The directions of2¹t at selected grid points are
plotted as arrows, for two different temperatures. Contours of the reac
coordinatet ~thick lines! and the potential~thin lines! are shown.~c! Tem-
perature dependence of the reaction paths. Shown are eight reaction
for eight different temperatures from bottom to top,b51, 2, 3, 4, 5, 6, 7, 8.
The reactant is the point~21, 0!, and the product is the region indicated b
the closed circle.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1317J. Chem. Phys., Vol. 119, No. 3, 15 July 2003 Reaction paths based on mean first-passage times
shallow hole and the lower direct channel. The upper chan
is longer than the lower one but has lower energy barrier
is therefore expected that the upper channel will be take
low temperature and the lower channel at high temperat

The MFPTt(x1 ,x2) is calculated by solving Eq.~15!
numerically. We take the region (24<x1<4,23<x2<4)
as the whole spaceS, and assume that its boundary is refle
ing @Eq. ~17!#. For the reactantR we take the point~21,0!,
and for the productP the small circular region of radius 0.
centered at~1,0!.19 The MFPTt vanishes on the boundary o
P @Eq. ~16!#.

The numerical solution of Eq.~15! with these boundary
conditions was obtained withMATLAB .20 Figure 2~b! shows
the solution for two different temperatures,b51 and 8. The
difference between the two temperatures is dramatic. At
high temperature~b51! the arrows pointing in the direction
of 2¹t flow more or less directly toward the product. At th
low temperature~b58!, on the other hand, the flow is sig
nificantly distorted so that potential barriers are avoid
with a singular point produced around~21.5, 20.5!. Also,
the MFPTt drops rapidly when barriers are crossed, as
dicated by the contours oft packed around saddle point
Figure 2~c! shows the reaction paths found at these two a
other intermediate temperatures. As temperature is lowe
the reaction path changes gradually from the lower chan
to the upper channel, which agrees with the expected t
perature dependence.

IV. EXCITATION MIGRATION IN PHOTOSYSTEM I

The task of determining representative pathways is a
encountered in the study of the excitation migration in ph
tosynthetic complexes, which can be described by disc
kinetics. In this section we apply the present method to
excitation migration in a photosynthetic complex, photos
tem I ~PSI!.

Photosynthesis is carried out by pigment-protein co
plexes embedded in cell membranes.21 In such a complex, an
aggregate of interacting pigments held in a fixed arran
ment absorbs light and the resulting electronic excitation
used for separating charge across the cell membrane.
transmembrane potential induced by the charge separati
later used for the synthesis of ATP, the universal energy
rency of a cell. However, in a typical light-harvesting com
plex most pigments do not participate directly in char
separation, instead they serve merely as light absorbing
tenna and deliver their electronic excitation to a reaction c
ter where charge separation takes place.

Among photosynthetic complexes, the photosynthe
unit of purple bacteria has been most extensively studied~for
a review see Ref. 22!. Recently, a high-resolution structure
PSI has been obtained from the cyanobacteriumSynechococ-
cus elongatus.23 PSI along with photosystem II and the
various satellite complexes constitutes the main machin
of oxygenic photosynthesis in plants, green algae,
cyanobacteria.21 PSI ~Fig. 3! contains an aggregate of 9
chlorophylls as its primary light-harvesting pigments. T
electronic excitation resulting from the absorption of a ph
ton by a chlorophyll migrates to a special pair of chlor
phylls ~named P700 after their absorption peak in nm! in the
Downloaded 08 Jul 2003 to 192.17.16.162. Redistribution subject to AI
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center of the complex, where charge separation is initiate24

Figure 3 reveals that the chlorophylls of PSI are arrang
without any apparent order~except for a pseudo-C2 symme-
try!, which is in contrast to the highly symmetric circula
arrangement of bacteriochlorophylls in the photosynthe
unit of purple bacteria.22 The apparently random arrange
ment of chlorophylls in PSI poses the question which pa
ways the excitation migration follows toward the reacti
center.

The rates of interchlorophyll excitation transfer in P
have been calculated based on Fo¨rster theory.25–27Excitation
follows stochastic trajectories along the excitation trans
network set by these rates. However, the obscure patter
the excitation transfer network in PSI~cf. Fig. 6 in Ref. 25!
instills a need for a simpler and more distilled picture
excitation migration. Besides, the functional aspect of
complex, namely that the P700 special pair is the targe
the excitation migration, is not integrated in the network p
ture solely dictated by the transfer rates. In fact, the proc
of excitation migration can be considered a reaction: the
actant is the state where a pigment molecule that initia
absorbed a photon is electronically excited, and the prod
is the state where the excitation resides in the special p
Thus, the present method of reaction paths can determine
pathways representative of all excitation migration eve
reaching the reaction center, thereby providing a functio
picture of the kinetic flow of excitation.

A. Mean first-passage time and excitation
migration pathway

Excitation migration in PSI is a stochastic process go
erned by the rates of interchlorophyll transfer, dissipat

FIG. 3. Arrangement of the 96 chlorophylls in photosystem I~PSI!, seen
along the membrane normal~top view! and through the plane of the mem
brane~side view!. The special pair of chlorophylls~P700! in the reaction
center, at which charge separation is initiated, are marked. The figure m
with VMD ~Ref. 35!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. ~Color! MFPT and pathways
of excitation migration in PSI.~a! The
96 chlorophylls, projected onto the
membrane plane, are denoted b
circles color-coded according to th
MFPT to the special pair~eC-A1 and
eC-B1!. The excitation migration
paths constructed based on the MFP
are shown as arrows.~b! The MFPTs
are plotted in increasing order. Th
color-code scheme is the same as
~a!. ~c! List of chlorophylls sorted in
order of increasing MFPT. The no
menclature~eC-A1, etc.! follows Ref.
23.
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~conversion of excitation to heat!, and the charge separatio
at the reaction center, and thus can be studied with ma
equations.26,28 The process can be described in terms of
probabilityPji (t) that an excitation, initiated by light absorp
tion at chlorophyll i, resides at chlorophyllj after a time
interval t. The interchlorophyll transfer ratesRji from chlo-
rophyll i to chlorophyll j are calculated as explained in Re
26. For this calculation, we use the recently obtained
energies for chlorophylls27 and the interchlorophyll elec
tronic couplings determined by the full Coulomb compu
tion that includes all multipole contributions to th
coupling.26 The dissipation rate is assumed to be the sa
(1/l i51 ns! at all the chlorophylls. Since we consider on
first passages to the special pair,29 the charge separation ra
is not needed in the present model. Collecting these rates
build the 96396 transition matrixK ji for the entire system
@Eqs. ~21! and ~22!#, and then extract the 94394 transition
matrix Kba for the subsystem~corresponding to all the chlo
rophylls except the P700! by eliminating the rows and col
umns corresponding to the two P700 chlorophylls. T
Downloaded 08 Jul 2003 to 192.17.16.162. Redistribution subject to AI
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MFPT t i ~from chlorophyll i to the special pair! and the
corresponding pathways then follow from the method d
scribed in Sec. II B.

B. Results and discussion

The obtained MFPT and paths are shown in Fig. 4. T
96 chlorophylls are sorted in the order of increasing MF
and are listed in Fig. 4~c!. The excitation migration paths
shown in Fig. 4~a! exhibit a network without any apparen
order, as expected from the disordered arrangement of
chlorophylls. There are various paths, including six dire
paths to the special pair~from chlorophylls eC-A2, eC-B2,
A24, A26, B5, and B24! and the most complicated path com
posed of nine steps~A21→PL1→A22→A30→B37→B38
→B39→eC-B3→eC-A2→eC-B1!. We emphasize that exci
tation does not necessarily follow these paths; they sho
rather be understood as representative paths. Overall,
pathways are more or less evenly distributed over the en
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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complex, which is in accord with the robustness of the co
plex against removal of individual chlorophylls as discuss
in Ref. 26.

As can be seen from Fig. 4~b!, most of the chlorophylls
~9th to 96th! have MFPTs around or above 10 ps, with t
average over all being 12.5 ps. Chlorophylls A40 and B39
between these peripheral chlorophylls and the six cen
chlorophylls~eC-A1, eC-B1, eC-A2, eC-B2, eC-A3, and eC
B3!. This supports to a certain extent the suggestion
chlorophylls A40 and B39 play the role of a bridge conne
ing the central and the peripheral chlorophylls.23 However,
among the found paths to the special pair, many go thro
neither chlorophyll A40 nor B39. Therefore, these two ch
rophylls are not the only connection between the cen
chlorophylls and the periphery, and hence should not be c
sidered as bottlenecks.

The last chlorophyll, M1, raises a question as it appe
to be rather isolated from the rest@Fig. 4~b!#. This isolation
does not imply that excitation will be trapped at this chlor
phyll; the MFPT associated with this chlorophyll~18.8 ps! is
still much shorter than the dissipation time of 1 ns. Howev
it seems inappropriate that the one chlorophyll is loca
relatively farther from the rest. The answer to this appar
puzzle lies in the observation that PSI exists at times a
trimeric structurein vivo.23,30 The chlorophyll M1 lies close
to the boundary between monomers. In fact, we find t
chlorophyll M1 is coupled to chlorophyll A30 in the nex
monomer with a coupling of 52.9 cm21, which is much
stronger than the strongest coupling it has within its o
monomer~6.7 cm21 with B8!. Hence, the chlorophyll M1
functionally belongs to the next monomer, not its ow
monomer.

V. CONCLUSION

We have presented a new method to construct reac
paths based on MFPTs that incorporates all reaction eve
and illustrated how it captures important aspects of reactio
most notably temperature effects. We believe that MFPT
natural choice for a reaction coordinate, and expect that
approach will give an insight into the study of reactions. T
present method is particularly suitable for large reaction n
works that are completely characterized by the meth
through a pathway graph visualizing the kinetic flow of t
reaction.

As an application of the method, we have found rep
sentative paths of excitation migration in PSI. The MF
and the paths provide a complete yet distilled picture of
excitation migration toward the reaction center, thereby ch
acterizing the function of the system. We expect that
methodology will be useful for various photosynthetic co
plexes as more of their high-resolution structures beco
available.
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