NAMD: A PARALLEL,
OBJECT-ORIENTED MOLECULAR
DYNAMICS PROGRAM

Mark T. Nelson
William . Humphrey
Attila Gursoy
Andrew Dalke
Laxmikant V. Kalé
Robert D. Skeel
Klaus Schulten

THEORETICAL BIOPHYSICS GROUP
UNIVERSITY OF ILLINOIS AND BECKMAN INSTITUTE
URBANA, IL 61801

Summary

NAMD is a molecular dynamics program designed for high
performance simulations of large biomolecular systems
on parallel computers. An object-oriented design imple-
mented using C++ facilitates the incorporation of new
algorithms into the program. NAMD uses spatial decom-
position coupled with a multithreaded, message-driven
design, which is shown to scale efficiently to multiple
processors. Also, NAMD incorporates the distributed par-
allel multipole tree algorithm for full electrostatic force
evaluation in O(N) time. NAMD can be connected via a
communication system to a molecular graphics program
in order to provide an interactive modeling tool for viewing
and modifying a running simulation. The application of
NAMD to a protein-water system of 32,867 atoms illus-
trates the performance of NAMD.

Address reprint requests to Robert D. Skeel, University of lllinois
at Urbana-Champaign, Theoretical Biophysics, 3111 Beckman
Institute, 405 N. Mathews Avenue, Urbana, IL 61801; E-mail:
skeel @cs.uiuc.edu

The International Journal of Supercomputer Appli-
cations and High Performance Computing,
Volume 10, No. 4, Winter 1996, pp. 251-268

@© 1996 Sage Publications, Inc.

1 Introduction

Molecular dynamics (MD) simulations (Brooks, Karplus,
and Pettitt, 1988; McCammon and Harvey, 1987) play an
important role in modern molecular biology. Widely used
MD packages include CHARMM (Brooks et al., 1983),
X-PLOR (Briinger, 1992), GROMOS (van Gunsteren and
Berendsen, 1987), AMBER (Weiner and Kollman, 1981),
and CEDAR (Carson and Hermans, 1985). MD simula-
tions are very computer time intensive. Even simulations
of systems of modest size, e.g., 5,000 atoms, require hours
or days to complete. This limits the physical time and the
size of the systems that can be studied. A promising means
of overcoming these limitations is through the use of
parallel computers. Several existing MD programs such
as X-PLOR, CHARMM (Brooks and Hodostek, 1992),
and GROMOS (Clark et al., 1994) have been altered to
allow them to run on parallel machines. These programs
contain a large body of sequential code that was modified
to operate in parallel rather than redesigned specifically
from the ground up for parallel execution. The program
NAMD was, in contrast, developed specifically for dis-
tributed memory parallel machines. The program uses a
spatial decomposition scheme to partition the domain in
a way that provides maximum scalability. Independent
threads of control are used to provide flexible load-
balancing capabilities while maintaining a simple, uni-
form decomposition scheme. Message-driven scheduling
is used to order the execution of these threads of control
in a way that reduces the impact of communication la-
tency. These principles lead to a high performance parallel
design that scales well to large numbers of processors.

MD is a relatively new methodology, and many new
techniques and algorithms are being developed that prom-
ise dramatic increases in the speed, size, and length of
simulations that can be performed. In order to explore new
methods with ease, NAMD uses an object-oriented design
implemented in C++, an object-oriented extension to the
C programming language. Its highly modular design and
implementation allow new algorithms to be added easily
without affecting the overall structure of the program. In
addition, the design and implementation are documented
so that NAMD can be understood by researchers without
examining the source code.

A new algorithm that has been incorporated into
NAMD is the distributed parallel multipole tree algorithm
(DPMTA) (Rankin and Board, 1995). DPMTA provides
an O(N) means to calculate full electrostatics interactions,
where N is the number of atoms in the simulation. Build-
ing upon previous work (Windemuth, 1995), DPMTA is

incorporated into NAMD in an efficient and modular way
via a multiple time stepping scheme and a set of interface
objects.

NAMD can be employed within the interactive model-
ing system MDScope (Nelson et al., 1995), which allows
researchers to view and alter a running simulation.
MDScope links NAMD to a molecular graphics program
via a set of communication routines and processes. This
type of system is particularly useful for solving highly
interactive modeling problems such as structure determi-
nation and refinement.

To demonstrate the performance of NAMD, it and two
other MD programs are applied to the protein calmodulin
in a sphere of water. To illustrate a demanding application
of NAMD, the simulation of a protein-DNA complex—
the estrogen receptor—in a bath of water comprising
altogether more than 36,000 atoms is described. This
system is large and needs full electrostatic interactions.

2 Features

NAMD is an MD package with the features necessary to
perform typical molecular dynamics simulations. These
features include the following: CHARMMI19 and
CHARMM?22 parameter support, NVE ensemble dynam-
ics, velocity rescaling, Langevin dynamics, harmonic
atom restraints, energy minimization, and file compatibil-
ity with X-PLOR. Two forms of boundary conditions are
currently provided by NAMD: one is vacuum, i.e., an
infinite vacuum accessible to the model, and the other is
a spherical boundary realized through harmonic potentials
that restrain atoms within a sphere of a user-defined radius
(Brooks and Karplus, 1983). Production quality simula-
tions of several molecular systems are currently being
performed with NAMD using these capabilities. Addi-
tional features such as NpT ensemble simulations, the
ability to fix atom positions, and periodic boundary
conditions are being developed. Also, NAMD has acouple
of unique features that are detailed in the following
subsections.

2.1 FULL ELECTROSTATICS USING DPMTA

The most computationally expensive operation in molecu-
lar dynamics is the computation of the nonbonded inter-
actions. If a direct calculation method is used, the compu-
tation of electrostatic interactions between all pairs of
atoms requires O(N?) operations. In order to avoid this
large computational cost, most MD programs use cutoff
distances, where interactions between pairs of atoms sepa-
rated by more than the cutoff distance are neglected.

However, it has been demonstrated that truncating the
electrostatic interactions in this manner can qualitatively
misrepresent physical properties of the system (Zhou and
Schulten, 1995). In order to provide full electrostatic
computations without incurring high computational over-
head, NAMD employs DPMTA (Rankin and Board,
1995). This program implements a hybrid of the fast
multipole algorithm (Greengard and Rohklin, 1987) and
Barnes and Hut treecode algorithms (Barnes and Hut,
1986), and it reduces the computational complexity of
evaluating electrostatic interactions for all pairs of atoms
from O(N?) to O(N). Like NAMD, DPMTA was devel-
oped for distributed memory parallel computers and
scales efficiently to large numbers of processors.

2.2 INTERACTIVE MODELING

MDScope is a system developed to perform interactive
MD simulations. It combines the computational power of
NAMD with a molecular graphics program VMD using
the communication package MDComm (Nelson et al.,
1995). Such a system is invaluable for tasks such as
structure refinement or structure determination. A sample
setup for the use of MDScope is shown in Figure 1.

The high computational performance of NAMD is an
essential requirement for MDScope, since effective inter-
active modeling requires that ten femtoseconds of simu-
lation time be performed during each second of viewing
time. To achieve such high computational rates, large
parallel supercomputers are necessary. Thus MDScope
enables VMD to connect from a remote graphics work-
station to NAMD running on a parallel supercomputer.

The molecular graphics program VMD allows not only
flexible viewing of static structures but also viewing and
modification of running simulations. The key features of
VMD are

¢ flexible selection language for choosing atom subsets
for a variety of rendering and coloring options

¢ options for displaying images in stereo using a side-by-
side format, or Crystal-Eyes stereo mode for suitably
equipped systems

¢ support for use of spatial tracking devices that function
as a three-dimensional pointer, with accompanying
three-dimensional user interface in a stereo display
environment

e modular design and implementation in C++.

MDComm is a set of library calls and processes devel-
oped at NCSA that allows communication between a
graphical display program and a running MD simulation,

MDComm not only communicates results from the
MD simulation but allows the graphics program to start a
simulation and detach from and reattach to a running
simulation. Key features of MDComm are

e process control in a networked environment
s support for heterogeneous systems

e concurrency on multiprocessor systems

o low-overhead implementation.

Currently, MDScope incorporates only limited capa-
bilities for the modification of a running simulation. De-
velopment is under way to enhance these capabilitics, e.g.,
to include the ability to switch between energy minimiza-
tion and free dynamics; to place atoms, molecules, and
side chains; and to apply forces to an atom or a set of
atoms.

3 Design

The computations involved in each time step of MD can
be broken into several portions. First, the forces acting on
each atom are computed according to the empirical force
field that approximates intramolecular forces. The force
field used by NAMD is the CHARMM force field, which
includes 2-, 3-, and 4-body interactions, electrostatic in-
teractions, and van der Waals interactions. Once these
forces are computed, a numerical integration scheme is
used to update the positions and velocities of all the atoms.
The force calculations are the major time-consuming por-
tion of the simulation, and it is this that requires the most
attention in parallelization. The numerical integrator cur-
rently used by NAMD is the velocity Verlet method (Allen
and Tildesley, 1987), which represents a minor fraction of
the overall computation of the simulation. More elaborate
integration methods, which allow longer time steps and
simulations over longer time scales, are being explored
(Skeel and Biesiadecki, 1994).

The design of NAMD provides the functionality de-
scribed previously while trying to achieve the three major
goals of high performance, scalability to very large paral-
lel computers, and modularity. The following sections
describe key features of the NAMD design and how they
help achieve these goals.

3.1 MULTIPLE TIME-STEP
INTEGRATION WITH DPMTA

To further reduce the computational cost of computing
full electrostatics, NAMD uses a multiple time stepping
integration scheme. In this scheme, the total force acting

“This program implements a hybrid
of the fast multipole algorithm . . .
and Barnes and Hut treecode
algorithms . . . , and it reduces the
computational complexity of
evaluating electrostatic interactions
for all pairs of atoms from

O(N?) to O(N).”

Fig.1 Example of MDScope execution showing VMD running
on a three-dimensional projection system and NAMD running
on a cluster of HP workstations.

Table 1

Comparisons of NAMD Runtimes Using an 8-A
Electrostatic Cutoff and Using an 8-A Local
Interaction Length and DPMTA

Runtime with Runtime

System Number 8-A Electrostatic with
Name of Atoms Cutoff DPMTA
Polio virus coat 17,638 5,247 8,010
Estrogen receptor 10,238 3,386 5,089
Bacteriorhodopsin 3,762 1,026 1,411

NOTE: All the simulations were performed on four HP 735/125
workstations connected via ATM. The simulations consisted of
1,000 time steps. All runtimes are reported in seconds.

on each atom is broken into two pieces: a local component
and a long-range component. The local force component
consists of all bonded interactions as well as all nonbon-
ded interactions for pairs that are separated by less than
local interaction length. The long-range component con-
sists only of electrostatic interactions outside of the local
interaction length. Since the long-range forces are slowly
varying, they are not evaluated every time step. Instead,
they are evaluated every k time steps (Allen and Tildesley,
1987, p. 152), where each set of k time steps is referred to
as a cycle. In the time steps between long-range force
evaluations, the force from the previous evaluation is
reused. For appropriate values of £, it is believed that the
error introduced by this infrequent evaluation is modest
compared to the error incurred by the use of the numerical
(Verlet) integrator. As shown in Table 1, the performance
of NAMD with the use of DPMTA to provide full electro-
statics adds approximately 50% to the runtime of a simu-
lation as compared to NAMD, which has an 8-A electro-
static cutoff. Improved methods for incorporating the
long-range forces, which reduce the frequency at
which they need to be evaluated, have recently been
implemented.

In the scheme described above, the van der Waals
forces are neglected beyond the local interaction distance.
Thus the van der Waals cutoff distance forms a lower limit
to the local interaction distance. While this is believed to
be sufficient, there are investigations under way to remove
this limitation and provide full van der Waals calculations
in O(N) time as well.

3.2 SPATIAL DECOMPOSITION

A critical decision in the design of a parallel program is
how to divide the work among processors so that equal
amounts of work are assigned to each processor and so
that the amount of memory and communication needed
by each processor remains scalable. To define ideal
scalability, consider a system of N atoms that requires time
t to run on P processors, and uses memory m and commu-
nication bandwidth ¢ on each node. If ideal scalability was
to be achieved, t, m, and ¢ would remain unchanged if both
N and P were increased by a constant factor. Most current
parallel MD programs divide the work among processors
using a form of force decomposition. Using this method,
all computational interactions are distributed in an equi-
table manner to the processors. However, in the naive case
with fully replicated coordinates, such a decomposition
requires O(N) storage and communication. A more effi-
cientdecomposition proposed by Plimpton and Hendrickson

(1994) reduces the memory and communication require-
ments to O(N/YP) yet does not avoid the limit on scalabil-
ity inherent with these methods.

To avoid these limitations, NAMD uses a spatial de-
composition. In such a scheme, the spatial domain of the
problem is split into disjoint regions of space, and these
are then assigned to processors. Each processor computes
interactions for only those atoms in its region, stores
information for only those atoms, and for local interac-
tions communicates those coordinates to only those proc-
essors assigned to neighboring regions. Therefore, this
scheme scales nearly as O(N/P) in terms of computation,
memory, and communication. It provides NAMD with a
decomposition that will scale efficiently to large numbers
of processors. This spatial decomposition is used only for
the local interactions that are directly calculated. The
efficient handling of long-range nonbonded interactions
is left to DPMTA, which was also designed to scale
efficiently to large numbers of processors.

If a single region of a spatial decomposition is mapped
to each processor, load-balancing problems due to inho-
mogeneous densities of atoms (e.g., density differences
between protein and water and edge effects) arise. A
decomposition that distributes the work load evenly
across processors is difficult to achieve, and the computa-
tional effort needed to determine such a distribution is
often quite large. To avoid this problem, NAMD employs
a uniform decomposition of space coupled with multiple
threads of control, which is described in the next section.
A well-balanced decomposition is achieved by dividing
the spatial domain of the problem into uniform cubes
referred to as patches. A sample decomposition for asmall
polypeptide is shown in Figure 2. The length of a side of
a patch is slightly longer than the local interaction length.
Thus each patch communicates only with its neighboring
patches to evaluate local interactions. Such a cubic de-
composition is easy to compute and is used as a frame-
work for force computation. It is assumed that there are
many more patches than processors. The mapping of
patches to processors can then be adjusted to balance the
computational load across processors. The issue of load
balancing is described in greater detail in section 5.2.

Spatial decomposition into uniform cubes with multi-
ple cubes per processor has been used for parallel molecu-
lar dynamics by Esselink and Hilbers (1992). They ob-
tained excellent results on a transputer network, with
timings that agree well with the formula o + B(N/P),
where o and P are constants. Their results support our
design choice of spatial decomposition.

“It is assumed that there are many

more patches than processors. The
mapping of patches to processors
can then be adjusted to balance the
computational load across
processors.”

Fig. 2 Spatial decomposition of a small polypeptide. Each
cube represents a patch in NAMD.

W@W%‘ﬂ “i,%ﬁ‘mx e

MOLE i
i @5%&% sah %&%

3.3 MULTIPLE THREADS OF CONTROL

NAMD uses a design with multiple threads of control,
where each patch (described above) is implemented as an
object that acts as its own thread of control. Each patch
maintains its own state and contains functions that alter
this state, Each patch is able to perform its own operations
independent of the order of scheduling relative to other
patches, or the processor that it is assigned to. In this
manner, the same decomposition can be applied regard-
less of the number of processors that a simulation is
running on.

By utilizing this scheme, NAMD maintains a simple
spatial decomposition that is desirable for generality and
ease of computation, while retaining the flexibility neces-
sary to provide load balancing for irregular systems. The
alternative, which is to use irregularly shaped regions of
space that are constructed to provide computationally
equal regions of space, would complicate communication
patterns. Because of the separation between the computa-
tional responsibilities of a patch and the distribution of
patches to processors, a variety of different schemes for
distributing patches can be tried without changing any of
the sequential code that performs the computations for the
simulation.

3.4 MESSAGE-DRIVEN SCHEDULING

In order to execute the design that has been described, the
scheduling of the computations to be performed should be
done in a way that minimizes the idle time of each proc-
essor. In current parallel MD programs, the order in which
computations are performed is fixed. If a computation
requires information that has not yet arrived from another
processor, the processor waits idle until this information
arrives.

To avoid idle time, NAMD does not follow a set order
in its computation. Instead, the order of computation is
determined by the arrival of messages. In this way, a
computation is scheduled only when all of the necessary
data are available. This idea of message-driven scheduling
(Kalé, 1990) is similar to that of active messages, which
has received much attention recently (von Eicken et al.,
1992). However, the message-driven scheduling imple-
mented within NAMD is not interrupt driven as active
messages are. Every computation in NAMD, including
interactions requiring data only from the local processor,
is scheduled by the receipt of a message. In addition, a
priority scheme is used so that messages are processed in
an efficient manner. Scheduling based on these priorities

insures that messages that require return communications
are processed before messages that require only compu-
tation. These ideas lead to a design that overlaps the
computation time of one patch with the communication
wait time of another patch.

To better understand how this message-driven sched-
uling combines with multiple threads of control to provide
a design that is tolerant of communication latency, con-
sider the simple example shown in Figure 3. In this
example, three patches are maintained. Two of the
patches, A and B, are assigned to processor 1, and patch
C is assigned to processor 2. During each time step, each
patch must perform the following tasks:

1. Send atom positions to neighboring patches

2. Receive atom positions from neighbors, calculate
interactions between local atoms and neighbor at-
oms for which positions were received, and send the
resulting forces

3. Calculate interactions between local atoms

4. Receive forces calculated by other patches and add
these forces to the local forces

5. Perform a numerical integration step using these
forces.

Assume that the patches communicate as shown, that is,
patch C sends all of its atom positions to patch B and
recejves forces in return from B. Patch B sends all of its
atom positions to patch A and receives forces in return. As
shown in the two timing diagrams for processor 1, con-
sider two scheduling algorithms. The first is a traditional
scheduling method in which operations are performed in
a fixed order, that is, both patches must perform each task
before either continues to the next. The second is a mes-
sage-driven algorithm. The fixed-order algorithm incurs
idle processor time waiting for the interprocessor atoms
position message to be sent from patch C to patch B. The
message-driven algorithm overlaps this communication
latency time with useful computations from patch A,
which incurs no communication latency because all of its
messages are intraprocessor in nature. While it is possible
to determine a fixed-order schedule to overcome these
problems for this simple example, doing so for a three-
dimensional simulation with many processors and more
complicated communication patterns is practically impos-
sible. The automatic adaptiveness of message-driven
scheduling makes it suitable for a wide range of processor
and interprocessor network speeds. A comprehensive
study of message-driven execution and its impact on
performance can be found in (Gursoy, 1994),

3.5 OBJECT-ORIENTED DESIGN

Modularity is a major goal of NAMD, since it allows the
program to be modified easily and allows multiple re-
searchers to contribute efficiently to the program. In order
to provide a high degree of modularity, NAMD is based
on an object-oriented design. Using the object-oriented
paradigm, the program consists of a small set of classes,
each class consisting of objects of the same type of data
structure and functions that can be performed on them.
The level of modularity in such a design is very high, since
the dependencies of one class on another are limited to the
functions provided by the second class. The internal work-
ings of each class are completely hidden from other
classes. Thus the internal details of any class can be
modified without affecting any other classes. Table 2
shows a summary of the classes present in NAMD and the
functionality that each provides.

The most important class in NAMD is the Patch. A
schematic diagram of the design of the Patch class is
shown in Figure 4. Each Patch is responsible for main-
taining the current position and velocity of every atom
within its region (i.e., cube) of space. The Patch class is
also responsible for calculating the forces acting on each
of these atoms during each time step and using these
forces to integrate the equations of motion to obtain new
values for the position and velocity of each atom. Each
Patch contains a set of force objects, each of which is
responsible for computing a component of the force field.
In addition, each Patch also contains an Integrate
object that is responsible for using the current forces to
perform numerical integration and determine new posi-
tions and velocities for atoms in its region of space. The
majority of the logic in this class is used to coordinate the
computation of forces and positions in a consistent man-
ner. In addition, the procedures for transferring atoms
from one region of space to another, as the simulation
continues, is implemented by the Patch class.

To allow a flexible and modular implementation, each
contribution to the force field (i.e., each distinct term in
the energy potential function, such as 2-body bonds, 3-
body bonds, harmonic boundary potentials, etc.) is imple-
mented as a separate class. In this way, calculations of the
force field components are completely separate. In addi-
tion, components of the force field can be enabled or
disabled by creating or excluding specific objects. All of
the force objects share a similar interface, which allows
the Patch to utilize all of the force components in a very
uniform manner. This interface includes functions for
computing forces for local atoms, for computing interac-

Patch Configuration

Processor 1

I Patch A I<—I Patch B =‘

Processor 2

{ Patch C l

PR Traditional Order-Based Scheduling

A =

Time
Arrival of Atom Posltion
MessagefromCto B
Fatch Message-Driven Scheduling
- Tima

Arrival of Atom Position
Message from C 10 B

@ - Sending atom position message E - Racelving force message -

- Calculating nelghbor-local

% - Integration
interactions

- Calculating local Interactions

Fig.3 Simple arrangement of threads along with timing dia-
grams showing how the tasks for processor 1 would be sched-
uled using a traditional order-based algorithm and using a
message-driven algorithm. Note that the order-based algo-
rithm incurs idle processor time while waiting for the atom
position message from patch C to patch B to arrive, whereas
the message-driven algorithm overlaps this message latency
time with other computations.

Table 2
Description of the Purpose of the Objects Present on Each Processor in NAMD

Class Name Description
Communicate Protocol independent means of message passing, including operations such as send, receive,
and broadcast
Inform Means to print messages to the screen from any processor
SimParameters Container class for static simulation data such as number of time steps, time-step size, and so on
Molecule Container class for static structural data for the molecule such as which atoms are bonded by various
types of bonds, explicit exclusions, and so on
Parameters Container class for energy parameters from the parameter files
LoadBalance Means for calculating an optimal distribution of patches to processors that will keep the load balanced
across all processors
Collect Collection mechanism for gathering global information such as energy totals
Output Means of producing all forms of output for NAMD including trajectory files, energy output, and so on
PatchDistrib Container class for the current processor assignment for all the patches in the simulation
FMAInterface Processor-level interface to the full electrostatic module
PatchList Container class for the patches belonging to this processor and the logic to schedule the execution
of these patches
tions between local atoms and atoms from neighboring
patches, and for reporting energies.
\
Raehehe Force Objects) 4 Implementation
NAMD uses C++ to implement the design ideas described
I Angle Forces | in the previous section in a modular and efficient manner.
It is in this implementation that the critical ideas of the
Controlling design are realized. The following subsections describe
Logic o i :
Local some of the important aspects of this implementation.
Electrostatic Forces
4.1 IMPLEMENTATION IN C++
Long Range
Electrostatlc Forces The choice of a language with object-oriented constructs
T = 7 facilitates the implementation and enforcement of the
object-oriented design. While implementation of these
! (DataforN Atoms.) ideas in a traditional procedural language such as C is
possible, it is not natural and can be easily bypassed.
Although C++ provides the object-oriented support
Integrator that is desired, there are questions regarding its perfor-
; mance (Haney, 1994) and portability. To address these
I&_l concerns, conscious efforts were made to avoid features
& ~ /_/ that could adversely effect the performance or portability

Fig. 4 Patch-level object diagram for NAMD. Each patch
consists of a data section that includes the coordinates,
velocities, and forces for each atom; force objects that com-
pute components of the force field; an object to perform
integration; and the controlling logic that calls each object
appropriately.

of the program. To avoid performance problems, the code
that performs the actual numerical calculations is reduced
to plain C code. In these portions of the code, complicated
constructs that may not lead to optimal compilation are
avoided. The code in-lining features of C++ are heavily
used throughout NAMD. To avoid runtime function
lookups, excessive use of virtual functions is avoided. In

order to prevent possible portability problems, features of
C++ that are not standard across platforms, such as tem-
plates, are avoided as well. By using these techniques,
NAMD’s implementation in C++ does not carry signifi-
cant portability penalties over a similar implementation in

“Performance comparisons between

a more traditional language such as C or FORTRAN. NAMD and other MD packages
Performance comparisons between NAMD and other MD prove that this careful C++
packages prove that this careful C++ implementation implementation does, in fact, incur
ldoes, in fact, incuf only minor performance penalties over only minor performance penalties
implementations in FORTRAN and C. : e

over implementations in
4.2 OBJECT-ORIENTED INTERFACE FORTRAN and C”
TO DPMTA

An example of how object-oriented techniques are used
to maintain the modularity of NAMD is the interface used
to incorporate DPMTA. A key issue in the integration of
the capabilities of NAMD and DPMTA was whether the
two would share a common decomposition of the molecu-
lar system. In order to maintain the modularity and flexi-
bility of both programs, an interface layer rather than a
shared decomposition has been implemented. A sche-
matic diagram of this interface is shown in Figure 5. The
interface uses two classes: one that provides the interface
that DPMTA expects and another that provides the inter-
face that NAMD expects.

On the DPMTA side is the class FMAInterface.
This class provides DPMTA with atom coordinates and a

DPMTA Node 0 |4 DPMTA Node1 |:--| DPMTA Node n

srface

FMAInterface

erface

[Longrozce]
Patch p

[[zongrorce]
Patch p-2

LongForce
Patch 0

I LongForce LongForce
LongForce Patch 3 Patch 4 LongForce
Patch 1 Patch p-1
namd Node 0 namd Node 1 namd Node n

Fig.5 Schematic diagram of the interface between DPMTA and NAMD. The interface consists of the classes FMAInterface and
LongForce.

charge for every atom on the processor. On the NAMD
side of the interface is the LongForce class. Its interface
looks like the other force objects that reside in the Patch
class. Each time that DPMTA is called to do force evalu-
ation, each LongForce object passes the coordinates
from its patch to the local FMAInter face object. When
the FMATnter face object has received all of the coor-
dinates for its processor, it invokes DPMTA. When the
results are returned, the FMAInterface object is re-
sponsible for passing the results back to the appropriate
LongForce objects.

This dual decomposition adds an insignificant amount
of overhead. The interface maintains a very high level of
modularity and abstraction between NAMD and DPMTA.
As a demonstration of this modularity, these same objects
were used to implement a direct calculation scheme for
computing full electrostatics (for testing) without chang-
ing any source code outside of the interface classes.

4.3 PORTABLE PARALLELISM

It is intended that NAMD be portable across various
parallel architectures, operating systems, and message-
passing protocols. Several design features address this
goal. The first is the complete separation of the parallel
control and scheduling logic from the sequential compu-
tational portions of the code. This allows the parallel
control structure of the program, which is relatively small,
to change without affecting the sequential portions of the
code. The second feature is the isolation of the majority
of source code from protocol-specific function calls. Thus
the amount of code that is dependent. on the underlying
protocol is small. The current release of NAMD uses these
ideas to implement versions for different parallel systems,
PVM (Geist et al.,, 1994) and Charm++ (Kalé and
Krishnan, 1993).

NAMD using PYM. The PVM version of NAMD uses
aCommunicate object on each node to provide the send
and receive protocols for the program. For messages that
are sent between patches on the same node, this commu-
nication is handled entirely by the Communicate object
on that node. For messages sent between nodes, the Com-
municate object on the sending node converts the mes-
sage to a PVM packet and sends it to the receiving node
using the PVM send routine. The Communicate object
on the receiving node receives the message and converts
to the form expected. While currently implemented only
for PVM, the Communicate class could easily be
adapted to any similar protocol providing simple sends
and receives. A version of the Communicate class for
the MPI communication protocol is being developed.

In addition to the Communicate class created for
PVM, the message-driven scheduling for the processing
of messages must be explicitly expressed, since PVM
provides no such mechanism. This functionality is
provided by the PatchList class. The major part of
this class is simply a loop that polls the Communicate
class for messages that have arrived and then schedules
the execution of patches accordingly. This code also
implements the priority scheme for the processing of
messages.

NAMD using Charm++. Charm++ is a portable,
object-oriented, message-driven parallel programming
environment (Kalé and Krishnan, 1993). Charm++ is a
superset of the C++ programming language that includes
constructs for parallel implementations. In contrast to
PVM, which provides only an underlying communication
protocol, Charm++ includes an entire parallel system
based on message-driven scheduling. Because of this, the
logic that was created in the PatchList class for the
PVM version is much more naturally and concisely ex-
pressed in the Charm++ version. Another significant ad-
vantage of Charm++ is the ability to maintain modularity
without sacrificing message-driven scheduling. In the
PVM version, any message that wishes to be handled in a
message-driven fashion must be added to the control logic
of the PatchList class explicitly. This creates depen-
dencies and. clutters the logic of the PatchList. In
Charm++, the processing of all messages is scheduled in
amessage-driven fashion. A receive-based message-passing
system cannot achieve this uniformity as elegantly or
efficiently (Kalé and Gursoy, 1995).

In addition, the Charm++ programming environment
includes several tools for analyzing the performance of
parallel programs. One of these, Projections, provides
visual output showing CPU utilization, message creation,
message receipt, and other useful statistics. This tool has
been applied to analyze the performance of NAMD.

5 Performance

The primary goal for NAMD is to provide the highest
performance possible, thus allowing simulations of large
systems faster than was previously possible. There are two
important aspects to NAMD's performance. The firstis its
performance on a single node, and the second is the
parallel performance, i.e., how efficiently the program is
able to utilize parallel machines. The following sections
discuss NAMD’s current performance, how it compares
to other MD packages, and plans for improving this per-
formance in the future,

5.1 CURRENT PERFORMANCE

Although NAMD has only recently been released in its
first version, and many performance improvements are
still being made, it has already shown favorable results in
comparison to other parallel molecular dynamics pro-
grams. Table 3 shows runtimes for NAMD, X-PLOR
release 3.1, and CHARMM release ¢23f3 on a cluster of
HP workstations connected via ATM, and Figure 6 shows
a graph of the speedup versus the number of processors
for these runs. The molecular system simulated is the
protein calmodulin in a bath of 10,474 water molecules.
The total number of atoms is 32,867, of which 32 are ions
and 1413 are calmodulin united atoms. We measured the
latency time for PVM on this hardware and software
combination to be 419 microseconds per message and the
bandwidth to be 835 Mbits/s. As these results show, NAMD
is still slower than either program on a single node, which
might be expected when comparing a sequential program
that is relatively new to programs that have been opti-
mized over a period of years. Improvements to the sequen-
tial computational portions of NAMD are currently being
made that are expected to lessen the performance gap on
a single node between NAMD and the other programs.
However, NAMD appears to scale more efficiently than
either of these programs as the number of nodes used for
the simulation increases (up to the eight nodes used in this
study). When eight processors are used, NAMD performs
as well or better than either of the other programs. As
larger numbers of processors are used, this performance
difference is likely to be even more pronounced. The
speedup of about six with eight processors for NAMD
indicates the possibility of flattening of speedups with a
larger number of processors; however, the speedups will
be relatively high compared with the other programs. As
a test that does not so conveniently lend itself to a parallel
simulation, a 4,885-atom protein-DNA complex without
water was simulated for 20 time steps. (This system was
obtained from that described in section 6 by removing the
water.) The execution time in seconds was 1,118, 655,
411, and 241 for one, two, four, and eight processors,
respectively.

The current limitation on speedup can be attributed to
two factors. First, on a cluster of workstations, the asyn-
chronous interventions from the operating system impact
performance, since some processors may slow the others
down. Second, the load-balancing and the communication
structure has not been optimized in the current implemen-
tation. Numerous efforts are under way to improve the
parallel performance of NAMD. With these improve-

Comparison of Runtimes for NAMD, X-PLOR,
and CHARMM

Number of NAMD X-PLOR CHARMM
Processors Runtime Runtime Runtime
1 304.72 237.45 255.78
2 163.88 125.38 157.27
4 92.06 75.45 119.15
8 50.65 46.38 61.18

NOTE: All times are for 1,000-time-step simulations of a system
of 32,867 atoms (calmodulin in 44-A radius water sphere) using
an 7.5-A cutoff. All simulations were run on HP workstaticns
connected via ATM. All runtimes are in minutes.

“However, NAMD appears to scale
more efficiently than either of these
programs as the number of nodes
used for the simulation increases (up

to the eight nodes used in this study).”’

——p— namd
—o— X-PLOR
—a— CHARMM

Tl g e ideal Speedup

Speedup Relative to 1 Processor

1 [1 1 L 1 1 1

1 2 3 4 5 6 7 8
Number of Processors

Fig. 6 Plot of speedup versus number of processors for
NAMD, CHARMM, and X-PLOR. All simulations were for 1,000
time steps of a 32,867-atom system (calmodulin in a 44-A
radius water sphere), with a 7.5-A cutoff run on a cluster of HP
workstations.

ments, we expect to attain close to perfect speedups on
stand-alone parallel machines with eight or more proces-
sors for the same-sized system. It is also important to
note that speedups cannot continue to scale up to a
large number of processors for the same—fixed size—
molecular system, nor is that a goal of NAMD. Instead,
we aim at scaled speedup; i.e., if the number of atoms (or
more precisely, the total amount of computational work)
is increased k times, we aim at finishing the computation
in the same amount of time with k times more processors.
Such scalable speedups have been demonstrated by
Esselink and Hilbers (1992) using spatial decomposition
in a relatively homogeneous context with periodic bound-
ary conditions. In the near future, with further ongoing
research, we expect to demonstrate scalable speedups for
large inhomogeneous molecular systems, both for rela-
tively regular domains generated by periodic boundary
conditions and for the irregular domains that exist in
simulations without periodicity.

One of the most important issues for the parallel per-
formance of NAMD is load balancing, which is discussed
in the next subsection. Other performance issues are dis-
cussed in the subsequent subsection.

5.2 LOAD BALANCING

The problem of load balancing within NAMD is that of
finding an optimal distribution of patches to processors.
The algorithm for doing this involves balancing the com-
putational and communication costs for the patches as-
signed to each processor. An effective algorithm must try
to preserve the locality of patches. All patches must com-
municate with neighboring patches, but communication
with a patch on the same processor is inexpensive, requir-
ing only the passing of a memory address from one object
to another. Interprocessor communication is considerably
more expensive, requiring data to be transferred across the
network-connecting processors. Thus the load-balancing
scheme must try to balance the computational load across
processors while preserving the locality of patches.

The distribution method currently implemented within
NAMD is based on recursive, orthogonal bisection
(Berger and Bokhari, 1987). This distribution method
relies on a heuristic cost function to approximate the load
on each patch. This function factors in not only the number
of atoms but also the number of patches per processor,
local communication costs, and interprocessor communi-
cation costs. The distribution method tries to balance the
sum of the cost function for all the patches assigned to
each processor.

§ = § e ! i2s0}

; I iso0] 1480 ¢ oeol240] i

RO SN ISR FROR SRR O [(SO iuoet R S SERE-SEES BN T CERE o S R

: ot : e ' 1230
TR LX) [L R . _-_:..--:.--_.:....-.. ' ---E----J‘---.:.---.

{995: 1970 =l s B2l s

; et 71T E ? :
enudasanhescdeccsnshavadocaa ----l-uuu----'--.o:----:---- ’ -.-{-----.-.:---_
: e ; i 1490 ioso] 1240 250
ISR JN SRS SO N N RN TN SOOR SRR hivaf BREE B TESTERAN SRCIEISE SRS

Fig. 7 Example of recursive bisection in two dimensions. Dashed lines represent patch boundaries; solid lines represent
boundaries determined by recursive bisection. Numbers indicate cost function value for each bisection region.

Recursive bisection is used to partition the patches into
rectangular sections that are assigned to processors. This
procedure is demonstrated for two dimensions in Figure 7.
1t involves splitting the entire region into two portions,
each of which has an approximately equal value for the
heuristic cost function. Then, each of these two sections
is subdivided in a similar manner. This procedure is re-
peated recursively until the system has been partitioned
into as many sections as there are processors. This method
is limited in its flexibility, however, since it can only
divide the system into rectangular sections. Improvements
in this algorithm are planned and are briefly discussed in
the following subsection.

5.3 FUTURE LOAD-BALANCING
ENHANCEMENTS

As mentioned previously, the current method for the in-
itial distribution of patches to processors is limited in that
it can divide the system only into rectangular regions. To
remove this limitation, procedures to move small convex
regions of patches from heavily loaded processors to less
heavily loaded neighboring processors are being devel-
oped. By using smaller, more irregular shapes to assign
patches to processors, a more accurate balancing of the
cost function can be obtained. In addition, an even finer
tuning of the balance of the cost function is being imple-
mented. For each pair of neighboring patches, Newton’s
third law is exploited to reduce the cost of computing local
electrostatics. In this method, one patch sends all of its

ARALLEL MOL
v S

EL MOLECULAR |

atoms coordinates to the neighboring patch. The receiving
patch then computes electrostatic interactions between the
two sets of atoms and returns the forces to the original
patch. Thus for this pair of patches, only one bears the
computational cost for the electrostatic computations be-
tween them. In this procedure, the assignment of the
electrostatic computation to pairs of patches thatreside on
separate processors is examined and adjusted to balance
the load between processors (Windemuth, 1995).

Another concern is that of maintaining load balance as
a simulation progresses. Even if the initial distribution
provides an even balance across all processors, the system
may become imbalanced as atoms move during the course
of the simulation. To address this issue, NAMD currently
gathers detailed statistics concerning the computation and
idle times of all patches and processors involved in the
simulation. Various schemes are being explored to use this
information to maintain the load balance as the simulation
continues. One scheme involves infrequently using these
statistics along with the initial patch distribution scheme
to remap patches to processors. Another is to perform a
frequent incremental patch reassignment procedure in-
volving small changes.

5.4 OTHER OPTIMIZATIONS

Other optimizations implemented in NAMD range from
better algorithms and methods for single-node computa-
tion to better messaging schemes to enhance the parallel
performance and scalability of NAMD. Some of these
optimizations will be described in this subsection.

A first optimization concerns the elimination of dupli-
cale messages. Each patch sends the coordinates of all of
its atoms to a subset of its neighbors. These messages are
the largest messages sent in NAMD, and identical infor-
mation is sent to each patch. In a naive implementation, if
a patch has three neighboring patches that reside on an-
other processor, it would send three copies of the same
message to this processor. To eliminate this redundancy, a
single message is sent and delivered to all three patches
instead of sending separate messages to each patch. This
is done in such a way that no patch is aware that it is
processing a message that will be or was used by other
patches, thereby minimizing the code changes necessary
for this optimization.

A further optimization is for communication networks
such as ATM, where a high bandwidth is provided but with
a fairly high latency cost per message. With such a net-
work, sending a few larger messages is more efficient than
sending many smaller messages, since the message la-
tency is incurred fewer times. To accomplish this, the

Communicate class combines multiple messages to be
sent to the same processor into one physical message to
be sent over the network. This device is used in situations
such as the beginning of a time step, when many messages
are sent at the same time to the same processor. It cannot
be used for all messages destined for some given node
without incurring significant delay. This optimization has
provided a significant performance increase on a network
of workstations connected via ATM.

6 Application to a Large
Supramolecular System

In recent years the structures of rather large biomolecules,
encompassing 10,000 to 100,000 atoms, have been deter-
mined. Examples are the photosynthetic reaction center
(Deisenhofer et al., 1985; Feher, Arno, and Okamura,
1688), the myosin head group (Rayment et al., 1993),
ATPase (Abrahams et al., 1994), and cytochrome oxydase
(Iwata et al., 1995). Furthermore, biomolecular systems
consisting of aggregates of molecules have recently be-
come targets of simulation studies, for example, lipid
bilayers (Pastor and Venable, 1993; Heller, Schaefer, and
Schulten, 1993; Zhou and Schulten, 1995), membrane-
protein complexes (Zhou and Schulten, 1996), F-actin
(Lorenz, Popp, and Holmes, 1993; Tirion et al., 1995), and
protein-DNA complexes (Beveridge and Ravishanker,
1994; Eriksson, Hird, and Nilsson, 1995; Harris et al.,
1994). The size of these systems, often requiring immer-
sion in a bath of water, exceeds by about an order of
magnitude the size of systems conventionally simulated
today, that is, about 5,000 atoms. Experimental molecular
biology 1s targeting larger and larger structures, in particu-
lar, supramolecular structures, and the field of computa-
tional structural biology needs to_advance its tools to
follow this trend. The development of a simulation pro-
gram like NAMD is particularly timely in this respect.
As an example, NAMD has been applied to simulate a
complex of a protein with a segment of DNA in a bath of
salt water, comprising altogether 36,000 atoms. The pro-
tein chosen is the estrogen receptor (ER), a member of the
steroid hormone receptor family. This protein functions as
a ligand-dependent transcription factor and contains three
main functional domains: the NH,-terminal ligand-binding
domain, which affects transcription efficiency; the central
DNA-binding domain, which binds to the target gene, that
is, itrecognizes a specific DNA sequence; and the COOH-
terminal hormone-binding domain, which binds to estro-
gen. At present, only the structure of the DNA-binding
domain is known (Schwabe et al., 1993). The estrogen

receptor is known to function as a dimer in binding to
DNA and regulating transcription. Accordingly, our sam-
ple system includes two estrogen receptors but only their
DNA-binding domains. The simulation is similar to that
of a complex of DNA with a dimer of a glucocorticoid
receptor reported in Bishop and Schulten (1994, 1996).

The crystallographic structure of the estrogen receptor
reported in Schwabe et al. (1993) contains two units, each
with a DNA-binding domain dimer, the response element,
and water molecules, but one unit is not completely re-
solved. A complete unit of this structure was used to
prepare an initial model of the ER-DNA-water system,
which is composed of a DBD dimer, the ER response
element, and ions embedded in a sphere of 11,000 water
molecules. The volume of water is large enough to not
only incorporate the whole system but also to allow the
DNA enough flexibility to unwind and bend.

Molecular dynamics simulations were performed on
this system with NAMD using a cluster of HP worksta-
tions connected via an ATM switch. Using eight worksta-
tions, 50 ps of simulation time can be computed in a matter
of 2 or 3 days.

Because of the highly charged nature of the system, it
is also an ideal case for the use of full electrostatics using
DPMTA. This is a feature unique to NAMD. The simula-
tions, initially, will identify which protein-DNA and
protein-protein interactions are involved in recognition of

" the DNA sequence by the protein and which interactions

and degrees of freedom are involved in the bending and

“As an example, NAMD has been
applied to simulate a complex of a
protein with a segment of DNA in a
bath of salt water, comprising
altogether 36,000 atoms.”

unwinding of the DNA, which is expected to occur on
protein binding. The estrogen receptor system being simu-
lated is shown in Figure 8 in a rendering that used the
graphics program VMD.

7 Conclusions

The program NAMD is an inherently parallel program for
fast simulations of large biomolecular systems. It is de-
signed to efficiently utilize parallel machines ranging in
size from tens of processors to hundreds of processors. For
this purpose, the program uses a spatial decomposition of
the molecular system combined with a multithreaded,
message-driven design to provide a potentially highly
scalable design that is tolerant of communication latency.
An object-oriented design and implementation make
NAMD highly modular. This renders NAMD an excellent
testbed for experimentation with new algorithms. One
new algorithm that has already been incorporated is
DPMTA, which provides an O(N) means of computing
electrostatic interactions for all pairs of atoms. In future
work, we plan to implement new load-balancing algo-
rithms and communication optimizations, experiment
with alternate parallelization strategies, and carry out
performance-tuning exercises, leading to an improved
program that will efficiently run very large simulations (of
systems beyond 100,000 atoms) using hundreds of proc-
essors. As part of the MDScope package, NAMD provides
the computational engine for an interactive modeling sys-
tem. The program is currently being used for the study of
several molecular systems such as the estrogen receptor.
With its parallel design and modularity, it is hoped that
NAMD will be an excellent MD program to explore new
algorithms and to perform new simulations that were
previously impossible.

8 Availability

Information concerning NAMD and MDScope develop-
ment can be found via the World Wide Web at the address
http://www.ks.uiuc.edu. Source code and
documentation for NAMD and the other components of
MDScope are available via anonymous ftp from the
site ftp.ks.uiuc.edu in the directory /pub/
mdscope.

ACKNOWLEDGMENTS

The authors would like to thank the members of the
Theoretical Biophysics group at the University of Illinois
and the Beckman Institute for many useful suggestions

?W@?ﬁm e
EEIT D ol |
R

a2

and willing help in testing NAMD, with a special thanks
to Dorina Kosztin for the information and figure concern-
ing the estrogen receptor, to Willy Wriggers for his help
in running the X-PLOR and CHARM performance tests,
and to Robert Brunner for running additional performance
tests. The authors gratefully acknowledge the support of
grants from the National Institutes of Health (PHS 5 P41
RR05969-04), the National Science Foundation (BIR-
0318159), and the Roy J. Carver Charitable Trust.

BIOGRAPHIES

Mark T. Nelson received a B.S. degree in general engineering
from the University of Illinois at Urbana-Champaign in 1991.
He then joined AT&T Network Systems, where he developed
software for E9-1-1 systems. In 1995 he earned an M.S. degree
in computer science from the University of Illinois at Urbana-
Champaign. He is currently pursuing a Ph.D. in computer sci-
ence in the Theoretical Biophysics group.

William F. Humphrey received a B.S. degree in physics, math,
and computer science from Drake University in 1990 and an
M.S. degree in physics from the University of Illinois at Urbana-
Champaign in 1992. He is currently near completion of a Ph.D.
in physics in the Theoretical Biophysics group.

Attila Gursoy received a B.S. degree in computer science
from Middle East Technical University, Ankara, Turkey in 1986
and an M.S. in computer science from Bilkent University,
Ankara. In June 1988 he received an M.S. in computer science.
He continued his research in parallel programming environ-
ments, earning a Ph.D. in computer science from the University
of Illinois at Urbana-Champaign in 1994. Currently, he is a
postdoc in the Theoretical Biophysics group.

Andrew Dalke received B.S. degrees in math, physics, and
computer science from Florida State University in 1992 and an
M.S. degree in physics from the University of Illinois at Urbana-
Champaign in 1993. He is currently on leave from the UIUC
physics Ph.D. program and is working as aresearch programmer
for the Theoretical Biophysics group.

Laxmikant V. Kalé received a B.Tech. degree in electronics
engineering from Benares Hindu University, Varanasi, India, an
M.E. in computer science from the Indian Institute of Science
in Bangalore, and a Ph.D. in computer science from the State
University of New York, Stony Brook. He spent 2 years at the
Tata Institute of Fundamental Research. In 1985 he went to the
University of Illinois at Urbana-Champaign, where he is now
associate professor of computer science. His research interests
include parallel programming tools, performance feedback and
debugging, scientific and engineering applications of large-scale
parallel computing, and parallel processing for Al He is a
member of the IEEE, IEEE Computer Society, and ACM.

Robert D. Skeel is professor of computer science at the
University of Illinois at Urbana-Champaign, where he has been

since 1973. His research interest is in computational methods
for biomolecular modeling. He received a B.S. in applied mathe-
matics from the University of Alberta, an M.S. in mathematics
from the University of Toronto, and a Ph.D. in computing
science again from Alberta. He is a member of SIAM and is on
the editorial board for SIAM Journal on Scientific Computing.

Klaus Schulten received a Ph.D. in chemical physics from
Harvard University in 1974. He then spent 6 years as a research
assistant at the Max Planck Institute for Biophysical Chemistry
in Gottingen, Germany, and 8 years as associate professor of
physics at the Technical University of Munich. Since 1988 he
has been professor of physics, chemistry, biophysics, and elec-
trical and computer engineering at the University of Illinois at
Urbana-Champaign and leader of the Theoretical Biophysics
group at the Beckman Institute in [llinois. His research interests
focus on theoretical and computational physics and biology.

REFERENCES

Abrahams, J. P, Leslie, A. G. W., Lutter, R., and Walker, J. E.
1994, Structure at 2.8 angstoms resolution of Fi-ATPase
from bovine heart mitochondria. Nature 370:621-628.

Allen, M. P, and Tildesley, D. J. 1987. Computer simulation of
liquids. New York: Oxford University Press.

Barnes, J., and Hut, P. 1986. A hierarchical 8(NlogN) force-
calculation algorithm. Nature 324:446-449.

Berger, M. J., and Bokhari, S. H. 1987. A partitioning strategy
for nonuniform problems on multiprocessors. IEEE Trans-
actions on Computers C-36:570-580.

Beveridge, D. L., and Ravishanker, G. 1994. Molecular dynam-
ics studies of DNA. Curr. Opinion Struct. Biol. 4:246-253.

Bishop, T., and Schulten, K. 1994, Molecular dynamics study
of a sequence specific protein-DNA interaction. In Compu-
tational approaches in supramolecular chemistry, edited by
G. Wipff. Boston: Kluwer Academic, pp. 419-439.

Bishop, T., and Schulten, K. 1996. Molecular dynamics study
of glucocorticoid receptor-DNA binding. Proteins: Struc-
ture, Function, and Genetics 24(1):115-133.

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J.,
Swaminathan, S., and Karplus, M. 1983. CHARM: A pro-
gram for macromolecular energy, minimization, and dynam-
ics calculations. J. Comp. Chem. 4:187-217.

Brooks, B. R., and Hodostek, M. 1992. Parallelization of
CHARM for MIMD machines. Chemical Design Automat-
ion News 7:16-22.

Brooks, C. L. IlI, and Karplus, M. 1983. Deformable stochastic
boundaries in molecular dynamics. J. Chem. Phys.
79(12):6312-6325. :

Brooks, C. L. III, Karplus, M., and Pettitt, B. M. 1988. Proteins:
A theoretical perspective of dynamics, structure and thermo-
dynamics. New York: John Wiley & Sons.

Briinger, A. T. 1992. X-PLOR, version 3.1: A system for X-ray
crystallography and NMR. The Howard Hughes Medical
Institute and Department of Molecular Biophysics and Bio-
chemistry, Yale University.

Carson, M., and Hermans, J. 1985. The molecular dynamics
workshop laboratory. In Molecular dynamics and protein
structure, edited by J. Hermans. Chapel Hill: University of
North Carolina Press.

Clark, T., Hanxleden, R., McCammon, J., and Scott, L. 1994,
Parallelizing molecular dynamics using spatial decomposi-
tion. In Proceedings of the Scalable High Performance Com-
puting Conference, Knoxville, TN. Los Alamitos, CA: IEEE
Computer Society Press, pp. 95-102.

Deisenhofer, J., Epp, O., Mikki, K., Huber, R., and Michel, H.
1985. Structure of the protein subunaits in the photosynthetic
reaction centre of Rhodopseudomonas viridis at 3 A resolu-
tion. Nature 318:618-624.

Eriksson, M., Hiird, T., and Nilsson, L. 1995. Molecular dynam-
ics simulations of the glucocorticoid receptor DNA-binding
domain in complex with DNA and free in solution. Biophys.
J. 68:402-426.

Esselink, K., and Hilbers, P. 1992. Parallel molecular dynamics
on a torus network. In Proc. Scalable High Peformance
Computing, Williamsburgh, VA. Los Alamitos, CA: IEEE
Computer Society Press, pp. 106-112.

Feher, G., Arno, T. R., and Okamura, M. Y. 1988. The effect
of an electric field on the charge recombination rate
of D*Q7Z — DQa in reaction centers from rhodobacter
sphaeroides R-26. In The photosynthetic bacterial reaction
center: Structure and dynamics, edited by J. Breton and A.
Vermeglio. New York and London: Plenum, pp. 271-287.

Geist, A., Beguelin, A., Dongarra, J., Jliang, W., Manchek, R.,
and Sunderam, V. 1994, PVM 3 users guide and reference
manual. Technical Manual ORNL/TM-12187. Oak Ridge
National Laboratory, TN.

Greengard, L., and Rokhlin, V. 1987. A fast algorithm for
particle simulation. J. Comp. Phys. 73:325-348.

Gursoy, A. 1994. Simplified expression of message-driven pro-
grams and quantification of their impact on performance.
Ph.D. thesis, University of Illinois at Urbana-Champaign.

Haney, S. W. 1994. s C++ fast enough for scientific computing?
Computers in Physics 8:690-694.

Harris, L. E., Sullivan, M. R., Popken-Harris, P. D., and Hickok,
D.F. 1994. Molecular dynamics simulations in solvent of the
glucocorticoid receptor protein in complex with a glucocor-
ticoid response element DNA sequence. J. Biom. Struct. Dyn.
12:249-270.

Heller, H., Schaefer, M., and Schulten, K. 1993. Molecular
dynamics simulation of a bilayer of 200 lipids in the gel and
in the liquid crystal-phases. J. Phys. Chem. 97:8343-8360.

Iwata, S., Ostermeier, C., Ludwig, B. and Michel, H. 1995.
Structure at 2.8 A resolution of cytochrom C oxidase from
Paracoccus denitrificans. IWAT95 376:660-669.

Kalé, L. V. 1990. The Chare Kernel parallel programming lan-
guage and system. In Proc. Int. Conf. on Parallel Processing,
vol. 2, pp. 17-25. Boston: CRC Press.

Kalé, L. V., and Gursoy, A. 1995. Modularity, reuse and effi-
ciency with message-driven libraries. In Proc. 7th SIAM

Farallel Processing Conf., San Francisco, pp. 738-743.
Philadephia: STAM.

Kalé, L. V., and Gursoy, A. 1995. Medularity, reuse and effi-
ciency with message-driven libraries. In Proceedings of the
7th SIAM.

Kalé, L. V., and Krishnan, S. 1993. CHARM++: A portable
concurrent object-oriented system based on C++. In Proc.
OOPSLA-93, Washington, DC. New York: ACM Press.

Lorenz, M., Popp, D., and Holmes, K. C. 1993. Refinement of
the F-actin model against X-ray fiber diffraction data by the
use of a directed mutation algorithm. J. Mol. Biol. 234:
826-836.

McCammon, J. A., and Harvey, S. C. 1987. Dynamics of proteins
and nucleic acids. Cambridge, UK: Cambridge University
Press.

Nelson, M., Humphrey, W., Gursoy, A., Dalke, A,, Kalé, L.,
Skeel, R., Schulten, K., and Kufrin, R. 1995. MDScope—A
visual computing environment for structural biology. Com-
put. Phys. Commun. 91(1-3):111-134,

Pastor, R. W., and Venable, R. M. 1993, Molecular and stochastic
dynamics simulation of lipid molecules. In Computer simu-
lation of biomolecular systems: Theoretical and experimen-
tal applications, edited by W. E van Gunsteren, P. K. Weiner,
and A. K. Wilkinson. Leiden: ESCOM Science Publishers,
pp. 443-463.

Plimpton, S., and Hendrickson, B. 1994. A new parallel method
for molecular dynamics simulation of macromolecular sys-
tems. Technical Report SAND94-1862, Sandia National
Laboratories, NM.

Rankin, W,, and Board, J. A., Jr. 1995. A portable distributed
implementation of the parallel multipole tree algorithm.
Duke University Technical Report 95-002. IEEE Symposium
on High Performance Distributed Computing (pp. 17-22).
Los Alamitos, CA: IEEE Computer Society Press.

Rayment, 1., Rypniewski, W. R., Schmidt-Bése, K., Smith, R.,
Tomchick, D. R., Benning, M. M., Winkelmann, D. A.,
Wesenberg, G., and Holden, H. M. 1993. Three-dimensional
structure of myosin subfragment-1: A molecular motor. Sci-
ence 261:50-58.

Schwabe, J. W. R., Chapman, L., Finch, J. T., and Rhodes, D.
1993. The crystal structure of the estrogen receptor DNA-
binding domain bound to DNA: How receptors discriminate
between their response elements. Cell 75:567-578.

Skeel, R. D., and Biesiadecki, J. J. 1994. Symplectic integration
with variable stepsize. Annals Numer. Math. 1:191-198.
Tirion, M. M., ben-Avraham, D., Lorenz, M., and Holmes, K.
C. 1995. Normal modes as refinement parameters for the

F-actin model. Biophys. J. 68:5-12.

van Gunsteren, W. F.,, and Berendsen, H. J. C. 1987. GROMOS
manual. BIOMOS b. v., Laboratory of Physical Chemistry,
University of Groningen.

von Eicken, T., Culler, D. E., Goldstein, S. C., and Schauser, K.
E. 1992. Active messages: A mechanism for integrated com-
munication and computation. In Proc. Int. Symp. on Com-
puter Architecture. New York: ACM Press.

Weiner, P. K., and Kollman, P, A, 1981. AMBER: Assisted model
building with energy refinement: A general program for
modeling molecules and their interactions. J. Comp. Chem.
2:287.

Windemuth, A. 1995. Advanced algorithms for molecular dy-
namics simulation: The program PMD. In Parallel comput-
ing in computational chemistry, edited by T. Mattson. Wash-
ington, DC: ACS Books.

Zhou, F, and Schulten, K. 1995. Molecular dynamics study of
a membrane-water interface. J. Phys. Chem. 99:2194-2208.

Zhou, F, and Schulten, K. 1996. Molecular dynamics study of
the activation of phospholipase A2 on a membrane surface.
Proteins: Structure, Function, and Genetics 25(1):12-27.

	Page 1
	pg2.pdf
	Page 1

	pg3.pdf
	Page 1

	pg4.pdf
	Page 1

	pg5.pdf
	Page 1

	pg6.pdf
	Page 1

	pg7.pdf
	Page 1

	pg8.pdf
	Page 1

	pg9.pdf
	Page 1

	pg10.pdf
	Page 1
	Page 2

	pg11.pdf
	Page 1

	pg12.pdf
	Page 1

	pg11.pdf
	Page 1

	pg63.pdf
	Page 1

	pg64.pdf
	Page 1

	pg65.pdf
	Page 1

	pg66.pdf
	Page 1

	pg67.pdf
	Page 1

	pg68.pdf
	Page 1

