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The method of Brownian dynamics to simultate trajectories of particles diffusing under the influence of external
forces is extended to the approximation of local linear forces and to reflective boundaries possibly confining
the diffusion space. A simple algorithm for the generation of random diffusive displacements is developed and
its validity demonstrated by comparison with analytlcal and inumerical. ‘descriptions of sample one-

. dimensional diffusion distributions.

I. INTRODUCTION

Reaction processes in the chemistry of dense media
are to a large degree stochastic in nature and their theo-
ry has been the realm of statistical mechanics,  The ad~
vent of experimental techniques to probe reaction pro-
cesses on the nanosecond to picosecond time scale have
borne out the realization that, even at such short times,
reactions are often governed by diffusionlike motion,
Recent examples include geminate recombination pro-
cesses in liquids, ! (photo) isomerization involving the
motion of large molecular subunits,? polymer folding®
and, particularly relevant in biochemistry, side group
motion in proteins.? The Brownian character of these
processes can be understood if one considers the time
scale involved, For example, for geminate processes
in the “solvent cage”, i.e., reactions of two solutes
after encounter the’ reactlon process involving many
reencounters extends typically over a time much longer
than the time 7, of collisions with the bath and the mo-
mentum relaxation time 7, of the solute, Consequently,
a description of geminate recombination and many other
processes can regard the motion of the reacting par-
ticles as Brownian,

Brownian motion involves to some degree hydrody-"
namic interactions between different particles (or mo-
lecular groups). These interactions can be taken into
account (see, for example, Ref, 5). We will adopt here
the common approximation which neglects hydrody-
namic effects. However, even in the approximation of
independent particle diffusion, theoretical descriptions
of diffusion-controlled processes are generally limited
to problems involving a high degree of (artificial) sym-
metry, The reason is that the Einstein~Smoluchowski
diffusion equation basic to the description can be solved
numerically essentially only for diffusion which can be
reduced to one-dimensional motion, e.g., to the dis-
tance between two spherically symmetric particles, To
overcome this limitation Schulten and Epstein® followed
a suggestion by Ermak” and applied the method of Brown-
ian dynamics, This method simulates large ensembles
of diffusion trajectories corresponding to a certain
process, The simulation is based on the algorithm
to choose diffusive displacements during the time steps
At >7, in accord with the Einstein-Smoluchowski dif-
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fusion equation, The close relationship of this method
to the Wiener path integral formulation has been men-
tioned in Ref, 6. :

The Brownian dynamics method developed so far is
restricted in its range of application by the requirement
of nearly constant local forces during random diffusive
displacements covering time periods Af. In this paper
we provide an algorithm for random displacements
which holds for (approximately) local linear forces.,

The algorithm requires little additional computational
effort over the algorithm of Ermak but, because of its
closer fit to an actual force field governing a diffusion
process, should allow longer time steps Af to-be taken.

In many applications of the theory of diffusion-con-
trolled processes the diffusion space is limited by bound-
aries; the physical origin of these boundaries is strong
repulsive forces. The magnitude of these forces and
their sudden onset represents a serious problem for any
theory based on simple polynomial approximations of
the force field, In the context of the diffusion equation,
boundaries are traditionally cast into a boundary condi-
tion requiring the flux to vanish along the direction nor-
mal to the boundaries. In the following we also suggest
an algorithm for random displacements which correctly
simulates diffusion distributions near boundaries. We
expect that the extended algorithm presented here in-
creases the range of the method of Brownian dynamics
to include many diffusion-controlled reaction processes
of current interest. N

Il. A NEW ALGORITHM FOR DIFFUSIVE
DISPLACEMENTS

We obtain an algorithm for simulating Brownian mo-
tion near a reflective boundary by considering the analyt-
ical result for the probability distribution in a constant
force.® In this case the one-dimensional Einstein-
Smoluchowski diffusion equation is

) & ) '
2 pletlx=(Z +b 2 ) ol ), o
where b is related to the force F by

 b=-BF - ' . (@)

and g=1/kT, t=Dxtime, D representing the diffusion
constant, The solution of Eq, (1) is required to satisfy
the initial condition
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P(x,t=0[xo)=6(x—xo) , ) 3)
as well as the reflective >boundary condition ‘
5% ple, t]x0) +b plx, | x0) =0 at x=0 , @)
The solution to Eqs. (1)-(4) may be written®
p(x’tl'xO)=i-ozla {)g(x,tlxo) ’ . (5)
where : | .
bole, t|xo) = @mt)™ 2 exp[— (x —xq + btV /4t] , (8)
prle, | xe) = (@m2) Y2 expl—bxy = (¢ +x0 +5)%/4t],  (7)
bolx, | xg) = L bexp(~bx) erfc[(x +xo - bt)/VEE],  (8)

and erfc(z) denotes the complementary error function, ®
Polx, t1xo) describes the diffusion process in the absence
of the boundary, i.e., solves Egs. (1) and (3); the re-
maining terms account for the presence of the boundary.
Our aim in this section is to develop an algorithm for
random displacements which closely reproduces dis-
tribution (5) and to generalize the algorithm to linear
forces near a boundary. The accuracy of the algorithm
will be tested in Sec, III.

The relative probability that at time ¢ the particles
are distributed according to one of the three distribu-
tions (6), (7), or (8) is

N;(£]xo) = J':'dxp,-(x,tlxo), i=0,1,2, 9)

These integrals are found to be

No(t | o) =1- Lerfe(x, - b8)/VEE], (10a) -
N, (t| %) = % exp(baxo) erfel (v, + BONEE] , (10b)
Nyt |0) = 1 = No(t|x0) = Ny (¢ | x0) . (10c)

The physical interpretation of these probabilities will
motivate an algorithm for random displacements that
reproduces Eq. (5). For this purpose we consider the
rate at which particles collide with the boundary for the
first time, given by

vt xe) = —JfT“,T exp[— (o —b2)2/4t] . oAy
‘ i

Do, t|x0) =

3.

The factor 2 included in Eqs. (14) and (15) assures
that the sum of the two distributions produces the cor-
rect fraction Ny(#lxg) +No(t ) of events,

Certainly other algorithms could be suggested. For
example, an algorithm might first partition events cor-
responding to fractions N;(¢lx,) and then reproduce the -
corresponding distributions (6), (7), and (8). However,
our suggestion, which is based solely on the boundary-
free diffusion distribution and the Boltzmann distribu-
tion, can be directly generalized to linear force diffu-
sion. . We will now explicitly show how diffusive be-
havior governed by distribution (6) and the approximate
distributions (14) and (15) can be computer simulated by
use of a conventional random number generator.
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‘One can express py(x, ¢ I}co) in terms of the rate v(¢ixg)

and py(x, t1x,), the outgoing collision-free distribution
starting at the boundary

t
o, 1) = fo at polx, t = T10) (T 1 %) .

The interpretation of this result is the following:

(12)

Dolx, t1xg) describes those particles which appear not to

have hit the boundary during time #, p,(x, ¢tlx,) describes
particles which appear to have hit the boundary once in
time #; the remaining particles are described by

palx, tlxp). To mimic the diffusion process our algorithm

will distinguish between these three possibilities, i.e.,
it will reprodl\lce the partial distribution (6)-(8).

The algorithm suggested will distribute particles in
a first step according to the Gaussian process (6). It
may happen, however, that some particles thus distrib-
uted lie bekhind the boundary. In this case the algorithm
should simulate distribution (12). Since the algorithm
reproduces only the oufcome of a diffusion process after
time ¢ without knowledge of intermediate diffusive mo-
tion, the actual arrival times and, hence, the arrival
rate v(7lxy) are not known. To obtain arrival times at
the boundary, an ad hoc assumption about the inter-
mediate diffusive motion must be introduced. The as-
sumption made is that intermediate diffusion trajecto-
ries are determined by the local drift velocity BF(x)
superimposed on a constant random velocity., This pro-
vides an arrival time 7 at the boundary (see Appendix
A) for which the corresponding distribution of times is

n(7|x0) = [¥§ ¢/ (4m7*) ]2 exp[ - (x — b)?t/47%]. (13)

In analogy to Eq. (12) this rate suggests the approxi-
mation

t

pu a2 [ arpolx, t=7|O)a(r|x0), x> - b(E=7).

, 0 (14)
Thus, in a second step, the algorithm distributes par-
ticles according to the Gaussian process py(x, £ —7|0).
If particles end up again behind the boundary, they are
distributed in a third step according to expression (8)
approximated by a Boltzmann distribution. For a con-
stant force this implies the approximation

1
bs0. (15)

The starting point for a diffusion step of time £ is xy,
say. The algorithm randomly chooses endpoints x to ap-
proximately conform to distribution (5), For diffusion
in the absence of boundaries and in a constant force the
procedure is standard. A random number ¥ is generated
on the interval [0, 1]'° and the jump endpoint is found by
inverting the cumulative distribution function, ' i,e.,
by solving

1’=f dy poly, t|x0) (18)
for x. One obtains
x=xqg— bt + V&f erfc™(27) , 0%))

where erfc™(z) denotes the inverse complementary error
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FIG 1. Results for the probability distribution p(x, ¢=0. 001

nm?® |x%=0.1 nm) for free diffusion near a reflective boundary
(at x =0) as described by the Brownian dynamics algorithm of
Sec. O averaging over 10* trials ( ), by the analytical
expression of Eq. (27) (---), and by the numerical solution of
Appendix C (-+-). The arrow indicates the starting position
x9=0.1 nm; the numerical solution assumed an artificial re-
flective boundary at 0.2 nm; all particles found at x > 0.2 nm
in the Brownian dynamics method are collected in the last par -
tition at x =0, 2 nm.

function.® For a lineair force (see Appendix C for the
corresponding diffusion equation) »

—BF(x)=b+cx .

The distribution pq(x, f |x,) describes the Ornstein—
Uhlenbeck!? process [0=1-exp(=2¢ct)],

bolx, t|x0) = c/Zer]"z exp{~clx +(b/c)’
X (xo +b/c) exp(-ct)]?/26}

leading to the jump endpoint

(18)

(19)

x'-—-xo‘exp(— ct) - (b/c)[1 ~exp(-c#)]

+{2/c)[1 —exp(=2¢ct)]}/2 erfc™(27) .

For x, chosen close to the boundary, a significant

(20)
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FIG. 2.
nm™! near a reflective boundary (at x =0).
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number of trajectories will have endpoints beyond the
boundary (x<0). A corresponding particle has diffused
to the boundary and hit at least once., For free diffusion
(b=c=0) only p,(x, t1x,) in Eq. (5) contributes to the re-
flected contribution. In this case the total distribution
is reproduced by the following modification of Eq. (17):

x= | %o + VAT erfe™(27)] , (21)

i.e., by reflecting the endpoint back onto the positive

x axis. It has been shown® that this procedure\repro-
duces the diffusion distribution exactly (within statistical
error), ’

The generalization of Eq. (21) in the presence of a
force requires one to determine the time 75 whena
particle with x <0 has arrived at the boundary. - This
arriyal time is (Appendix A)

.1 Xo =X
TB: -E ln(m%;;-_;), (22)

which in the case of a constant force (¢ =0) reduces to
Ta=x0t/(xg~x) . (23)
The jump endpoint is then determined by assuming a

diffusion step away from the boundary covering the re-
maining time period ¢ — 75. For this purpose a second

_ random number #’ is chosen which yields (t'=¢ - 7,)

%' =xgexp(=ct’) = (b/c)[1 —exp(-ct’)]

+{(2/c)1 - exp(-2ct")]}2|erfc™t(20)] (24)
or, for ¢=0, ‘
x'--xo ~bt' +Va&T [erfc(27)] . (25)

The absolute value of erfc"(zr')m these expressxons
accounts for the condition that the random contribution

to the displacement is directed away from the boundary.

A

For forces attractive toward the boundary it is pos-
sible that the jump endpoint x resulting from Eq. (24) or
(25) is again negative. This corresponds to the occur-
rence of secondary, tertiary, etc., encounters with the
boundary. In this case a third random number »'’ is
chosen and the particle finally distributed according to

20 [T
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(a) Results for the probablllty distribution p {x, £=0, 001 nm? | %g=0.1 nm) for diffusion in the constant force BF{x) =~ 20
For further details refer to the caption for Flg 1.

(b) Results for the probability dis~

tribution p (x, £=0.001 nm? |%9=0.1 nm) for diffusion in the constantforce BF(x)=~50 nm™! near a reflective boundary (at x = 0),

For further details refer to the caption for Fig. 1.
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(2) Results for the probability dlstrlbutlonp (x, £=0.001 nm? 1%4=0.1 nm) for diffusion in the linear force BF(x) =(—20
For further details refer to the caption for Fig. 1.

(b) Results for the proba-

bility distribution p (x, £=0.001 nm? |x=0.1 nm) for diffusion in the linear force BF (x) ={— 20 — 400 x) nm™! near a reflective

boundary (at x =0),

o
"=5,!- L dy pa(y,t - 75]0) (26)
where N=[5dyp,(y,t-7510).
pression to yield x'’ is discussed in Appendix B.
sufficient to say here that for attractive forces
P2y, t —T510) resembles the Boltzmann distribution.
Hence, the algorithm reproduces the trend toward a
Boltzmann distribution of particles caught in a potential
well near a reflective boundary,

The inversion of this ex-
It is

. TEST OF THE ALGORITHM

In th1s sectmn we demonstrate the va11d1ty of the al-
gorithm for diffusive displacements in a linear force
near a reflective boundary, For this purpose the out-
come of 10* random choices of endpoints x is monitored
and compared with probability distributions evaluated by
conventional methods, viz,, analytical solutions avail-
able for the constant force situation and finite-difference
solutions (Appendix C) of the Einstein-Smoluchowski
diffusion equation,

For our calculations we chose an initial position
x%5=0.1 nm near the boundary (at x =0) and assumed a
time duration of =107 nmz corresponding to a diffusive
broadening of about 0.06 nm. Force constants were
chosen to yield illustrative examples,. The diffusion
space 0<x<0,2 nm was partitioned into 100 intervals of
equal width, The number of random endpoints in each
partition was recorded and the distribution normalized
after 10* applications of the algorithm (10° for Fig. 4),
which took about 3 sec CPU time on a Univac 1182 in-
stallation. Endpoints beyond x =0.2 nm were collected -
in the last partition to provide a measure of the number
of particles escaped from the diffusion space. A dif-
fusion space of 0 <x <0.2 nm with 100 partitions was also
used in the finite-difference solution. In the following
Figs., 1-6, the results are shown only for every other
partition, .

Fxgure 1 presents results for free diffusion (b = =¢=0),
The Brownian dynamics algorithm reproduces well the
analytical solution

For further details refer to the caption for Fig. 1

(@nty /2 expl— (e —xoP /At vexpl— e +xoP/adl} . (27)

The finite-difference method also yields good results

_except near x=0.2 nm, where a reflective bogndary has

been assumed.,

Diffusion in a constant force is illustrated in Figs,
2a and 2b for =20 nm™ and 5 =50 nm™!, respectively.
The main features in comparison to the free diffusion
situation in Fig, 1 is the drift of the probability maxi-
mum by - b¢ and the appearance of a Boltzmann-like
distribution near the boundary. All three descriptions,
analytical, numerical and Brownian dynamics, are in
agreement, However, for the stronger force the Brown-

" ian dynamics method slightly underestimates the prob-

ability density at the boundary. Based on additional
data for forces up to =700 nm™, a 10% underestimate
seems to be a systematic error due to the approxima-
tions involved in accounting for the p,(x, ¢1x,) contribu-

tion.- The error can be attributed in part to neglect of
20— e T —
15t -

» |

‘a

=4

Q

g |

2 10 i

B

o

Q9 L

o

i L
5 -
0 1 n . " 1, 1 1 2 L 1 1 L i n I 1
0 005 010 015 020

Distance from wall (nm)

FIG 4. Results for the probability distribution p (x, £=0. 001
nm’® {x=0.1 nm) for diffusion in the linear force BF(x)
=(-20-200 x) nm™! near a reflective boundary (at x =0) aver-
aging over 10° (rather than 10%) trials of the Brownian dy~-
namics method. For further details refer to the caption for
Fig. 1.

J. Chem. Phys., Vol. 75, No. 1, 1 July 1981



G. Lamm and K. Schulten: Diffusion-controlled processes 369

20—

(a)

—
un
T

L

-
o
—T T

Probability density

PSS PN Y SN O R — NP ]
5 505 010 015 020
Distance from wall (nm)

FIG. 5
+200 x) nm™! near a reflective boundary (at x =0).

refer to the caption for Fig. 1.

the erfe(x) factor of py(x, £1xg) [see Eq. (8) and Appendlx
BlL. -

In Figs. 3a and 3b we present the probability distribu-

tion for two different linear forces with negative slopes
" superimposed on the constant force of‘ Fig. 2a. A

comparison with Fig, 2a shows clearly the further drift
of particles toward the boundary. As an analytical so-
lution is not available for the linear force case, only
results of the finite-difference and the Brownian dynam-
ics methods are compared. The agreement between the
two methods is good. ‘The scatter in the Brownian dy-
namics results, is of course, of statistical origin and
can be reduced if the number of trials is increased,
This is demonstrated in Fig, 4 which shows the result
of 10° (rather than 10%) applications of the Brownian dy-
namics,;method, thereby decreasing the scatter by a
factor of about 107/,

20 e e

_

v
|
i

Probability density
S

"G T o1 0B T2

Distance from wall (nm)

FIG. 6. Results for the probability distribution p {x, t=0.001
nm? [ x9=0. 1 nm) for diffusion in the linear force BF (x) =(~20
—~200 x) nm™! near a reflective boundary (at x =0) comprising
the Brownian dynamics distribution of 100-jump trajectories
{with each displacement of 107 nm? time duration) rather than
of single displacements (of 10~ nm? time duration).. For further
details refer to the caption for Fig. 1.
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(a) Results for the probability distribution p (x, £=0.001 nm? | x5=0. 1 nm) for diffusion in the linear force BF (x) =(—40
For further details refer to the caption for Fig. 1.
bility distribution p (x, =0, 001 nm? | xy=0.1 nm) for diffusion in the linear force BF(x)=(=60+200 x} nm™,

(b) Results for the proba-
For further details

Figs. 5a and 5b represent diffusion in a linear force
with positive slopes superimposed on a constant force.
Figure 5a corresponds to the situation that the diffusing
particle is initially located at the point of zero force
(potential maximum), The broad Gaussian spread and

“the absence of two relative maxima of the distribution

agree with remarks by van Kampen'® on diffusion in a
quadratic potential, The effect of the wall is slight but
noticeable in the asymmetry of the Brownian dynamics
result (the finite difference result is symmetrical be-

- eause of the artificial reflective boundary at 0.2 nm).

The potential maximum corresponding to the force of
Fig. 5b occurs at x=0.15 nm, i.e., the diffusing par-
ticle is initially situated on a slope attractive toward the
boundary. The expected drift and the development of
Boltzmann character near the boundary is clearly shown.
There is also significant diffusion over the barrler with
109% of the particles escaping.

Finally, the question arises whether the outcome of
the simulation of diffusion trajectories by the extended
Brownian dynamics algorithm devised here depends on
the choice of jump times, For an answer we have re-
peated our calculations for diffusion in the linear force
of Fig. 3a, but comprising the dlstrlbutlon of 100-Jump
tra]ectones (with each displacement of 10°° nm? time
duration) rather than single displacements (of 10 nm?
time duration), The results presented in Fig. 6 again
closely agree with the results of the finite-difference
method, except for a slight increase in scatter., Thus
the simulation by the extended Brownian dynamics al-
gorithm is invariant of the jump times chosen, and in an
actual application one can choose jump times as long as

" can be reconciled with the local approximation of the

actual force by a linear field and with the shape of the
boundaries,
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APPENDIX A: EVALUATION OF THE TIME OF
ARRIVAL 7,

We determine here the time of arrival at a boundary
at X=0 for a diffusion step of duration ¢ described by the
path X(7) which carries a particle from X(7=0)=x,>0
to X(r=¢)=x <0. The path X(7) obeys the Langevin
equation

X=mpA(7)+pF(X) , (A1)

where m is the particle mass, A(7) the stochastic force
due to the bath and F(X) the external force, The al-
gorithm adopted in Sec, II for the diffusive displace-
ments corresponds to the representation of the stochastic
term in (A1) by a constant (random) velocity, viz.,

mpA(T)=v, , (A2)
which complies with the initial and final position. For
a linear force we have then

X=v,-b-cX. (A3)

We like to determine the time of arrival at the boundary
T Which is defined by the equation

X(rg)=0, (A4)
For this purpose we note that the solution of Eq. (A3)is
(xoe ~ct —x)(l ecf)

X(T) =xue' (1 e ct) s (As)
which yields
Ts=c In[(xy -x)/(xge™* —x)] . (A8)

For a constant f‘drce, :_i, e. c=0, these solutions simplify

X(r)=x, "‘0;"” | (a7
and
75=x0t/ (g —x) . (a8)
APPENDIX B: EVALUATION OF ENDPOINTSx
, FROM pz(x tlo) .
The mtegral for the jump endpoint x’’ given by
f dy paly, t - rglo) (B1)
where ‘ L » o ’
Pl tIO);¥b exp( b'x)erfc[(x bt)/VEt ] (B2)

[1 <erfe(avf /2)]

cannot be 1nverted analytmally For bt large (and
positive) this expression reduces to the Boltzmann
distribution .

palx, t|0)= b ™™ (B3)
and Eq. (B1) yields
x" =—In(»)/b . (B4)

If b is small, the contribution of p,(x, t 1xy) to plx, t1xo)
in Eq. (5) will also be small and the approximation of
little consequence, If b is large but £ small, then the
error can be significant, This will occur for a strong
constant force and will affect those particles whose end-~

t

pointsare chosenaccording toEq. (B1)andwhere £~ 7.
The neglect of any short-time dependence of palx,£10)
will tend to distribute some particles too far away from
the boundary. We have found that in a strong force, ap-
proximation (B3) tends to underestimate the distribution
at the boundary by about 10%. Though other approxima-
tions could be tried and Eq. (B3) possibly improved, we
have used approximation (B3) in our calculations for

. constant forces. For a linear force one must distinguish

between situations of positive and negative slopes. For
positive slope, the distribution corresponding to Eq.
(B3) is

palx, t]0)=v2c/m exp[—-(c/2)(x +b/c)2]/erfc(b~/'2_)

(B5)
and Eq. (B1) yields
x''==b/c +VZ]c ertc {rerfc(b N2¢)], ¢>0. (BB)

For negative ¢ the Boltzmann distribution is unbounded
and hence unnormalizable, We have obtamed good re-
sults using instead the distribution

be-bx/(l __e-bz/lcl)’ 0=<x=< I 2|
. c

palx, t|0)= 5 (B7)
0, x> —I .
which yields the gndpoint
"= (1/B)In(1 =y +retMiel), c<O. (B8)
Again other approximations are possible. If a linear

force approximates the actual force over short distances
only, it may be suitable to construct a table of numer-

. ically generated endpoints corresponding to the actual

Boltzmann distribution prior to trajectory calculations.

APPENDIX C: FINITE-DIFFERENCE SOLUTION

Here we brieﬂy describe the solution to the one-di-
mensional Einstein-Smoluchowski diffusion equation for

. a linear force by means of the differential ~difference

method applied to the three-dimensional case in Ref. 1.

' To solve the partial differential equation

2 g |d

Et—p(x,tlxo)= 67[5;+(bfcx)]{>(x,t|xo) (c1)
subject to 7

P(x,t=0lxo)=6(x —xo) y (CZ)
we discretize the spatial operator

L= 2 [5% +(o +cx)] (€3)

on the interval [0, x,]. Subdividing this interval into N

equal length (A) partitions with endpoints
x=(j~1)a, 1=j=sN+1, (Ca)

the operator L(x) acting on p(x, ¢1x,) is represented by
the tridiagonal matrix

2
'L“':C-—Zz >
1 e(i=1) .
L~ @ tags—g — 2SISN. cs)
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(If the force is only piecewise linear, then b and ¢ will
depend on j.) The corner elements of L are found by
using the reflective boundary condition at x =0 and
x=xy.'® For trapezoidal weights

Wi =Wya=32,

(c6)
W,=1, 2sj<N,

one obtains
' 2 b 2 b
L1.1=-—A_2+Z+c’ L12=—A'2+—,

’ . (cn

2 p 2 b

LN+1,N_ -A—Z —_A ""CN) LN#I,N&I'_"‘XQ_ Z —C(N—l) .

The solution to Eq. (C1),
pbc,,tlxo)=i2[exp(Lt)],; pley,2=0]x,) (Cs)

can be expanded in terms of eigenvectors. To diago-
nalize L one first transformsL to a symmetric matrix A
through a similarity transformation

Ay =S5 LSy =Ay, o (C9)
where
Su =O'{6“ , (Clo)

with §;; denoting the Kronecker delta and

0= 1 ’
» . ’ (c11)
01 =001V Ly ye1/Lyegy , 2S i N+1,
A can be diagonalized by a umtary matrix U ‘
U} AnUm =X0; , (c12)

where A; are the eigenvalues, Since A is trldlagonal
the eigenvalues ); and the matrix U were obtained by the
~ implicit QL method. Interms of S, U, and the };, the
solution (C8) to the Smoluchowski equation is

p(xb tlxo)

T Nsl
—a 3 - p(x, t=01x,) [Z U, t)U,,,]
j=1

(C13)

The initial condition in the discretized representation is

ple;, £=0]xp)= =1L (C14)

W A !
where J=Int(Nx,/x,) +1, Int(x) denoting the integer
closest to x. Combination of Eqs. (C13) and (C14)

yields R
N+l

P(xe,tlxo)= ’ﬁ/,—i;?,' nZl Ui exp(\U 4, (C15)
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