
MDScope - A Visual Computing
Environment for Structural Biology

Mark Nelson, William Humphrey, Attila Gursoy, Andrew Dalke

Laxmikant Kale, Robert Skeel, Klaus Schulten∗

Theoretical Biophysics Group
University of Illinois and Beckman Institute

405 North Matthews
Urbana, IL 61801

Richard Kufrin

National Center for Supercomputing Applications
605 East Springfield Avenue

Champaign, IL 61820

Classification: Atomic and Molecular Dynamics

January 6, 1995

∗ To whom correspondence should be addressed. Email: kschulte@ks.uiuc.edu

1



Abstract

MDScope is an integrated set of computational tools which function as an interactive visu-

al computing environment for the simulation and study of biopolymers. This environment

consists of three parts: (1) vmd, a molecular visualization program for interactive display

of molecular systems; (2) namd, a molecular dynamics program designed for performance,

scalability, modularity, and portability, which runs in parallel on a variety of computer plat-

forms; (3) MDComm, a protocol and library which functions as the unifying communication

agent between the visualization and simulation components of MDScope. namd is express-

ly designed for distributed memory parallel architectures and uses a spatial decomposition

parallelization strategy coupled with a multi-threaded, message-driven computation model

which reduces inefficiencies due to communication latency. Through the MDComm soft-

ware, vmd acts as a graphical interface and interactive control for namd, allowing a user

running namd to utilize a parallel platform for computational power while visualizing the

trajectory as it is computed. Modularity in both vmd and namd is accomplished through an

object-oriented design, which facilitates the addition of features and new algorithms.

2



1 Introduction

Molecular dynamics (MD) simulations [24, 7] are playing an increasingly important role

for the study of structure and function of biomolecular systems and in drug design. MD

simulations have been applied to the refinement of structures derived from X-ray diffraction

and NMR data, to the investigation of enzymatic mechanisms and enzyme inhibitors, to the

study of biopolymer aggregates like membranes, and to protein structure prediction. Widely

used MD applications include CHARMm [5], X-PLOR [8], GROMOS [29], AMBER [30], and

CEDAR [10]. Unfortunately, MD simulations are computer time-intensive and, currently,

simulations require several hours or days to complete.

Were it possible that MD simulations could be realized interactively, exciting applications

such as structure refinement or structure prediction in drug design would become feasible

since simulations could involve direct feedback from users. For this purpose, a researcher

would need to have immediate access to the results of MD simulations through a suitable

molecular graphics user interface. Such interaction would require a certain level of com-

putational and display performance, i.e., 100 fs of motion for a protein with 1000 atoms

would need to be computed and visualized within 10 s. In this article we describe the de-

velopment of a visual computing environment for interactive simulation of biopolymers, a

software system called MDScope, which takes an important step toward this goal.

The bottleneck for interactive MD is the speed of processors carrying out MD simulations.

Available computer graphics systems as well as available network technology can sustain the

requirements for the transfer of MD trajectories to a graphics computer and the subsequent

image rendering. The processor performance bottleneck can be overcome, however, by using

3



the peak capabilities of parallel computing platforms such as dedicated large-scale parallel

computers or clusters of high-performance workstations. This requires a molecular dynamics

program which runs efficiently on such platforms and is well integrated with a molecular

graphics application.

MDScope provides such a system. MDScope combines (1) a molecular visualization

program vmd, (2) an MD simulation program namd designed for distributed memory parallel

computers, and (3) a communication protocol and library MDComm which allows vmd to

function as a graphical interface to namd, unifying these applications into a single visual

computational environment. Combined with a large screen stereo projection device, as shown

in fig. 1, MDScope provides an affordable tool for the study of biopolymer structures. All

components of MDScope, including the complete source code, are available free of charge. Figure 1

herenamd has been developed from the beginning for parallel computer architectures and with

the goal of efficiency and scalability. Key design elements of namd are a spatial decomposition

strategy to partition the parallel computation tasks, as well as a multi-threaded, message-

driven method of execution. This design uses a number of independent computation tasks

for each processor in a parallel computer, instead of one single task; control is transferred

between threads based on availability of messages from other processors, which reduces

inefficiency due to communication latency. namd is written in C++, an object-oriented

extension of the C programming language, and includes a descriptive programmers guide as

well as extensive source code documentation.

vmd, the visualization component of MDScope, allows the user to interactively display

and control any number of remote MD simulations running simultaneously on remote su-

4



percomputers or high-performance workstations. vmd is designed to support a wide variety

of display and input devices, e.g., stereo display projectors as shown in fig. 1 and spatial

tracking devices which may provide a three-dimensional pointer.

In this paper we describe the individual components of MDScope: vmd (section 2), namd

(section 3), and the MDComm software (section 4). These components are each capable

of functioning separately in their stated roles; we discuss the use of these components as

separate applications, and as an integrated computational environment. In section 5 an

example of the use of this system, the simulation of components of the coat of poliovirus,

is presented. Information on the availability and location of MDScope software is given in

section 6.

2 The Visualization Program vmd

vmd is a molecular visualization program developed for interactive display and manipulation

of biopolymer structures. It provides the user with both a textual and graphical user in-

terface, and is designed to be used concurrently with MD simulation programs, such as the

program namd described in section 3. vmd has three objectives, the visualization of molecular

dynamics, the control of remote MD simulations, and a modular, easily modifiable design.

Dynamics Visualization A fundamental purpose of vmd is to visualize structures as well

as dynamics of macromolecular systems, in particular, biopolymers such as proteins, nucleic

acids, and membranes. Several excellent packages exist for this purpose, both commercial

(e.g., Quanta [27]), and non-commercial (e.g., Ribbons [9], XMol [25], Midas Plus [13], and

5



others), for a variety of computer platforms. vmd contains many of the standard molecular

visualization options of existing programs, but focuses on visualization of the dynamics of

molecules. vmd furnishes interactive graphical visualization of biopolymer systems, inde-

pendent of the source of the dynamically varying molecular quantities (position, velocity,

energy); the latter may be obtained either from completed MD calculations or from concur-

rently running MD simulations.

Several different display and input devices are available for interactive visualization, such

as head-mounted displays or stereo monitors, and an objective of vmd is to support the use of

such devices. A particular objective is the use of large-screen projectors capable of display-

ing stereo images, coupled with hand-held spatial tracking devices conveying position and

orientation for graphical object manipulation; this system offers an excellent collaborative

environment for the study of molecular systems, where several researchers can simultaneously

view and manipulate three-dimensional representations of biopolymer structures.

Remote Simulation Control A major difference between vmd and several of the current

molecular visualization applications is the capability for direct interaction and control of

MD simulations running simultaneously on a remote workstation or supercomputer. vmd

connects to a remote computer, and either attaches to a currently running job or begins a

new simulation. vmd itself is independent of the specific MD application selected. Through

the use of the MDComm software (section 4), which provides a defined protocol for commu-

nication between a local visualization program and a remote MD program, vmd is capable

of obtaining and displaying the state of any number of different MD applications which also

6



use MDComm. Multiple remote simulations can be attached to vmd simultaneously, and

from vmd the state of each simulation can be monitored and interactively controlled.

Modularity vmd is written in C++, using an object-oriented methodology, and is well

suited for rapid extensions and additions such as support for new molecular file formats, dis-

play and input devices, and graphics rendering libraries. Major targets for this program are

research groups working in structure refinement, structure prediction, drug design, mecha-

nisms of biopolymers, and aggregates of biopolymers. These groups may be either interested

in using the current implementation of vmd, modifying the existing program structure, or

adding required features not currently present. The use of an object-oriented design greatly

speeds up and improves the capability for modification and enhancement of the program. A

comprehensive programmers guide as well as a users guide describe the structure and design

of the objects making up the program, as well as the overall layout of the program.

2.1 Features

Key features of vmd include:

• molecular rendering and coloring options for simultaneous display of any number of

molecules;

• atom selection syntax for choosing atom subsets for display and rendering characteris-

tics;

• images displayed in stereo, using a side-by-side format, or Crystal-Eyes stereo mode

for suitably equipped systems;

7



• simultaneous connection to remote MD simulations on any remote UNIX workstation

or supercomputer;

• support for use of spatial tracking devices which function as a 3D pointer, with accom-

panying 3D user interface in a stereo display environment;

• control of all actions via input scripts as well as through the graphical user interface;

• session logging and playback for all program capabilities.

2.2 Design Overview

vmd employs an object-oriented design, which endows the program with a modular structure.

The object-oriented design is based on individual software components which contain data

and methods for manipulating the corresponding data. This design also promotes the concept

of inheritance and polymorphism, which allow a software object to add functionality to a more

general base or parent object, while maintaining all the functionality of the parent without

duplication. vmd is written in C++, an object-oriented extension of the C programming

language which has been quickly growing in popularity and availability in recent years. Figure 2

hereThe design of vmd consists of four main components, each containing a set of objects that

work together to accomplish the stated goals of visualization of dynamical molecular data:

(1) user interface objects, (2) display objects, (3) molecule objects, and (4) remote simulation

objects. The diagram in fig. 2 describes the organization and relationship of the component

objects. Boxes within the four components represent software objects. Solid arrows from

an originating to a destination object are used to indicate a uses a relationship between

8



objects, meaning the originating object uses the functionality of the destination object in

some manner. Dashed lines indicate that the destination objects are inherited from the

originating object (is a relationship), or contain the originating object (has a relationship).

User Interface Objects

Figure 3 shows a snapshot of a vmd session, illustrating the components of the graphics

display and graphical user interface. A molecule is shown in the large window in the upper

right corner, while other windows represent components of the vmd graphical user interface.

A text console for keyboard commands is also provided as a component of the user interface.

All vmd commands can be issued via the console as well as through the graphical interface.

Command script files can be created and processed by vmd, and the current session can be

saved to a log file for future playback. Figure 3

hereEach component of the user interface is a separate object within vmd and performs

two basic functions: (1) check for and issue requests for action by the user; (2) report

the current state of the system to the user. Each request for action is sent to a central

CommandQueue processor object, which executes the commands and informs interested user

interface components of the action. User interface objects update their state based on this

notification of a completed action.

vmd, through the use of a spatial tracking device, provides a three-dimensional user

interface in addition to the standard two-dimensional graphical control. A spatial tracking

device measures the spatial orientation and position of sensors relative to a fixed source;

this allows an application to contain a three-dimensional pointer, which can be operated in

9



six degrees of freedom (three translational + three rotational). When coupled with a stereo

display, the three-dimensional pointer provides the user with a separate three-dimensional

user interface which can be employed to request action through the CommandQueue object.

Display Objects

For the display of biopolymer structures in vmd, two main objects are used: (1) a Scene,

which maintains a list of all items (Displayable objects) that are to be drawn, and (2) a

DisplayDevice, which can render a given Scene to a particular hardware device or, possibly,

a file. Each Displayable object contains a list of basic drawing commands in a device-

independent format. These lists are given to a DisplayDevice, which renders them to the

selected destination.

The specific code required to draw to a special hardware device, windowing environ-

ment, or image file is completely contained within specialized DisplayDevice objects, which

present a common interface to the rest of the program. Thus, for example, the Scene ob-

ject is not required to know what type of device is being used to draw the image. This

design localizes the device-dependent code required to support a particular graphics display

method to a single place, which reduces the time and effort required to support a different

output device. Rendering to a file is also possible in a method completely transparent to the

rest of the program, requiring no changes in other routines. At present, vmd contains two

DisplayDevice options: a standard workstation monitor drawing option using the Silicon

Graphics GL library, and a DisplayDevice which supports the CAVE [12] virtual display

environment. Under development are DisplayDevice objects for creating bitmap image files

10



of the current display, as well as MOLSCRIPT [21] input scripts.

Molecule Objects

A molecule in vmd consists of several elements: a static structure describing the atom connec-

tivity, the secondary structure, and the static atomic data such as mass and charge; dynamic

data such as position, velocity, and energy; and any number of graphical representations

of the molecule. The source of this data can stem from files of various formats or come

directly from an MDComm-brokered connection to a remote simulation. Dynamical data

for each discrete time step in a molecular trajectory is stored as an animation list, which

can be played back, edited, or saved in a variety of file formats. The file formats currently

supported are:

• X-PLOR [8] compatible protein structure (PSF) files (input);

• Brookhaven protein data bank (PDB) files [3] (input and output);

• CHARMm [5] and X-PLOR compatible binary trajectory (DCD) files (input and out-

put).

Each molecule is stored as an instance of a Molecule object; these instances are maintained

in a MoleculeList container object. Each Molecule is also a Displayable, and is referenced

within the Scene database.

To visualize the molecular structure, the user can create any number of distinct repre-

sentations of each molecule, which are updated each animation frame. A representation is

a specific rendering method (i.e., CPK, licorice bonds, or simple lines) and specific coloring

11



method (i.e., by element or residue name) for a selected subset of atoms. vmd contains an

atom selection syntax similar to the X-PLOR atom selection syntax [8], which can choose

atoms based on name identifiers or position with boolean operators. For example, the com-

mand

resid TIP3 and within 3 of (resname ALA or resname ARG)

selects all atoms in TIP3 residues within 3 Å of an alanin or arginine. Representations for a

molecule can be edited, be displayed simultaneously, or be individually turned off.

Remote Simulation Objects

A molecular structure can be retrieved from a remote computer (or the same machine run-

ning vmd) through a series of simple user interface controls. Once a connection is established,

the user can visualize and interact with the molecule in a manner identical to that used for

molecules read from data files. As the trajectory of the molecule is computed by the remote

simulation, data for time steps at selected intervals is communicated from the simulation

application to vmd via the MDComm software described in section 4. A Remote object

maintains the state of a connection; each Molecule object created via this connection con-

tains a corresponding Remote object, and is referenced in a RemoteList container object.

Any number of MD simulations may be attached to a single vmd process by the user and

independently visualized and controlled.

To establish a connection and display a simulation in progress, the following steps are

required:

12



Select Application or Job A host for the simulation is selected, and a list of available

MD applications compatible with the MDComm software is retrieved, as well as a list of the

currently executing MD jobs on that computer. Either an existing job can be attached to

vmd and immediately displayed at the currently executing time step, or a new simulation

can be initialized.

Select Parameters To start a new simulation, once a specific application is selected vmd

retrieves a list of required and optional parameters for the simulation. Figure 4 shows an

example of the simulation parameter editing menu. When all parameters are entered, the

simulation program is executed. Figure 4

here

View Results After the connection is made, the static molecular structure is passed to

vmd, which creates a new Molecule object and begins retrieving dynamic data (i.e., coordi-

nates and energies) from the remote simulation as it becomes available. The new Molecule

object contains the corresponding Remote object for the particular connection. In fig. 3, the

molecule shown is a structure from an on-line namd simulation. As the trajectory is calcu-

lated, vmd updates the display to show the current state of the simulation. Coordinates may

be stored at selected intervals in the animation loop for later playback. vmd also provides

the user control over specific simulation parameters such as the current temperature.

2.3 Future Directions

Several improvements and additional features for vmd are under development or planned.

For example, new file formats for recording displayed images will be provided, and new

13



rendering and display options will be added. An interface to the DSSP secondary structure

determination program [18] is being developed for accurate display of protein secondary

structures. The functionality of the three-dimensional user interface is being extended, in

conjunction with development of several new remote simulation control functions.

As discussed, vmd seeks to provide an interactive environment for MD simulations. In

progress are enhancements to vmd and the MDComm software to allow a user to add selected

forces to specific atoms in a simulated molecule, and to allow a user to make global changes

to a molecule such as modification of the structure or translation of atomic coordinates.

These interactive changes will be transmitted to the simulation program and incorporated

into the simulation directly. Interactive structure building and docking will be made possible

by allowing vmd to communicate intended structural modifications and coordinate transfor-

mations to a remote simulation. This feature could be used, for example, for interactive

placement or refinement of the position of ions or solvent molecules within a protein. Forces

applied by the user would move the molecules through a chosen pathway consistent with

steric constraints and required rearrangements of surrounding atoms.

3 The Molecular Dynamics Program namd

namd is a parallel molecular dynamics program designed for high-performance simulations

in structural biology. The program is highly modular and well documented to facilitate

the addition of new algorithms and methods. namd is intended for structural biologists, in

particular, those who are attempting large-scale molecular simulations or are interested in

testing novel simulation methods. The major objectives of namd are performance, scalability,

14



and modularity.

Performance A goal for namd is rapid and efficient execution of MD simulations. A second

goal is to make possible simulations of molecular systems of a larger size and for a longer time

period than has been previously possible. namd was written expressly for message passing,

distributed memory parallel machines and can run on several types of massively parallel

supercomputers currently available as well as on clusters of high-performance workstations.

Scalability namd is intended for MD simulations of biopolymer systems ranging in size

from thousands of atoms to millions of atoms and to be executed on parallel computers

with tens to thousands of processors. Thus, namd must scale efficiently with the size of a

biopolymer system as well as with the number of processors and must insure scalability in

communication and memory usage. This implies conceiving and implementing distributed

algorithms for every aspect of the program.

Modularity namd has a modular design to facilitate experimentation with new algorithms

or with computational approaches based on new physical concepts. For many calculations

of interest, faster hardware, even with massive parallelism, will be insufficient and only new

algorithms (including some under development such as [31]) will make certain simulations

possible. The achievement of the highest performance, possible through the discovery of new

algorithms and methods, requires continuous adaptation of the program. To allow this, namd

uses an object-oriented design and employs a high degree of modularity and data abstraction

which makes the program easy to modify and maintain.

15



3.1 Features

namd has several important features which set it apart from other MD programs and also

make it easy to use. Since namd is still a very young program, more features are being added,

some of which are described in section 3.5. The following features have been implemented

in namd.

Full Electrostatics Most MD programs truncate electrostatics to reduce the computa-

tional complexity of O(N2), resulting from summation of pairwise electrostatic forces, to

O(N). This type of truncation has been demonstrated to lead to qualitatively wrong de-

scriptions of physical properties, e.g, in the case of membranes [32]. namd has incorporated

the Distributed Parallel Multipole Tree Algorithm (DPMTA) [4] which takes the full electro-

static interactions into account. This algorithm also reduces the computational complexity

of electrostatic force evaluation from O(N2) to O(N). As described in section 3.2, DPMTA is

combined with a multiple time step scheme to further reduce the computational complexity.

Force Field Compatibility The force field used by namd is the same as that used by

the programs CHARMm [5] and X-PLOR [8]. This force field includes local interaction

terms consisting of bonded interactions between 2, 3, and 4 atoms and pairwise interactions

including electrostatic and van der Waals forces. This commonality allows simulations to

migrate between these three programs.

Input and Output Compatibility The input and output file formats used by namd are

identical to those used by X-PLOR. Input formats include coordinate files in PDB format

16



[3], structure files in PSF format, and energy parameter files in the same format used by

CHARMm and X-PLOR. Output formats include PDB coordinate files and binary DCD

trajectory files. These similarities assure that the molecular dynamics trajectories from

namd can be read by CHARMm or X-PLOR and that the user can exploit the many analysis

algorithms of the latter packages.

Interoperability with vmd As part of the MDScope system, namd communicates with

vmd using the MDComm software. This interaction allows a user to employ vmd as a

graphical console which can start namd, view, and modify the simulation to a small extent.

The communication between namd and vmd is being enhanced to allow a user to further

alter and interact with a running namd simulation.

Dynamics Simulation Options MD simulations may be carried out using several op-

tions, including:

• NVE ensemble dynamics;

• NVT ensemble dynamics, using velocity rescaling;

• Langevin dynamics;

• energy minimization.

3.2 Design Overview

The following sections describe the design of namd and how this design accomplishes the

goals stated above. The first section outlines the overall algorithms used and the remaining

17



sections explain how these methods are implemented.

Algorithms

In MD simulations, atomic trajectories are computed from Newton’s second law of motion

using empirical force fields, such as the CHARMm force field, that approximate the actual

atomic force in biopolymer systems. The velocity Verlet integration method [1] is used to

advance the positions and velocities of the atoms in time.

To reduce further the cost of the evaluation of long-range electrostatic forces, a multiple

time step scheme is combined with the DPMTA method. The local interactions (bonded

interactions and electrostatic interactions within a specified distance) are calculated during

every time step. The longer range interactions (electrostatic interactions beyond the specified

distance) are only computed every k steps, with each set of k steps called a cycle. The long-

range forces remain the same for each step in the cycle, which amortizes the cost of computing

the electrostatic forces over the k steps in the cycle. For appropriate values of k, the error

due to holding the forces constant for a few steps is modest compared to the errors incurred

from using a finite time step.

The computationally intensive aspect of MD simulations is the evaluation of the force

field. One method used by other programs to evaluate the force field in parallel involves di-

viding the interactions among processors using various forms of force decomposition [6, 26].

The problem with these force decomposition schemes is their scalability. While the compu-

tational complexity for each processor in force decomposition can be reduced to O(N/P ),

the communication complexity is O(N) in the naive case and O(N/
√

P ) [26] in the best

18



case. This limits the scalability of such methods to large numbers of processors.

To avoid this limitation, namd uses spatial decomposition of the biopolymer system.

Spatial decomposition reduces both the computation and communication complexity of cal-

culations performed by each processor to O(N/P ) [11]. This results in better scalability

than force decomposition schemes that require summation across all processors. Figure 5

hereA long-standing problem with spatial decomposition is load balancing. A spatial decom-

position that evenly distributes the computational load causes the region of space mapped

to each processor to become very irregular, hard to compute and difficult to generalize to

the evaluation of many different types of forces. namd addresses this problem by using a

simple uniform spatial decomposition where the entire model is split into uniform cubes of

space called patches. Each patch is slightly larger than the local interaction distance. This

requires that there be many more patches than processors (as shown in fig. 5), but results

in each patch needing to share information only with its immediate neighbors. A sample of

the spatial decomposition for a small polypeptide is shown in fig. 6. Since each patch is a

simple, uniform cube, it is easy to compute the decomposition and to use it as a framework

for many types of calculations. Figure 6

here

Message-Driven Execution

Patches are responsible for calculating the forces acting on their local atoms. These in-

teractions require coordinate information for not only the local atoms, but for atoms from

neighboring patches as well. If each processor were assigned a single large patch, the pro-

cessor would repeatedly have to stop and wait for information to arrive from neighboring

19



patches. During these periods, the processor would be idle. These wait periods can be

caused not only by network communication latency, but also by work load differences be-

tween patches. The sending patch may be busy with some other task and, thus, a significant

delay may arise before the necessary data is sent.

In order to reduce the amount of idle processor time, namd uses a multi-threaded exe-

cution model. Each patch acts as its own thread of control, and each processor is assigned

multiple patches. These patches are then scheduled in a message-driven manner that re-

duces the amount of idle time on the processor. Message-driven implies that a thread is

only scheduled to run when a message has arrived for that thread. A graphical depiction of

how this scheduling helps potentially reduce idle times is shown in fig. 7. The figure shows

the utilization of a processor for single-threaded and multi-threaded execution of patches.

In the single-threaded case, after performing some calculations the processor waits for mes-

sages that are needed to calculate more interactions, during which time the processor is idle.

In the multi-threaded case, however, while waiting for messages for a particular patch, the

processor can switch to another patch for which a message has arrived. This overlaps the

wait time for one thread with the computation time of another thread, thus reducing the

idle time of the processor. Figure 7

hereTo accomplish the multi-threaded execution, each patch must be designed such that it

can process each incoming message independently, and in an arbitrary order. Each processor

continuously executes a message-driven loop which receives all messages, determines the

patch that the message belongs to, and then yields control to the patch. The patch resumes

execution, consumes the message, and when finished with the message returns control.

20



Object-Oriented Design

Like the program vmd, namd uses an object-oriented design and is implemented in C++. The

program consists of objects (or classes) that have their own data and functions to operate

on this data. Other objects can not directly access the local data of an object, but instead

must use the defined functions (methods) of the object. The only means for interacting with

a well designed object is through its methods. Thus, the internal implementation of these

objects is hidden from the rest of the program. While this type of design can be simulated in

traditional programming languages, by using a truly object-oriented programming language

such as C++ these ideas are naturally implemented and enforced.

Portability problems and performance penalties that may be incurred by the use of C++

compared to C or FORTRAN is an important issue currently under discussion [16]. Because

of the possible performance penalties, namd avoids excessive use of features that may de-

grade performance, e.g., run-time function table lookups as arise through the use of virtual

functions. A key problem limiting performance in C++ is the extensive use of temporary

variables resulting from complex expressions, which reduces the number of compiler op-

timizations that may be applied and which lead to inefficient use of registers and cache

memory. namd pays particular attention to this issue by using standard C constructs for

the central computation loops, and rational design of C++ classes which avoid temporary

variable allocation/deallocation. Also, while C++ is becoming available on most machines,

an effort was made to avoid some of its features, such as templates, that may not be imple-

mented on all machines. With these precautions, the advantages gained in modularity using

C++ significantly outweigh porting or performance problems that may arise.

21



Class Structure
Figure 8

hereFollowing the ideas outlined in the previous section, namd is composed of a simple set of

classes that are used to provide the necessary components for the simulation. Figure 8 shows

the objects that are present on each processor running namd, and table 1 gives a descrip-

tion of the purpose of each of the objects in this diagram. There are three global objects

on each processor: (1) the Communicate object, a protocol-independent agent for inter-

processor communication; (2) the Inform object, a transparent means of printing messages

to the screen from any processor; (3) the Node object, which contains all of the important

objects for the simulation. The Node object includes objects that provide static data such

as the SimParameters, Molecule, and Parameters objects as well as objects that provide

global state data or services such as the Collect, Output, PatchDistrib, LoadBalance,

and FMAInterface objects. However, the most important member of the Node object is

the PatchList object. The PatchList object contains all patches owned by the processor,

as well as the multi-threaded logic used to schedule the operations of these threads. It is

within the patches contained in this object that the calculations needed for the simulation

are performed. Table 1

hereThe Patch objects perform the actual simulation. The structure of a Patch object

is shown in fig. 9. Each Patch object is responsible for one of the cubic regions of space

determined by the spatial decomposition of the biopolymer system. Each patch is responsible

for calculating the forces and performing integration on all the atoms in its region of space.

Thus, each Patch object contains the data for each atom including position, velocity, and

forces, a set of force objects that are each responsible for the computation of some component

22



of the force field, and logic that controls the execution of the force objects upon receipt of

a message from the PatchList object. Each of the force objects has a similar interface to

the Patch object. This allows the addition or modification of components to the force field

without altering anything but the control logic of the Patch object. Figure 9

here

Parallel Programming Model

An important characteristic of namd is the separation of the parallel control logic modules

from the sequential computational modules. The parallel control logic modules deal with

the sending and receiving of messages and with the invocation of the appropriate sequen-

tial module to process the message. The nature of a message-driven design facilitates this

separation and provides a clean interface between parallel control and sequential computa-

tions. In the message-driven design, messages are received by the parallel logic modules only.

These modules invoke the sequential modules. A new sequential module can be integrated

by simply providing interface functions to the parallel logic modules. Thus, the sequential

modules are separated from any details of how messages are received and from the scheduling

of execution of the sequential modules. This is very natural in C++, where the sequential

modules are objects which have methods that act on specific information.

The separation of message receipt and scheduling from the sequential computation makes

namd portable to different parallel systems, since the details of the communication protocols

used are isolated to a few modules. Currently, the parallel control modules for namd have

been implemented using PVM [14] and Charm++ [20].

The PVM implementation is built upon a generic implementation applicable for any

23



send and receive message passing library such as PVM, TCGMSG, CMMD, etc. It is im-

plemented using a Communicate class which provides protocol-independent send and receive

mechanisms. The parallel control modules are then built to send and receive messages using

this class and to schedule the processing of these messages in a message-driven manner. The

Communicate class is currently implemented using PVM, but can be ported to any such

receive-based method by simply changing the protocol-specific send and receive calls.

The other implementation of the parallel control logic is based on Charm++ [20], a

portable object-oriented message-driven parallel programming environment developed by

one of the authors. The parallel control logic is expressed more naturally in Charm++

than it is with a receive-based language. A significant advantage of programming in a

message-driven language is modularity and compositionality. Multiple parallel modules that

are developed independently can be combined without performance penalties. The flow

of control can switch back and forth between modules automatically, thereby, overlapping

useful computations in one module with potential idle times in the others. A receive-based

message passing system, on the other hand, cannot achieve this as elegantly or efficiently as

a message-driven system [19].

Full Electrostatics Interface

As previously stated, namd incorporates a module that uses a parallel multipole algorithm

to evaluate the full electrostatic interactions. The interface between namd and DPMTA is a

prototype for other external modules that will be incorporated into namd. This interface is

a simple set of sequential procedure calls. However, since namd and DPMTA do not share

24



common data decomposition schemes, intervening scatter/gather operations are required.

This is accomplished through representative objects that interface to namd and DPMTA.

The representative objects that interface with namd are located in each Patch object and are

responsible for gathering the coordinate information from each patch, and for passing that

information to the DPMTA representative. The DPMTA representative invokes DPMTA

to calculate the electrostatic results and then distributes the results back to the namd rep-

resentatives in each patch for use in the simulation. This interface uses the representatives

to compensate for the differences between the implementations of namd and DPMTA and

forms a model that can be used for the incorporation of other external modules that differ

in their decomposition from namd.

3.3 Documentation

To achieve the objective that researchers can quickly and easily understand and alter namd,

a programmers guide has been maintained throughout the development of the program. The

documentation provides a description of the design and implementation of the program, and

explains not only what is implemented and how, but also why it was done in a particular

way.

The programmers guide includes sections on the force field, overall design, source code

conventions, and implementation. The first section contains mathematical details of exactly

what the program calculates, including the energy and force equations for each component

of the force field. The design section describes the design of the program from the choice of

C++ through the details of the spatial decomposition scheme used. It includes details of the

25



design as well as the reasoning behind it. The source code conventions section establishes

guidelines for adding code to namd. This insures that the source code maintains a consistent

look and feel even though many programmers may be involved. The implementation section

is the largest in the guide. It details the exact interface to and operation of each of the objects

or modules in namd. With the modularity provided by C++ objects and the definition of

each interface, adding or changing namd can be done rapidly and in a consistent manner.

3.4 Current Status

While still early in its development, namd is a functional molecular dynamics program. A

force field compatible with that used by CHARMm and X-PLOR is complete. The program

has been tested by comparing with results from X-PLOR for a small 12-residue polypep-

tide (66 atoms), the bovine pancreatic trypsin inhibitor (898 atoms), the protein bacteri-

orhodopsin (3,762 atoms), as well as a complex of water, a 17 base-pair oligonucleotide, and

a dimer of the glucocorticoid receptor DNA binding domain (13,566 atoms altogether).

Without any performance tuning at this point, namd running on one HP-735/125 pro-

cessor is about 1.75 times slower than X-PLOR on the same machine for the simulation

of bacteriorhodopsin. The graph in fig. 10 indicates the parallel performance of namd, by

plotting the speedup as compared to a two-processor simulation for the calculation of the

glucocorticoid receptor DNA binding domain system with and without DPMTA. Since the

speedup shown in fig. 10 is relative to the speed of a simulation using two processors, the

graph indicates an approximately 50 % speedup for up to eight processors. A number of

performance bottlenecks such as load balancing have been identified, and it is expected that

26



performance tuning of namd will significantly improve these performance values. Figure 10

here

3.5 Future Directions

There is still a large amount of development to be completed, foremost, performance testing

and tuning. A major part of performance tuning involves the load balancing strategies

discussed below. Another important item will be the porting of namd to many platforms.

Versions of namd exist for clusters of HP workstations, the Convex Exemplar, and the Intel

Paragon. Versions for the SGI Power Challenge, Cray T3D, IBM SP2 and other machines are

planned. An effort will be made in converting any algorithms that are currently centralized to

a distributed algorithm, including I/O. This will be critical in scaling efficiently on machines

with hundreds or thousands of processors.

Load balancing is a key issue for achieving high performance with namd. The goal is

to find a distribution of patches such that total execution time is minimized. This can be

achieved by keeping all processors busy with useful work while minimizing the communication

across processors. Load balancing is done in two stages. The first is the initial distribution of

patches to processors at the beginning of the simulation. The second stage is the incremental

update of this distribution to keep the system balanced as atoms move between patches.

Different algorithms can be applied during these two stages. Particularly, an incremental

load balancing algorithm can be more efficient by focusing on the small changes in an already

well balanced system. Currently, an interface to a generic load balancing module is defined

and implemented and various load balance decision algorithms are under development.

As has been emphasized, a goal of namd is to provide a testbed for new methods and

27



algorithms for molecular dynamics. Accordingly, prominent in the future development will

be the addition of new simulation features, for example, the simulation of NpT ensembles

[23]. More elaborate multiple time stepping algorithms will be experimented with, and

periodic boundary conditions and free energy perturbation calculation capabilities will be

included. The interface with vmd will be enhanced to allow interactive simulations for

structure prediction.

4 Linking vmd and namd with MDComm

Molecular dynamics applications are particularly well-suited to a visual computing imple-

mentation, with an extensive suite of techniques for graphical representation of molecular

structures in common use. Furthermore, the network bandwidth required to efficiently cou-

ple an MD simulation with a graphical front-end is not prohibitive; spatial coordinates of

molecular systems of up to 87,000 atoms require less than 1 MB of single-precision data. A

simple estimate of the sustained I/O rate r (in bytes/second) which can support the data

requirements of an MD simulation of N atoms, which needs t seconds to compute each time

step, is r = 12N/t.

Recent studies of the performance of various protocol combinations over local area ATM

and Ethernet networks indicate that Berkeley stream sockets can sustain slightly over 2 MB/s

over ATM and slightly over 1 MB/s over Ethernet networks [22]. At these transfer rates,

the computational rates of MD applications on current hardware platforms do not tax the

capacity of available networks. In addition, through control of the frequency of interactions

between the application and visualization programs, it is possible to better match varying

28



network conditions.

MDComm is the enabling software which connects namd and vmd in a single computation-

al environment. It provides a mechanism for using vmd to visualize the results of other MD

applications or, conversely, to drive another visualization front-end with namd. MDComm

is as hardware- and software-independent as possible and is operational using current tech-

nology. This section describes the features, implementation, and status of MDComm.

4.1 Features

MDComm focuses on those functional components required to allow cooperative execution

of a scalable MD program and an interactive visual interface. It is a compact software layer

that provides the following features:

• process control in a networked environment;

• multiple simultaneous connections to simulations;

• asynchronous connections to in-progress simulations;

• support for heterogeneous systems;

• concurrency on multiprocessor systems;

• low-overhead implementation;

• application-independent design;

• comprised of freely-available and stable software components that are available on (or

portable to) a wide variety of UNIX platforms.

29



Figure 11 shows the architecture of the system, depicting a connected instance of namd and

vmd. Figure 11

here

4.2 Implementation

The relationship between a simulation program and a visualization front-end is primarily

that of a producer-consumer pair. In the context of namd and vmd, namd produces data

such as atomic coordinates in three-dimensional space, energies, temperature, etc. These

quantities are consumed by vmd and used to generate an appropriate visual representation.

Data that describes the status of namd itself is also of interest, e.g., the cumulative CPU

time or the current decomposition (patch assignments). Most of the data that flows from

namd to vmd is dynamic; the quantity associated with a particular object varies with each

time step, e.g., an atom’s location changes over time or its assignment to a patch changes

as the simulation proceeds. Data used to “configure” vmd does not change over time; these

latter quantities are static; examples include the connectivity of a molecular structure or

characteristics of component objects such as atom or residue names.

A mechanism for transfer of static and dynamic data resides at the lowest level of the

MDComm software and is used internally, to implement MDComm coordination protocols,

and externally, to be accessible to namd and vmd. To support producer/consumer pairs

which may execute on machines with differing number representations, these routines must

support automatic conversion of data. MDComm software incorporates the XDR (eXternal

Data Representation) standard [28] for data conversion between heterogeneous systems. For

the actual application layer, MDComm employs the BSD stream socket implementation of

30



the TCP (Transmission Control Protocol) standard. TCP and XDR implementations are

available today on most systems used by the structural biology community. As well, vendors

of current-generation distributed-memory multiprocessors often provide node-level support

for socket-style communication primitives.

Software Organization

An earlier implementation of visual molecular dynamics followed a strict consumer-producer

model, incorporating all communication directly into the MD program and graphical front-

end. From an organizational perspective, these two programs operated as peers that were

responsible for all communication and control protocols and employed send and receive prim-

itives available in the MDComm library. To provide increased flexibility and functionality, a

division of labor between multiple software components was necessary. The current imple-

mentation adopts a very different philosophy: MDComm software now occupies a supervisory

role with respect to namd and provides one or more cooperative consumer coprocesses avail-

able to vmd.

A general-purpose program, the manager, provides several services pertinent to its home

computing system (the computer on which the manager executes): it advises potential clients

of the availability of applications, monitors the set of active daemon-application pairs, and

maintains a current list of protocol port assignments for active daemon-application pairs.

Shown as chemd in fig. 11, the manager is independent of the application domain; it can

provide services for any type of application that could be sensibly placed under the control

of MDComm. chemd is implemented as a Remote Procedure Call (RPC) server using the

31



rpcgen protocol compiler.

The daemon, shown as namdd, acts as a parent and intermediary between a single instance

of an application and potential clients. Status information is also passed from the daemon to

the manager, which then is able to provide the necessary data to potential clients that wish

to interact with an MDComm daemon and its application. The daemon caches all static

data associated with an application in order to provide “setup” data to a client. Finally, the

daemon receives all interactive commands from a connected client and relays the command

and arguments to its associated application.

The application is a child process of the daemon and is the producer in the producer-

consumer relationship described earlier. namd is an example application incorporated under

MDComm. The application is responsible for providing all static data to the daemon after

initialization; thereafter, it provides dynamic data (as it becomes available) to a consumer.

Periodically, the application checks for client requests which have been relayed through the

daemon; MDComm provides several built-in requests as well as a mechanism for tailoring

application-specific responses to requests (in essence, the application can define “callbacks”

which are invoked when certain client-generated events occur).

The client, vmd in fig. 11, may initiate daemon/application pairs and utilize data gener-

ated by one or more such pairs. The client also has access to several remote procedure calls

that are serviced by the manager; it may inquire about the applications that are available on

a remote system or request the necessary information to establish a connection to an existing

daemon/application pair. Through MDComm-provided or user-defined routines, the client

also can interact with the application, for example, altering simulation parameters, changing

32



the interval between transfers of dynamic data, terminating a connection or directing the

application to terminate. From the client’s perspective, a connected application is a triple

consisting of the daemon, the application, and the consumer. A client may have many such

triples available at any time. Only one connected application is shown in fig. 11.

The consumer, md consumer, plays a limited role: it accepts data as it becomes available

from the application. The consumer places the data in an area of shared memory so that

it may be used by the client; if data is XDR-encoded, the consumer deserializes the data as

well. Consumers are created by the client for each instance of a connected application and

exist until a client disconnects from an application or until an application terminates. On a

multiprocessor system, the consumer’s activities can proceed concurrently with the client’s,

overlapping I/O and data conversion with user interaction and graphics processing.

Example

The relationship between vmd, namd, and MDComm can be further described through an

example. The user starts at the console of a graphics workstation on which vmd is available.

After startup, vmd’s remote execution form allows selection of another network-accessible

host. Through MDComm, vmd can query chemd for the names of available applications on

the remote host. chemd has a database of installed MDComm-compatible applications from

which names are returned to vmd. After selecting one of the applications, the user still has

to determine how to correctly execute the application. In other words, after asking “What

can I run on this host?”, the next question is “How do I run it?”. Again, chemd supplies

this information to vmd, by returning a list of user-selectable options which are contained in

33



the database entry corresponding to the selected application.

At this point, vmd still operates as a single process, although it has now obtained all

information necessary to initiate an MD simulation on the remote system. Using vmd’s

graphical interface, the user specifies all the parameters of the simulation and submits a

request for remote execution (as shown in fig. 4).

Once the user submits the job, MDComm provides two modes for job initiation: imme-

diate or deferred connection. In either case, the following events take place:

1. An instance of the daemon, namdd, is initiated using exec or rexec.

2. The user-defined argument list is passed to namdd, which marshals the arguments and

initiates an instance of namd. namdd registers with chemd, providing information about

the application and system-assigned protocol ports that can be used to request connec-

tions by potential clients. namdd then receives all static data from namd; subsequently,

this data can be relayed to prospective clients.

Upon request by the user, an immediate connection is created through:

• relay of static data to vmd from namdd;

• creation of a shared memory segment on the client system to receive dynamic data;

• initiation of md consumer, which will manage the shared memory segment;

• establishment of an active socket between the new md consumer and namd.

All components of an active connection have now been created and can share the data

34



needed by vmd. As data arrives from the application, mutual exclusion is guaranteed by

SYSV IPC semaphores that are created when md consumer begins execution.

In the case of a deferred connection, namdd and namd begin execution without any com-

munication to external clients. A connection can be established at a later time; all informa-

tion is kept by chemd and available through MDComm remote procedure calls. Prospective

clients can obtain a list of currently executing namdd/namd pairs and the assigned protocol

port where namdd is listening for connections. If no active connection exists between namd

and a client, the second procedure above is followed to establish the requested connection.

Table 2 summarizes the facilities provided by MDComm. Table 2

here

4.3 Status

MDComm is implemented using the C programming language (with support for ANSI- and

non-ANSI compliant compilers) and is operational today on a variety of systems, including

Silicon Graphics, Hewlett-Packard, Convex Exemplar, and Sun computers. namd is the

third application that has been incorporated into a networked environment using MDComm

software.

At the present time, only one-to-one communication is supported between an application

and consumer, introducing a severe scalability problem. Modifications to support a many-

to-one model, where multiple application node programs can provide data to a consumer,

will alleviate this bottleneck.

As mentioned in Sections 2.3 and 3.5, enhancements to the control capabilities of the

client are also being designed to allow for additional interactive control of applications.

35



MDComm has evolved significantly during its development to date. To provide mature,

production-quality software, close attention will be given to fault-tolerant features which are

necessary in a networked environment. At present, error handling and recovery are provided

only to a small extent; these aspects will be improved in the next phase of development.

5 Structure Refinement and Simulation of the Po-

liovirus Coat

As stated above, MDScope allows simulations of very large biopolymer systems as well as

interactive structure building and refinement. A uniquely suitable system which can take

advantage of the capabilities of MDScope is the coat of the poliovirus, the focus of an

ongoing group research project. This protein complex, shown in its entirety in fig. 12a,

forms an icosahedral shell of 300Å diameter and envelopes the viral RNA. The coat consists

of 240 icosahedrally arranged proteins with 498,000 atoms altogether. Figure 12b presents a

pentamer unit of the icosahedral coat and fig. 12c illustrates the four proteins, VP1 through

VP4, which make up one of the five segments in the pentamer. Obviously, simulation of this

complex poses a challenge. Figure 12

hereThe poliovirus structure has been determined by X-ray diffraction [17]. The structure

reveals a site which plays a key role in the infection process as various antiviral drugs can

replace a sphingosine molecule which naturally occupies the site. It is believed that a lack

of sphingosine alters the stability of the virus coat, leading to a swelling of the coat and the

creation of windows through which the viral RNA can exit into the then infected cell [15] .

36



The sphingosine is actually contained in VP1, as shown in fig. 12d. Antiviral drugs replacing

sphingosine do not leave the site and by their presence prevent the swelling and fenestration

of the coat. At present it is not understood how sphingosine controls the coat’s swelling and

fenestration and it is hoped that MD simulations can help elucidate the mechanism.

5.1 Interactive Molecular Modelling

The structure of the virus coat was not completely resolved by X-ray diffraction; a few

segments of the coat proteins were missing. To complete the structure, the amino acid

sequences of the missing protein segments were compared with a representative set of proteins

in the protein data bank and homologous sequences found [2]. The respective structures were

then used to complete the coat proteins.

Structures determined from homology matches are not often correct, as amino acids can

take on any one of several conformations. The large-scale differences which must be effected

to allow the backbone of the new structure to fit into its proper location, can often be

corrected by changing a small number of dihedral angles. Sterical conflicts can then be

resolved through minimization and equilibration using MD simulations.

For the poliovirus coat described here, refinement has been previously carried out using

Quanta [27]. The motions of the two main input devices, the mouse and an on-screen dial

box, did not readily map to the actions needed to adjust a three-dimensional structure. One

of the goals of MDScope is to enable structure building in a three-dimensional environment.

For this purpose vmd provides the user with two three-dimensional pointers to separately

move two structural elements relative to each other. Coupled to a stereo display device, this

37



provides an intuitive means by which to examine the quality of an initial guess of a structure.

Most structural changes occur in the first one hundred steps of minimization. An effective

modelling program must be able to complete this minimization sufficiently fast, i.e., in

about ten seconds, to allow a natural user response. This time scale presently limits the

minimization and equlibration to systems on the order of a thousand atoms, an acceptable

size as most structure building can be limited to small volumes. Once a relevant region of

space is defined, namd will treat atoms outside that region as fixed while minimizing those

inside.

5.2 Simulation

Molecular dynamics simulations of virus coat proteins will investigate how sphingosine affects

the conformation of its immediate protein environment. This requires a simulation of at least

20,000 atoms for about a nanosecond. It is not possible to use the symmetry of the crystal

structure to reduce the problem size as the onset of infection occurs when a cellular receptor

binds to one of the coat proteins, placing the virus into an asymmetrical environment.

To complete a simulation of the necessary scale in a reasonable time, computations must

be performed in parallel, a task for which namd is specifically designed. Its spatial decompo-

sition avoids communication bottlenecks seen in other algorithms, promising a nearly linear

speed-up with processor number, and its scalable data distribution provides effective use of

computer memory.

38



6 Availability

vmd, namd, and MDComm may be obtained free of charge for educational or non-profit use,

including all source code and documentation. Complete information about namd and vmd is

accessible from the Theoretical Biophysics World Wide Web (WWW) server, available via

URL http://www.ks.uiuc.edu.

vmd is available for Silicon Graphics workstations running IRIX version 4.0.5 or later, or

Hewlett-Packard PA-RISC workstations runninng HPUX version 9.01 or later. vmd requires

a C++ compiler and the use of the GL graphics library; on Hewlett-Packard workstations

vmd supports the use of the NPGL graphics library, a port of the GL library to many work-

station architectures available from Portable Graphics, Inc. The full source code for vmd

with all features described here can be obtained via anonymous ftp from the Theoretical

Biophysics ftp server ftp.ks.uiuc.edu, in the directory pub/mdscope/vmd. This distribu-

tion also includes a users guide, a programmers guide, and installation guide for researchers

interested in both using the current program, or adding or changing features.

The complete namd source code may be obtained via anonymous ftp from the Theoretical

Biophysics ftp server ftp.ks.uiuc.edu, in the directory pub/mdscope/namd. This distribu-

tion also includes the programmers guide. namd requires a C++ compiler and an underlying

communication package. Currently PVM and Charm++ are the supported communications

packages. PVM may be obtained via anonymous FTP from ftp.netlib.org, in the direc-

tory pvm3. Charm++ may be obtained from a.cs.uiuc.edu, in the directory pub/CHARM++.

The DPMTA code used for full electrostatics may be obtained from ee.duke.edu, in the

directory pub.

39



The MDComm software, including the namd daemon, manager, consumer, and library,

is available for Silicon Graphics, Hewlett-Packard, Convex Exemplar, and Sun computers.

MDComm is implemented in C, with support for ANSI- and non-ANSI compliant compil-

ers). Source code for MDComm may be obtained via anonymous ftp from the Theoretical

Biophysics ftp server ftp.ks.uiuc.edu, in the directory pub/mdscope/mdcomm.

7 Acknowledgements

The authors would like to thank the members of the Theoretical Biophysics group at the

University of Illinois and the Beckman Institute for many useful suggestions and willing

help in testing the MDScope software. The authors gratefully acknowledge the support of

grants from the National Institutes of Health (PHS 5 P41 RR05969-04), the National Science

Foundation (BIR-9318159 and ASC-8902829), and the Roy J. Carver Charitable Trust.

Intel Paragon and Connection Machine 5 access has been made possible through the help

of the San Diego Supercomputer Center (SDSC) and the National Center for Supercomputing

Applications (NCSA), and a MAC computer usage grant (MCA93S028P). The authors wish

to thank NCSA for access to the Convex Exemplar parallel computer.

40



References

[1] M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford University

Press, New York, 1987.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. J. Mol. Biol.,

215:403–410, 1990.

[3] F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, J. E. F. Meyer, M. D. Brice, J. R.

Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi. J. Mol. Biol., 112:535–542,

1977.

[4] J. Board, Z. Hakura, W. Elliot, and W. Rankin. Scalable variants of multipole-

accelerated algorithms for molecular dynamics applications. Technical Report TR94-

006, Duke University, Dept. of Elec. Engr., 1994.

[5] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and

M. Karplus. J. Comp. Chem., 4(2):187–217, 1983.

[6] B. R. Brooks and M. Hodoscek. Chemical Design Automation News, 7(12):16–22, 1992.

[7] C. L. Brooks III, M. Karplus, and B. M. Pettitt. Proteins: A theoretical perspective of

dynamics, structure and thermodynamics. John Wiley & Sons, New York, 1988.

[8] A. T. Brünger. X-plor, version 3.1, a system for X-ray crystallography and NMR.

The Howard Hughes Medical Institute and Department of Molecular Biophysics and

Biochemistry, Yale University, 1992.

41



[9] M. Carson. J. Appl. Cryst., 24:958–961, 1991.

[10] M. Carson and J. Hermans. In J. Hermans, editor, Molecular Dynamics and Protein

Structure, pages 165–166. University of North Carolina, Chapel Hill, 1985.

[11] T. Clark, R. Hanxleden, J. McCammon, and L. Scott. In Proceedings of the Scalable

High Performance Computing Conference, Knoxville, TN, May 1994.

[12] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. In Proceedings of SIGGRAPH ’93,

page 135, Anaheim, CA, 1993. Association for Computing Machinery.

[13] T. E. Ferrin, G. S. Couch, C. C. Huang, E. F. Pettersen, and R. Langridge. J. Mol.

Graphics, 9:27–32, 1991.

[14] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3

users guide and reference manual. Technical Manual ORNL/TM-12187, Oak Ridge

National Laboratory, May 1994.

[15] R. A. Grant, C. N. Hiremath, D. J. Filman, R. Syed, K. Andries, and J. M. Hogle.

Curr. Biol., 4(6):784–797, 1994.

[16] S. W. Haney. Computers in Physics, 8(6):690–694, 1994.

[17] J. M. Hogle, M. Chow, and D. J. Filman. Science, 229:1358, 1985.

[18] W. Kabsch and C. Sander. Biopolymers, 22:2577–2637, 1983.

[19] L. V. Kale and A. Gursoy. In Proceedings of the 7th SIAM Parallel Processing Confer-

ence, San Fransisco, CA, Feb. 1995.

42



[20] L. V. Kale and S. Krishnan. In Proceedings of OOPSLA-93, Washington, DC, Sept.

1993.

[21] P. Kraulis. J. Appl. Cryst., 24:946–950, 1991.

[22] M. Lin, J. Hsieh, D. H. C. Du, J. P. Thomas, and J. A. MacDonald. In Proceedings

of Supercomputing ’94, pages 154–163, Washington, DC, 1994. IEEE Computer Society

Press.

[23] G. Martyna, D. Tobias, and M. Klein. J. Chem. Phys., 101:4177–4189, 1994.

[24] J. A. McCammon and S. C. Harvey. Dynamics of proteins and nucleic acids. Cambridge

University Press, Cambridge, 1987.

[25] Minnesota Supercomputer Center, Inc., Minneapolis, MN. Xmol, version 1.3.1, 1993.

[26] S. Plimpton and B. Hendrickson. A new parallel method for molecular dynamics sim-

ulation of macromolecular systems. Technical Report SAND94-1862, Sandia National

Laboratories, August 1994.

[27] Polygen Corporation, 200 Fifth Av., Waltham, MA 02254. Quanta, 1988.

[28] Sun Microsystems. XDR: External data representation standard. RFC-1014, 1987.

[29] W. F. van Gunsteren and H. J. C. Berendsen. Gromos manual. BIOMOS b. v., Lab. of

Phys. Chem., Univ. of Groningen, 1987.

[30] P. K. Weiner and P. A. Kollman. J. Comp. Chem., 2:287, 1981.

[31] G. Zhang and T. Schlick. J. Comp. Chem., 14:1212–1233, 1993.

43



[32] F. Zhou and K. Schulten. J. Phys. Chem. In press.

44



Class Name Description
Communicate Protocol independent means of message passing, including

operations such as send, receive, and broadcast
Inform Print messages to the screen from any processor
SimParameters Container class for static simulation data such as number of

time steps, time step size, etc.
Molecule Container class for static structural data for the molecule such

as which atoms are bonded by various types of bonds, explicit
exclusions, etc.

Parameters Container class for energy parameters from the parameter files
LoadBalance Determine the distribution of patches to processors that will keep

the load balanced across all processors
Collect Gather global information such as energy totals
Output Produce all forms of output for namd such as trajectory files, energy

output, etc.
PatchDistrib Container class for the current processor assignment for all the

patches in the simulation
FMAInterface Processor level interface to the full electrostatic module
PatchList Contains all the patches belonging to this processor and the logic

to schedule the execution of these patches

Table 1: Description of the purpose of the objects present on each processor in namd.



Manager Daemon Application Client Consumer

Application/Process Query X X
Process Control/Execution X X
Application Definition X X
Data Access X X
Static Data Transfer X X X
Dynamic Data Transfer X X
Data Conversion X X
Application Steering/Event Processing X X X

Table 2: Summary of the facilities provided by MDComm and the components of an
MDComm application which are involved in each facility.



Figure 1:
Researchers of the Theoretical Biophysics group at the University of Illinois and the Beckman
Institute utilizing a stereo projection facility with MDScope software, discussing the structure
of a protein-DNA complex. (Photo courtesy of Rich Saal of the Illinois State Journal-
Register, Springfield, Illinois.)



...
.. 

Command Command Command Command 

CommandQueue 

Text Input Mouse Input Menu Forms 3D Pointer 

User Interface Objects 

DisplayDevice 

Scene 

Display 
Objects 

Displayable 

Displayable 

...
.. 

Molecule 
Objects 

MoleculeList 

Molecule 

Remote Sim 
Objects 

RemoteList 

...
.. 

Molecule 

Molecule 

Remote 

Remote 

Remote 

Figure 2:
Component object diagram for vmd. The program is comprised of four main categories of
objects: Display objects, responsible for image rendering; molecule objects, which maintain
the individual molecular structures and dynamic data; remote simulation objects, which
maintain the state connections with remote computers; and user interface objects, which
accept and act upon commands from the user. Solid arrows between objects and categories
indicates a uses a relationship; dashed arrows between objects indicates an is a relationship.



Figure 3:
Sample vmd session, showing a remote simulation connection and the use of the graphical
user interface. After initializing the simulation as shown in fig. 4, vmd retrieves the molecular
structure from the remote computer and then displays the results of the molecular dynamics
calculations as they are computed. The MD application used here is namd, described in
section 3; the boxes surrounding the polypeptide visualize the spatial decomposition used in
the parallelization strategy of namd.



Figure 4:
vmd screen image illustrating the use of the graphical user interface to initiate a molecular
dynamics simulation on a remote computer. Here a connection to the machine “ophelia” has
been established, and the simulation options are being edited.



Master Process 

Processor 0 

Patch 1 

Processor 1 Processor 2 

Processor 3 Processor 4 

Patch 2 

Patch 3 Patch 4 

Patch 5 Patch 6 

Patch 7 Patch 8 

Patch 9 Patch 10 

Patch 11 Patch 12 

Patch 13 Patch 14 

Patch 15 Patch 16 

Patch 17 Patch 18 

Patch 19 Patch 20 

Patch 21 

Figure 5:
Example mapping of patches to processors in namd. Multiple patches are mapped to each
processor allowing for load balancing by reassigning patches to processors and for efficient
scheduling of tasks on each processor to avoid idle processor time.



Figure 6:
Spatial decomposition of a small polypeptide. Each cube represents a patch in namd.



Patch 1 

Processor N 

Patch 2 

Patch 3 

Patch 4 

Multiple Threads of Control 

1 

2 

3 

4 

T
h

re
ad

s 

Time 

Patch 1 

Processor N 

Single Thread of Control 

1 

T
h

re
ad

s 

Time 

123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901

1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123

12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456

1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123

1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123

123456789012345678901234567890121
123456789012345678901234567890121
123456789012345678901234567890121
123456789012345678901234567890121
123456789012345678901234567890121
123456789012345678901234567890121
123456789012345678901234567890121
123456789012345678901234567890121
123456789012345678901234567890121

1234567890123456789012345
1234567890123456789012345
1234567890123456789012345
1234567890123456789012345
1234567890123456789012345
1234567890123456789012345
1234567890123456789012345
1234567890123456789012345
1234567890123456789012345

12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456
12345678901234567890123456

Busy Idle 

Figure 7:
Processor utilization comparison between single-threaded and multi-threaded execution.
With the single-threaded execution, the processor is idle while waiting for data for the
next computation. With the multi-threaded execution, when one thread is blocked, another
thread is scheduled thus reducing the amount of idle processor time.



Communicate Inform 

Sim Parameters 

Molecule 

Parameters 

LoadBalance 

Collect 

Output 

PatchDistrib 

FMAInterface 

Node 

PatchList 

Controlling 
Logic 

Patch 1 

Patch N 

...
.. 

Figure 8:
Processor level object diagram for namd. Each of the objects shown exists on each processor
running namd. A description of the purpose of each object is given in table 1



Bond Forces 

Angle Forces 

Local 
Electrostatic Forces 

Long Range 
Electrostatic Forces 

...
.. 

Coordinates 

Velocities 

Forces 

Integrator 

Controlling 
Logic 

Patch Object 
Force Objects 

Data For N Atoms 

Figure 9:
Patch level object diagram for namd. Each patch consists of a data section which includes the
coordinates, velocities, and forces for each atom, force objects which compute components
of the force field, an object to perform integration, and the controlling logic that calls each
object appropriately.



1

2

3

4

2 3 4 5 6 7 8

S
pe

ed
up

Number of HP/735 workstations

with FMA
with cutoff

Figure 10:
Speedup of namd on a network of HP-735 workstations for the glucocorticoid receptor DNA
binding domain (13,566 atoms altogether), with DPMTA and without DPMTA. The speedup
reported is with respect to the two-processor performance. The simulations were done with
an 8 Å cutoff distance; DPMTA calculations were carried out using 5 levels and 4 multipole
terms.



MD_CONSUMER 

VMD 

NAMD 

NAMDD 

CHEMD 

Client System 
(Graphics Workstation) 

Application System 
(Remote Computer) 

Figure 11:
MDComm coordination of namd and vmd. The application system may be the same local
host on which a user is running vmd, or a remote computer.



 

b. 

c. d. 

VP1 

VP2 

VP3 

VP4 

a. 

Figure 12:
The coat of poliovirus, shown radially depth-cued in (a), is naturally assembled from 12
copies of one pentamer, shown in (b). The pentamer is made of five copies of one protomer,
which is itself comprised of four proteins as illustrated in (c). A sphingosine sits inside of
the VP1 protein and is implicated in controlling the stability of the virus coat. The interface
between two protomers is shown in (d), with one protomer rendered in ribbons and the other
as a backbone trace. The sphingosines are shown as solid spheres. All figure elements were
rendered using vmd.


