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Common Structural Transitions in Explicit-Solvent Simulations
of Villin Headpiece Folding

Peter L. Freddolino and Klaus Schulten*
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois

ABSTRACT Molecular dynamics simulations of protein folding can provide very high-resolution data on the folding process;
however, due to computational challenges most studies of protein folding have been limited to small peptides, or made use of
approximations such as G�o potentials or implicit solvent models. We have performed a set of molecular dynamics simulations
totaling >50 ms on the villin headpiece subdomain, one of the most stable and fastest-folding naturally occurring proteins, in
explicit solvent. We find that the wild-type villin headpiece reliably folds to a native conformation on timescales similar to exper-
imentally observed folding, but that a fast folding double-norleucine mutant shows significantly more heterogeneous behavior.
Along with other recent simulation studies, we note the occurrence of nonnative structures intermediates, which may yield a
nativelike signal in the fluorescence measurements typically used to study villin folding. Based on the wild-type simulations,
we propose alternative approaches to measure the formation of the native state.
INTRODUCTION

Many recent experimental studies of protein folding have

focused on the characterization of fast-folding peptides,

which approach the hypothesized protein-folding speed limit

(1,2). In the process, a variety of small proteins folding on

microsecond or even submicrosecond timescales has been

identified and characterized (3–6). Atomistic molecular

dynamics (MD) simulations could substantially assist in

understanding the folding of small proteins by providing

highly detailed data on the intermediate structures in the

folding funnel, and on the transitions between them. Simula-

tions of protein folding were generally forced until recently

to choose between the use of an implicit solvent model,

which may lead to incorrect properties for folding intermedi-

ates (7,8), or the use of an explicit solvent model, which

requires an unfeasible amount of computing power to simu-

late a complete, microsecond-timescale folding trajectory.

Over the past few years, several studies have made use of

explicit solvent replica-exchange simulations to analyze the

thermodynamics of folding of several small peptides such

as Trpcage (9,10), Met-enkephalin (11), and the C-terminal

b-hairpin of protein G (12). More recently, it has become

possible to obtain trajectories on the folding timescales of

fast-folding proteins using explicit solvent MD in a few

months of wallclock time (e.g., (13)), now allowing direct

comparison of MD and experimental results.

The chicken villin headpiece subdomain is one of the best-

characterized fast-folding proteins; most experimental and

computational work has focused on a 35-residue fragment

(HP-35), which is made up of three a-helices (14). HP-35

has the distinction of being a small, naturally occurring

protein, which nevertheless folds independently to a native
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state (14), hence its usefulness as a model system. HP-35

has been shown to have bi-exponential folding kinetics

with a slow phase (presumably corresponding to folding)

characterized by a (4.3 ms)�1 rate (3) at 300 K, or (7.4 ms)�1

(15) at 323 K, depending on the method used to measure

folding. In addition, the related HP-36 (equivalent to HP-35

with an N-terminal methionine residue) was estimated by

nuclear magnetic resonance (NMR) lineshape analysis to

have a folding rate of (45.5 ms)�1 at 306 K (16), albeit with

a large uncertainty due to the methods used, and a variant

with an N-terminal cysteine shown through measurements

of a tryptophan triplet state lifetime (17) to have a folding

rate of (3.16 ms)�1 at 313 K (17). (Note that although temper-

atures are noted for the preceding folding rates, the folding

rate of villin changes very little with respect to temperature

in the 300–350 K range (3).) Importantly, a fast-folding

mutant with two lysine residues replaced with norleucine

(Nle) shows similar bi-exponential kinetics with a folding

rate of (0.7 ms)�1 at 300 K (4). It is hypothesized that the

accelerated folding, and increased stability, of the K65Nle/

K70Nle mutant (henceforth NLE) are due to reduced frustra-

tion from the removal of unsolvated charged groups and

repulsive charge-charge interactions (4).

Because of its size, simple structure, and rapid folding,

HP-35 has been the subject of a wide variety of atomistic

in silico folding studies, using both implicit (18–23) and

explicit (24–27) solvent. Although several of these studies

did indeed produce trajectories folding the villin headpiece

to the native state, multiple different folding mechanisms

have been proposed in the process. Among recent represen-

tatives, Lei and Duan (20) and Lei et al. (21) propose that the

primary free energy barrier during folding arises during

formation of helices II and III, which occurs before helix I

formation. Yang et al., in contrast, propose that the transition

state ensemble contains structures with nativelike
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conformations of helices I and II (22), and Zagrovic et al.

(25) observed a majority of (short) trajectories trapped in

an intermediate after secondary structure formation where

F76 forms incorrect contacts with the phenylalanine residues

of the hydrophobic core, an observation also made in an

early 1-ms villin trajectory (24).

With the exception of an impressive series of simulations

by Ensign et al. on NLE (26) and a massively parallel study

with trajectories only a few tens of nanoseconds in length

(27), all MD simulations of the villin headpiece which have

reached native states have used implicit solvent models, and

as noted above, thus run the risk of altered relative stabilities

in intermediate states. We report here a series of three ~7-ms

folding simulations of the N68H mutant of HP-35 (henceforth

WT) and an additional six simulations of NLE, lasting a total

of>50 ms. All three WT simulations reach a native state after

5.6–8.2 ms of simulation; two of the three remain stable in this

state for at least one additional ms, while the third instead

enters a stable near-native state (average Ca-RMSD to the

crystal structure under 2.5 Å). In addition, all three trajectories

show very similar pathways at the final stages of folding,

although there is substantial variability in the path followed

up to that point, in agreement with energy landscape theory

(28). In all three cases, we observed early secondary structure

formation and hydrophobic collapse, followed by the pres-

ence of a varied array of metastable, interconverting confor-

mations, including one (referred to as the flipped state) with

correct secondary structure but incorrect relative orientations

of the helices. The final transition to the native state occurs

after the helices in the flipped state dissociate from each other

to yield an open intermediate with a very high radius of gyra-

tion; after closure of this intermediate to a nativelike structure,

the protein rapidly reaches a native state. More variation is

observed for the NLE trajectories, where two trajectories

fold to native or near-native states and the others become trap-

ped in misfolded states. Based on the novel folding pathway

observed in our simulations, we propose experimental

observables, which could be used to test our proposed folding

mechanism and better monitor the folding process of the villin

headpiece subdomain; we also propose mutations that would

be expected to accelerate folding by reducing energetic frus-

tration due to nonnative interactions.

METHODS

Molecular dynamics simulations were performed with a development

version of NAMD 2.7 (29). Simulations were performed using Langevin

dynamics with a damping constant of 0.1 ps�1; constant pressure simula-

tions also used a Nosé-Hoover Langevin piston barostat (29) with a pressure

of 1.0 atm, period of 200.0 fs, and decay rate of 100.0 fs, with isotropic cell

scaling. Multiple time stepping was employed, with an integration timestep

of 2.0 fs, short-range forces evaluated every timestep, and long-range elec-

trostatics evaluated every three timesteps. Cutoffs for short-range interac-

tions are shown in Table 1; long-range electrostatics were calculated using

particle-mesh Ewald with 64 grid points along each axis. All bonds

involving hydrogen in the protein were constrained using RATTLE (30),

and water geometries were maintained using SETTLE (31). A temperature
of 300 K was assumed unless otherwise noted. The CHARMM22 force field

with CMAP corrections (32) was used for the protein and ions. Coordinates

were written once every 6.0 ps.

The initial HP-35 structure was taken from PDB code 1YRF (33), with

arbitrarily chosen rotamers for side chains with multiple positions. This

structure is referred to as the crystal structure throughout. The initial struc-

ture was placed in a box of 9607 TIP3P water molecules and neutralized

with 200 mM NaCl using VMD (34). The structure was then subjected to

6000 steps of conjugate gradient minimization, and equilibrated for

200 ps with harmonic restraints applied to all protein heavy atoms and for

2.0 ns with no restraints; these equilibrations occurred at constant pressure

and with a Langevin damping constant of 5.0 ps�1 and involved ~30,000

atoms. The resulting equilibrated structure is referred to as ‘‘Crystal’’ in

Table 1, and its periodic cell size (66.25 Å along each axis) was assumed

for all NVT WT simulations. A fully extended starting structure for folding

simulations was generated from the WT villin sequence by setting all back-

bone (f, j) angles to (�135,135) and then equilibrating the resulting struc-

ture for 100 ps.

The reference structure of the K65Nle/K70Nle (4) mutant (NLE) was

generated by appropriately modifying the same structure as used for the

WT simulations. Standard CHARMM22 parameters for aliphatic groups

were used for the terminal portion of the norleucine side chain. The NLE

structure was then equilibrated using the same protocol as the WT crystal

structure, and the resulting periodic cell size (66.30 Å) was assumed for

all constant volume NLE simulations. For several runs using the double nor-

leucine mutant, a thermally denatured conformation was used instead (see

Table 1). This conformation was obtained by beginning simulation from

the crystal structure and running for 100 ns at 450 K and 60 ns at 500 K.

The denatured structure has no secondary structure (as calculated by

STRIDE (35)), and has a backbone atom RMSD of 12.6 Å to the crystal

structure, and Qres (36) of 0.1439.

Clustering analysis was performed using the g_cluster program of GRO-

MACS 3.3 (37) with the GROMOS clustering method (38). Frame-frame

RMSDs were calculated using all heavy atoms except those that are chem-

ically identical to another atom in the same residue.

RESULTS

To confirm the stability of the villin headpiece crystal struc-

ture with the simulation parameters employed, simulations of

280 ns and 250 ns were performed starting from the WT and

NLE crystal structures, respectively (see Table 1 for all

TABLE 1 Summary of simulations performed, including

notation for each simulation that will be used throughout the

text

Name Variant

Duration

(ns) Conformation

Cutoff

(Å) Ensemble

Min.

Ca-RMSD

(Å)

WT-NAT WT 280 Crystal 7.0/8.0 NVT 0.46

NLE-NAT NLE 250 Crystal 7.0/8.0 NVT 0.47

WT-FOLD1 WT 7010 Extended 7.0/8.0 NVT 0.46

WT-FOLD2 WT 8892 Extended 10.0/12.0 NPT 0.81

WT-FOLD3 WT 7584 Extended 7.0/8.0 NVT 0.45

NLE-FOLD1 NLE 3000 Extended 7.0/8.0 NVT 0.49

NLE-FOLD2 NLE 3000 Extended 7.0/8.0 NVT 2.83

NLE-FOLD3 NLE 8126 Extended 7.0/8.0 NVT 1.22

NLE-FOLD4 NLE 4330 Denatured 7.0/8.0 NVT 3.46

NLE-FOLD5 NLE 5410 Denatured 7.0/8.0 NVT 3.16

NLE-FOLD6 NLE 7496 Denatured 7.0/8.0 NVT 3.63

Total 55.4 ms

The ‘‘Cutoff’’ column gives the switching distance and cutoff used.
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simulation notation). In both cases, the crystal structures

were stable over the simulated timescales, with average

(5 standard deviation) Ca-RMSD values to the crystal struc-

ture of 1.54 5 0.37 and 1.61 5 0.44 Å for the WT and NLE

cases, respectively.

WT villin folding simulations

We performed three folding simulations of WT villin head-

piece starting from a fully extended conformation (see Table

1); all three trajectories reach folded conformations within

5.6–8.2 ms. Here we define a single frame as folded (or in

the native state) if its Ca-RMSD to the crystal structure is

<2.0 Å, and treat the trajectory as having reached a folded

state if its distributions of Ca-RMSD and Qres (36) values

reach those of the crystal structure simulation. These values

are shown along with the secondary structure for each trajec-

tory in Fig. 1; a set of other quantities of interest (such as

radius of gyration) are shown in Fig. S1 in the Supporting

Material. In each case, the simulation was continued for

0.5–1.0 ms after the folding event to assess the stability of

the folded structure that was reached. WT-FOLD1 and

WT-FOLD3 remain folded once they reach a native state,

with the exception of a short return to a near-native state in

WT-FOLD1 at ~6.6 ms. WT-FOLD2 instead briefly reaches

the native state at ~8.2 ms and then settles in a near-native

state for the duration of the simulation (although even during

the latter period many individual conformations satisfy our

native state criteria). The deviations between the near-native

state in WT-FOLD2 and the crystal structure are mostly in

the N- and C-terminal residues; exclusion of the first and

last residues from Ca-RMSD calculations (as in (20)) yields

an average RMSD of ~1.65 Å and minimum RMSD of 0.55

Å for the near-native state.

All three WT folding trajectories show a similar order of

events along the folding pathway: the protein undergoes

a rapid collapse over the first 1–2 ms, although the solvent-

exposed hydrophobic surface area does not reach nativelike

values (see Fig. S1); in addition, during this collapse, helices

I and III form (accompanied, in some cases, by helix II). The

protein then has a long dwell time (~5 ms) in a series of

interconverting nonnative states. To identify significant

intermediate states, clustering analysis was performed on

each trajectory (see Methods). The highly occupied clusters

and plots of the cluster occupied throughout the WT simula-

tions are shown in Fig. S2. The complete folding trajectories

of WT-FOLD1, WT-FOLD2, and WT-FOLD3 are shown in

three respective movies supplied in the Supporting Material.

In each WT trajectory, a long-lived intermediate state

eventually forms where native or nearly native secondary

structure has formed, but helix I is flipped relative to the

rest of the protein, such that the N-terminus is directed

away from the C-terminus, and the hydrophobic face of helix

I is rotated away from the protein’s center (clusters 1, 3, and

6 in WT-FOLD1; 2 and 14 in WT-FOLD2; and 3 and 16 in
Biophysical Journal 97(8) 2338–2347
FIGURE 1 Progress of the WT folding simulations. (a) Ca-RMSD and

Qres relative to the 1YRF crystal structure; running averages over 30 ns

are shown in red, and the range defined by the mean 5 two standard devi-

ations from simulation WT-NAT as blue bars. (b) Secondary structure

throughout the WT folding trajectories. The secondary structure of the

crystal structure is shown at left.
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WT-FOLD3). This conformation is discussed in more detail

below under Common Interactions in Folding Intermediates,

and could represent either an obligatory intermediate occur-

ring near the final stages of most folding trajectories, or

a frequently encountered kinetic trap resulting from residual

frustration in the protein. The nature of the long-lived inter-

mediate varies somewhat between simulations: The interme-

diate state in WT-FOLD1 generally contains a well-packed

hydrophobic core, whereas cluster 2 of WT-FOLD2 and

cluster 3 of WT-FOLD3 are mostly open, although they

interconvert rapidly with clusters (14 and 16, respectively,

for WT-FOLD2 and WT-FOLD3), which have significantly

more helix I-helix III contacts. A similar, shorter-lived semi-

open state occurs in simulation WT-FOLD1 (clusters 8 and

13). Despite the presence of similar long-lived intermediates

in all three cases, the paths followed by the three trajectories

before the flipped state (and nature of other transient interme-

diates) are quite different. WT-FOLD1 shows mostly

disordered (and short-lived) structures until the flipped inter-

mediate is reached; WT-FOLD2 fluctuates rapidly between

several conformations containing a single joint helix in place

of helices I and II; and WT-FOLD3 progresses through

a series of intermediate states with lifetimes on the order of

hundreds of nanoseconds and a variety of two-helix and

three-helix architectures (including several transient occur-

rences of the flipped conformation).

The eventual transition to a folded structure occurs imme-

diately after an event in which the secondary structure

elements lose the majority of their contacts with one another,

and the protein is observed to take on an extended conforma-

tion (albeit with mostly intact secondary structure, with some

transient losses of helical character in helix II and, in one

case, the N-terminal half of helix I). In the process, a large

number of nonnative contacts that had been present

throughout the trajectory are replaced with native contacts

due to correct relative arrangement of the helices, allowing

rapid subsequent formation of the native state. The path fol-

lowed by each trajectory during the transition is shown in

Fig. S3. The appearance of such similar conformational tran-

sitions immediately before formation of the native state, and

the microsecond or longer dwell time in a flipped conforma-

tion in all WT trajectories, strongly suggest that either the

dissociation or reassociation event is the rate-limiting step

in folding, corresponding to the presence of one long relax-

ation time in temperature-jump experiments (3).

NLE mutant folding simulations

Significantly more variability was observed in the case of the

NLE mutant; while one trajectory (NLE-FOLD1) folded to

a native state in ~2.5 ms, only one other trajectory, NLE-

FOLD3, even reached a near-native state. NLE-FOLD3

showed near-native conformations after <1.3 ms, and again

after 7.1 ms, but we do not consider the protein to have

reached the native state since the distribution of folding
observables does not match that from the crystal structure

simulation NLE-NAT. Ca-RMSD values throughout the

NLE trajectories are shown in Fig. 2, and a number of other

properties are shown in Fig. S4 and Fig. S5. Clustering anal-

ysis was performed as for the WT simulations, with highly

populated clusters presented in Fig. S6.

The trajectories that do reach native or near-native states,

NLE-FOLD1 and NLE-FOLD3, do so through different

mechanisms than seen for WT HP-35. Most notably, in

neither case does a flipped conformation similar to the pre-

folded state from the WT simulations form. Instead, the

initial hydrophobic collapse and secondary structure forma-

tion occur with the formation of the correct relative posi-

tioning of secondary structure elements, likely because of

the formation of a nativelike hydrophobic core much earlier

in NLE-FOLD1 and NLE-FOLD3 than in the WT trajecto-

ries. Aside from the native conformation (cluster 1) observed

in simulation NLE-FOLD1, a commonly observed near-

native state occurred which differs only from the native state

in that helix I is rotated further away from helix III (clusters

3, 5, and 10 in NLE-FOLD1, and 1 and 3 in NLE-FOLD3).

This near-native conformation appears to be stabilized by

hydrophobic effects, as it allows the norleucine residues to

be more closely associated with the hydrophobic core than

they are in the native state (see Fig. S7 b). The increased

burial of the Nle residues is apparent in Fig. S4, which

shows that the near-native conformation taken by NLE-

FOLD3 has significantly more burial of the hydrophobic

Nle residues than occurs in the crystal structure simulation

(NLE-NAT).

Of the NLE trajectories that fail to even reach a near-

native state, three (NLE-FOLD2, NLE-FOLD4, and

NLE-FOLD5) of the four trajectories are dominated by

conformations in which helix I and helix II are merged to

form a single long helix (see Fig. S7 c), reminiscent of the

dominant early intermediate from WT-FOLD2. The Nle

mutations again appear to play a key role in stabilizing the

favored conformations, as they show lower levels of exposed

hydrophobic surface area than those observed in the crystal

structure simulation (NLE-NAT). The remaining trajectory,

NLE-FOLD6, forms nativelike secondary structure in helix

I and helix III rather than an extended helix I/II, but still

does not reach a native or near-native state, instead settling

into a series of conformations where Nle65/Nle70 are sur-

rounded by the residues at the center of the crystal structure

hydrophobic core (F47, F51, F58, L61).

Folding rates and experimental observables

Temperature-jump experiments probing the quenching of

W64 fluorescence by H68 have yielded folding rates at

300 K of (4.3 5 0.6 ms)�1 for the WT (N68H) variant and

(0.73 5 0.03 ms)�1 for the NLE variant of HP-35 (3,4);

on the other hand, recent experiments instead monitoring

absorption at 1632 cm�1 yielded a folding rate of (7.4 ms)�1
Biophysical Journal 97(8) 2338–2347
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at ~333 K (15). Variations between simulated and experi-

mental folding rates can be attributed to factors including in-

accuracies in the MD potential used, characteristics of the

chosen starting structure for the simulations (26), the low

effective viscosity of MD water models (39,40), and possible

discrepancies between the relaxation time of experimental

observables and the actual folding process (26). The use of

a thermostat (and, in the case of WT-FOLD2, a barostat)

could also alter the simulated folding kinetics, but a thermo-

stat was necessary both to allow the use of multiple time-

stepping (29) and to avoid temperature changes during the

(nonequilibrium) protein folding events observed in the

simulations. Langevin thermostats can, in some cases, slow

such relaxation processes as protein folding due to the fric-

tional term present in the Langevin equation (studied in the

implicit solvent case in (41)). In this study, the kinetic effects

of the thermostat were minimized by using a very low damp-

ing constant of 0.1 ps�1, which did not perturb the dynamics

of a TIP3P water box (data not shown); however, minor

effects on folding kinetics still cannot be ruled out.

The folding times exhibited by WT villin in our simulations

(5.6, 8.2, and 6.6 ms) are all longer than the experimentally

FIGURE 2 Ca-RMSD to the crystal structure throughout the NLE folding

trajectories. The mean 5 2 standard deviations of values from simulation

NLE-NAT are shown as dotted lines, and an average over 30 ns is shown

as a red line.
Biophysical Journal 97(8) 2338–2347
characterized folding time measured based on W64-H68

quenching; given that the folding times for individual mole-

cules should be roughly exponentially distributed, the signif-

icance of the observed difference is unclear. The direction of

the discrepancy is opposed to what would be expected from

arguments based solely on water viscosity, and thus other

factors must be investigated. One possible explanation is

the starting conformation used in the folding simulations:

all three WT trajectories began from a fully extended confor-

mation, whereas the denatured state of villin is expected on the

basis of NMR results to have helical secondary structure in the

region of helices I and II (42,43), although it is not known

whether the native helices are formed. We used an extended

starting structure to avoid introducing a bias toward folding

given that the nature of the unfolded structural ensemble is

unknown; as noted above, 1–2 ms are required for the initial

formation of secondary structure elements in the WT folding

simulations. Correction of our observed folding times by

~2 ms yields folding times in good agreement with the exper-

imentally observed range for the WT simulation (neglecting

the effects of solvent viscosity), but it is unclear how appro-

priate such an ad hoc correction is. More information on the

denatured state in villin folding kinetics experiments would

be required to determine an appropriate time correction

(and, perhaps more importantly, to provide a more realistic

starting structure for further simulations). On the other

hand, the folding times from simulation are in much better

agreement with a rate of (7.4 ms)�1 obtained through global

measurement of amide I peak relaxation (15); the latter rate

was obtained at a higher temperature than the simulations,

but the villin folding rate appears fairly insensitive to temper-

ature in the vicinity of 300–350 K (3,15).

In contrast to the WT trajectories, only one NLE simulation

reached a native state, after ~2.5 ms; a second trajectory also

reached a near-native state after 1.3 ms, but subsequently

unfolded and again reached a near-native state after 7.1 ms.

While more rapid folding events were observed for the NLE

mutant than the WT protein, given the experimentally observed

folding rate of (0.7 ms)�1 and the duration of the NLE simula-

tions most of the trajectories should have folded, even if a 1–2 ms

offset was allowed for formation of a realistic denatured state.

Aside from the obvious possibility of force-field inaccura-

cies overstabilizing nonnative states for the NLE mutant (as in

(13,44)), it is also useful in light of recent simulations of the

NLE mutant by Ensign et al. (26) to ponder the experimental

observable being used to measure folding rates. For both the

WT and NLE variants of HP-35, folding rates have been

measured based on the quenching of W64 fluorescence by

protonated H68 (3,4). Since W64 and H68 reside one turn

apart on helix III, it is possible that folding intermediates in

which the first turn of helix III is formed are spectroscopically

indistinguishable from the folded state (26). Indeed, in a large

set of simulations of the NLE mutant from a variety of ther-

mally denatured structures, Ensign et al. observed that esti-

mating the folding time based on the population of nativelike
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W64-H68 interactions systematically yielded shorter folding

times than do structural observables, because of the presence

of nonnative states with nativelike local structure around the

fluorescent probe (26). The possibility that measurements of

W64-H68 quenching underestimate the folding time of villin

is indirectly supported by recent measurements of a slower

folding rate after the relaxation of a nonspecific, global

observable (15). It is also unclear why results from NMR

line shape analysis (16) yield folding kinetics an order of

magnitude slower than other methods, although the authors

of that report note that their estimate is based on an extrapo-

lation from experiments with high denaturant concentrations

and thus carries a large uncertainty (16), and thus the

disagreement may not be significant.

The distance between the centers of mass of the W64 and

H68 ring systems throughout the simulations in this study are

shown in Fig. S8. As with the results of Ensign et al. (26), we

find that the W64-H68 distance reaches nativelike values

faster than the protein actually folds. Formation of a native-

like distance distribution generally coincides with formation

of the first turn of helix III, and is present in the common

flipped structure of the WT trajectories and in most highly

occupied misfolded states from the NLE simulations. The

W64-H68 distance thus takes on a nativelike distribution

in <2.5 ms in all simulations except NLE-FOLD5.

Common interactions in folding intermediates

The identification of alternative experimental observables for

the villin folding process based on MD simulations would

allow testing of both the validity of our proposed folding

mechanism and the appropriateness of quenching of W64

by H68 as an experimental surrogate for folding. Aside

from fluorescence measurements, time-resolved infrared

(IR) spectroscopy has been successfully applied to track

protein folding (e.g., in (45)) and conformational equilibria,

in some cases using proteins with 13C labeled backbones to

isolate the contributions of specific residues (46). In prin-

ciple, contributions of other specific interactions such as

salt bridges ought to be observable by monitoring peaks

such as the asymmetric C-O stretch of isotope-labeled

carboxylate-containing residues (47).

We thus sought to identify salt bridges that formed only

either before or after the large opening transition between

the flipped and folded states in the WT simulations. In all

three WT folding trajectories, the prefolded state has helix I

not only flipped relative to the rest of the protein but also

rotated, such that its hydrophobic face is directed toward

solvent or helix II and its hydrophilic face is closer to helix

III (see Fig. 3 a), leading to the potential for consistent differ-

ences in salt bridging between the two states. Several such

interactions could be identified that were formed only in

the flipped structure of one or two trajectories, including

D44-K65 and K48-E72; one such interaction, which was

consistently formed in the flipped structure and other pre-
folded conformations, but not the folded state, in all three

simulations, involves D44 and K48 (see Fig. 3 b).

We thus propose measurement of the breakage of the

D44-K48 salt bridge via isotope-labeled IR spectroscopy as

an alternate probe of HP-35 folding kinetics. Based on the

simulations presented here, this salt bridge should be signif-

icantly populated in the denatured state and in most major

folding intermediates, but not in the native state. We would

thus expect relaxation of the corresponding IR peak to occur

at the same rate as, or more slowly than, other folding

observables such as W64 fluorescence and 1632 cm�1 absor-

bance during temperature jump experiments. We also note

that, in our simulations, the D44-R55 salt bridge only forms

in the presence of native structure in the segment encompass-

ing helices I and II. Thus, measuring the rate of its formation

relative to other folding observables might allow the determi-

nation of whether or not native structure in helices I and II

forms significantly before or in tandem with completion of

folding.

In addition to the D44-K65 interaction noted above, which

arises in ~50% of timesteps during the flipped state of simu-

lation WT-FOLD1, a number of other salt bridges form tran-

siently between residues K65, K70, and K73 and the acidic

residues on helix I; some combination of D44, E45, and D46

interacting with these lysine residues occurs in the flipped

state in all WT trajectories. Given that the apparent rate-

limiting step in the wild-type folding trajectories involves

dissociation of the flipped state, and that the flipped state

appears to be stabilized by salt bridges between helix I and

helix III, the mutation of D46, and possibly E45 to polar

or basic residues, would be expected to accelerate folding.

The removal of the frustration caused by these salt bridges

may also be partly responsible for the faster folding of

NLE, although the increased hydrophobicity of the Nle resi-

dues also likely encourages earlier formation of a correct

hydrophobic core. We also note that D44 would be a poor

choice for mutation because it forms a salt bridge with

R55 in the native state.

Given that the flipped state also lacks nativelike interac-

tions in the hydrophobic core, one expects that, as suggested

by Ensign et al., stabilization of the F47-F58 contact would

also accelerate folding (26). Indeed, we observe that involve-

ment of F58 in the hydrophobic core is observed only in the

native state, with the exception of a period during the early

stages of WT-FOLD2, as seen in Fig. 3 c. This observation

suggests that villin folding could also be monitored by

substituting F58 with cyanophenylalanine, which can be

used to measure the hydrophobicity of its environment (48).

DISCUSSION

The most significant finding of the WT simulations presented

here is that all three simulations reached the native state in

5.6–8.2 ms, despite following different folding pathways.

The early stages of folding for the three WT trajectories
Biophysical Journal 97(8) 2338–2347
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FIGURE 3 Proposed experimental metrics for villin

folding. (a) Clusters 1 and 2 from simulation WT-

FOLD1. Hydrophobic, polar, basic, and acidic side chains

are shown in white, green, blue, and red, respectively. (b)

Density plot showing the formation of the D44-K48 salt

bridges throughout the WT simulations; for each 6-ns

segment, the fraction of frames with a formed salt bridge

(<3.5 Å heavy atom distance) is shown. Dashed cyan,

yellow, and magenta lines indicate the opening transition,

formation of native structure, and final frame, respectively,

in each trajectory. (c) Solvent-exposed surface area of the

side chain of F58, averaged over 60 ns.
are similar only in that they all show secondary structure

formation and hydrophobic collapse (albeit not to nativelike

values). In all three, a set of long-lived intermediate states is

eventually formed in which native secondary structure is

present, but helix I is flipped and rotated relative to helix

III, preventing formation of the complete set of hydrophobic

interactions present in the native state. All three simulations

then proceed to fold after a structural transition in which the

three helices dissociate from and then reassociate with each

other.

The pattern observed in the WT simulations of indepen-

dent trajectories showing very different early stages of

folding, a series of interconverting folding intermediates,

and then a final, consistent transition to the native state, is

qualitatively consistent with the folding funnel hypothesis

(49) and energy landscape theory (28). Indeed, plotting

histograms of the number of clusters present in each trajec-

tory as a function of Qres (Fig. S9) illustrates that except

for very small values of Qres (which are poorly sampled

because of the rapid early stages of collapse of the protein),

the number of distinct accessible conformations drops with

increasing Qres, until a single native cluster is observed (or,

in the case of WT-FOLD2, two near-native clusters). Energy

landscape theory suggests that proteins satisfy the principal

of minimal frustration (28,50), and in general we find that

the number of nonnative contacts formed during villin

folding is significantly less than the number of native

contacts formed in the native state (as seen in Fig. S1). Frus-

tration is, however, still present in the villin structure, and

appears to give rise to the flipped intermediate state observed

in villin folding, given the presence of nonnative helix

I-helix III salt bridging in this intermediate. Interestingly,

a general folding mechanism of rapid initial collapse, fol-

lowed by a variety of different paths as the protein converts

between a series of intermediates, and a late transition state

giving rise to exponential decay, has previously been sug-

gested based on on-lattice simulations of model proteins (51).
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The mechanism for folding observed in our simulations

does not appear to match any of the hypotheses drawn from

other recent simulations of villin folding (see Introduction).

Our mechanism most closely resembles the results of implicit

solvent Monte Carlo simulations by Yang et al. indicating that

the transition state ensemble contains well-formed secondary

structure elements but is mostly disordered (22). However, we

observe a transient opening event in all three trajectories in

which the radius of gyration spikes sharply, whereas the

results of Yang et al. (22) indicate that the transition state

ensemble is only moderately more extended than the native

state.

Although we did observe rapid folding to native or near-

native states in two of six simulations of the NLE mutant,

the other four trajectories became trapped in nonnative states

for periods significantly longer than the expected folding

time of the mutant (or even, in several cases, the WT

protein). Both effects appear to be largely mediated by the

increased hydrophobicity of the Nle residues, as the success-

ful folding trajectories immediately recruit nativelike hydro-

phobic cores, and the misfolded states contain clusters of

hydrophobic residues interacting with both norleucines. In

no case is a flipped state resembling the typical folding inter-

mediate from WT simulations observed, suggesting that the

free energy surface on which the Nle mutant folds may be

substantially different from that of the WT protein due to

destabilization of the most favorable set of WT folding inter-

mediates. We note that the presence of several very slow

folding pathways for the NLE mutant was also observed

by Ensign et al. (26) using a different force field.

The specific folding times observed in the wild-type simu-

lations are ~2 ms slower than the experimentally expected

range, although as noted above, the discrepancy may be

partially due to a fully extended starting conformation, or

may simply be due to the small number of simulations

sampled. The possible effects of the starting conformation

on folding rates are more apparent in the case of the NLE
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simulations: two trajectories starting from the extended

structure reached nativelike states, but none starting from

the denatured structure did. Neither of the starting structures

used in this study are likely to be representative of conforma-

tions occurring in the denatured state ensemble in villin

folding experiments, but, as noted above, they do offer start-

ing conformations that avoid unduly biasing the simulation

toward rapid folding. Protein folding simulations beginning

from more realistic denatured states would be a clear step

toward even closer linkage of protein folding simulation

and experiment, and would remove one possible cause for

discrepancies in folding kinetics, but will only be possible

through more detailed experimental data on the denatured

state or extensive simulations characterizing it.

Despite the wide variety of folding behaviors exhibited by

the WT and NLE trajectories in this study, nativelike interac-

tion distances were usually observed between W64 and H68

after the first few microseconds of simulation. This observa-

tion indicates that the corresponding fluorescent probe may

underestimate folding times or mask heterogeneity in the

folding process by measuring only formation of local native

structure around the beginning of helix III, in line with the

observation of a slower folding rate in recent temperature

jump experiments tracking a global observable (15). Because

the detailed mechanism of W64 fluorescence quenching by

the neighboring histidine is not known, it is possible that

some sensitivity to the local protein environment allows

the quenching to distinguish between the folded structure

and folding intermediates, but comparisons to time-resolved

data using other folding observables would be needed to

verify this possibility (26). On the other hand, it is also

possible that the kinetic discrepancies observed in these

simulations (slower than expected folding of WT villin,

and very slow folding of the NLE variant) are due to some

failure of the MD force field in properly describing the

folding process, e.g., due to neglect of atomic polarizability

that could affect dipole-dipole interactions along the helical

backbone. Certainly, even recent explicit-solvent MD simu-

lations on realistic folding timescales have not always given

correct results (e.g., (13)), and even in cases where simula-

tions agree with experiment in terms of structure and

kinetics, previous attempts to computationally predict muta-

tions accelerating villin folding have been unsuccessful (3).

MD simulations of loop closure in a model peptide using

different force fields have also illustrated that even when

different force fields agree with experiment, they may yield

different mechanistic details (52). Molecular dynamics simu-

lations do, however, benefit from ongoing improvements

both in the force fields used and the amount of sampling

that can be performed, and thus are expected to provide

continually more accurate views of processes such as protein

folding. In the case of the villin headpiece subdomain, two

sets of explicit solvent-folding simulations of the NLE

mutant (this work and that of (26)), using different force

fields, have both suggested that a frequently used experi-
mental probe for villin folding may overestimate the folding

rate of the protein. Our results also suggest a certain overes-

timate of the folding rate for the WT version of the protein.

Importantly, the results provide clear mechanistic detail

which can be tested experimentally both to assess the general

accuracy of the model for villin folding that we present, and

to answer the specific question of whether suggested alterna-

tive observables will yield slower folding rates.

Based on our WT trajectories, we propose that monitoring

of the D44-K48 interaction using isotope-labeled IR spec-

troscopy offers an alternative probe that is sensitive to the

final folding transition. If our observed folding mechanism

is correct, this interaction should relax more slowly than

W64-H68 quenching, and more accurately reflect the transi-

tion to the native state.

In summary, we have performed what are, to our knowl-

edge, the first complete folding simulations of N68H villin

headpiece subdomain in explicit solvent over physically real-

istic timescales. The use of unbiased, explicit solvent atom-

istic simulations of folding provided detailed information on

the nature of intermediate structures occurring during folding

that might be obscured through approximations such as G�o
potentials, coarse-graining, or implicit solvent models. Three

separate trajectories of WT villin reached native states

through similar mechanisms, suggesting a class of long-lived

intermediate states and revealing the approximate nature of

the transition state ensemble. Similar simulations of a fast-

folding double-norleucine mutant yielded more heteroge-

neous behavior, and suggest either inaccuracies in the simu-

lation methods used or the presence of a variety of slower

folding pathways, which are masked by the spectroscopic

observable used experimentally to monitor folding (as in

(26)). Based on our results, we are able to propose both alter-

native experimental observables to monitor folding and

a pair of mutations that would be expected to accelerate villin

folding, in hopes of allowing experimental testing of the

folding mechanism we observed for WT villin. As molecular

dynamics simulations promise to reach timescales beyond

the 50 ms covered here and force fields become more accu-

rate, we expect that their utility for studying large conforma-

tional transitions such as those involved in protein folding

will continue to grow.
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