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Abstract—A neural map algorithm has been employed to con-
trol a five-joint pneumatic robot arm and gripper through feed-
back from two video cameras. The pneumatically driven robot
arm (SoftArm) employed in this investigation shares essential
mechanical characteristics with skeletal muscle systems. To
control the position of the arm, 200 neurons formed a network
representing the three-dimensional workspace embedded in a
four-dimensional system of coordinates from the two cameras,
and learned a three-dimensional set of pressures corresponding
to the end effector positions, as well as a set of 3 X 4 Jacobian
matrices for interpolating between these positions. The gripper
orientation was achieved through adaptation of a 1 X 4 Jaco-
bian matrix for a fourth joint. Because of the properties of the

rubber-tube actuators of the SoftArm, the position as a func- .

tion of supplied pressure is nonlinear, nonseparable, and ex-
hibits hysteresis. Nevertheless, through the neural network
learning algorithm the position could be controlled to an ac-
curacy of about one pixel (~3 mm) after 200 learning steps and
the orientation could be controlled to two pixels after 800 learn-
ing steps. This was achieved through employment of a linear
correction algorithm using the Jacobian matrices mentioned
above. Applications of repeated corrections in each positioning
and grasping step leads to a very robust control algorithm since
the Jacobians learned by the network have to satisfy the weak
requlrement that the Jacobian yields a reduction of the distance
between gripper and target. The n¢ural network employed in
the control of the SoftArm bears close analogies to a network
which successfully models visual braln maps. It is concluded,
therefore, from this fact and fromfthe close analogy between
the SoftArm and natural muscle systems that the successful so-
lution of the control problem has hmphcatmns for biological
visuo-motor control. ‘

|

I. INTRODUCTION

ITH the advent of computers, the technique of ex-
tracting order from data by nonanalytical means has

begun to develop. The Kohonen neural network algorithm:

[1] is one method that has been shown to be effective for
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compressing a large data set into a representation by rel-
atively few neurons while preserving the topological char-
acteristics of the data set. This algorithm has been shown
to work for both one-dimensional and multidimensional
data sets [2], [3].

The vertebrate brain may employ a similar principle as
that described by the Kohonen algorithm to order the data
that it receives from sensory inputs [4], [S]. Simulations
of the formation of visual maps were able to reproduce,
on the basis of Kohonen-like network models, the orga-
nizational patterns of position, orientation, and ocular
dominance as observed in the primary visual cortex of
macaque monkeys [6], [7].

The Kohonen algorithm requires that the dimensional-
ity .of the data set be known a priori. It is desirable to
have an algorithm which creates an internal representation
of the data set which, in addition to providing a com-
pressed (vector-quantized) representation of the data set
also models the data set’s overall topology faithfully re-
gardless of how each individual data point is represented.
Such an algorithm, termed a manifold representing net-
work (MRN) algorithm, has been suggested recently [3],
[8], [9] and will be employed in this study.

If processes similar to these algorithms are used in the
brain to create structures which model the characteristics
of input data, then performing experiments on artificial
systems which use these algorithms may yield informa-
tion on the brain’s function. The study of a control system
based on an MRN algorithm which learns to control the
SoftArm is such an experiment, and may be useful from
an engineering point of view as well. The algorithms em-
ployed are particularly applicable for all control systems
which do not lend themselves to an analytical description,
making design of a conventional control algonthm diffi-
cult,

The SoftArm robot arm shares essential characteristics
with skeletal muscle systems. The arm uses actuators
which consist of rubber tubes mourted on opposite sides
of its rotating joints as presented in Fig. 1. The arm has
five joints. When air pressure is supplied to a tube, . its
diameter increases and its length decreases. The two tubes
are connected by a chain across a sprocket, and when dif-
fering air pressures are supplied to the tubes, the differing
equilibrium lengths result in a change of the equilibrium
angle for the joint. Thus, the arm operates on an agonist—
antagonist principle just as in skeletal muscles; in partic-
ular, a set of pressures applied to the arm.defines an equi-
librium point for the arm posture. Furthermore, the pos-
ture is defined through pressure differences whereas the
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Fig. 1. The robot system, showing SoftArm, air pressure supply, control
electronics, and host computer.

stiffness of the arm, i.e., the strength of the forces restor-
ing the equilibrium posture, is determined by the sum of
the pressures.

The need for a learning algorithm control method for
the SoftArm arises from the lack of an analytical relation-
ship between arm pressure and arm posture. In addition,
there is uncertainty in the position versus pressure relation
due to hysteresis in the response of the rubber tubes. These
problems can be addressed through the use of feedback
from the arm posture. While in conventional systems this
‘feedback is usually in the form of joint angle information
obtained from rotary encoders fixed to the joints, we use
visual feedback from the cameras during training and con-
trol of the robot, because of our interest in visuo-motor
control. '

An elementary task which is useful for demonstrating
the learning algorithm for the robot arm is the task of po-
sitioning the end of the arm at a desired point in the work-
space of the robot. To do this, the neural network must,
when given the camera coordinates of the desired posi-
tion, calculate the appropriate pressures to be supplied to
the actuators of the arm, This is, therefore, a task of visuo-
motor coordination; what is learned is the coordination of
the visual receptive field with the mechanisms of motor
control. Solution of the visuo-motor problem is part of our
broader research agenda which is to understand how the
brain connects reception and action.

A more advanced task is that of grasping. In this case,
the orientation of the object to be grasped must be taken
into account as well as its position in Euclidean space.
This increases the dimensionality of the problem, both for
the image processing and for the joint control part of the
task.

In our experiment, the tasks are learned and controlled
by an MRN algorithm. We conceive of the information
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stored in a neuron’s connections as being encoded ‘in’ the
neuron. In each neuron is encoded a set of camera coor-
dinates indicating position as well as orientation and a set
of actuator pressures for the corresponding arm posture.
If this were all the information encoded, then the number
of possible positions would not exceed the number of neu-
rons and only a very coarse representation of all possible
tasks could be achieved. To obtain a finer representation,
the network interpolates between the distinct positions.
This is done by also encoding a Jacobian matrix in each
neuron and using it in a linear interpolation scheme, i.e.,
the neurons learn an affine map connecting camera coor-
dinates (as indicated by lights affixed to the end of the

-robot arm) and joint pressures. Such a map is a local ap-

proximation to the true function relating the two.

This paper shows how all of the above information is
learned from the camera and pressure information alone.
The procedure used is based on previous work done in
our laboratory [9]—[12]%, including work on visuo-motor
control of a conventional (PUMA 560) robot arm [13],
[14]. It assigns neurons evenly to all postures of the robot
arm as characterized through the visual field and teaches
the neurons linear maps for guiding the arm to local tar-
gets.

II. THE RoBoT SYSTEM
A.. Robot System and Environment

The robot arm was built mainly from components man-
ufactured by Bridgestone Corporation of Tokyo, Japan.
The whole system consists of the robot arm, an air com-
pressor, servo-drive units and servo-valve units, the grip-
per, the cameras, and a host computer with vision system
and serial interface boards. We will discuss these com-
ponents below. : :

1) The Robot Arm and Its Actuators: The robot is a
four-link manipulator with five degrees of freedom. It is
mounted by suspending it from its top joint (see Fig. 2).
The arrangement of the joints and their range of move-
ment is basically modeled after the human arm. Because
its pneumatic actuators, each consisting of two or four
inflatable rubber tubes named rubbertuators, are rela-
tively light, the arm weighs only 12 kg and can lift 3 kg.
Because of its lightness and compliant characteristics, this
arm can be employed for application around human op-
erators or fragile equipment. Intended uses are in hospi-
tals, around the handicapped, for household tasks and in
areas where electrical circuits cannot be introduced. The
dimensions and range of movement of the joints are given
in Table I.

The torque applied to each joint can be controlled by
setting the pressures of the agonist-antagonist rubbertua-
tor pairs. The rubbertuators are fixed parallel to each other
in link i — 1. The free ends are connected to each other
by a chain. The chain goes around a sprocket fixed in link
i — 1 and connected to link i. The angular position of
joint i thus depends on the relative lengths of the tubes as
shown in Fig. 3.
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—F to link i

Fig. 2. An agonist and an antagonist rubbertuator are connected via a chain
across a sprocket; their relative lengths determine the joint position 6.
N

: TABLE I
DIMENSIONS OF THE LINKS AND MorTioN RANGB OF THE JOINTS
Item Specxﬁcation
Model FAS-501
Degree of Freedom ' 5
First Angle +60°
(Shoulder) Length —_
Second Angle +50°
' (Upper Arm) Length 410 mm
Rotation Angle Third Angle +50°
and Arm Length ‘(Lower Length 370 mm
Arm)
Fourth Angle 145
(Wrist Pitch) Length 270 mm
Fifth i Angle +90°
‘ (Wrist Roll) Length —
Lifting Capability Max. 3 kg
. 1
0 i 2 3 4 [ 8
time/s

Fig. 3. Joint 2 of the rubbertuator robot moving in position control mode.
Note the jagged curve due to the feedback.

The joint angle 8 for each joint dépends on the rubber-
tuator lengths /; and /, according to

ll —- 12 e -_ O
f=—— .
where r is the radius of the sprocket.
One of the greatest advantages of a rubbertuator is its

very high force-to-weight ratio, about 240, compared to

a value of about 16 for dc servo-motors. This is especially
good for robotics applications in which the actuators for
the extreme joints are in motion as part of the arm.

The stiffness of any joint is controlled by means of the
total pressure of the rubbertuators that drive it. When this
total pressure is high, the joint behaves relatively stiffly,
whereas a low pressure results in a compliant joint.

2) The Air Compressor and Dryer Units: The robot is
supplied with compressed air of constant pressure
throughout the experiment. First, the air is drawn from an
in-house air compressor at about 90 psi. It then passes

~through a Balston 75-20 compressed air dryer (Balston

Inc., Lexington, MA) in order to reduce moisture which
would shorten the life of the robot. The subsequent dew
point is ~100°F. Then it passes into a 12 gal buffer tank.
The purpose of the buffer tank is to even out-any. fluctua-
tions in the supply pressure caused by sudden consump-
tion by the actuators. It is then reduced to 75 psi by a
pressure regulator. However, the robot is operated at less
than maximum stiffness, so the highest pressure actually
fed to an actuator is about 60 psi.

3) The Servo-Drive Units: The servo-dnve units
(SDU’s) provide the internal control circuitry for the ro-
bot. These units take signals from the host computer and
operate the servo-valve units to obtain the proper response
from the robot. There are five servo-drive units for the
five actuators of the robot. The input for each unit is an
RS-232 serial data terminal line. The units can receive
either binary or ASCII-encoded signals and are operated
at 9600 baud. The servo-drive unit operates digitally at
11 bits precision but converts its output to an analog sig-
nal. The output to the servo-valve unit is a pair of cur-
rents, one for each tube of the actuator, which are sent
through shielded cable. The servo-valve units cause a
pressure to be supplied to the tube which is proportional
to the current. The current ranges from 4 mA for mini-
mum pressure to 20 mA for maximum pressure.

4) The Servo-Valve Units: The servo-valve unit (SVO)
senses the pressure to each tube it controls and converts
the pressure information to an electrical signal. The pres-
sure -may ‘be controlled by opening or closing electric
valves. A standard control circuit is used to obtain a pres-
sure which is proportional to the input current.

5) The Gripper and Its Controlling Valves: A gripper
of about 1 kg is installed at the end of the arm. It has a
simple two-fingered clamping action and is powered by
air pressure. The fingers are approximately 10 cm long.
Two inlets are required, one for opening and the other for

- closing. The air pressure is supplied through electric
-valves which can be controlled by the computer.

6) The Video Cameras: The cameras which are used
for the position feedback to the neural network are two
Cohu 4810 (Cohu Inc., San Diego, CA) monochrome
CCD types with 754 X 488 picture elements (pixels) pro-
ducing a resolution of 565 X 350 pixels.. The cameras
have 25 mm lenses and are located about 2 m from the
robot with their lines of sight at approximately right an-
gles.:

7) The Host Computer The host computer, a Sun
4-370, is equipped with two Androx ICS-400 parallel im-
age array processors which can-do fast image processing.
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The position and orientation of the end-effector are ex-
tracted via two small lights fixed to the gripper of the ro-
bot, using the image array processors’ abilities to find the
brightest region of a frame and the center of that region:

B. Dynamics of the SoftArm

The servo-drive units allow the robot to be controlled
in two modes: position ¢ontrol mode and pressure control
mode. When the SoftArm is controlled in position control
mode, an internal PID controller (see, e.g.; [15]) is used
in a feedback loop. This PID controller uses joint position
feedback from the optical shaft-encoders mounted on each
joint to determine the pressure of the joints-in a feedback
loop. Fig. 3 shows a representative move of one- joint .of
the robot arm. The feedback mechanism should ‘generate
a smooth motion, but due to incorrect feedback signals
the move is oscillatory. That the simple PID model is in-
sufficient. to control the. robot arm: w111 become evident
from the following.

In pressure -control mode, the pressure values sent by

the host computer are directly translated to a current for
the valves and the rubbertuator pressures are set corre-
spondingly. The pressure generates a force in the rubber-
tuators which.makes the Jomt rotate to assume a new equl-
librium position.

1) Behavior of a Rubbertuator Driven Jamt Each ac-
tuator consists of a rubber tube sealed on one end and with
an air inlet on the other end. The contraction force F; ex-
erted by rubbertuator j € {1, 2} for each joint is specified
by the manufacturer as -

F, = PD}(a(1 — ¢)* — b) @)

where P, is the supply pressure, a and b are constants de-
pending on the particular tube, 0 < ¢ < 0.2 is the con-
traction ratio which is-directly related to the rubbertuator
length [;, and D; is the effective diameter of the tube be-
fore displacement. Although (2) is not a precise model of
the rubbertuators; it suﬂices to quahtatlvely explam their
behavior:

Pressure-Position Relation: By dtv1dmg both sides
of (2) by P;, it can be seen that for any specific choice of
P; there exists an infinite number of values ¢; and D; which
realize a specific exerted force F;. Therefore, when a joint
is in equilibrium, i.e., the extemal forces (gravity) are
equal to F, — F,, the joint angle is not only dependent on
the pressure but also on the diameter of the tube before
displacement. Since the diameter depends on the pressure
and the elongation: (before the displacement), the riew joint
position depends on the new pressure as well a5 on the
previous position. This hysteresis can:be shown by mov-
ing a joint along a pressure trajectory from P, = 0, P, =
Ppaxto P = Py... P, = 0and back again by incrementing
and decrementing the pressures by a constant value AP.
This results in the behavior shown in Fig. 4.

Elasticity of the Rubbertuators: The long-term set-
tling behavior of the rubber has a large effect on the po-
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" Fig. 4. Joint 1 of the robot arm as moved by applying a constant pressure

increment AP to rubbertuator 1 and the same decrement to rubbertuator 2.
When the extreme pressures are reached, the direction is reversed.
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Fig. 5. Relaxation of joint 1 of the SoftArm in pressure control mode.
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Fig. 6. Drift of the rubbertuators when the robot is used for a long penod
of time. The pressures of the rubbertuators are repeatedly mcreased/de—
creased by 1% of the total pressure

/

/
sition of a joint after the desired pressure is reached and
the joint seems to have reached its position. Fig. 5 shows
the position of joint 1 in time when the rubbertuators are
allowed to settle for 200 s.

Influence of the temperature of the rubbertuators (which
can occur due to varying climate conditions or simply by
using the arm for extended -periods of ‘time) also has a
large influence on the pressure-position relation. When
repeatedly moving the robot:to the same pressure, the sys-
tem drifts gradually to different positions (see Fig. 6).
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From the above it is obvious that a precise model for
the pneumatic actuators cannot be easily 'constructed.
When the robot arm is used for accurate positioning and
orientation of the end-effector, an adaptive algorithm is
clearly necessary for controlling the robot.

III. PositioN CONTROL
A. Motivation of the Algorithm

It is believed that the brain constructs an internal rep-
resentation of the visual field by a learning process [6].
While the mapping of visual features onto the retina is. the
same for each individual, it has been shown experimen-
tally [16], [17] that the mapping of features in the neo-
cortex develops in a manner which depends on the visual
experience of the individual, i.e., depends on the stimuli
that are input to the visual receptors. The conclusion is
that the brain must be using a learning algorithm which
induces this development. We hypothesize that the de-
velopment of motor coordination proceeds in a similar
way. It is one of the: goals.of our research to propose can-
didate algorithms that might be used for such develop-
ment, and to test them on the robot system. '

The MRN algorithm for neural networks has the prop-
erty of forming a representation of a data set which main-
tains the topological features found m the data. This i§ so
because the connections between neutons are established
in a manner which depends on the probability distribution
of the data set [18], [9], [3], [8]. In this way, a dlscrete
set of neurons and their connections can model a contin-

uous set of pomts of the input space. In control applica- -

tions, an internal model of part of the external environ-
ment is formed by the neural network. From this model,
planning of actions for desired consequences is derived.
Below, we apply such a network to the control of a robot
arm. :

Other methods [19]-[21] have been used for visuo-mo-
tor control of robots. In Section III-C we provide a com-
parison between our- results’ and the results reported in
[19]-[21]. For another work on neural network control of
a Softarm robot without the use of visual feedback, see
[22], which employs a hierarchical neural system for tra-
jectory control of a single joint of the robot arm.

B. The Algorithm Used in the Robot Experiments
In our application of controlling the position of the end
~ effector, each data point of visual input u is a four-di-
mensional vector (two dimensions from each of the two
cameras of the system) of the visual space V C R* We
model the cognecnons from the visual input to the neu-
rons of the network by a four-dimensional vector. Thus,
each of the 200 neurons of ‘the network is considered to
have ass1gned to it a position, w, € ®*. The posmons of
the neurons are adjusted according to the data input u us-
ing , '

Wi = wid oy, ) -~ w9, A3)
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v is an indirect function of the distance between u and w,.
Specifically, it is a function of r, which is the closeness
rankmg of neuron k. The closeness rankmg is determined
by a metric which must be defined in the input space. If
k is the closest neuron to , its closeness ranking is r =
0; if it is the next closest, its closeness ranking is r = 1,
etc. v is a monotonically decreasing function of r, in our
application an exponential. vy also decreases monotoni-
cally with update step ¢, such that corrections to the po-
sitions w¢ become smaller as the network gradually
learns the representation of the data. Explicitly, we used

Y, 1) = 7% @
with 0 = 5 and y = 9. A similar network was employed
in computer simulations of robot visuo-motor control [9]-
[12] and in visuo-motor control of a Puma 560 robot [13].
A detailed mathematical presentatlon of the algorithm is
provided in [8]..

If the network is to control the position of the robot
arm, each neuron must also contain information on the
pressures of the arms actuators which correspond to the
position stored by the neuron ‘This is a three-dimensional
vector of pressures, P € ® ?, since the arm has three joints.
Each component is the pressure to one of the tubes. of the
actuator for the corresponding joint. The pressure to the
other tube is a constant minus this pressure. The stiffness
of the robot arm is controlled by this constant (the sum of
the pressures of the two actuator tubes) which for the
present study was set to a hlgh value, e.g., 60 psi. Even

such high pressures in the actuator tubes render the arm

much more compliant than a non-pneumatlc robot arm.

In order for the network to be able to position the end
effector of the robot to any target point u in its workspace,
it is necessary to interpolate between pressure values
stored in neurons surrounding the target point. This is
achieved by means of an affine map for the desxred pres-
sure vectors P(p)

P) =Py + 4 - =~ wp &)
where & is the label of the neuron that is closest to u.

Here, A, is a3 X 4 matrix which provides a linear cor-
rection of pressure in accordance with the deviation u —
w; between the target point 4 and the location w; assigned
to neuron k. In the above we assume that the vector P,
can be chosen independently of the current arm posture
such that it moves the end effector to point w;. Due to
hysteresis effects discussed previously [Section II-B2)],
this is an approximation to the true behavior.

A in (5) is the Jacobian which results as the first term
in the Taylor expansion of P(u) about w;. A may change
according to position and so each neuron must store a ma-
trix A;.

In practice we calculate P(u) from more than one neu-

' ron, and we average the above expression over several

neurons in the nelghborhood of the § neurons closest to
neuron £, i.e., we employ the pressure vector
5

Pw) = I a()* Pup + Ay @ = W), (6)

r=
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where k(r) is the label of the neuron which has closeness
rank r. a(r) is a monotonically decreasing function of ,
that is, the neurons closest to k have the greatest weight
in the sum. In our case, we used a(r) = e~ "/, The value
of S was 50. The averaging enables the use of previous
learning by neighboring neurons to decrease the position-
. ing error [12]. '
The neuron pressures are updated according to a for-
mula similar to that used for the neuron positions
P = P + y(r, 1) - A(u — v) ™

where v; is the position of the arm after being set to the
pressures P(u) specified by (6), which we term the
“‘coarse movement.’” The vector (u — v)) is the error after
that movement. ' '

From this error a correction AP, referred to below as a
‘“‘fine movement,’’ may be calculated to the set of pres-
sures of (6). As in (6), averaging over a neighborhood is
used: " ’

' 8 - o
AP@ = 2 a() * Ury " @ = o). @)

" The Jacobians are then adjusted according to
A = AN 4 e/ - A — vpAvTlav] 2 (9)

where # is the position after a fine movement and Av =
v; — v;. The correction term here is the correlation matrix
between the change in supplied pressure and the change
in position of the énd effector, though averaging has been
ignored in order to correct neuron k specifically. After
many learning steps, 4, will represent a local, linear ap-

proximation of the relation between position and pressure

[8]-113].

The correction (8) can be applied several times for a
given target position, with the most recent v; used in (8).
After each correction AP is implemented, the fine position
vy is obtained. Thus, the change in position, Aw, which
corresponds to the change in pressure, AP, is obtained.
Then (9) can be applied, and the Jacobians may be up-
_ dated several times for each target position. For the pa-
rameter € a value of 0.1 was chosen. This prevents an
overcorrection of the Jacobians resulting from their being
adjusted over several fine movements.

It is easy to see that if A} were to be used in (5) in-

stead of 4;, it would be equivalent to adding a term A4 ;" (u
— vy) on the right hand side, so that the error would be
approximately # — vy instead of # — v;. ,

Slightly more sophisticated versions of the above al-
gorithms may be employed, which have the advantage of
using more information via averaging over neighboring
neurons, the information having been obtained by updates
of those neurons in previous learning steps. Equation (7)
may be replaced by '

P =P + y(r, 1) - P(w) - P@W) + A — v)).

(10)
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The difference between (10) and (7) is that the correction
to P(u) due to averaging has been added.
Similarly, instead of (9) one may use

AP = AP + ™17 - (AP — AY°Av) - AVT|AD| T
(11) .
If ee"/° were equal to 1 one would have
A™Av = AP. 12)

Then since AP was the actual adjustment of the pressures,
and Awv the measured change in the position, 4™ would
agree maximally with the available information from that
step. However, its accuracy would be assured only for
vectors parallel to Av. Therefore a Jacobian which is ac-
curate for all directions can be obtained only after correc-
tions. from several directions are executed. It would ap-
pear that several learning steps for each neuron are
required. However, the use of averaging reduces the num-
ber of steps required considerably [12]. The advantage of
averaging is possible because the network employed is
topology-conserving -and,- hence, allows us to identify
which neurons are to be considered as neighbors. The re-
sults of applying these last algorithms are reported in the
next section.

, C Results

The target positions were chosen by assigning the com-
ponents of a pressure vector randomly from a given range.
Physically, this resulted in a workspace which was ap-
proximately a cube of 750 mm per side. The target coor-
dinates were acquired by supplying the randomly chosen
pressure to the arm and by gathering the position infor-

_mation from thé cameras when the arm had come to rest.

Then the coarse and fine movements towards the target
position were executed in a similar manner. Of course, at
this point no knowledge of the pressure corresponding to
the target position was used. '

The learning was unsupervised; only the target position
and the information obtained from the coarse and fine
movements were used for updating the neural network.
There was some oscillation of the arm due to its compliant

_ characteristics and due to the fact that the pressure changes

were executed as a step function. Thus aquisition of arm
postures had to wait until the oscillations ceased. The ex-
ecution of the target, coarse, and fine movements alto-
gether took an average of about 30 s per learning step.
We set a tolerance of allowed error versus time as fol-

- lows

lu = vl 32 = 1.51 + 150¢77/5% (13)

and for each step ¢ repeated fine movements of the arm
until the error between the actual position and the target
position was less than this quantity. A plot of the final
error vs. step number is shown in Fig. 7. All the distances
were measured in terms of camera image pixels. One pixel
corresponds to about 3 mm for the camera positions we
used, or about 3% of the arm’s length.

A measure of how well the robot has learned is fur-
nished by the number of fine movements needed in order
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efror in phxels
?

Fig. 7. Final error between position and target, in pixels, versus step num-
ber. One pixel corresponds to ~3 mm.

1000 " 1800
step number

Fig. 8. Number of fine movements required to reach tolerance defined in
(13) versus step number.

9

to reach targets within a given tolerance. In Fig. 8 a plot
of the number of fine movements required vs. the number
of learning steps ¢ is shown. The tolerance is that of Fig.
7. It was observed that the average number of fine moves
required for ¢ > 250 (when the tolerance is near 1.5) is
approximately two. This is probably optimal since the
neurons were rather widely space and a linear approxi-
mation was employed for the position vs. pressure rela-

tion. Furthermore, hysteresis of the action of the rubber

tubes was profound (cf. Fig. 4) and limited the accuracy
of the Jacobians. A histogram of the number of fine moves
for steps 485 to 1484 is provided in Fig. 9.

For the mature network (¢+ > 300), the maximum num-

ber of fine moves required was nine. In a typical run, this

happened once per thousand targets (learning steps 485-
1484). In these cases the fine movement repeatedly
overshot the target, an:indication that the values of the
Jacobian were too large. Occasionally, about twice per
- thousand steps, the calculated fine movement was repeat-
edly very small. The correction term for updating the Ja-
cobians (11) was then also very small. To circumvent the
latter problem, if the tolerance was not met within five
fine movements, a small movement was supplied to the

arm in the direction of the last fine movement and the fine

movement loop continued.|
The mentioned errors in mhe Jacobians could have been
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Fig. 9. Histogram of number of fine-movements required to reach the tol-
erance defined in (13) for steps 485-1484.

due to insufficient learning, or overcorrections to the Ja-
cobians during the early learning stages, when the prefac-
tor of the correction term in (11) is largest. We chose the
limits of the workspace to avoid singular points, which
prevent the learning of the Jacobians. Another source of
error is drift in the characteristics of the robot over time.
After leaving the robot motionless for one hour, the run
was restarted at ¢+ = 1000 with the network values from
the r = 1000 timestep. Since # = 1000 there is effectively
no learning at this point. The choice of targets from ¢ =
1000 onward was also the same as in the previous run and
so the results should have been identical. However, the
average number of fine movements went from two to ten.
It is obvious from the increase in the number of fine
movements that the Jacobians from the first part of the
run were no longer optimal. This was probably due to a
cooling and stiffening of the rubber tubes of the actuators
because a source of heating was removed during the one-
hour pause, namely, internal friction in the rubber.
Changes in the air temperature of the room, affecting the
elasticity of the rubber tubes, can also be a factor in long
runs.

Our results are comparable to those obtained with back-
propagation methods on conventional robots. Cooper-

" stock et al. [21] obtain an accuracy of about 4% of the

length of their robot arm after 63 steps using two fine
movements, while our accuracy was about 3%. Kuper-
stein et al. [19], [20] report an accuracy of 3% after 1200
steps for the coarse movement, and no detectable error
with from two to four fine movements. However, in both
of these methods the joint angles of the target position are
used in the updating of the network values, whereas in
our case, for the sake of biological realism, they are not
known and the network has access to only those pressures
generated by itself. In previous work [13] done by us on
a conventional robot with the same algorithms described
earlier (using joint angles instead of joint pressures), we
obtained an accuracy of about 2% of the robot arm length
after 3000 learning steps with one fine movement.
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IV. THE GRASPING TAsSK

Most of the nontrivial robotics applications demand
control of the position as well as of the orientation of the
end-effector. One of the basic capabilities of the end-ef-
fector is to be able to grasp objects. In this section, we
will show how the positioning algorithm as presented in
the previous section can be extended to incorporate the
control of grasping movements.

A. Problem Description

Incorporation of the orientation control adds two di-
mensions to the positioning problem. The complete work
space comprises a three-dimensional position space, R, C
®* and an embedded submanifold for orientation space,
R, C ®?. Surrounding each position of the three-dimen-
sional position space there exists a two-dimensional ori-
entation space. Our goal is to generate finite discrete maps
of these two spaces using the algorithm presented in Sec-
tion III-B.

As mentioned earlier, the pneumatic robot used in our
experiments has five degrees of freedom. The positioning
control task made use of joints one, two, and three. Joints
four and five control the movement of the gripper.

Fig. 10 shows a schematic diagram of the gripper
mechanism. The gripper has two types of motions. The
rotational motion about aa’ is called pitch and it is a func-
tion of the sum of joint pressures P4 and Ps. The motion
about bb’, called roll, depends on the difference between
P, and Ps. If either of joint pressure P, or Ps is changed,
both the above mentioned motions are generated. Accord-
ingly, the two indicated motions of the gripper are mu-
tually dependent.

As the gripper can rotate through 180° about bb’, while
rotating about the aa’ axis, it can span a two-dimensional
space. However, it also produces a translational motion
of the tip of the end-effector. Thus both the position and
the orientation of the gripper are changed. This necessi-
tates a unique combination of pressures in the five joints
for each possible combination of the states of R, and R,.
As the space R, ® R, will be considerably large, it would
be preferable if we could represent each space in a sepa-
rate network, i.e., separate the controls on R, and R,. This
is not possible for two-dimensional orientation but can be
achieved by constraining the orientation of the gripper to
one dimension, e.g., allowing rotations only in a plane
perpendicular to the axis of symmetry of the gripper. In
other words, if the positioning is done in such a way that
the plane normal to the plane containing aa’ and bb’ is
parallel to the axis of symmetry of the cylinder to be
grasped, a pure rotational motion about bb’ will be suffi-
cient to orient the gripper properly. Of course, the full
grasping problem has not been solved then, since some
orientations are excluded. We have recently extended the
present algorithm to repair this limitation [24].

B. Network Architecture

In order to map the five-dimensional space embedding
R, and R, by a five-dimensional Kohonen net, N 5 neurons
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Fig. 10. A sketch of the gripper with two types of associated motions.

are required where N is the number of elements of the
Kohonen net along a single dimension. This will increase
the search time for choosing the winner as O(N°). The
space required for storing this network is also O(N %). In
a previous attempt to reduce the search time a hierarchical
Kohonen network was used [9]. This kind of network is
characterized by a three-dimensional lattice of neurons for
mapping the space R,, each node of which consists of an-
other two-dimensional layer of sublattices which map the
space Ry. One of the advantages of this architecture is that
the search time 7., increases only as

tearch = ON3 + ND). (14)

Here, N3 is the number of two-dimensional sub-lattices
used for mapping the space R, and N is the number of
nodes or elements in each of these sublattices. Here the
storage space requirement is O (N°) which would result if
the five-dimensional space embedding R, ® R, would be
mapped. The main disadvantage of using this type of net-
work architecture is that it does not exploit the high de-
gree of redundancy of the orientation control. In other
words, there are many positions in R, for which represen-
tations of the orientation of the gripper are nearly the
same. Hence, it is unnecessary to map all these orienta-
tions separately for each set of subneurons. In order to
exploit this redundancy we employed the following net-
work.

Two sets of neurons are used for representing the input
signals describing the location and the orientation of the
object. One set stores the vectors and tensors, Py and A,
associated with R, and the other does the same for Ry (9).

Two lights are mounted to the gripper on a line perpen-
dicular to its symmetry axis. From any five different ini-
tial pressures at all the joints, random pressures are ap-
plied to the first four joints and if the random pressure of
the fourth joint is more than the initial pressure of that
joint, the difference in them is subtracted from the initial
pressure of the fifth joint and the resulting pressure is then
applied to that particular joint. So the pressure of the fifth
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joint is increased or decreased by an amount equal to the
computed decrease or increase in pressure of the fourth
joint. This is done in order to obtain a pure rotational mo-
tion of the gripper around the bb’ axis. After taking these
pressures, the robot arm goes to a random position. Each
camera records the positions of the lights, creating two

~ sets of four-dimensional vectors. We define the position
of the gripper as the midpoint of the two lights, and the
orientation as the normalized vector between the lights.
After taking this random position the robot arm moves to
a new position and then tries to reach the target position
and orientation again by means of the neural network.
Since the positioning of the end-effector is independent of
the orientation control, the Jacobian matrix, 4, (10), (11)
for positioning is dependent only on the position infor-
mation. Similarly the Jacobian corresponding to the ori-
entation control depends only on orientational informa-
tion. Thus the position and orientation control will be
accomplished by two neural networks. This is equivalent
to assuming complete redundancy in the orientational in-
formation as encoded in the network.

Once the input signal is presented to the network, sep-
arate ranks of ‘‘closeness’’ for both position and orien-
tation are computed from the input signals. For each of
these ranks, a simple four-dimensional Euclidean metric
is used. Computation of the joint pressures are performed
in a way similar to that described in Section III-B, with
the only difference that the joint pressures for position
control are computed from the R, mapping and the joint
pressures for orientation control are obtained from the R,
mapping. The search time in this architecture is O(N?%)
but the storage requirement reduces to O(N?) with O(N?)
neurons available for quantizing the space R,. It is im-

portant to note that as we are not using the yaw motion:

here; our arm can execute only limited grasping move-
ments.

C. Results

A network of 200 neurons has been used for mappihg.
Each neuron was associated with the weight vectors cor-
responding to the signals from R, and Ry. Basically the

same algorithm as described in Section III-B was used for
learning. For the results presented here, the e Vi/" term
in the prefactor of (4) has been replaced by e™*/7. Two
Jacobian matrices of size 3 X 4 and 1 X 4 were stored
for computing the positioning and orientation control
pressures, respectively. A typical run demonstrates con-
vergence of the network to one pixel error in positioning
and an average of two pixel error in orientation after 800
learning steps, using ¥y = 100, ¢ = 5 and ¢; = 0.1. Fig.
11 shows the dependence of the errors on the number of
learning steps for a typical run. Kuperstein et al. included
2-DOF orientation in their work [19], [20] and reported
orientation accuracy of 60° in solid angle. The orientation
accuracy of the present work is approximately 2°.

V. CONCLUSION .

The SoftArm robot shows hysteretic behavior and a
pressure-position relationship which changes strongly in
time. In contrast with conventional robot systems, the
SoftArm has not been designed to facilitate accurate pos-
ture control and, in fact, poses a challenging problem for
adaptive control theory. The highly nonlinear and hyster-
etic behavior of the arm obviously necessitates the use of
adaptive algorithms for control.

We showed that it is possible to control the arm using
pressure inputs alone. No explicit information about the
joint angles is needed. Instead, feedback from the cam-
eras is enough to control the position to an accuracy lim-
ited only by the cameras’ resolution.

Nonlinearity and hysteresis of the pressure dependence
of joint position is significant for the SoftArm. Neverthe-
less, these characteristics did not seriously affect the per-
formance of the algorithm. This is presumably because
the effects are averaged out due to each neuron being
trained over the course of many learning steps. As seen
from Fig. 4, the derivative. of position versus pressure,
and thus the correct values of the Jacobian, depend on the
direction of motion of the joint. In the training session the
Jacobians are trained over many steps, and the update in-
formation in (11) can be acquired from either direction of
motion. This results in an averaging of the values of the
Jacobians over the correct, direction-dependent ones for

_each possible movement. The values of the Jacobians are

thus approximate, but are close enough to the correct ones
for each case so that the target can be reached after a few
fine movements. We would like to stress here that the ap-
plication of several fine movements does yield a robust
control system: the Jacobians need not be known accu-
rately; the only property required for the Jacobian is that
its application leads to a reduction of the distance from
the target.

The effect of the hysteresis is also diminished, some-
what artificially, by the fact that the arm posture previous
to the coarse movement is always that of the target posi-
tion, since the arm itself is used to acquire the target co-
ordinates. This decreases the amount of travel performed
by the arm in the coarse movement.
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While we found it necessary to constrain the orienta-
tional space of the experiment to one dimension in order
to control the orientation independently of position, one
can view the full five-dimensional problem as consisting
of the said one-dimensional orientation plus redundant
four-dimensional positioning. In this way, all positions
and orientations can be reached. The problem would then
be reduced to choosing the posture appropriate for the de-
sired orientation. The groundwork for this approach has
been laid [9]. :

The value of the prefactor of the correction terms in
(3), (10), and (11) is analogous to the plasticity of a nat-
ural neural network. We found that when the network is
young, e.g., for low values of ¢, a high plasticity is de-
sirable to quickly adjust the values stored in the neurons

to approach the optimal ones, but that plasticity should

then tail off to avoid losing information gained from ear-
lier steps, If the plasticity remains too high, subsequent
corrections to the values stored in the neurons effectively
erase the values leéarned previously. We did not find it
necessary to create a large neighborhood of influence in
the network for early inputs, gradually decreasing the size
of the neighborhood, as has been practiced in other ap-
plications [11], [13], but this could have been due to the
initial random values of the network being not too differ-
ent in overall magnitude from the correct values.

The overall time to reach a desired target is around 30
s. This time might be improved by using dynamical con-
trol, a possibility which is currently being investigated by
us and others [23]. '

The research presented in this paper has shown the pos-
sibility of learning a nonlinear, multidimensional function
with a Kohonen neural network. This, along with other
data [12], [6], implies their possible use in the brain’s
control systems, and also illustrates their potential for
technological application. - - .
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