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Atomic force microscopy (AFM) experiments and steered molecular dynamics
(SMD) simulations have revealed much about the dynamics of protein-ligand bind-
ing and unbinding, as well as the stretching and unfolding of proteins. Both techniques
induce ligand unbinding or protein unfolding by applying external mechanical forces
to the ligand or stretched protein. However, comparing results from these two tech-
niques, such as the magnitude of forces required to unbind ligands, has remained a
challenge since SMD simulations proceed six to nine orders of magnitude faster due
to limitations in computational resources. Results of simulations and experiments
can be compared through a potential of mean force (PMF). We describe and imple-
ment three time series analysis techniques for reconstructing the PMF from position
and applied force data gathered from SMD trajectories. One technique, based on
the WHAM theory, views the unbinding or stretching as a quasi-equilibrium pro-
cess; the other two techniques, one based on van Kampen’sÄ-expansion, the second
on a least squares minimization of the Onsager–Machlup action with respect to the
choice of PMF, assume a Langevin description of the dynamics in order to account
for the nonequilibrium character of SMD data. The latter two methods are applied to
SMD data taken from a simulation of the extraction of a lipid from a phospholipid
membrane monolayer. c© 1999 Academic Press
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1. INTRODUCTION

Binding and unbinding processes, such as those exhibited by protein-ligand complexes,
are governed by rare transitions from one equilibrium state to another. By applying an
external force to the ligand, these transitions can be induced at a much faster rate than would
otherwise occur. This has been realized experimentally in micromanipulation studies using
atomic force microscopy (AFM) [1, 2], as well as in recent computer simulations [3–7].

In AFM experiments, the tip of an elastic cantilever applies an external mechanical force to
a protein-ligand complex, for example, in such a way as to facilitate unbinding; the applied
force is measured by monitoring the position of the tip. The experiments take place over
time scales on the order of 1 ms to 1 s. The spring constantsk of the cantilevers are typically
on the order of 1 pN/̊A, so that fluctuations in the position of an attached ligand,(kBT/k)1/2,
are large on the atomic scale, e.g., 5Å. Hence, minute details of the unbinding process are
not resolved: most experiments treat the peak force, labeled the rupture force, as the primary
datum.

Steered molecular dynamics (SMD) simulates a biopolymer system under the influence
of an applied external force; such simulations can describe AFM-style micromanipulations
in atomic-level detail and employ stiffer springs than those used in present AFM experi-
ments. As a result, more detailed information about interaction energies as well as finer
spatial resolution can be obtained. The main drawback is that, due to limitations in at-
tainable computational speeds, simulations cover time scales that are typically 106 times
shorter than those of AFM experiments. Several investigators [8, 9] have described means
of overcoming these timescales by employing a Langevin model for the dynamics of pro-
teins. SMD simulations have elucidated important details about the unbinding process of
biotin from avidin [3, 4], retinal from bacteriorhodopsin [5], retinoic acid from its receptor
[10], lipids from membranes [6, 11], as well as details about stretching of immunoglobin
domains [7], fibronectin domains [12], and of other proteins [13]. A review of the SMD
method is provided in [14].

There remain several challenges for SMD investigations. First, as shown in [4, 15], the
rupture forces cannot be directly compared, because the unbinding in the two methods takes
place in different physical regimes: SMD simulations operate in the drift regime, where
the unbinding rate is limited by friction, while AFM experiments operate in a thermally
activated regime. Second, a significant amount of irreversible work is generated during
SMD simulations due to the high pulling speeds. This work needs to be discounted from the
reversible work necessary for binding and unbinding in order to compare AFM and SMD
results.

As is well known, irreversible processes connect two statesA andB of a system at the
expense of work1WA→B which exceeds the corresponding difference in thermodynamic
potential1GAB: 1WA→B ≥ 1GAB. Similarly, along an unbinding path parameterized by
a coordinatex and characterized by a potential of mean forceU (x), the work done in going
from the initial pointx= 0 to x obeys the inequality

W(x) ≥ U (x). (1)

In the case of an AFM experiment one expects a protein-ligand system to remain in quasi-
equilibrium, i.e., in equilibrium with respect to the overall potential due to inherent and
slowly varying external forces, so that the workW(x) remains close toU (x). However, in
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an SMD simulationW(x) andU (x) are expected to differ significantly. One may worry that
SMD data cannot even in principle yieldU (x); however, this has been proven unfounded by
the remarkable identity derived by Jarzynski [16, 17] which, in the present notation, reads

〈exp[−W(x)/kBT ]〉 = exp[−U (x)/kBT ]. (2)

In this identity〈· · ·〉 denotes an average over processes whose starting configurations are
drawn from a canonical ensemble.

Equation (2) indicates thatU (x) can be reconstructed from an exponential average of
the workW(x). In practice, statistical error in the computed value ofU (x) will dominate
the result unless the spread inW(x) over many trajectories is less thankBT [16]. In the
trajectories examined here, the friction coefficient is large, implying due to the fluctuation-
dissipation theorem that fluctuations in the work will be large compared tokBT . Hence,
Eq. (2) cannot be directly applied in these cases. Instead, by applying a model of the
dynamics of the system, we seek to discount the irreversible work before any averages are
made.

The new algorithms for analysis of SMD time series suggested below make two key
assumptions. First, it is assumed that the relationship between a potentialU (x) and the
system simulated by SMD is describable by means of a Langevin equation. Second, the
SMD data are interpreted in terms of a model ofone-dimensionalstochastic dynamics,
implying an average over the remaining degrees of freedom so that the potentialU (x) is
a potential of mean force (PMF) [18]. Thus, from the wealth of data potentially available
from an SMD simulation, the algorithms employ only two one-dimensional time series,
the positionx(t) of the pulled ligand, and the forceF(x, t) exerted on it, with the addition
in some cases of system-specific parameters such as the friction coefficient. Barring major
structural changes to the protein induced by excessive external force, the underlying PMF
should be essentially the same regardless of pulling speed.

The AFM experiments measure the forceF0 required to unbind a ligand from a protein
within a certain timeτ0. In the framework of the stochastic model underlying the time
series analysis suggested below, the experimental observableF0 can be readily related to
the PMF by means of the theory of mean first passage times [19]. GivenU (x), an applied
time-independent forceF , and the effective friction coefficient of the ligand one can readily
evaluate the mean timeτ(F) required for ligand unbinding as shown in [15]. The measured
forceF0 and its distribution are then obtained from a solution ofτ(F0)= τ0. The mean first
passage timeτ can also be determined for time-dependent forces [20], as they arise in AFM
experiments and as they are considered below (cf. Eq. (11)). The relationship between the
protein-ligand system, SMD simulation, stochastic model, time series algorithms, mean
first passage time calculation, and AFM experiment is summarized in Fig. 1.

In this paper, we describe three methods for reconstructing the PMFU (x) from a sim-
ulation of forced unbinding. One method is based on the Weighted Histogram Analysis
Method (WHAM) [21, 18], the second is motivated by van Kampen’sÄ-expansion [22],
and the third involves a minimization of the Onsager–Machlup action [23] to find an opti-
mally matching PMF for a given set of SMD data. The WHAM method assumes that the
manipulated system remains in quasi-equilibrium. Even though this condition is not met
in SMD simulations, we include this method since it is often applied to analyze data re-
sulting from umbrella sampling [24, 25], a method which is closely related to SMD except
that SMD accepts a high degree of irreversibility. The method related to the van Kampen
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FIG. 1. Schematic representation of the relationship between the protein-ligand system, SMD simulation,
stochastic model, time series algorithm, mean first passage time, and AFM experiment.

expansion is very similar to an analysis of SMD data discussed in [15]. The analysis based
on the Onsager–Machlup action appears to be novel.

The three methods are applied to model systems with a single spatial dimension, but
otherwise assume external forces as well as fluctuating and dissipative forces that are typical
of SMD simulations of protein-ligand complexes. The model systems are described by
means of a Langevin equation in the strong friction limit [22],

γ ẋ = F(x, t)− dU(x)/dx+ σξ(t). (3)

Here the position of the ligand is represented by the coordinatex of a very light particle,
γ is the friction coefficient, assumed to be constant,F(x, t) is the applied external force,
U (x) is the underlying potential (PMF), andσξ(t) is Gaussian white noise with root mean
square amplitudeσ andδ-function autocorrelation, i.e.,〈ξ(t)ξ(t ′)〉= δ(t − t ′). σ andγ are
related by the fluctuation-dissipation theorem according toσ 2= 2γ kBT , whereT is the
temperature andkB is Boltzmann’s constant [22].

We also demonstrate how the friction coefficientγ may be determined from an analysis
of the velocity autocorrelation function of the ligand. This analysis may be performed in a
separate simulation, during which the velocity of ligand atoms is sampled on a time scale
equal to or faster than the velocity relaxation timem/γ . For this purpose the dynamics of
the ligand must be modeled through a Langevin equation with the mass term included (cf.
Eq. (29)). The force and position time series are sampled less frequently than the velocity
relaxation time; hence Eq. (3) applies for the PMF analysis.

The methods for analysis of SMD data will be described in Section 2. In Section 3, the
methods are applied to several types of potentials to gauge their effectiveness for different
types of barrier shapes and pulling speeds. In Section 4 we apply the two nonequilibrium
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methods to SMD data from lipid unbinding studies [6]. Discussion and conclusions follow
in Section 5.

2. THEORY

In this section we formulate three algorithmic approaches for constructing a PMFU (x)
from SMD time series data, one based on an algorithm widely used for simulations near
equilibrium, and two which employ nonequilibrium models for the analysis.

2.1. The WHAM Approach

WHAM [21, 18], an extension of umbrella sampling [24, 25], provides a means of
determining an unknown underlying potentialU0(x) from a set of simulations performed
on a system with the addition of “biasing potentials.” Each biasing potential is used to
enhance the sampling in a given region, typically referred to as a window. In umbrella
sampling, one performsM simulations with different biasing potentialsUi , i = 1 . . .M ,
obtaining a probability distribution for each of theM windows. After compensating for
the bias introduced by the potentialsUi (x), theM distributions are “stitched” together. For
this purpose, it is important that the distributions from adjacent windows overlap so that all
points inx are well sampled.

In order to construct the potentialU0(x), or equivalently the Boltzmann distribution
P0(x)= Z−1

0 exp[−U0(x)/kBT ], WHAM combines theM measured probability distribu-
tions P0i (x), corresponding to potentialsU0i =U0 + Ui , in a weighted sum such that the
biasing potentialsUi are discounted. For this purpose one employs the expression

P0(x) =
M∑

i=1

ωi (x) exp[Ui (x)/kBT ]
Z0

Z0i
P0i (x). (4)

HereZ0/Z0i is the ratio of the configuration integral
∫

dx exp[−U0(x)/kBT ] of the unbi-
ased system to that of the system with the additional biasing potentialUi . The weighting
factorsωi (x) are subject to the normalization constraint

M∑
i=1

ωi (x) = 1, (5)

and are chosen such that the variance〈P2
0 (x)〉− 〈P0(x)〉2 of P0(x) is minimized. The

assumption that theM simulations are statistically independent of one another yields an
expression for the weights [21, 18],

ωi (x) = λ(x)Ni
Z0i

Z0
exp[−Ui (x)/kBT ], (6)

whereNi is the number of data points taken to construct the probability distribution in simu-
lationi and whereλ(x) is the Lagrange multiplier which serves to enforce the normalization
condition (5). Substituting (6) into (4) one obtains

P0(x) =
∑M

i=1 P0i (x)Ni∑M
i=1(Z0/Z0i )Ni exp[−Ui (x)/kBT ]

, (7)

with

Z0

Z0i
=
∫ x f

x0

dx P0(x) exp[−Ui (x)/kBT ]. (8)
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Equations (7), (8) can be used to obtainP0(x) and, hence,U0(x). In practice, (7) and (8)
are solved iteratively until they converge.

In the case of SMD, the system is subject to an external force supplied by a pulled spring,

F(x, t) = k(vt − x), (9)

wherek is the spring constant andv is the velocity at which the spring is “pulled.” The
corresponding potential is

U (x, t) = 1

2
k(x − vt)2, (10)

which serves as the biasing potential and is parameterized by the timet rather than by the
index i . We note here that applying the moving harmonic restraint (10) to a ligand moving
in the potentialU0(x) is equivalent to applying a time-ramped forceF(t) = kvt to a ligand
moving in a modified potentialV(x),

−dU0

dx
+ k(vt − x) = −dV

dx
+ kvt, (11)

employing the definition

V(x) ≡ U0(x)+ 1

2
kx2. (12)

Thus, the analysis of [20] may be used to find the mean first passage time, once the PMF
U0(x) has been determined.

Since the biasing potential (10) is altered continuously during timet rather than inM
discrete steps, the time seriesx(t) needs to be broken intoM overlapping windows of
time1t . Unfortunately, this renders questionable a key assumption underlying the WHAM
equations (7), (8), namely, that the data in theM windows stem from statistically independent
simulations. Figure 2 illustrates how the time series datax(t) are collected to form a

FIG. 2. Probability distribution constructed from SMD data for WHAM. (a) Displacement vs time from SMD
simulation; (b) histogramsP0i (x) of displacement valuesx(t) for several ranges oft ; (c) reconstructed probability
distributionP0(x).
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probability distributionP0i (x). In solving the WHAM equations (7), (8) for the SMD time
series, we replace the factors exp[−Ui (x)/kBT ] in Eq. (7) by their time averages,

Pi (x) = 1

1t

∫ ti+1t

ti

dt exp[−U (x, t)/kBT ]. (13)

For the biasing potential (10) the integral (13) can be evaluated, yielding

Pi (x) =
√
πkBT/k

2v1t

{
erf

[√
k

2kBT
(x − vti )

]
− erf

[√
k

2kBT
(x − v(ti +1t))

]}
. (14)

2.2. Gaussian Drift Method

A reconstruction of the PMFU (x) from an SMD time series without the assumption of
quasi-equilibrium has been suggested in [15]. A particle is assumed to undergo Langevin
dynamics as described by Eq. (3), with the external force (9). Approximating the velocity
of the particle aṡx≈ v in the case of large spring constantk, and assuming the friction
coefficientγ is known,U (x) can be reconstructed by discounting the frictional contribution
from the total work done through the integral

U (x) = U (0)+
∫ x

o
dx′(F − γ v). (15)

This approach may be refined by (i) computing the velocity of the particle as a function
of time from SMD data and (ii) measuring the size of the fluctuations in the the position
of the particle around the deterministic trajectory, i.e., the trajectoryx̃(t) one would obtain
from Eq. (3) in the absence of noise. It has been shown in [22] that, to lowest order in the
magnitude of the fluctuations, an ensemble of Langevin trajectories will follow a Gaussian
distribution p(x, t) around the deterministic trajectoryx̃(t),

p(x, t) =
(

β

2πs(t)

)1/2

exp

[
− 1

2s(t)
β (x − x̃(t))2

]
, (16)

with β = 2γ 2/σ 2 and with a variances(t) obeying the time evolution

ṡ(t) = 2[A(t) s(t)+ 1], A(t) ≡ d

dx

[
F(x, t)− dU

dx

]∣∣∣∣
x̃

. (17)

When applied to SMD simulations, Eqs. (16), (17) provide a means, which we term
the Gaussian drift method, for reconstructingU (x) based on estimates of the deterministic
trajectory and the size of the fluctuations around the deterministic trajectory. In fact, Eqs. (16)
and (17) relate the first and second derivatives, respectively, of the PMF to the known external
force and the deterministic trajectory. Equation (16) implies that slightly noisy trajectories
will fluctuate about the deterministic trajectory, so that

U ′(x̃(t)) = F(x̃(t), t)− γ ˙̃x(t). (18)

The equation of motion for the width of the Gaussian relates the second derivative of the
potential to information from the trajectory according to

U ′′(x̃(t)) = −γ
2

ṡ(t)

s(t)
+ d F

dx
+ γ

s(t)
. (19)
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U (x) can be obtained from Eqs. (18), (19) by integration, resulting in

U (x̃i+1) = (x̃i+1− x̃i )U
′(x̃i )+ 1

2
(x̃i+1− x̃i )

2U ′′(x̃i ). (20)

If the second term in (20) is neglected and the velocity assumed constant, the method
outlined reduces to that suggested in [15]. Equation (20) assumes that a unique pointx̃i

can be assigned to each time pointti , which requires that̃x(t) is monotonic int , and hence
one-to-one. Since the particle is continuously pulled in one direction by a relatively stiff
spring,x(t) can be rendered monotonic by smoothing.

2.3. Onsager–Machlup Action Minimization Methods

The trajectories obtained from Eq. (3) are stochastic and depend on the particular real-
ization of the Gaussian random variableξ(t). Hence, given a set ofN space-time points
(xi , ti ), there exists some probability for a Langevin trajectory ofN steps to pass within
1x of these points. If there are no fluctuations (σ = 0), then the probability would vanish
for all sets of(xi , ti ) except for the deterministic trajectory determined by the force terms.
For nonzero fluctuations, the probabilityp(x(t)|U (x)) of a pathx(t) is proportional to
exp[−SOM], whereSOM, the Onsager–Machlup action [23, 26], is the following functional
of x(t):

SOM ∝ 1

2

∫
dt

{
[γ ẋ − F(x, t)+ dU/dx]2− kBT

d2U

dx2

}
. (21)

The second derivative termd2U/dx2 arises from the Jacobian of the transformation from
“Wiener coordinates” (ξ(·)) [26] to spatial coordinates (q(·)). Heuristically, the distance
between successive points in a Wiener process is Gaussian distributed, but the distance
between successive points in a Langevin trajectory can shrink or grow, depending on the
shape of the potential. Physically, a nonzero curvature in the potential causes a spreading
or narrowing of the distribution of points at a given time in an ensemble of Langevin
trajectories.

The most likely path, given the form ofF(x, t) andU (x), corresponds to the trajectory
x(t) that minimizesSOM. Our interest, however, is in reconstructingU (x), given a trajectory.
Rather than minimizeSOM to find the most probable path, we assume that the most likely
potential for a given time seriesx(t) can be determined by minimizingSOM with respect to
the choice of the potential. In order to obtain such a choice we expand the force−dU/dx
in terms of a set of basis functionsfn(x) to be specified further below:

−dU

dx
=

nmax∑
n=1

cn fn(x). (22)

The minimization problem will be solved with respect to the expansion coefficientsc≡
(c1, c2, . . . cnmax)

T . To simplify the notation we definefo(t)≡−ẋ, co≡ γ , f̃ n(t) ≡ fn(x(t)),
F̃(t) ≡ F(x(t), t) and rewrite Eq. (21) as

SOM ∝ 1

2

∫ t f

to

dt


[

nmax∑
n=0

cn f̃ n(t)+ F̃(t)

]2

+ kBT
nmax∑
n=1

cn
d fn
dx

∣∣∣∣∣
x(t)

 . (23)
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Numerical integration of (23) yields a double sum from the square term and a single sum
from the cross terms and the derivative terms; the term equal to the integral of the square of
the applied force can be discarded since it does not depend onc. The resulting expression
can be put into the convenient matrix form

S(c) = 1

2
cT Hc− bTc, (24)

where the definitions

Hmn =
∫ t f

to

dt f̃ m(t) f̃ n(t),

bn = −
∫ t f

to

dt

[
f̃ n(t)F̃(t)+

1

2
kBT

d fn
dx

∣∣∣∣
x(t)

]
, n ≥ 1,

b0 = −
∫ t f

to

dt f̃ o(t)F̃(t)

(25)

have been used. Expression (24) describes a generalized quadratic form with a critical point
atc∗ satisfying

Hc∗ = b. (26)

If the Hessian matrixH is positive definite, thenc∗ corresponds to the global minimum
of SOM in the chosen parameter space. If the number of basis functionsnmax is large,H is
likely to be nearly singular which requires caution in solving (26). Eithernmaxmust be kept
small enough to maintain numerical stability, or numerical linear algebra methods such as
singular value decomposition must be employed to construct the pseudo-inverse ofH and
avoid divergences.

By neglecting the second derivative term, the minimization problem can be recast into
a linear least squares problem consisting of one linear equation in the components ofc for
each time step. A least squares solution of this system of equations is more demanding in
terms of memory and computational requirements than the solution of (26), but tends to be
more stable when large numbers of basis functions are used (nmax large in Eq. (22)).

To derive the least squares method, we note that the data points are sampled evenly in
time; thus the integral may be evaluated as the sum of the squares of the integrand values,

SOM ∝
imax∑
i=1

[
nmax∑
n=0

cn f̃ n(ti )+ F̃(ti )

]2

. (27)

Since the stochastic term is Gaussian, the terms in the sum should be normally distributed
about zero. It follows from this that the most probable PMF is precisely the one that
minimizes the sum of the squares of the terms. If the expression for the force−dU/dx
is nonlinear in the parameters{cn}, gradient search algorithms or other means must be
employed to find the global minimum of the action. We have only used linear models
in order to reduce computation time and maximize reliability and robustness; nonlinear
methods can be much slower and often require a good initial guess for the coefficient
vectorc.
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Given a particular PMFU (x), stochastic trajectories obtained by integrating Eq. (3)
will tend to be found in theneighborhoodof the most probable trajectory. Vice versa,
to each individual trajectory corresponds a slightly different potential which minimizes
the Onsager–Machlup action for that trajectory. Combining results from multiple trajec-
tories helps to distinguish spurious statistical fluctuations in a single reconstruction from
reproducible details of the underlying PMF. To perform the analysis for a set of stochastic
trajectories{x(t)}, we seek the single PMF that maximizes the probability of the occurrence
of all the trajectories in the set. Denoting byp(U |xi (t)) the probability for trajectoryxi (t)
to occur forU (x), the probability that all trajectories occur for a givenU (x) is

p(U |{xi (t)}) = p (U |x1(t))× p (U |x2(t))× · · ·
∝ exp(−S[x1(t)])× exp(−S[x2(t)])× · · ·

= exp

(
−
∑

i

S[xi (t)]

)
. (28)

Thus, multiple trajectories may be incorporated into the determination ofU (x) by min-
imizing the sum of the Onsager–Machlup functions of all individual trajectories. ForS
given by Eq. (24) one can determineU (x) by summing the Hessian matrixH and the
vectorb in Eq. (25) of each trajectory before solving Eq. (26). Alternatively, multiple tra-
jectories can be incorporated into the least squares method simply by adding the respective
Onsager-Machlup actions in Eq. (27). However, the resulting system of equations can be
quite unwieldly.

Despite the importance, demonstrated below, of multiple trajectories for obtaining accu-
rate PMFs, results from the analysis of single trajectories can also be helpful in comparing
the effectiveness of the reconstruction methods themselves. Single trajectory results are
also of interest in view of the fact that SMD simulations of biopolymers are often extremely
costly, such that only a few trajectories are available for analysis.

2.4. Velocity Autocorrelation Analysis

In order to discount the irreversible work generated by pulling particles along a reaction
path in the framework of the Langevin model as stated by Eq. (3), one needs to know
the friction coefficientγ . This coefficient can be determined through the particle’s velocity
relaxation, which proceeds typically in a picosecond or less. The displacement of the particle
on this time scale is governed by a Langevin equation which includes the inertia term

mẍ = −γ ẋ + F(x, t)− dU(x)/dx+ σξ(t), (29)

wherem is the mass of the particle, andγ andσ are as defined in Eq. (3). We assume in the
following that the potentialU (x)makes a negligible contribution to the velocity correlation
function; this assumption will be shown below to hold for the strongly overdamped regimes
we are considering. ForF(x, t) as given by Eq. (9), one introduces the new variabley≡ x−
vt + γ v/k and obtains

mÿ = −γ ẏ− ky+ σξ(t). (30)

This equation describes the motion of a Brownian particle in a harmonic well. Settingẏ ≡
w, Eq. (29) readsmẇ = −γw− ky+ σξ(t). Hence, a multivariate Ornstein-Uhlenbeck
process [27] describes the evolution of the variabley ≡ (y, w).
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The autocorrelation functionCw(t) of the velocityw, normalized by the variance, is
defined as

Cw(t) ≡ 〈[w(t
′ + t)− 〈w〉][w(t ′)− 〈w〉]〉
〈[w(t ′)− 〈w〉]2〉 . (31)

Following [27], for the system described by Eq. (30) one obtains the velocity autocorrelation
function

C(t) = 1

2
e−γ t/2m

[(
1+ γ

νm

)
e−νt/2+

(
1− γ

νm

)
eνt/2

]
, (32)

where

ν ≡
[(

γ

m

)2

− 4k/m

]1/2

. (33)

Equation (32) corresponds to an overdamped oscillator. If the spring constantk is made
sufficiently stiff, ν becomes imaginary and one obtains an alternate (though equivalent)
expression forC(t),

C(t) = e−γ t/2m

[
cos

ωt

2
− γ

mω
sin

ωt

2

]
, (34)

where

ω ≡
[

4k/m−
(
γ

m

)2
]1/2

. (35)

Since bothk andm are known, the velocity autocorrelation may be fitted to either Eq. (32)
or Eq. (34) to findγ .

3. APPLICATION TO MODEL SYSTEMS

In order to gauge the accuracy of the three reconstruction methods outlined in Section 2,
we performed simulations providing solutions of the Langevin equation (3) for known
one-dimensional potentials and the external force (9) and used the resulting displacement
and force time series to reconstruct the respective PMFs. Since in this case the time series
stemmed from a truly one-dimensional system conforming exactly to the model underly-
ing the nonequilibrium analysis methods, applications of the three methods suggested in
Section 2 should reproduce the original potentials, except for the shortcomings of the
methods, mainly due to limited sampling. The test calculations were carried out for three
generic types of potentialU (x): a sinusoidal potential, Gaussian barriers of different
heights, and step function potentials of different widths. The details of the potentials and
the pulling velocities chosen are provided in Table I. Except for the shape of the poten-
tial and the pulling velocity, all other model parameters were fixed:γ = 4000 pN· ps/Å,
k= 300 pN/Å, andσ = (2γ kBT)1/2 with T = 300 K. For meaningful comparison, the three
reconstruction methods were applied to the same trajectory data for all simulation condi-
tions.
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TABLE I

Simulation Conditions for Model Systems

Potential Height (kcal /mol) Width (̊A) Velocity (Å /ps)

Sinusoid 30 10 0.01, 0.001
Gaussian 10, 30, 60 5 (FWHM) 0.01
Step 30 0.5, 1.0, 4.0 0.01

3.1. Reconstruction Parameters

Time series of displacement and force for selected trajectories are shown in Fig. 3. Since
the potentials employed in the tests have approximately the same change in amplitude from
peak to trough, the same width over which the potential rises, and were generated with
identical pulling conditions of velocity, spring constant, etc., the time series forx(t) look
very similar: one can discern in all three a jump in the displacement of similar size and at
similar times, corresponding to the crossing of the top of the barriers. It appears extremely
challenging to devise a reconstruction method that can distinguish between these three
similar looking cases and to identify properly the sinusoidal, Gaussian, and step function
potentials. However, the associated force values, related to the displacement values through
Eq. (9), exhibit characteristics which better reflect the underlying potentials. For example,
even though the three force time series exhibit a change in value of approximately the same

FIG. 3. Position and force time series from SMD simulation of three types of one-dimensional potentials.
(a) Sinusoidal potential,v= 10−2 Å/ps; (b) Gaussian potential, height 30 kcal/mol; (c) step function, width
λ= 2.0 Å.
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size, one can recognize that in the case of the sinusoidal and Gaussian potentials the force
values become negative shortly after the respective systems have been pulled over the po-
tential barriers, i.e., in the space interval where the systems experience a strong negative
potential slope pushing the systems towards the pulling direction. Such negative applied
forces do not occur in the case of the step function potential, where the barrier is followed
by an interval of zero slope.

For the WHAM method, the trajectory was divided into 20 windows of width 125 ps
for thev= 0.01Å/ps simulations and 60 windows of width 360 ps for thev= 0.001Å/ps
simulation. The integration of (8) was performed as a Riemann sum of 200 points, and
Eqs. (7), (8) were solved iteratively until the fractional change in all values of (8) (one value
per window) was less than 0.005.

For the Gaussian drift method, the trajectoryx(t)was smoothed to monotonicity to obtain
x̃(t), using Savitzky–Golay filters as described in Presset al.[28]. Different window sizes for
different trajectories were used to avoid over-smoothing the jump inx(t) (see Fig. 3) where
the particle crosses the peak of the potential. The velocity˙̃x, mean square fluctuations̃, and˙̃s,
were also computed in this manner. The second derivative of the potential, as reconstructed
from Eq. (19), was recognizable in most of the simulations as being reasonably accurate,
though somewhat noisier than the first derivative data obtained from Eq. (18). However,
since the potential was very finely sampled for all the test simulations, the second derivative
term made a negligible contribution to the reconstructed potential.

For the least squares method, based on Eq. (27), no smoothing ofx or f was done. The
velocity was computed in all cases with a 3rd order Savitzky–Golay filter corresponding to
a spatial window of 0.6 Å. The basis functions were the trigonometric functions sin(nx/L)
and cos(nx/L), n = 1 . . .10, for a total of 20 basis functions. The trajectoryx(t)was scaled
and shifted so thatx/L lay in the range [−π, π ]. Such an arrangement effectively clamps
the value of the potential at the final displacement to zero, since the definite integral of each
of the basis functions in this range is zero. For the reconstruction of the step functions, the
final value was clamped to 30 kcal/mol by subtracting a constant offset from the force time
series, then adding it back after the best fit parameters were obtained.

The model potentials were also reconstructed using the full Onsager–Machlup action,
based on Eq. (26). Two sets of reconstructions were done, both of which employed a basis
set of 12 trigonometric functions as above, with the difference that the trajectory was scaled
to [0, π ] rather than [−π, π ]; as a result, there is no bias in the final value of the potential. In
the first set of reconstructions, however, the friction coefficient was treated as an unknown
parameter, while in the second set the friction coefficient was clamped to the correct value. In
these two sets of reconstructions we also examine the effect of combining many independent
trajectories; for this purpose 20 trajectories were generated and analyzed.

For the Gaussian drift and action minimization methods, the MATLAB computing envi-
ronment and its built-in linear algebra and minimization routines were used.

3.2. PMF Analysis

Results of the WHAM, Gaussian drift, and least squares analyses are shown in Figs. 4–6.
Results of the full action minimization analyses are shown in Figs. 7 and 8.

The Gaussian drift and least squares reconstructions show good agreement with the si-
nusoidal potential for both pulling speeds. This is attributable to the smoothness of the
potential: higher order derivative contributions to the Gaussian drift reconstruction are neg-
ligible, and the potential is well approximated by relatively few basis functions in the least
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FIG. 4. Reconstruction of sinusoidal potentials using three different analysis methods, compared to the actual
potential. (a)v= 10−2 Å/ps; (b)v= 10−3 Å/ps. Large dots, WHAM; small dots, Gaussian drift method; long-
dashed line, least squares method; solid line, actual potentialU (x).

squares method. The lack of improvement in the reconstructions from these two methods
at slower pulling speeds means that the potential is already adequately sampled at the faster
speed. Under these conditions, the velocity does not induce an overall tilt in the recon-
struction, in contrast to WHAM, which improves with slower pulling speeds even when the
potential is well-sampled.

Reconstructions of the Gaussian potential show the effect of varying barrier height. For
the 10 kcal/mol barrier (Fig. 5a), the force data are considerably obscured by temperature-
induced fluctuations. The Gaussian drift reconstruction, though quite noisy, still recovers
the correct height of the barrier. The least squares method fits the potential quite well, up
to an overall shift; as with the sinusoidal potential, the barrier is short and smooth, easily
suited to representation by a few basis functions.

For the 60 kcal/mol barrier (Fig. 5c), the particle has been pulled too fast to follow the
downward slope of the potential. The force data are simply insufficient to determine the
shape of the potential in this region, as the spring forces remain large and positive even
after the particle is over the hill. The point at which the spring force changes sign (for
examples, see Fig. 3) occurs whenx(t) ≈ 10 Å for the 10 kcal/mol barrier, 11.1 Å for the
30 kcal/mol barrier, and 12.5 Å for the 60 kcal/mol barrier. For the least squares method,
since the final value of the potential is clamped to zero while the amount of irreversible
work is underestimated, the reconstruction must make a compromise; the compromise is
made in the region where the least amount of trajectory data is available, which corresponds
to the the peak of the potential. In the WHAM reconstruction, the steep slope results in poor
sampling leading to non-overlapping probability distributions for theM windows. The gaps
in the distributions are manifested as discontinuities in the reconstruction, as can be seen in
Figs. 5c and 6a.
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FIG. 5. Reconstruction of Gaussian potentials, of the formU (x)=U0 exp[−(x − 10)2/9]. (a)U0= 10 kcal/
mol; (b) U0= 30 kcal/mol; (c)U0= 60 kcal/mol. In all cases,v= 10−2 Å/ps. Large dots, WHAM; small dots,
Gaussian drift method; long-dashed line, least squares method; solid line, actual potentialU (x).

Finally, for the 30 kcal/mol barrier (Fig. 5b), the shape of the potential, the velocity, and
the spring constant all contribute to make a good reconstruction possible. The measured
spring forces are sufficiently large so as not to be obscured by noise, as in the small barrier.
Moreover, the pulling velocity was sufficiently slow, and the spring was sufficiently stiff,
to yield a clear picture of the shape of the downhill side of the potential.

Both the Gaussian drift and the least squares method were quite successful in reconstruct-
ing the step functions of Fig. 6. It can be seen that, as for the case of the Gaussian barriers,
the reconstructions were especially accurate on the uphill slope of the potential, with the
exception of the WHAM method for the steepλ = 1 Å step. Near the top of the slope, once
again, all methods exhibit a tendency to overshoot the actual height of the step. Away from
this region, the error in the Gaussian drift reconstruction can most likely be attributed to
random deviations, as described in [15] and illustrated here.

In performing reconstructions using multiple trajectories, we observed that the result
obtained by summing the actions, as described at the end of Section 2, was nearly identical



RECONSTRUCTING PMFs FROM SMD SIMULATIONS 205

FIG. 6. Reconstruction of step function potentials of the formU (x)= 1
2 [1+ tanh(2(x − 7)/λ)], where

U0= 30 kcal/mol. (a)λ= 1 Å; (b) λ= 2 Å; (c) λ= 4 Å. Large dots, WHAM; small dots, Gaussian drift method;
long-dashed line, least squares method; solid line, actual potentialU (x).

to the average of the potentials obtained from single trajectories. An estimate of the statistical
error can be made based on the distribution of values of the potential at each displacementx.
Figure 7 shows the varianceσ 2

U as a function of displacement for trajectories made with a flat
potentialU (x) ≡ 0, and with a Gaussian potential corresponding to Fig. 5b. The variance
was calculated from 100 trajectories in each case. We show for comparison the theoretical
estimate for the variance of a reconstructed potential derived in [15]; this estimate depends
on the actual potential being relatively flat in comparison to the spring constantk. There
is good agreement between the theoretical estimate and the computed value in the case
of the flat potential. For the Gaussian barrier, deviations from the theoretical estimate are
found in the region just past the peak of the barrier, where the curvature of the potential
as well as the speed of the particle are large. In both cases, the actual potentialU (x) falls
within the statistical uncertainty(σ 2

U/N)1/2, N = 20, of the mean value of the reconstructed
potentials.

Figure 8 shows the result of applying the action minimization methods using the full
Onsager–Machlup action to the time series data of Fig. 3, using both a clamped and



FIG. 7. Variance of potentials reconstructed from 100 single trajectories, using a flat potentialU (x)≡ 0 and
a Gaussian barrier corresponding to Fig. 5b. Dashed line, variance from flat potential; dot-dashed line, variance
from Gaussian barrier; solid line, variance based on theoretical estimate from [15],σ 2

U (x)= 2kBTγ vx; dotted line,
potential corresponding to Gaussian barrier, in arbitrary units of height.

FIG. 8. Application of action minimization methods to multiple trajectories, using the three potentials of
Fig. 3. (a) Sinusoidal potential,v= 10−2 Å/ps; (b) Gaussian potential, height 30 kcal /mol; (c) step function, width
λ= 2.0 Å. Dot-dashed line, unclamped friction coefficient; long-dashed line, clamped friction coefficient; solid
line, actual potentialU (x). Results shown are averages over 20 trajectories.

206
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FIG. 9. Velocity autocorrelation functionC(t). Circles, values computed from integration of Langevin equa-
tion (29); lines, least squares fits of expression (32). (a)γ = 1000 pN· ps/Å; (b) γ = 4000 pN· ps/Å.

unclamped friction coefficient. Bearing in mind that the unclamped implementation makes
no assumptions about the final value of the potential or the friction coefficient, it is not
surprising that the method does not follow the shape of the potential as well as either the
Gaussian drift or the clamped least squares methods. The fact that the irreversible work
is underestimated in each case can be understood from the form of the Onsager–Machlup
function used in the fit. Since the friction coefficientγ is an adjustable parameter, one way
for the action to be minimized is simply to setγ to 0 and equate the derivative of the PMF
with the spring forceF(x(t), t); as seen in the Gaussian drift method, the second derivative
of the potential makes only a small contribution.

When the friction coefficient is clamped to the correct value, quite accurate reconstruc-
tions are obtained, except in the case of the step function. In that case, it is likely that
limited sampling or imprecise calculation of the velocity where the particle reaches the
top of the step leads to an underestimate of the amount of irreversible work done in this
region. It is also possible that the basis functions, which are nonlocal, are inadequate for
reproducing the sharp step when the rest of the potential is entirely flat; however, this does
not explain why, on average, the reconstructed potential overestimates the height of the
step.

3.3. Analysis of Friction Coefficient

Figure 8 demonstrates that knowledge of the friction coefficients is a prerequisite for
accurate reconstruction of PMFs. We want to demonstrate that an analysis of velocity
relaxation can yield an accurate friction coefficient. For this purpose, two sets of simulations
were performed, one forγ = 1000 pN·ps/Å, and one forγ = 4000 pN·ps/Å. The motion
was described by Eq. (29), with the mass set tom = 300 daltons, approximately the mass
of biotin. Velocities calculated using the integration algorithm of [29, 30] with a time step
of 1 fs were saved every 10 fs. Calculations were carried out for the sinusoidal potential as
introduced above, with a pulling speedv= 0.01Å/ps. The velocity autocorrelation function
C(t) was determined, and the friction coefficient was calculated through a least squares fit
of Eq. (32) to the autocorrelation function.
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The velocity autocorrelation functionC(t) and the fits of the analytical form (32) for the
two fitted values ofγ are shown in Fig. 9. The fitted friction coefficients were 4137.3 and
1034.2, exhibiting a relative error of 3% in each case.

4. TIME SERIES ANALYSIS FOR AN SMD SIMULATION

PULLING A LIPID FROM A MEMBRANE

The Gaussian drift and full action minimization methods were also applied to actual
SMD simulation data from a phospholipid membrane monolayer system. The system and
simulation parameters are described in [6]. The lipid was pulled by a spring with velocity
v= 0.014Å/ps and spring constantk = 700 pN/Å. The velocity of the lipid was obtained
from x(t) with a 3rd order Savitzky–Golay filter of spatial width 0.85Å; the spring force
time series was smoothed to the same degree. A friction constant ofγ = 4000 pN· ps/Å
was assumed for both methods, which compares well with the value obtained in [11] (5000
pN · ps/Å). For the action minimization method, 50 trigonometric functions were used to
parameterize the force.

The force used in the reconstructions and the PMF reconstructed using the two methods
are shown in Fig.10. The reconstructions exhibit several important features. First, the peaks
in the applied force (top graph) atx= 3.1, 5.6, and 8.5Å line up with the uphill slopes of
both PMF reconstructions. Second, the height of the barrier at the first peak is approximately
1.5 kcal/mol, an appropriate height value for the breaking of a single hydrogen bond [6].
Third, the action minimization reconstruction is essentially identical to the Gaussian drift
reconstruction. Apparently, the basis functions used are able to reconstruct multiple features
in a single trajectory and place these features in their correct spatial positions without bias.

5. DISCUSSION

In this paper, three methods for reconstructing one-dimensional potentials of mean force
from the trajectory and force data gathered in SMD simulations have been described. The
aim has been to develop tools that can be applied to SMD simulations as they are practiced;
thus, simulation conditions have been chosen that are representative of many full-scale
protein-ligand simulations, in order to test the effectiveness of the methods in picking out
the features in the potential of the type that one might expect to find.

Some difficulties are encountered in the application of WHAM to analyze SMD data. First,
since equilibrium is assumed, the irreversible work is taken to be zero, and thus not properly
discounted; this error is inherent to the WHAM formulation. Second, it has been seen that
for steep potentials the sampling is not sufficient in the region of the greatest slope to yield
overlapping distributions. This difficulty may be addressed by performing additional SMD
simulations in the regions of the greatest slope and combining the additional probability
distributions thus obtained with the probability distributions from the initial SMD simulation
in Eq. (7). An advantage to be found in the application of WHAM to SMD data is that it
has been shown that the WHAM equations (7), (8) generalize in a straightforward fashion
to multiple dimensions [18].

The application of the van KampenÄ-expansion to SMD analysis, in the form of the
Gaussian drift method, has been found to be valid. When the friction coefficient was avail-
able, the method performed well; however, the requirement of careful use of smoothing
makes it less robust than other methods we examined. The use of fluctuation information
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FIG. 10. Gaussian drift method and action minimization method applied to phospholipid membrane monolayer
system (see [6]) data from an SMD simulation. (a) Smoothed force; (b) PMF reconstructed using the Gaussian
drift method; (c) PMF reconstructed using the full action minimization method with clamped friction coefficient
γ = 4000 pN· ps/Å.

was unfortunately of limited utility for the potentials we examined. Fluctuation measure-
ments might be of some utility in quantifying the error in the predicted PMF, though this
question has not been pursued.

The action minimization methods, in either the least squares or full action implementa-
tions, seem to hold the most promise, primarily because of their ability to assimilate many
forms of information about the system to aid in the reconstruction of the potential. The
reconstructions using the least squares method with clamped basis functions demonstrated
that knowledge of the total change in the PMF leads to a very accurate reconstruction of the
potential, not only at the endpoints but around midrange features as well. The total change
in PMF is quite often available, through free-energy perturbation techniques and/or experi-
mental measurements. Action minimization methods could also be made more accurate by
providing information about the total irreversible work done during the SMD simulation,
either by fixing the friction coefficient, rather than treating it as an adjustable parameter, or
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by measuring the increase in energy and change in temperature of the ligand-protein sys-
tem. The friction coefficient could be obtained by comparing simulations done at different
pulling rates, as in [11], or by analysis of the ligand’s velocity autocorrelation function, as
demonstrated here for a model system.

Another means by which information about the potential might be incorporated into the
reconstruction is through the choice of basis functions. The reconstructions exhibited in
this paper were based on a model of−dU/dx that was linear in its coefficientsc; if one is
willing to give up this property and resort to more sophisticated minimization techniques,
one can employ basis functions such as Gaussians which are nonlinear in the coefficients. If
obvious features are visible in the time seriesx(t) andF(t), then a good guess can be made
for, e.g., the locations of the Gaussians, and the minimization may lead to new information
about the height of the barriers in the PMF.

The least squares method is presently implemented for Langevin models in the strong
friction limit; the corresponding Onsager–Machlup action integral of Eq. (21) contains only
information about ligand positions. The strong friction limit is valid as long as sampling is
not affected by processes faster than velocity relaxation times, typically a picosecond; thus
it is valid for most of the ligand motion in SMD simulations. However, barrier crossing
processes which exhibit fast jumps inx(t)may correspond to ballistic motion, which might
require a description in terms of Langevin models which do not assume the strong friction
limit. Such jumps are, in fact, often visible in SMD simulations [4]. In this case the time
series analysis needs to be based on an Onsager–Machlup action involving momentum as
well as position, as described, for example, in [31].

In closing we would like to mention a complementary approach for constructing a PMF
from SMD data that has been suggested by Evans and Ritchie [32]. In this approach a PMF
was constructed by smoothing time series of position and ligand–protein interaction energy
data monitored in the SMD simulation reported in [4]. Future investigations should combine
this approach with the time series analyses suggested above to derive a PMF consistent with
a broader range of SMD data.
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